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Abstract

One of the basic challenges in developing structural methods for systematic audition on the

quality of biomedical ontologies is the computational cost usually involved in exhaustive

sub-graph analysis. We introduce ANT-LCA, a new algorithm for computing all non-trivial

lowest common ancestors (LCA) of each pair of concepts in the hierarchical graph induced

by an ontology. The computation of LCA is a fundamental step for non-lattice approach

for ontology quality assurance. Distinct from existing approaches, ANT-LCA only computes

LCAs for non-trivial pairs, those having at least one common ancestor. To skip all trivial

pairs that may be of no practical interest, ANT-LCA employs a simple but innovative al-

gorithmic strategy combining topological order and dynamic programming to keep track of

non-trivial pairs. We provide correctness proofs and demonstrate a substantial reduction in

computational time for two largest biomedical ontologies: SNOMED CT and Gene Ontol-

ogy (GO). ANT-LCA achieved an average computation time of 30 and 3 seconds per version

for SNOMED CT and GO, respectively, about 2 orders of magnitude faster than the best

known approaches. Our algorithm overcomes a fundamental computational barrier in sub-

graph based structural analysis of large ontological systems. It enables the implementation

of a new breed of structural auditing methods that not only identifies potential problematic

areas, but also automatically suggests changes to fix the issues. Such structural auditing

methods can lead to more effective tools supporting ontology quality assurance work.
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1. Introduction

In graph-theoretic representation of ontologies in biomedicine such as SNOMED CT [1],

ontological concepts correspond to graph nodes, and is-a relations correspond to edges of the

graph. When rendering the is-a relations as a graph, the Hasse diagram convention orients

more general concepts above (or higher than) more specific concepts.

One of the desirable properties of the resulting graph structure is that the subsumption

relationship (is-a hierarchy) should form a lattice ([2]). There are in general two types of

lattice-based approaches to ontology quality assurance. One involves the direct application

of Formal Concept Analysis (FCA [3]), mostly for auditing semantic completeness or missing

concepts [4]. The second involves the extraction of lattice-violating fragments [5, 6], or non-

lattice fragments, which represent violations of the FCA principle that systematic engineering

approaches for constructing concept hierarchies always result in order structures that are

lattices in the sense of lattice theory [3]. This non-lattice approach for ontology quality

assurance involves the extraction of graph substructures (i.e. sub-orders) that violate the

lattice property, which states that any two concept nodes have at most one minimal shared

(common) ancestor and at most one maximal shared descendant.

As illustrated recently in [7], the use of the non-lattice approach for improving the quality

of an ontology consists of the following general steps:

1. Identify node-pairs that violate the lattice property (i.e. non-lattice pairs) and extract

the associated non-lattice fragments;

2. Detect ontological defects such as miss-aligned is-a relations or missing concepts in the

extracted non-lattice fragments, often leveraging additional or external information;

3. Formulate and generate change suggestions automatically and present the suggestions

in a usable format;

4. Perform reviews of the suggested changes and accept or reject such suggestions by a

qualified ontology engineer or ontology editor, and incorporate the accepted changes
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into the next release.

The non-lattice approach is unique in that while most ontology quality assurance tech-

niques [8] merely identify potential errors, this approach can not only identify previously

undiscovered errors confirmed by domain experts, but also suggest appropriate remediation

(i.e., “auto-suggestion”) [7, 9]. For example, Figure 1 (top), extracted from the September

2017 release of SNOMED CT (US edition), contains a substructure (1A) of is-a relations

on the left, involving 5 concepts. This is a non-lattice fragment, because the concept nodes

labeled 1 and 2 have two maximal shared descendants: concept nodes labeled 4 and 5.

With a combination of structural and lexical information represented in this fragment, one

can infer that “Epithelioid hemangioendothelioma of lung” is-a “Malignant tumor of lung

parenchyma.” Remarkably, adding such a missing edge (in red color) also makes the result-

ing subgraph (1B) conforming to the lattice property: concept nodes labeled 1 and 2 now

have a unique maximal shared descendant: concept nodes labeled 4 (since concept 5 is no

longer “maximal”). Similarly, the lower part of Figure 1 shows a non-lattice fragment (2A)

in the Gene Ontology (GO) on the left, and the corrected structure (2B) on the right.

Both the FCA- and the non-lattice-based approaches incur computational costs that

sometimes make exhaustive analyses prohibitive. For example, in Jiang and Chute’s work [4],

only 10% of SNOMED CT sub-hierarchies were sampled in order to assess semantic com-

pleteness. Three months of sequential computation ([5]) or three hours of 25-node parallel

processing ([6]) were required to detect non-lattice pairs for each version of SNOMED CT.

The detection of non-lattice pairs is a fundamental step for non-lattice-based approach for

ontology quality assurance. The non-lattice pairs serve as seeds for systematic generation of

non-lattice fragments, but including all nodes in-between the seed nodes and the maximal

shared descendants. Therefore, more efficient algorithms for detection of non-lattice pairs is

highly desirable.

This paper introduces ANT-LCA, a new algorithm for computing all non-trivial lowest

common ancestors (LCA) of each pair of concepts in the graph induced by an ontological

system. Here the lowest common ancestors in the context of a graph are exactly the maximal

shared descendants in the context of an ontology. In the remainder of the paper, we discuss

algorithms in graph-theoretic and order-theoretic terms. But whenever working with specific
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Figure 1: An example (1A) of non-lattice fragment of size 5 in SNOMED CT, as well as the resulting lattice

subgraph (2B) after a missing IS-A relation is added (red link). Similarly, (2A) is a non-lattice fragment of

size 5 in GO and (2B) is the correction.

ontological examples, we switch back to maximal shared descendants. Distinct from existing

approaches, ANT-LCA only computes LCAs for non-trivial pairs, those having at least one

common ancestor. To skip all trivial pairs that may be of no practical interest, ANT-

LCA employs a simple but innovative algorithmic strategy combining topological order and

dynamic programming [10] to keep track of non-trivial pairs.

We provide correctness proofs and demonstrate about 2-orders of magnitude reduction,

compared with the best parallel algorithms known to date, in computational time for two

of the largest biomedical ontologies: SNOMED CT and Gene Ontology (GO). ANT-LCA

achieved an average computation time of 30 and 3 seconds per version for SNOMED CT and

GO, respectively, confirming our complexity analysis with a time-bound involving pairability-

degree (i.e. the constant in big-O analysis of time-complexity) as a quadratic factor. ANT-

LCA overcomes a fundamental computational barrier in subgraph analysis of ontological

structures. It enables the implementation of a new breed of structural auditing methods
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that can not only identifies potential problematic areas, but also automatically suggests

specific changes that are needed to fix the quality issues.

2. Background

2.1. LCA on directed acyclic graphs

In a directed acyclic graph (DAG), a common ancestor (CA) of a pair of nodes u, v is a

node w that is a shared ancestor of u, v. A lowest CA is a node w such that no other shared

ancestor is closer (nearer) to u, v than w. A pair of nodes u, v is trivial if they do not have

a shared ancestor, or one of them is the ancestor of the other. Conversely, non-trivial pairs

are those having at least one lowest common ancestor other than the nodes already in the

pair. Given a subset of nodes X in a DAG, we denote the set of lowest common ancestors of

X as lca(X), and common ancestors of X as ca(X), respectively. When X is a two-element

set {a, b} with two or more lowest common ancestors, it is called a non-lattice pair.

A pair of nodes (x, y) is called pairable if lca{x, y} 6= ∅, lca{x, y} 6= {x}, as well as

lca{x, y} 6= {y}. Intuitively, x, y is pairable if they share at least one non-trivial common

ancestor. In this case we also say that x is pairable with y, and (x, y) a non-trivial pair. We

use notation x ↓ y to indicate that x is pairable with y. A trivial pair is a pair (x, y) that

is not pairable. In fact, (x, y) is trivial if and only if lca{x, y} ⊆ {x, y}, i.e., lca{x, y} = ∅,

lca{x, y} = {x}, or lca{x, y} = {y}. We write π(u) = {v | u ↓ v} for the set of all nodes v

that are pairable with u.

2.2. Non-lattice approach

The non-lattice approach [5] provides a mathematically grounded, error-agnostic method

for exhaustive structural auditing of large and complex biomedical ontologies such as SNOMED

CT. This approach focuses on the graph structure induced by the subsumption relation (is-

a) in an ontology. It extracts non-lattice pairs, those with two or more lowest common

ancestors, violating the lattice property.

Any non-lattice pair generates an induced non-lattice fragment, consisting of concepts

in-between any lowest common ancestor and any member of the non-lattice pair, as well

as all the relations between these concepts. Such induced non-lattice fragments represent
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important areas of focus for ontological auditing ([5, 7]), because they are inconsistent with

the ontology design principle that the subsumption relationship (is-a hierarchy) should form

a lattice ([2, 5]). Non-lattice fragments are also in conflict with the Fundamental Theorem of

Formal Concept Analysis ([3]), which states that concept hierarchies derived from the duality

of intension and extension always have their order structure being a (complete) lattice.

In fact, non-lattice fragments are often indicative of missing hierarchical relations or con-

cepts. As a demonstration of the practical utility of the non-lattice-based approach, Cui et

al. [7] identified four lexical patterns among non-lattice subgraphs in SNOMED CT. Each

lexical pattern is associated with a potential specific type of error. Applying the structural-

lexical method to SNOMED CT (September 2015 U.S. edition), 6,801 non-lattice subgraphs

matched these lexical patterns, of which 2,046 were amenable to visual inspection. Evalua-

tion of a random sample of 100 small subgraphs resulted in 59 confirmed errors by domain

experts. Abeysinghe et al. [9] further applied the four patterns to audit National Cancer In-

stitute (NCI) Thesaurus (version 16.12d) and introduced two new lexical patterns to uncover

potential errors and suggest remediations. A total of 8,143 non-lattice subgraphs were iden-

tified in NCI Thesaurus, among which 809 matched the six lexical patterns. Domain experts

evaluated a random sample of 50 small subgraphs and verified that 33 of them contained

errors and made correct suggestions. Such hybrid structural-lexical methods are innovative

and proved effective not only in detecting errors, but also in suggesting remediation for these

errors.

2.3. The computational challenge

Exhaustive generation of non-lattice fragments for large ontological graphs such as SNOMED

CT, with over 300,000 concepts and 450,000 is-a relations, is computationally expensive if

not prohibitive, using an exhaustive sequential approach. For example, in [5], 34 million

pairs of SNOMED CT concepts were examined and 518,000 non-lattice pairs were identified

using SPARQL queries over an RDF representation of the ontology. The time involved for

such an exhaustive approach, 3 months using standard desktop machines, is inadequate for

quality assurance applications.

In more recent work, a general MapReduce pipeline called MaPLE for Lattice-based
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Evaluation [6] has been introduced for detecting non-lattice pairs. Using a Cloudera Hadoop

cluster, MaPLE detected all non-lattice pairs in SNOMED CT, with an average total com-

pute time of about 3 hours per version.

Our ANT-LCA algorithm provides a dramatic further reduction in computational time

using sequential computation by a strategy that skips trivial pairs altogether, without even

checking them.

3. Methods

3.1. The ANT-LCA algorithm

We present ANT-LCA in three components: initialization, pairability computation, and

finding of shared ancestors imbedded into pairability computation. We treat pairability

computation separately to highlight ANT-LCA’s core algorithmic insight without dealing

with irrelevant overhead.

3.1.1. Initialization

The initialization phase for ANT-LCA takes a DAG (V,E) as input and uses a modified

version of topological sort [10] to obtain a topological order (index) for each node in V . This

step takes linear time in |V |.

After initialization, we have two order relations on V : v and ≤. Here v (and the

strict version @) stands for the partial order determined by the input DAG (V,E) [10] (i.e.,

v1 @ v2 means there is an edge from v1 to v2). ≤ represents the usual arithmetic order on

the topological index. By the property of topological sort, we have u @ v implies u < v for

any u, v ∈ V .

3.1.2. Computing Pairability

The core algorithmic idea of ANT-LCA is captured by the computation of the pairable

function pi(u), intended to compute the function π(u), where pi(u) is the set of nodes pairable

with u computed up to step i, and π(u) is the set of all nodes pairable with u. Algorithm 1

initializes pi(u) by fixing proper values for p0(u) for each u ∈ V . Algorithm 2 updates pi(u)

as i gets incremented, in order to capture all nodes pairable with u at the completion of the

algorithm.

7



Input: (V,E) in topological order.

Output: Initialization of pairable elements for each node.

1 for i ∈ V do

2 for u ∈ i.to do

3 p0(u) += i.to− {u};

4 end

5 end

Algorithm 1: Initialization phase for generating pairable sets. Here (V,E) is the input

graph with V the set of nodes, and E the set of edges. p0(u) is the set of nodes pairable

with u computed up to step 0 – the initialization step.

In Algorithm 1, i.to consists of all t such that (i, t) ∈ E. For each i, Algorithm 1 updates

each u such that (i, u) ∈ E by appending distinct members in i.to, such as v (Figure 2,

left) that are not comparable with u, into p0(u). Strictly speaking, for Algorithm 1 to be

correct for arbitrary graphs, line 3 should be modified as p0(u) := i.to − {x | u v x}. This

is, however, not necessary if nodes in i.to are not comparable with each other, as is the case

when the input graph has no “redundant” edges (when the is-a relation in an ontology is

minimally represented without edges that are derivable from transitive closure).

Figure 2 (right) contains the Hasse diagram of an example DAG in topological order.

The initialization results for p0(u) obtained by Algorithm 1 are displayed beside each node.

i

u v

1 2

43 5

6 7 8

9

p0(1) = ∅ p0(2) = ∅

p0(3) = {4, 5} p0(4) = {3, 5} p0(5) = {3, 4}

p0(6) = {7} p0(7) = {6} p0(8) = ∅

p0(9) = ∅

Figure 2: Left: the iterative pattern for each edge (i, u) ∈ E. Right: initializing the pairable function for a

graph consisting of topologically ordered nodes 1 to 9.
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Algorithm 2 updates each i’s upper neighbor u (lines 1 and 2) by adding those nodes

that are pairable with i but not comparable with u (line 3). All nodes v that are pairable

with i also gets updated by adjoining the upper neighbors of i to its set of pairable nodes

(line 5). For abbreviation, the notation of relative set union (∪x) is used in Algorithm 2.

For subsets A,B of V and x ∈ V , we write A ∪x B for A ∪B while making sure that nodes

in the resulting set are not comparable to x, i.e.,

A ∪x B := (A− {a ∈ A | x v a or a v x}) ∪ (B − {b ∈ B | x v b or b v x}).

In practice, one can take advantage of fast computation of transitive closure [11] and efficient

disjoint union [12] for computing A ∪x B.

Input: (V,E) in topological order.

Output: The set of pairable nodes for each node.

1 for i ∈ V do

2 for u ∈ i.to do

3 pi(u) := pi−1(u) ∪u pi−1(i)

4 end

5 for v ∈ pi−1(i) do

6 pi(v) := pi−1(v) ∪v (i.to)

7 end

8 end

Algorithm 2: Main steps for generating pairable sets. Here (V,E) is the input graph

with V the set of nodes, and E the set of edges. pi(u) is the set of nodes pairable with u

computed up to step i (> 0).

3.1.3. Computing common ancestors of non-trivial pairs

Algorithm 3 combines the computation of pairable nodes with the computation of (a

subset of) their common ancestors qi(u, v), which contains their lowest common ancestors.

The main ingredients of Algorithm 3 is the addition of steps in lines 5, 13 and 14 which

iteratively update common ancestors for pairable nodes (see section 3.1.4 for the intermediate

results of step-by-step run of Algorithm 3 on the example in Figure 2). Note that Algorithm 3
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does not guarantee that all common ancestors of u, v will eventually be included in qi(u, v),

but it does include all lowest common ancestors of u, v (see Theorem 4 in section 3.2).

Therefore, an additional straightforward step is needed to extract the lowest elements in

qi(u, v) to obtain lca{u, v}.

Input: (V,E) in topological order.

Output: Pairable nodes as well as their common ancestors (in qi).

1 for i ∈ V do

2 for u ∈ i.to do

3 p0(u) := i.to− {u}

4 for v ∈ i.to with u 6= v do

5 q0(u, v) := q0(u, v) ∪ {i};

6 end

7 end

8 end

9 for i ∈ V do

10 for u ∈ i.to do

11 pi(u) := pi−1(u) ∪u pi−1(i)

12 for v ∈ pi−1(i) do

13 qi(u, v) := qi−1(u, v) ∪ qi−1(i, v);

14 qi(v, u) := qi(u, v);

15 pi(v) := pi−1(v) ∪v (i.to)

16 end

17 end

18 end

Algorithm 3: Main steps for generating common ancestors for all and only pairable nodes.

Here (V,E) is the input graph with V the set of nodes, and E the set of edges. qi(u, v)

is the set of common ancestors for nodes u and v computed up to step i. Note that when

i = 0, q0(u, v)represents the initialization result (lines 1-8), computed before the main

phase (lines 9-18).
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3.1.4. Illustrative example

1 2

43 5

6 7 8

9

p0(1) = ∅ p0(2) = ∅

p0(3) = {4, 5}

q0(3, 4) = {1}

q0(3, 5) = {1}

p0(4) = {3, 5}

q0(4, 3) = {1}

q0(4, 5) = {1, 2}

p3(5) = {3, 4, 6}

q0(5, 3) = {1}

q0(5, 4) = {1, 2}

q3(5, 6) = {1}

p3(6) = {5, 7}

q3(6, 5) = {1}

q0(6, 7) = {3, 4}

p0(7) = {6}

q0(7, 6) = {3, 4}
p0(8) = ∅

p0(9) = ∅

Figure 3: Updating up to node 3 and edge (3, 6).

Although using only a small number of steps, the recursive nature involved in Algorithm 3

as well as the intricate behavior can be better demonstrated through an example. The

following figures illustrate a step-by-step run of Algorithm 3 on the example in Figure 2.

Edges being iterated and incremental value changes are highlighted in blue.

1 2

43 5

6 7 8

9

p0(1) = ∅ p0(2) = ∅

p0(3) = {4, 5}

q0(3, 4) = {1}

q0(3, 5) = {1}

p0(4) = {3, 5}

q0(4, 3) = {1}

q0(4, 5) = {1, 2}

p3(5) = {3, 4, 6, 7}

q0(5, 3) = {1}

q0(5, 4) = {1, 2}

q3(5, 6) = {1}

q3(5, 7) = {1}

p3(6) = {5, 7}

q3(6, 5) = {1}

q0(6, 7) = {3, 4}

p3(7) = {5, 6}

q3(7, 5) = {1}

q0(7, 6) = {3, 4}

p0(8) = ∅

p0(9) = ∅

Figure 4: Step for node 3 and edge (3, 7).

Updating up to node 3 and edge (3, 6) gives the result illustrated in Figure 3. Note that

nothing gets updated when i = 1, 2. When i = 3, u = 6, v = 4, since nodes 6 and 4 are not

pairable, nothing gets updated. When i = 3, u = 6, v = 5, since nodes 6 and 5 are pariable,

we have p3(6) = {5, 7}, p3(5) = {3, 4, 6}, q3(6, 5) = q3(5, 6) = {1}.

As shown in Figure 4, for i = 3, u = 7, v = 4, since nodes 7 and 4 are not pairable, no

updates took place. For i = 3, u = 7, v = 5, since p3(7) = {5, 6} and p3(5) = {3, 4, 6, 7}, we
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have q3(7, 5) = q3(5, 7) = {1}.

Figure 5 captures the snapshot for i = 4 and u = 6: when v = 3, we have nodes 6 and 3

are not pairable and no update is needed; when v = 5, we have q4(6, 5) = q4(5, 6) = {1, 2}.

1 2

43 5

6 7 8

9

p0(1) = ∅ p0(2) = ∅

p0(3) = {4, 5}

q0(3, 4) = {1}

q0(3, 5) = {1}

p0(4) = {3, 5}

q0(4, 3) = {1}

q0(4, 5) = {1, 2}

p3(5) = {3, 4, 6, 7}

q0(5, 3) = {1}

q0(5, 4) = {1, 2}

q4(5, 6) = {1, 2}

q3(5, 7) = {1}

p4(6) = {5, 7}

q4(6, 5) = {1, 2}

q4(6, 7) = {3, 4}

p3(7) = {5, 6}

q3(7, 5) = {1}

q0(7, 6) = {3, 4}

p0(8) = ∅

p0(9) = ∅

Figure 5: Step for node 4 and edge (4, 6).

Figure 6 shows the step for i = 4 and u = 7: when v = 3, we have nodes 7 and 3 are not

pairable; when v = 5, the updated result is q4(5, 7) = q4(7, 5) = {1, 2}.

1 2

43 5

6 7 8

9

p0(1) = ∅ p0(2) = ∅

p0(3) = {4, 5}

q0(3, 4) = {1}

q0(3, 5) = {1}

p0(4) = {3, 5}

q0(4, 3) = {1}

q0(4, 5) = {1, 2}

p3(5) = {3, 4, 6, 7}

q0(5, 3) = {1}

q0(5, 4) = {1, 2}

q4(5, 6) = {1, 2}

q4(5, 7) = {1, 2}

p4(6) = {5, 7}

q4(6, 5) = {1, 2}

q4(6, 7) = {3, 4}

p3(7) = {5, 6}

q4(7, 5) = {1, 2}

q0(7, 6) = {3, 4}

p0(8) = ∅

p0(9) = ∅

Figure 6: Step for node 4 and edge (4, 7).

Figure 7 captures the following configurations. i = 5, u = 8, v = 3: p5(3) = {4, 5, 8}, p5(8) =

{3}, q5(3, 8) = q5(8, 3) = {1}; i = 5, u = 8, v = 4: p5(4) = {3, 5, 8}, p5(8) = {3, 4}, q5(8, 4) =

q5(4, 8) = {1, 2}; i = 5, u = 8, v = 6: p5(8) = {3, 4, 6}, p5(6) = {5, 7, 8}, q5(8, 6) = q5(6, 8) =

{1, 2}; i = 5, u = 8, v = 7: p5(8) = {3, 4, 6, 7}, p5(7) = {5, 6, 8}, q5(8, 7) = q5(7, 8) = {1, 2}.

Finally, Figure 8 shows that for i = 6, 7, 8, nothing gets updated since node 9 is not

pairable to any other node.
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1 2

43 5

6 7 8

9

p0(1) = ∅ p0(2) = ∅

p5(3) = {4, 5, 8}

q0(3, 4) = {1}

q0(3, 5) = {1}

q5(3, 8) = {1}

p5(4) = {3, 5, 8}

q0(4, 3) = {1}

q0(4, 5) = {1, 2}

q5(4, 8) = {1, 2}

p3(5) = {3, 4, 6, 7}

q0(5, 3) = {1}

q0(5, 4) = {1, 2}

q4(5, 6) = {1, 2}

q4(5, 7) = {1, 2}

p5(6) = {5, 7, 8}

q0(6, 5) = {1, 2}

q0(6, 7) = {3, 4}

q5(6, 8) = {1, 2}

p5(7) = {5, 6, 8}

q4(7, 5) = {1, 2}

q0(7, 6) = {3, 4}

q5(7, 8) = {1, 2}

p5(8) = {3, 4, 6, 7}

q5(8, 3) = {1}

q5(8, 4) = {1, 2}

q5(8, 6) = {1, 2}

q5(8, 7) = {1, 2}

p0(9) = ∅

Figure 7: Step for node 5 and edge (5, 8).

1 2

43 5

6 7 8

9

p0(1) = ∅ p0(2) = ∅

p5(3) = {4, 5, 8}

q0(3, 4) = {1}

q0(3, 5) = {1}

q5(3, 8) = {1}

p5(4) = {3, 5, 8}

q0(4, 3) = {1}

q0(4, 5) = {1, 2}

q5(4, 8) = {1, 2}

p3(5) = {3, 4, 6, 7}

q0(5, 3) = {1}

q0(5, 4) = {1, 2}

q4(5, 6) = {1, 2}

q4(5, 7) = {1, 2}

p5(6) = {5, 7, 8}

q0(6, 5) = {1, 2}

q0(6, 7) = {3, 4}

q5(6, 8) = {1, 2}

p5(7) = {5, 6, 8}

q4(7, 5) = {1, 2}

q0(7, 6) = {3, 4}

q5(7, 8) = {1, 2}

p5(8) = {3, 4, 6, 7}

q5(8, 3) = {1}

q5(8, 4) = {1, 2}

q5(8, 6) = {1, 2}

q5(8, 7) = {1, 2}

p0(9) = ∅

Figure 8: For node i = 6, 7, 8, nothing gets updated since node 9 is not pairable to any other node.

3.2. Correctness of the algorithm

We establish the correctness of Algorithm 2 and Algorithm 3 in a sequence of lemmas

and theorems. Proof details are given in Appendix A for those who are interested.

With respect to a topologically sorted input graph (V,E), we distinguish the set π(u)

of all nodes pairable with u, and pi(u), the dynamic store of nodes pairable with u at a

stage i of the algorithm. In the remainder of the paper we refer to nodes in V solely by

their topological indices, integers that can also be incremented for algorithmic iteration in a

while-loop.

According to Algorithm 2, pi(u) has the following straightforward properties:
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• Monotonicity: for all w ∈ V , for all i ≤ j ∈ V , we have pi(w) ⊆ pj(w);

• Symmetry: for all u, v ∈ V , for all i ∈ V , u ∈ pi(v) implies v ∈ pi(u);

• Diagonality: for all v ∈ V , pv(v) = pv−1(v).

Since Algorithm 2 initializes and grows pi(u) with only nodes pairable with u, we have

Theorem 1. For all u ∈ V , for all i ∈ V ,

pi(u) ⊆ π(u).

For proving containment in the other direction the next three lemmas serve as building

blocks. Notationally, we use [x, y] to stand for the closed integer interval {i | x ≤ i ≤ y}.

Lemma 1. Suppose b ∈ lca(u, v) and (b, u) ∈ E. For i ∈ [0, n], let (vi, vi+1) ∈ E be edges
such that b = v0 and vn = v. Then u ∈ pv(i−1)

(vi) for all i ∈ [1, n].

Lemma 2. Let (vi, vi+1) ∈ E be edges in (V,E) for i ∈ [0, n], with b = v0 and vn = v.
Suppose lca(x, v) = b and x ∈ π(vi) for i ∈ [0, n]. If x ∈ pvk(vk+1) for some k, then
x ∈ pvj(vj+1) for all j ∈ [k, n].

Lemma 3. For all 0 < i < n, we have pvi(vi) ⊆ pvi(vi+1), and moreover pvi(vi) ⊆ pv(i+1)
(vi+1),

by monotonicity.

Lemmas 1, 2, and 3 show how pairability information is propagated along a path. Next we

deal with the general situation of how this information is propagated to a pair of (pairable)

nodes starting from the initial setting. To do so, consider a subgraph D = A ∪ B of (V,E),

with A = {ui | i ∈ [1,m]} and B = {vj | j ∈ [1, n]} such that (ui−1, ui) and (vj−1, vj) are

distinct edges with i ∈ [1,m] and j ∈ [1, n], where (see Figure 9)

1. u0 = v0, um = u, and vn = v,

2. u ∈ π(v) and u0 ∈ lca(u, v), and

3. A ∩B = ∅.

Consider W = {wi | i ∈ [1,m+n]} = A∪B, with topological indices appearing in A∪B

sorted in ascending order.

Definition 1. The i-th alternation index for W is the index αi, such that either wαi ∈ A
but wαi+1 ∈ B, or wαi ∈ B but wαi+1 ∈ A.
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u0 = v0

u1

um−2

um−1

um(= u)

v1

vn−2

vn−1

(v =) vn

Figure 9: Subgraph with A = {ui | i ∈ [1,m]} and B = {vj | j ∈ [1, n]}.

The next lemma, whose proof appears in Appendix A, characterizes how pairability

information “jumps” from one branch (say A) to the other (say B) at critical junctures of

an alternation index.

Lemma 4. For any alternation index αi, we have: 1. if vt = wαi and us = wαi+1 then
us ∈ pvt(vt); 2. if us = wαi and vt = wαi+1 then vt ∈ pus(us).

The following Theorem 2, whose proof appears in Appendix A, deals with the opposite

direction of Theorem 1. It allows us to conclude that for each u ∈ V , if v ∈ π(u) then there

exists i ∈ V , such that v ∈ pi(u) by choosing a large enough i. With it, all nodes pairable

with u are accounted for by the function pi(u).

Theorem 2. For all i ∈ V and for all w ≤ i, we have

pi(w) ⊇ π(w) ∩ [1, i],

where [1, i] stands for the integer interval {j | 1 ≤ j ≤ i}.

Similar to pi(u), the binary function qi(u, v) has the following properties, as can be

directly derived from Algorithm 3:

• Monotonicity: for all u, v ∈ V , for all i ≤ j ∈ V , we have qi(u, v) ⊆ qj(u, v);

• Symmetry: for all u, v ∈ V , for all i ∈ V , we have qi(u, v) = qi(v, u);

• Diagonality: For all u, v ∈ V , we have qu(u, v) = qu−1(u, v).

By inspecting steps involved in Algorithm 3, we can establish this fact:
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Theorem 3. For each i ∈ V and for each u ∈ π(v), we have qi(u, v) ⊆ ca{u, v}.

The next lemma shows how alternation indices help propagate the common ancestor

information to all relevant pairs in the graph.

Lemma 5. Suppose x ∈ lca{u, v}, u ∈ π(v), and suppose that (see Figure 9) (ui−1, ui) and
(vj−1, vj) are distinct edges with i ∈ [1,m] and j ∈ [1, n], where x = u0 = v0, um = u, and
vn = v. For any alternation index αi as given in Definition 1, we have 1. if wαi = vt and
wαi+1 = us, then x ∈ qvt(vt, us); 2. if wαi = ut and wαi+1 = vs, then x ∈ qut(ut, vs).

Lemma 5 leads to the following theorem, which affirms the correctness of Algorithm 3.

Theorem 4. Suppose x ∈ lca{u, v} with u ∈ π(v). Then either x ∈ qu(u, v) or x ∈ qv(u, v).

Theorem 4 shows that Algorithm 3 finds all lowest common ancestors of u, v in qi(u, v),

for some i. It does not, however, guarantee that all common ancestors of u, v will eventually

be included in qi(u, v). Neither does Algorithm 3 ensure that all elements in qi(u, v) are

LCAs of u and v. Therefore, an additional straightforward step is needed to extract the

lowest elements in qi(u, v) after the termination of Algorithm 3, to obtain lca{u, v}.

4. Results

ANT-LCA was implemented in Java based on JDK7. Experiments on SNOMED CT and

GO were performed on a MacBook Pro running Mac OS X Yosemite, with 16GB RAM and

Intel Core i7 processor. The Java code is available through GitHub (https://github.com/

licongcui/nonlattice).

4.1. SNOMED CT

We used 9 versions of SNOMED CT (International Version) from 2012 to 2017, dated

07/2012 (i.e., July 2012), 01/2013, 07/2013, 01/2014, 07/2014, 01/2015, 07/2015, 01/2016,

and 01/2017. Table 1 summarizes the basic results about each version of SNOMED CT,

including number of concepts, number of is-a relations, number of concept pairs that are

pariable after the initialization step in Algorithm 1, number of all pairable pairs, number of

non-lattice pairs, and the compute time for non-lattice pairs and non-lattice fragments.

The 07/2012 version contained 296,433 concepts, with 440,049 direct is-a relations con-

necting concepts. Among all possible concept pairs, 150,639 were identified as pairable after
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Table 1: Summary of the basic statistics using ANT-LCA to process 9 versions of SNOMED CT. Initial

Number of Pairable Pairs indicates the number of concept pairs that are pariable after the initialization step

in Algorithm 1.

07/2012 01/2013 07/2013 01/2014 07/2014 01/2015 07/2015 01/2016 01/2017

Total Number of Concepts 296,433 297,998 298,818 298,581 300,751 312,998 317,057 319,446 326,734

Total Number of is-a Relations 440,049 442,711 444,919 443,944 446,462 463,339 470,040 473,121 487,686

Initial Number of Pairable Pairs 150,639 151,996 153,892 153,645 153,934 158,488 161,346 162,689 171,966

Total Number of Pairable Pairs 1,383,888 1,397,332 1,420,284 1,425,848 1,428,870 1,475,826 1,502,108 1,523,325 1,641,853

Total Number of Non-lattice Pairs 578,237 583,433 593,498 594,076 594,106 614,018 625,484 633,307 683,744

Compute Time for Non-lattice Pairs 28 28 29 29 27 29 30 28 32

(in seconds)

Compute Time for Non-lattice Fragments 524 527 548 524 502 512 541 554 747

(in seconds)

the initialization step in Algorithm 1, a total of 1,383,888 were detected as pairable, among

which 578,237 were found to be non-lattice pairs. It took 28 seconds to compute non-lattice

pairs and 524 seconds to compute non-lattice fragments.

In general, it takes about 30 seconds for our algorithm to detect all non-lattice pairs

for each version of SNOMED CT, consistent with our linear time analysis. We run each

version 10 times and report the average time in row “Compute Time for Non-lattice Pairs”

in Table 1.

The generation of all non-lattice fragments took less than 13 minutes for each version of

SNOMED CT. This phase is more time-consuming than detection of non-lattice pairs because

all nodes in-between a node in the non-lattice pair and the lowest common ancestors make

up a fragment. For this part, we run each version 5 times and report the average time in

row “Compute Time for Non-lattice Fragments” in Table 1.

4.2. Gene Ontology

We used 8 versions of GO from July 2015 to Febuary 2016. Table 2 shows the basic

results about each version of GO. The 02/2016 version contained a total of 44,222 concepts,

with 72,742 direct is-a relations connecting concepts. Among all possible concept pairs, 3,642

were identified as pairable after the initialization step in Algorithm 1, a total of 328,760 were

detected as pairable, among which 102,948 were found to be non-lattice pairs. It took 3

seconds to compute non-lattice pairs and 32 seconds to compute non-lattice fragments.

17



Table 2: Summary of the basic statistics using ANT-LCA to process 8 versions of GO.

07/2015 08/2015 09/2015 10/2015 11/2015 12/2015 01/2016 02/2016

Total Number of Concepts 43,330 43,507 43,654 43,758 43,880 43,980 44,049 44,222

Total Number of is-a Relations 70,826 71,167 71,443 71,700 71,926 72,153 72,268 72,742

Initial Number of Pairable Pairs 3,502 3,537 3,547 3,564 3,574 3,573 3,575 3,642

Total Number of Pairable Pairs 305,270 308,314 309,684 311,490 312,667 314,340 314,448 328,760

Total Number of Non-lattice Pairs 92,322 93,828 94,275 94,821 94,912 95,458 95,506 102,948

Compute Time for Non-lattice Pairs 2 3 3 3 3 2 2 3

(in seconds)

Compute Time for Non-lattice Fragments 31 31 32 32 33 30 30 32

(in seconds)

4.3. Experiments on random graphs

We also evaluated the performance of ANT-LCA on randomly generated, ontologically

shaped DAGs. We implemented an algorithm (see Appendix B) to generate a random

DAG(N, d, Cmin, Cmax), where N is the number of nodes, d is edge density of the DAG,

and Cmin/Cmax are the minimum/maximum number of children a node can have. The edge

density is defined as the ratio of the extra edges (that will be added after a random tree is

generated) to the number of edges in the tree.

Densities in real world ontologies tend to be smaller than 1, even though it can be as

high as N
2

. In our experiments, the edge density parameter was set between 0.02 and 1. This

is a reasonable range to consider, since GO (02/2016 version) has d = 0.64 and SNOMED

CT (01/2016 version) has d = 0.48 as their edge density, respectively.

Figure 10 is a plot of the average running time of ANT-LCA on randomly generated

ontological structures of different sizes (number of nodes ranging from 100,000 to 1,200,000)

and densities (0.02 to 1). The experimental results are consistent with our algorithmic

analysis (see section 5): they show linear increase in time complexity across the density

spectrum, with the slope (linear coefficient) getting larger for denser graphs.

Figure 11 is a 3D view which illustrates the trend of time increase with respect to graph

size and density. The experiments were performed on a linux running the CentOS with 16GB

RAM and Intel(R) Xeon(R) X3430 2.40GHz quad core CPU.
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Figure 10: A plot of size vs. computational time in milliseconds. Different colors represent graphs of different

density, with higher density requiring more computational time.

Figure 11: A 3D rendering showing the effect of size and density on required computational time.

5. Discussion

5.1. Time Complexity for Algorithm 2

Let σG be the pairability degree of graph G, defined as maxu∈V π(u), i.e. the maximum

number of pairable nodes a single node can have in graph G. Algorithm 2 involves a main

iteration process over all edges (i, u) ∈ E of the input graph, as given in lines 1 and 2. Then
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the time complexity for line 3 is (using set union complexity)∑
(i,u)∈E

|pi(u)|,

which is bounded by (with the assumption that the union cost is proportional to the size of

the resulting set [12]) ∑
(i,u)∈E

|π(u)|.

Hence, ∑
(i,u)∈E

|pi(u)| ≤ σG · |E|.

Similarly, the time complexity for lines 4 and 5 is∑
(i,u)∈E

∑
v∈pi−1(i)

|pi(v)|.

We have ∑
(i,u)∈E

∑
v∈pi−1(i)

|pi(v)| ≤ σ2
G · |E|.

Therefore, the overall time-complexity of Algorithm 2 is bounded by σ2
G · |E|. Space com-

plexity is similarly bounded, but less of a concern here due to the availability of sufficiently

large, standard sizes of RAMs. For sparse graphs with small σG, Algorithm 2 performs well,

as our experimental result in the next section shows. In the worst case σG = |V |, and the

running time in the worst case is O(|V |2 · |E|) and is the same as brute force search. In

the best case σG is a constant, and the running time in the base case is O(|E|). The actual

time needed for the algorithm,
∑

(i,u)∈E
∑

v∈pi−1(i)
|pi(v)|, is very close to the best case for

the data set in our experiments. Even though σG may be in the thousands, the average size

of π(v), a more realistic estimation for the actual computational time, is below 50.

Intuitively, the more tree-like the input ontology is, the closer to the best case time-

complexity of O(|E|) our algorithm will achieve. The worst cases are when every pair of

nodes is pairable, achievable when the ontology is dense with shared descendant concepts

among its concept nodes.
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5.2. Time Complexity for Algorithm 3

Note that we intentionally nested the for-loop in lines 4-6 of Algorithm 2, to faithfully

account for the time-complexity for Algorithm 3. For Algorithm 3, the double nesting is

necessary in order to compute pairable pairs while accumulating common ancestors (between

u and v). If we are interested only in computing pairability, then the nesting in lines 4-6 of

Algorithm 2 is not necessary, and we obtain a better time-complexity of σG · (|E|+ |V |).

The key steps involved in Algorithm 3 can be captured by Algorithm 2 except for the

accumulation of common ancestors in steps 13 and 14. We assume the computation required

for these two steps to be a constant by keeping up to two LCAs, in order to provide a fair

comparison with existing algorithms (which only output a representative LCA for each pair).

Therefore, the time-complexity of Algorithm 2 is also bounded by σ2
G · |E|. Therefore, the

best case and worst case analyses for Algorithm 2 apply to Algorithm 3 as well.

5.3. Related work on LCA

Many attempts have been made on improving the efficiency of algorithms for the all-pairs

all-LCA problem [13, 14], i.e., finding all LCAs associated with each pair of nodes. More

recently, Dash et al. [15] presented an approach that combines the efficiency of existing LCA

algorithms on trees with range-interval labeling scheme and an efficient matrix multiplication.

This approach achieves near-linear time for tree-like, rooted DAGs, but query results are

limited to a single representative LCA per each pair of nodes. This is a limit for applications

that require all-LCAs as query results. In general, the all-pairs all-LCA problem remains

to be super-quadratic, since its time-complexity is inherently tied to algorithms for matrix-

multiplication [16, 14]. For many DAGs arising in real-world applications such SNOMED

CT (with over 300,000 of nodes), existing algorithms become impractical.

In general approaches to the LCA problem, one distinguishes the off-line and online

computations. Off-line computation serves to preprocess the input graph in order to speedup

online LCA queries. Our paper focuses on off-line processing in order to support constant

online query for a representative LCA, or online query for all LCAs (with performance

parameterized in the size of the resulting set).

A key distinction of ANT-LCA from existing approaches is that it ensures computation
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is performed on all and only non-trivial pairs. In fact, the time complexity of ANT-LCA is

determined by the number of non-trivial pairs in the input graph, as our complexity analysis

shows. Using the average size of pairable pairs for a give node, which is a more realistic

reflection of the actual computational time, the time complexity for our experimental cases

is approximately (50)2 · |E|.

Another distinction of our approach is that we compute all LCAs (of all non-trivial

pairs) instead of a representative LCA. This makes our task more computationally intensive,

and also makes many existing approaches to the LCA problem inapplicable. Our all LCA

requirement is motivated by real-world application needs for implementing lattice-based

approach to ontology quality assurance. Compared with the fastest all pairs representative

LCA algorithm known to date with an O(|V | · |E|) time complexity [15], ANT-LCA provides

a rough speed-up of three orders of magnitude for SNOMED CT. However, the worst time-

complexity for our algorithm, |V |2 · |E|, is attained when virtually all nodes are pairable with

all other nodes.

5.4. Related work using non-lattice subgraphs

This paper focused on an efficient algorithm to compute non-lattice pairs as a key part

of step 1 in a 4-step non-lattice approach outlined in Introduction. More recent work has

addressed other steps and reported specific application for improvements on SNOMED CT

and NCI Thesaurus. In [7], a structural-lexical method was used to mine lexical patterns in

non-lattice fragments in SNOMED CT to identify missing is-a relations and concepts. This

method used 4 patterns to cover about 4% of all non-lattice fragments in SNOMED CT, with

a solid precision rate (59%) of confirmed errors by domain experts. More recently, a new

structural-lexical approach leveraged more existing knowledge in SNOMED CT by enriching

the lexical attributes of each concept in non-lattice subgraphs to facilitate the identification of

missing is-a relations [17]. This approach covered 7.4% of non-lattice subgraphs with higher

precision (82.96%). Work reported in [9] demonstrated that the non-lattice approach can

be applied to other ontologies than SNOMED CT (9.93% coverage of non-lattice fragments

with 66% precision on identified errors in NCI Thesaurus).

Given such developments, it may seem reasonable to propose the reduced proliferation
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of non-lattice substructures (i.e., the total number of non-lattice pairs) as a ontology quality

metric. However, due to many factors that are involved in creating newer releases of an

ontology, we found it not to be the case that newer releases would measure better than

earlier releases. It may still be possible to use this method to measure and track the quality of

specific sub-hierarchies where non-lattice fragments are unusually dense, or to demonstrate

that a non-trivial portion of ontological changes between the releases involve non-lattice

fragments.

6. Limitations

Since ANT-LCA is designed for detecting lowest common ancestors for all non-trivial

pairs in a DAG, it is generally applicable to other ontologies or terminologies which are

hierarchically organized in a DAG. We have applied it to SNOMED CT, Gene Ontology,

and NCI Thesaurus for ontology quality assurance.

There are two types of limitations. One is specific to the ANT-LCA algorithm, and the

other is related to the non-lattice approach. The limitation of the ANT-LCA algorithm is

that, although it is efficient and suitable for ontological graph structures that are tree-like, it

may not work well with other types of graph structures when all pairs of nodes are pairable.

Limitations of the non-lattice approach include the following. (1): The approach may

not be efficient for ontologies that are “shallow,” such as Ontology for General Medical

Science (maximum depth 6), BRENDA Tissue and Enzyme Source Ontology (maximum

depth 6), and Current Procedural Terminology (maximum depth 7), from BioPortal. (2):

Our algorithm itself is agnostic to relation types, so it will still work for such relations as

“part-of.” However, the non-lattice approach is not applicable to other types of relations since

this approach is only meaningful for the is-a hierarchy (of any ontology) due to its theoretical

underpinning based Formal Concept Analysis. We are not aware of any (theoretical) reasons

that indicate non-lattice fragments to be problematic for other types of relations. However,

this should not diminish the value of our non-lattice approach.
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7. Conclusions

To summarize, this paper introduced an efficient algorithm for detecting non-lattice pairs

and generating non-lattice fragments, for ontology quality assurance work. Our algorithm

overcomes a fundamental computational barrier in sub-graph based structural analysis of

large ontological systems. It enables the implementation of a new breed of structural auditing

methods that not only identifies potential problematic areas, but also automatically suggests

changes to fix the issues.
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Appendix A: correctness proofs

7.1. Proof of Lemma 4

We prove this by induction on the i-th alternation index αi.

Basis i = 1. Without loss of generality, suppose vj < u1 for all 1 ≤ j ≤ t. Then

u1 ∈ pv0(v1). By monotonicity and Lemma 3 we have u1 ∈ pvt(vt).

For the inductive step, assume vt < us defines the (i+ 1)-th alternation index, for some

s > 1. We must have us−1 < vt. By Definition 1, the i-th alternation index must be of the

form us−1 < vτ , for some τ ≤ t. By induction hypothesis and the symmetry of the graph

structure, we have vτ ∈ pus−1(us−1).

By Algorithm 2, we have

pus−1(us) = pus−1−1(us) ∪us pus−1−1(us−1).

Since pus−1(us−1) = pus−1−1(us−1) by diagonality, we have vτ ∈ pus−1(us). Furthermore,

vτ ∈ pus−1(us) =⇒ us ∈ pus−1(vτ ) (by symmetry)

=⇒ us ∈ pvτ (vτ ) (by monotonicity)

=⇒ us ∈ pvt(vt) (by Lemma 3)

7.2. Proof of Theorem 2

Basis: i = 1, 2. We have π(1) = ∅, 1 6∈ π(2), and 2 6∈ π(2). Therefore, π(1) ∩ [1, 1] =

π(2) ∩ [1, 2] = ∅.

For the inductive step, suppose, using course of value induction, that for all j ≤ k, for

all w ≤ j,

pj(w) ⊇ π(w) ∩ [1, j].

We plan to prove that for k + 1 we have that for all u ≤ k + 1,

pk+1(u) ⊇ π(u) ∩ [1, k + 1].
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For a given u ≤ k + 1, there are two possible cases for u:

Case 1: k + 1 6∈ π(u);

Case 2: k + 1 ∈ π(u).

We show that for each case, the desired set containment holds.

Case 1. If k + 1 6∈ π(u), then we have

π(u) ∩ [1, k + 1] = π(u) ∩ [1, k] ⊆ pk(u) ⊆ pk+1(u)

as needed, by induction hypothesis and monotonicity.

Case 2. Suppose k+1 ∈ π(u), with u < k+1. Then there exists b with b ∈ lca(k+1, u) such

that (u0, u1), (u1, u2), . . . , (um−1, um) and (v0, v1), (v1, v2), . . . , (vn−1, vn) are distinct edges of

E with b = u0 = v0, um = u and vn = k + 1.

We show that u ∈ pvn(vn). There are two cases: (a) um < v1, and (b) vα < um for some

α ≤ n− 1 (note that α cannot be n in this case).

For (a), by Lemma 4, we have v1 ∈ pum(um). Furthermore,

v1 ∈ pum(um) =⇒ v1 ∈ pu(u) (um = u)

=⇒ u ∈ pu(v1) (by symmetry)

=⇒ u ∈ pv1(v1) (by monotonicity)

=⇒ u ∈ pvn(vn) (by Lemma 3)

For (b), assume α is the largest index such that vα < um. Then by Lemma 4, we have

um ∈ pvα(vα). By Lemma 3, we have u ∈ pvn(vn). Hence k + 1 ∈ pk+1(u), by symmetry.

By induction hypothesis, we have

pk+1(u) ⊇ pk(u)

⊇ π(u) ∩ [1, k].

Since k + 1 ∈ pk+1(u), we have pk+1(u) ⊇ π(u) ∩ [1, k + 1] as needed.

7.3. Proof of Lemma 5

We prove this by induction on i, where αi is the i-th alternation index.

Basis i = 1. If wα1 = vt and wαi+1 = u1, then we have vj < u1 for all 1 ≤ j ≤ t. We

prove that x ∈ qvj(vj, u1) for all 1 ≤ j ≤ t. When j = 1, we have u1 ∈ pv1(v1), by the fact
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that u1 ∈ p0(v1) and by monotonicity. Since x ∈ q0(u1, v1) (by line 5 of Algorithm 3, we

have x ∈ qv1(v1, u1) by monotonicity and symmetry.

Suppose x ∈ qvj(vj, u1) for some 1 ≤ j < t. Then x ∈ qvj−1(vj, u1) by diagonality. Since

u1 ∈ pvj(vj) (by Lemma 3), we have u1 ∈ pvj−1(vj), again by diagonality. Since (vj, vj+1) ∈ E,

we have

qvj(vj+1, u1) = qvj−1(vj+1, u1) ∪ qvj−1(vj, u1).

Therefore, x ∈ qvj(vj+1, u1) and so x ∈ qvj+1
(vj+1, u1) (by monotonicity). This finishes the

induction to give us x ∈ qvt(vt, u1). A similar argument holds for the case when wα1 = ut

and wαi+1 = v1.

For the inductive step, let vt < us define the (i+ 1)-th alternation index. We must have

us−1 < vt. By Definition 1, the i-th alternation index must be of the form us−1 < vτ , for

some τ ≤ t. In increasing order, we have the sequence us−1 < vτ ≤ vt < us. By induction

hypothesis, we have x ∈ qus−1(us−1, vτ ), and so x ∈ qus−1−1(us−1, vτ ) (by diagonality).

We now show that x ∈ qvj(vj+1, us) for each j ∈ [τ, t] by induction.

For basis j = τ , we first show that (a): us ∈ pvτ−1(vτ ), and (b): x ∈ qvτ (vτ , us), because

if these are true, then by diagonality we have x ∈ qvτ−1(vτ , us), and Algorithm 3 gives us

qvτ (vτ+1, us) = qvτ−1(vτ+1, us) ∪ qvτ−1(vτ , us).

Therefore x ∈ qvτ (vτ+1, us), as needed.

(a): To show that us ∈ pvτ−1(vτ ), note by Lemma 4, we have vτ ∈ pus−1(us−1) (us−1 < vτ

is an alternation). Furthermore,

vτ ∈ pus−1(us−1) =⇒ vτ ∈ pus−1(us) (by Lemma 3)

=⇒ us ∈ pus−1(vτ ) (by symmetry)

=⇒ us ∈ pvτ−1(vτ ) (us−1 ≤ vτ − 1)

(b): To see that we have x ∈ qvτ (vτ , us), note that induction hypothesis gives us x ∈

qus−1(us−1, vτ ). Also,

qus−1(us, vτ ) = qus−1−1(us, vτ ) ∪ qus−1−1(us−1, vτ )

by instantiating Algorithm 3 with (us−1, us) ∈ E and vτ ∈ pus−1−1(us−1). Therefore, x ∈
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qus−1(us, vτ ). Furthermore,

x ∈ qus−1(us, vτ ) =⇒ x ∈ qvτ (us, vτ ) (by monotonicity)

=⇒ x ∈ qvτ (vτ , us) (by symmetry)

If τ = t then the proof is already compete. If τ < t, this completes the induction basis

j = τ , because x ∈ qvτ (vτ , us) implies x ∈ qvτ (vτ+1, us).

For the inductive step, assume x ∈ qvj(vj+1, us) for some j such that τ ≤ j < t−1. Since

vj ≤ vj+1− 1, we have x ∈ qvj+1−1(vj+1, us). Since us ∈ pvτ−1(vτ ), we have us ∈ pvj+1−1(vj+1)

by diagonality and Lemma 3. By instantiating Algorithm 3 with (vj+1, vj+2) ∈ E and

us ∈ pvj+1−1(vj+1),

qvj+1
(vj+2, us) = qvj+1−1(vj+2, us) ∪ qvj+1−1(vj+1, us).

Therefore, x ∈ qvj+1
(vj+2, us). By induction, we have x ∈ qvt−1(vt, us), and so x ∈ qvt(vt, us)

(by monotonicity).

A similar argument holds for the case when the (i+ 1)-th alternation index is defined by

ut < vs.

7.4. Proof of Theorem 4

If um < vj defines the last alternation index, then by Lemma 5, we have x ∈ qum(um, vj).

That is, x ∈ qu(u, vj). If n = 1, then j = n = 1 and we have x ∈ qu(u, v).

We show that x ∈ qvk(vk+1, u) for each k ∈ [j, n−1] by induction for the case when n > 1.

Basis: k = j. By Lemma 4, we have vj ∈ pum(um) = pu(u). Moreover,

vj ∈ pu(u) =⇒ u ∈ pu(vj) (by symmetry)

=⇒ u ∈ pvj(vj) (u < vj)

=⇒ u ∈ pvj−1(vj) (by diagonality)

By instantiating Algorithm 3 with (vj, vj+1) ∈ E and u ∈ pvj−1(vj), we have

qvj(vj+1, u) = qvj−1(vj+1, u) ∪ qvj−1(vj, u).

Since x ∈ qu(u, vj), we have x ∈ qvj−1(u, vj) = qvj−1(vj, u) by monotonicity (u ≤ vj − 1) and

symmetry. Therefore, x ∈ qvj(vj+1, u).
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For inductive step, assume x ∈ qvk(vk+1, u) for some k such that j ≤ k < n − 1. Since

u ∈ pvj(vj), we have u ∈ pvk+1
(vk+1) by Lemma 3, and so u ∈ pvk+1−1(vk+1) by diagonality.

By instantiating Algorithm 3 with (vk+1, vk+2) ∈ E and u ∈ pvk+1−1(vk+1), we have

qvk+1
(vk+2, u) = qvk+1−1(vk+2, u) ∪ qvk+1−1(vk+1, u).

Since x ∈ qvk(vk+1, u) (induction hypothesis), we have x ∈ qvk+1−1(vk+1, u) by monotonicity

(with vk ≤ vk+1 − 1). Therefore, x ∈ qvk+1
(vk+2, u).

This completes the induction, and we have x ∈ qvn−1(vn, u). Therefore, x ∈ qvn(vn, u) by

monotonicity, i.e., x ∈ qv(v, u).

When vn < uj defines the last alternation index, a similar argument gives x ∈ qu(u, v).

Appendix B: pseudocode for random graph generation

The random ontological graph generator algorithm (Algorithm 4) works in two steps:

1. Lines 7 to 18 generate a random rooted tree. Starting from the root, the number of

children is randomly selected between Cmin and Cmax. This process will continue until

the number of nodes in the generated tree is equal to N .

2. Lines 19 to 26 add extra edges by selecting two random nodes. The number of edges

that will be added is controlled by the density.
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Input: N, d, Cmin, Cmax

Output: An randomly generated ontology.

1 q := new Queue();

2 root := new node;

3 E := (N − 1)× (1 + d);

4 q.enqueue(root);

5 numOfNodes := 0;

6 numOfEdges := 0;

7 edges := φ;

8 while numOfNodes < N do

9 p := q.dequeue();

10 c := random(Cmin, Cmax);

11 for i ≤ c do

12 child := new node;

13 edges := edges ∪ {(p, child)};

14 numOfNodes++;

15 numOfEdges++;

16 i++;

17 end

18 end

19 while numOfEdges < E do

20 src := random(0, numOfNodes);

21 dest := random(0, numOfNodes);

22 if src 6= dest and (src, dest) 6∈ edges then

23 edges := edges ∪ {(src, dest)};

24 numOfEdges++;

25 end

26 end

Algorithm 4: Procedure to generate a random ontology.
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