An Efficient, Large-scale, Non-lattice-detection Algorithm for
Exhaustive Structural Auditing of Biomedical Ontologies

Guo-Qiang Zhang®"* Guangming Xing?, Licong Cui®P

@Department of Computer Science, University of Kentucky, Lexington, KY, USA
b Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA
¢Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
4 Department of Computer Science, Western Kentucky University, Bowling Green, KY, USA

Abstract

One of the basic challenges in developing structural methods for systematic audition on the
quality of biomedical ontologies is the computational cost usually involved in exhaustive
sub-graph analysis. We introduce ANT-LCA, a new algorithm for computing all non-trivial
lowest common ancestors (LCA) of each pair of concepts in the hierarchical graph induced
by an ontology. The computation of LCA is a fundamental step for non-lattice approach
for ontology quality assurance. Distinct from existing approaches, ANT-LCA only computes
LCAs for non-trivial pairs, those having at least one common ancestor. To skip all trivial
pairs that may be of no practical interest, ANT-LCA employs a simple but innovative al-
gorithmic strategy combining topological order and dynamic programming to keep track of
non-trivial pairs. We provide correctness proofs and demonstrate a substantial reduction in
computational time for two largest biomedical ontologies: SNOMED CT and Gene Ontol-
ogy (GO). ANT-LCA achieved an average computation time of 30 and 3 seconds per version
for SNOMED CT and GO, respectively, about 2 orders of magnitude faster than the best
known approaches. Our algorithm overcomes a fundamental computational barrier in sub-
graph based structural analysis of large ontological systems. It enables the implementation
of a new breed of structural auditing methods that not only identifies potential problematic
areas, but also automatically suggests changes to fix the issues. Such structural auditing

methods can lead to more effective tools supporting ontology quality assurance work.

*Corresponding author. Email address: gq.zhang@uky.edu (GQ Zhang). Address: University of Kentucky
230 Multidisciplinary Science Building, 725 Rose Street Lexington, KY 40536-0082

Preprint submitted to Journal of Biomedical Informatics September 19, 2018

Keywords:
Biomedical ontology, partial order, graph-theoretic algorithm, SNOMED CT, lattice vs

non-lattice, quality assurance

1. Introduction

In graph-theoretic representation of ontologies in biomedicine such as SNOMED CT [1],
ontological concepts correspond to graph nodes, and is-a relations correspond to edges of the
graph. When rendering the is-a relations as a graph, the Hasse diagram convention orients
more general concepts above (or higher than) more specific concepts.

One of the desirable properties of the resulting graph structure is that the subsumption
relationship (is-a hierarchy) should form a lattice ([2]). There are in general two types of
lattice-based approaches to ontology quality assurance. One involves the direct application
of Formal Concept Analysis (FCA [3]), mostly for auditing semantic completeness or missing
concepts [4]. The second involves the extraction of lattice-violating fragments [5, 6], or non-
lattice fragments, which represent violations of the FCA principle that systematic engineering
approaches for constructing concept hierarchies always result in order structures that are
lattices in the sense of lattice theory [3]. This non-lattice approach for ontology quality
assurance involves the extraction of graph substructures (i.e. sub-orders) that violate the
lattice property, which states that any two concept nodes have at most one minimal shared
(common) ancestor and at most one maximal shared descendant.

As illustrated recently in [7], the use of the non-lattice approach for improving the quality

of an ontology consists of the following general steps:

1. Identify node-pairs that violate the lattice property (i.e. non-lattice pairs) and extract
the associated non-lattice fragments;

2. Detect ontological defects such as miss-aligned is-a relations or missing concepts in the
extracted non-lattice fragments, often leveraging additional or external information;

3. Formulate and generate change suggestions automatically and present the suggestions
in a usable format;

4. Perform reviews of the suggested changes and accept or reject such suggestions by a

qualified ontology engineer or ontology editor, and incorporate the accepted changes

into the next release.

The non-lattice approach is unique in that while most ontology quality assurance tech-
niques [8] merely identify potential errors, this approach can not only identify previously
undiscovered errors confirmed by domain experts, but also suggest appropriate remediation
(i.e., “auto-suggestion”) [7, 9]. For example, Figure 1 (top), extracted from the September
2017 release of SNOMED CT (US edition), contains a substructure (1A) of is-a relations
on the left, involving 5 concepts. This is a non-lattice fragment, because the concept nodes
labeled 1 and 2 have two maximal shared descendants: concept nodes labeled 4 and 5.
With a combination of structural and lexical information represented in this fragment, one
can infer that “Epithelioid hemangioendothelioma of lung” is-a “Malignant tumor of lung
parenchyma.” Remarkably, adding such a missing edge (in red color) also makes the result-
ing subgraph (1B) conforming to the lattice property: concept nodes labeled 1 and 2 now
have a unique maximal shared descendant: concept nodes labeled 4 (since concept 5 is no
longer “maximal”). Similarly, the lower part of Figure 1 shows a non-lattice fragment (2A)
in the Gene Ontology (GO) on the left, and the corrected structure (2B) on the right.

Both the FCA- and the non-lattice-based approaches incur computational costs that
sometimes make exhaustive analyses prohibitive. For example, in Jiang and Chute’s work [4],
only 10% of SNOMED CT sub-hierarchies were sampled in order to assess semantic com-
pleteness. Three months of sequential computation ([5]) or three hours of 25-node parallel
processing ([6]) were required to detect non-lattice pairs for each version of SNOMED CT.
The detection of non-lattice pairs is a fundamental step for non-lattice-based approach for
ontology quality assurance. The non-lattice pairs serve as seeds for systematic generation of
non-lattice fragments, but including all nodes in-between the seed nodes and the maximal
shared descendants. Therefore, more efficient algorithms for detection of non-lattice pairs is
highly desirable.

This paper introduces ANT-LCA, a new algorithm for computing all non-trivial lowest
common ancestors (LCA) of each pair of concepts in the graph induced by an ontological
system. Here the lowest common ancestors in the context of a graph are exactly the maximal
shared descendants in the context of an ontology. In the remainder of the paper, we discuss

algorithms in graph-theoretic and order-theoretic terms. But whenever working with specific

@ Tumor of lung @ Malignant tumor of @ Tumor of lung @ Malignant tumor of
arenchyma lung parenchyma lung

Primary malignant

neoplasm of lung Malignant tumor of

Pri li t
ung parenchyma rimary malignan

neoplasm of lung

4) Malignant tumor of Epitheliqid dothel Epithelioid
lung parenchyma ?Tnangloen othelioma hemangioendothelioma
orlung of lung
(1A) Non-lattice fragment in SNOMED CT (1B) Lattice subgraph after missing 1S-A relation is added
@ Cytoplasmic microtubule Microtubule @ Cytop]asrnic microtubule @ Microtubulg .
rganization depolymerization

Qrganization

depolymerization

Astral
microtubule
rganization

Cytoplasmic microtubule
depolymerization

Astral microtubtle
9 organization

Cytoplasmic microtubule Astral microtubule

depolymerization depolymerization Astral microtubule

depolymerization

(2A) Non-lattice fragment in Gene Ontology (2B) Lattice subgraph after missing IS-A relation is added

Figure 1: An example (1A) of non-lattice fragment of size 5 in SNOMED CT, as well as the resulting lattice
subgraph (2B) after a missing IS-A relation is added (red link). Similarly, (2A) is a non-lattice fragment of

size 5 in GO and (2B) is the correction.

ontological examples, we switch back to maximal shared descendants. Distinct from existing
approaches, ANT-LCA only computes LCAs for non-trivial pairs, those having at least one
common ancestor. To skip all trivial pairs that may be of no practical interest, ANT-
LCA employs a simple but innovative algorithmic strategy combining topological order and
dynamic programming [10] to keep track of non-trivial pairs.

We provide correctness proofs and demonstrate about 2-orders of magnitude reduction,
compared with the best parallel algorithms known to date, in computational time for two
of the largest biomedical ontologies: SNOMED CT and Gene Ontology (GO). ANT-LCA
achieved an average computation time of 30 and 3 seconds per version for SNOMED CT and
GO, respectively, confirming our complexity analysis with a time-bound involving pairability-
degree (i.e. the constant in big-O analysis of time-complexity) as a quadratic factor. ANT-
LCA overcomes a fundamental computational barrier in subgraph analysis of ontological

structures. It enables the implementation of a new breed of structural auditing methods

that can not only identifies potential problematic areas, but also automatically suggests

specific changes that are needed to fix the quality issues.

2. Background

2.1. LCA on directed acyclic graphs

In a directed acyclic graph (DAG), a common ancestor (CA) of a pair of nodes u,v is a
node w that is a shared ancestor of u,v. A lowest CA is a node w such that no other shared
ancestor is closer (nearer) to w,v than w. A pair of nodes u, v is trivial if they do not have
a shared ancestor, or one of them is the ancestor of the other. Conversely, non-trivial pairs
are those having at least one lowest common ancestor other than the nodes already in the
pair. Given a subset of nodes X in a DAG, we denote the set of lowest common ancestors of
X as Ica(X), and common ancestors of X as ca(X), respectively. When X is a two-element
set {a, b} with two or more lowest common ancestors, it is called a non-lattice pair.

A pair of nodes (z,y) is called pairable if lca{z,y} # 0, Ilca{x,y} # {z}, as well as
lca{z,y} # {y}. Intuitively, x,y is pairable if they share at least one non-trivial common
ancestor. In this case we also say that x is pairable with y, and (z,y) a non-trivial pair. We
use notation x | y to indicate that x is pairable with y. A trivial pair is a pair (z,y) that
is not pairable. In fact, (z,y) is trivial if and only if lca{z,y} C {z,y}, ie., lca{z,y} = 0,
lca{z,y} = {z}, or lca{z,y} = {y}. We write 7(u) = {v | u | v} for the set of all nodes v

that are pairable with w.

2.2. Non-lattice approach

The non-lattice approach [5] provides a mathematically grounded, error-agnostic method
for exhaustive structural auditing of large and complex biomedical ontologies such as SNOMED
CT. This approach focuses on the graph structure induced by the subsumption relation (is-
a) in an ontology. It extracts non-lattice pairs, those with two or more lowest common
ancestors, violating the lattice property.

Any non-lattice pair generates an induced non-lattice fragment, consisting of concepts
in-between any lowest common ancestor and any member of the non-lattice pair, as well

as all the relations between these concepts. Such induced non-lattice fragments represent

important areas of focus for ontological auditing ([5, 7]), because they are inconsistent with
the ontology design principle that the subsumption relationship (is-a hierarchy) should form
a lattice ([2, 5]). Non-lattice fragments are also in conflict with the Fundamental Theorem of
Formal Concept Analysis ([3]), which states that concept hierarchies derived from the duality
of intension and extension always have their order structure being a (complete) lattice.

In fact, non-lattice fragments are often indicative of missing hierarchical relations or con-
cepts. As a demonstration of the practical utility of the non-lattice-based approach, Cui et
al. [7] identified four lexical patterns among non-lattice subgraphs in SNOMED CT. Each
lexical pattern is associated with a potential specific type of error. Applying the structural-
lexical method to SNOMED CT (September 2015 U.S. edition), 6,801 non-lattice subgraphs
matched these lexical patterns, of which 2,046 were amenable to visual inspection. Evalua-
tion of a random sample of 100 small subgraphs resulted in 59 confirmed errors by domain
experts. Abeysinghe et al. [9] further applied the four patterns to audit National Cancer In-
stitute (NCI) Thesaurus (version 16.12d) and introduced two new lexical patterns to uncover
potential errors and suggest remediations. A total of 8,143 non-lattice subgraphs were iden-
tified in NCI Thesaurus, among which 809 matched the six lexical patterns. Domain experts
evaluated a random sample of 50 small subgraphs and verified that 33 of them contained
errors and made correct suggestions. Such hybrid structural-lexical methods are innovative
and proved effective not only in detecting errors, but also in suggesting remediation for these

eITors.

2.3. The computational challenge

Exhaustive generation of non-lattice fragments for large ontological graphs such as SNOMED
CT, with over 300,000 concepts and 450,000 is-a relations, is computationally expensive if
not prohibitive, using an exhaustive sequential approach. For example, in [5], 34 million
pairs of SNOMED CT concepts were examined and 518,000 non-lattice pairs were identified
using SPARQL queries over an RDF representation of the ontology. The time involved for
such an exhaustive approach, 3 months using standard desktop machines, is inadequate for
quality assurance applications.

In more recent work, a general MapReduce pipeline called MaPLE for Lattice-based

Evaluation [6] has been introduced for detecting non-lattice pairs. Using a Cloudera Hadoop
cluster, MaPLE detected all non-lattice pairs in SNOMED CT, with an average total com-
pute time of about 3 hours per version.

Our ANT-LCA algorithm provides a dramatic further reduction in computational time
using sequential computation by a strategy that skips trivial pairs altogether, without even

checking them.

3. Methods

3.1. The ANT-LCA algorithm

We present ANT-LCA in three components: initialization, pairability computation, and
finding of shared ancestors imbedded into pairability computation. We treat pairability
computation separately to highlight ANT-LCA’s core algorithmic insight without dealing

with irrelevant overhead.

3.1.1. Initialization

The initialization phase for ANT-LCA takes a DAG (V| F) as input and uses a modified
version of topological sort [10] to obtain a topological order (index) for each node in V. This
step takes linear time in |V].

After initialization, we have two order relations on V: C and <. Here C (and the
strict version) stands for the partial order determined by the input DAG (V, E) [10] (i.e.,
v C ve means there is an edge from vy to vs). < represents the usual arithmetic order on
the topological index. By the property of topological sort, we have u C v implies u < v for

any u,v € V.

3.1.2. Computing Pairability

The core algorithmic idea of ANT-LCA is captured by the computation of the pairable
function p;(u), intended to compute the function 7(u), where p;(u) is the set of nodes pairable
with u computed up to step i, and 7(u) is the set of all nodes pairable with w. Algorithm 1
initializes p;(u) by fixing proper values for pg(u) for each u € V. Algorithm 2 updates p;(u)
as 1 gets incremented, in order to capture all nodes pairable with u at the completion of the

algorithm.

Input: (V, E) in topological order.
Output: Initialization of pairable elements for each node.

1 foricV do

2 for u € i.to do

3 po(u) +=1i.to — {u};
4 end

5 end

Algorithm 1: Initialization phase for generating pairable sets. Here (V, E) is the input
graph with V' the set of nodes, and F the set of edges. po(u) is the set of nodes pairable

with u computed up to step 0 — the initialization step.

In Algorithm 1, i.to consists of all ¢ such that (i,¢) € E. For each i, Algorithm 1 updates
each u such that (i,u) € E by appending distinct members in i.to, such as v (Figure 2,
left) that are not comparable with u, into pg(u). Strictly speaking, for Algorithm 1 to be
correct for arbitrary graphs, line 3 should be modified as po(u) := i.to — {z | v C z}. This
is, however, not necessary if nodes in i.to are not comparable with each other, as is the case
when the input graph has no “redundant” edges (when the is-a relation in an ontology is
minimally represented without edges that are derivable from transitive closure).

Figure 2 (right) contains the Hasse diagram of an example DAG in topological order.

The initialization results for po(u) obtained by Algorithm 1 are displayed beside each node.

@pn(ﬁ)) =0
® ® m(6) = {7} ®/ (LW‘) =0
po(5) = {3,4}

po(2) =0

Figure 2: Left: the iterative pattern for each edge (i,u) € E. Right: initializing the pairable function for a
graph consisting of topologically ordered nodes 1 to 9.

Algorithm 2 updates each i’s upper neighbor u (lines 1 and 2) by adding those nodes
that are pairable with ¢ but not comparable with u (line 3). All nodes v that are pairable
with ¢ also gets updated by adjoining the upper neighbors of 7 to its set of pairable nodes
(line 5). For abbreviation, the notation of relative set union (U,) is used in Algorithm 2.
For subsets A, B of V and x € V', we write AU, B for AU B while making sure that nodes

in the resulting set are not comparable to x, i.e.,

AU, B:=(A—{acA|zCaoralCa})U(B—-{beB|xzCborbLC z}).
In practice, one can take advantage of fast computation of transitive closure [11] and efficient
disjoint union [12] for computing A U, B.

Input: (V, E) in topological order.
Output: The set of pairable nodes for each node.

1 fori eV do

2 for u € i.to do
3 ‘ pi(w) == pi_1(u) Uy pi—1(i)
4 end

5 for v € p;_1(7) do

6 ‘ pi(v) = pi—1(v) U, (i.to)
7 end
8 end

Algorithm 2: Main steps for generating pairable sets. Here (V, E) is the input graph
with V' the set of nodes, and E the set of edges. p;(u) is the set of nodes pairable with u
computed up to step i (> 0).

3.1.3. Computing common ancestors of non-trivial pairs

Algorithm 3 combines the computation of pairable nodes with the computation of (a
subset of) their common ancestors g;(u,v), which contains their lowest common ancestors.
The main ingredients of Algorithm 3 is the addition of steps in lines 5, 13 and 14 which
iteratively update common ancestors for pairable nodes (see section 3.1.4 for the intermediate

results of step-by-step run of Algorithm 3 on the example in Figure 2). Note that Algorithm 3

9

does not guarantee that all common ancestors of u, v will eventually be included in ¢;(u,v),
but it does include all lowest common ancestors of u,v (see Theorem 4 in section 3.2).
Therefore, an additional straightforward step is needed to extract the lowest elements in

¢i(u,v) to obtain lca{u,v}.

Input: (V, E) in topological order.
Output: Pairable nodes as well as their common ancestors (in ¢;).

1 for: eV do

2 for u € i.to do

3 po(u) :=i.to — {u}

4 for v € i.to with u # v do
5 qo(u, v) = qo(u,v) U {i};
6 end

7 end

8 end

9 fori eV do

10 for u € i.to do

1 pi(u) = pi—1(u) Uy pi—1(9)

12 for v € p;_1(i) do

13 ¢i(u,v) = qi—1(u,v) U gi—1(4,v);
14 ¢i(v,u) == q;(u,v);

15 pi(v) = pi_1(v) U, (i.to)

16 end

17 end

18 end

Algorithm 3: Main steps for generating common ancestors for all and only pairable nodes.
Here (V, E) is the input graph with V' the set of nodes, and E the set of edges. ¢;(u,v)
is the set of common ancestors for nodes u and v computed up to step 7. Note that when

i = 0, qo(u,v)represents the initialization result (lines 1-8), computed before the main

phase (lines 9-18).

10

3.1.4. Illustrative example

Figure 3: Updating up to node 3 and edge (3, 6).

Although using only a small number of steps, the recursive nature involved in Algorithm 3

as well as the intricate behavior can be better demonstrated through an example. The
following figures illustrate a step-by-step run of Algorithm 3 on the example in Figure 2.

Edges being iterated and incremental value changes are highlighted in blue.

Figure 4: Step for node 3 and edge (3, 7).

Updating up to node 3 and edge (3,6) gives the result illustrated in Figure 3. Note that
nothing gets updated when ¢ = 1,2. When ¢ = 3,u = 6,v = 4, since nodes 6 and 4 are not

pairable, nothing gets updated. When ¢ = 3, u = 6,v = 5, since nodes 6 and 5 are pariable,
we have p3(6) = {5, 7}, p3(5) = {3,4,6},3(6,5) = ¢3(5,6) = {1}.

As shown in Figure 4, for ¢ = 3,u = 7,v = 4, since nodes 7 and 4 are not pairable, no

updates took place. For ¢ = 3,u = 7,v = 5, since p3(7) = {5,6} and p3(5) = {3,4,6,7}, we

11

have ¢3(7,5) = ¢3(5,7) = {1}.
Figure 5 captures the snapshot for ¢ = 4 and v = 6: when v = 3, we have nodes 6 and 3

are not pairable and no update is needed; when v = 5, we have ¢4(6,5) = ¢4(5,6) = {1, 2}.

p3(7) = {5,6
(7.5 = {1} (8)r(8) =0
9(7,6) = {3,4}

Figure 5: Step for node 4 and edge (4, 6).

Figure 6 shows the step for ¢ = 4 and v = 7: when v = 3, we have nodes 7 and 3 are not

pairable; when v = 5, the updated result is ¢4(5,7) = q4(7,5) = {1, 2}.

6.
q4(6,7) = {3,4}

wd) = {45 | wlh)={35)
039 =1 Q) w13 =11
q(3,5) = {1} q(4,5) ={1,2}

@Pn(l) =0 @Pn@) =0

Figure 6: Step for node 4 and edge (4, 7).

Figure 7 captures the following configurations. i = 5,u = 8, v = 3: p5(3) = {4,5,8},p5(8) =
{31,45(3,8) = ¢5(8,3) = {1}; i = 5,u = 8,v = 4: ps(4) = {3,5,8},p5(8) = {3,4},¢5(8,4) =
B(4,8) = {1,211 = 5,u = 8,0 = 6: ps(8) = 3,4,6}, p5(6) = {5,7.8},45(5,6) = 5(6,8) =
{1,2};i=5,u=8v="T ps5(8) = {3,4,6,7},ps(7) = {5,6,8},¢5(8,7) = ¢5(7,8) = {1,2}.

Finally, Figure 8 shows that for ¢ = 6,7,8, nothing gets updated since node 9 is not

pairable to any other node.

12

NG 4,6,
ps(3) = {458} ps(4)={3,5.8}
0(5,3) = {1
a(3,4) = {1} w(4,3) = {1} e
‘ a(5,4) ={1,2}
q0(3,5) = {1} q(4,5) = {1,2} w(5,6) = {1,2}
4(3.8) = {1} a(4,8) = {12} a(5,7) ={1,2}

ps(G){5‘7-8}@/<L | |
0(6,5) = {1,2})

(6,7) ={3,4} (10(7~6):{3v4}
(6,8))

={1,2} a5(7,8) = {1,2}

Orm=0 @ne=0

Figure 8: For node ¢ = 6,7, 8, nothing gets updated since node 9 is not pairable to any other node.

3.2. Correctness of the algorithm

We establish the correctness of Algorithm 2 and Algorithm 3 in a sequence of lemmas
and theorems. Proof details are given in Appendix A for those who are interested.

With respect to a topologically sorted input graph (V) E), we distinguish the set 7(u)
of all nodes pairable with u, and p;(u), the dynamic store of nodes pairable with u at a
stage i of the algorithm. In the remainder of the paper we refer to nodes in V' solely by
their topological indices, integers that can also be incremented for algorithmic iteration in a
while-loop.

According to Algorithm 2, p;(u) has the following straightforward properties:

13

e Monotonicity: for all w € V, for all i < j € V, we have p;(w) C p;(w);
e Symmetry: for all u,v € V, for all i € V, u € p;(v) implies v € p;(u);
e Diagonality: for all v € V, p,(v) = py—1(v).

Since Algorithm 2 initializes and grows p;(u) with only nodes pairable with u, we have
Theorem 1. For allu eV, foralli eV,

pi(u) € m(w).

For proving containment in the other direction the next three lemmas serve as building

blocks. Notationally, we use [x,y] to stand for the closed integer interval {i | x <i < y}.

Lemma 1. Suppose b € Ica(u,v) and (b,u) € E. Fori € [0,n], let (v;,v;11) € E be edges
such that b = vy and v, = v. Then u € pv(ifl)(vi) for alli € [1,n].

Lemma 2. Let (v;,v;41) € E be edges in (V,E) fori € [0,n], with b = vy and v, = v.
Suppose Ica(z,v) = b and x € 7(v;) for i € [0,n]. If v € p,, (k1) for some k, then
T € Py, (Vjg1) for all j € [k, n].

Lemma 3. Forall0 <i <n, we have p,,(vi) C py,(vit1), and moreover py, (vi) C py,,) (Vit1),
by monotonicity.

Lemmas 1, 2, and 3 show how pairability information is propagated along a path. Next we
deal with the general situation of how this information is propagated to a pair of (pairable)
nodes starting from the initial setting. To do so, consider a subgraph D = AU B of (V, E),
with A = {u; | ¢ € [1,m]} and B = {v; | j € [1,n]} such that (u;,_1,u;) and (v;_1,v;) are

distinct edges with i € [1,m] and j € [1,n], where (see Figure 9)

1. ug = vy, u,, = u, and v, = v,
2. u € m(v) and v € lca(u, v), and

3. AnB =1.

Consider W = {w; | ¢ € [1,m+n]} = AU B, with topological indices appearing in AU B

sorted in ascending order.

Definition 1. The i-th alternation index for W is the index «;, such that either w,, € A
but Wy, 11 € B, or w,, € B but wa,+1 € A.

14

Qum(=u) (v=)v.O

Um—1 Un—1
%qu UnQ(f
LS A

Qui v
Uy = Vg
Figure 9: Subgraph with A = {u; | i € [1,m]} and B = {v; | j € [1,n]}.

The next lemma, whose proof appears in Appendix A, characterizes how pairability
information “jumps” from one branch (say A) to the other (say B) at critical junctures of

an alternation index.

Lemma 4. For any alternation index «;, we have: 1. if v; = w,, and us = Wa,+1 then
Us € Do, (V1); 2. if us = Wy, and vy = Wa,+1 then vy € py, (us).

The following Theorem 2, whose proof appears in Appendix A, deals with the opposite
direction of Theorem 1. It allows us to conclude that for each u € V| if v € 7(u) then there
exists ¢ € V, such that v € p;(u) by choosing a large enough i. With it, all nodes pairable

with u are accounted for by the function p;(u).
Theorem 2. For alli € V and for all w <1, we have
pi(w) 2 w(w) N [1,4],

where [1,1] stands for the integer interval {j | 1 < j < }.

Similar to p;(u), the binary function ¢;(u,v) has the following properties, as can be

directly derived from Algorithm 3:
e Monotonicity: for all u,v € V, for all t < j € V, we have ¢;(u,v) C g;(u,v);
e Symmetry: for all u,v € V, for all i € V| we have ¢;(u,v) = ¢;(v,u);
e Diagonality: For all u,v € V, we have ¢, (u,v) = q,—1(u,v).

By inspecting steps involved in Algorithm 3, we can establish this fact:

15

Theorem 3. For each i € V and for each u € w(v), we have g;(u,v) C ca{u,v}.

The next lemma shows how alternation indices help propagate the common ancestor

information to all relevant pairs in the graph.

Lemma 5. Suppose x € lca{u, v}, u € w(v), and suppose that (see Figure 9) (u;—1,u;) and
(vj_1,v;) are distinct edges with i € [1,m] and j € [1,n], where * = ug = vy, Uy, = u, and
v, = v. For any alternation inder o; as giwen in Definition 1, we have 1. if w,, = vy and
Woyt1 = Us, then & € Gy, (Ui, us); 2. if Wa, = up and Wy, 41 = Vs, then x € qy, (ug, vs).

Lemma 5 leads to the following theorem, which affirms the correctness of Algorithm 3.

Theorem 4. Suppose x € Ica{u,v} with u € w(v). Then either x € q,(u,v) or x € q,(u,v).

Theorem 4 shows that Algorithm 3 finds all lowest common ancestors of u, v in ¢;(u,v),
for some 7. It does not, however, guarantee that all common ancestors of u, v will eventually
be included in ¢;(u,v). Neither does Algorithm 3 ensure that all elements in ¢;(u,v) are
LCAs of u and v. Therefore, an additional straightforward step is needed to extract the

lowest elements in ¢;(u, v) after the termination of Algorithm 3, to obtain Ica{u, v}.

4. Results

ANT-LCA was implemented in Java based on JDK7. Experiments on SNOMED CT and
GO were performed on a MacBook Pro running Mac OS X Yosemite, with 16GB RAM and
Intel Core i7 processor. The Java code is available through GitHub (https://github.com/

licongcui/nonlattice).

4.1. SNOMED CT

We used 9 versions of SNOMED CT (International Version) from 2012 to 2017, dated
07/2012 (i.e., July 2012), 01/2013, 07/2013, 01/2014, 07/2014, 01/2015, 07/2015, 01/2016,
and 01/2017. Table 1 summarizes the basic results about each version of SNOMED CT,
including number of concepts, number of is-a relations, number of concept pairs that are
pariable after the initialization step in Algorithm 1, number of all pairable pairs, number of
non-lattice pairs, and the compute time for non-lattice pairs and non-lattice fragments.

The 07/2012 version contained 296,433 concepts, with 440,049 direct is-a relations con-

necting concepts. Among all possible concept pairs, 150,639 were identified as pairable after

16

Table 1: Summary of the basic statistics using ANT-LCA to process 9 versions of SNOMED CT. Initial
Number of Pairable Pairs indicates the number of concept pairs that are pariable after the initialization step

in Algorithm 1.

07/2012|01/2013|07/2013|01/2014|07/2014 |01/2015|07/2015|01/2016| 01,2017

Total Number of Concepts 296,433 297,998| 298,818| 298,581| 300,751| 312,998| 317,057| 319,446| 326,734
Total Number of is-a Relations 440,049 442711| 444,919| 443,944| 446,462| 463,339| 470,040 473,121| 487,686
Initial Number of Pairable Pairs 150,639| 151,996| 153,892| 153,645| 153,934| 158,488| 161,346 162,689 171,966
Total Number of Pairable Pairs 1,383,888 1,397,332 (1,420,284 1,425,848 1,428,870 | 1,475,826 | 1,502,108 1,523,325| 1,641,853
Total Number of Non-lattice Pairs 578,237 583,433| 593,498| 594,076| 594,106 614,018| 625,484| 633,307 683,744
Compute Time for Non-lattice Pairs 28 28 29 29 27 29 30 28 32

(in seconds)

Compute Time for Non-lattice Fragments 524 527 548 524 502 512 541

ot
<
Sy

47

(in seconds)

the initialization step in Algorithm 1, a total of 1,383,888 were detected as pairable, among
which 578,237 were found to be non-lattice pairs. It took 28 seconds to compute non-lattice
pairs and 524 seconds to compute non-lattice fragments.

In general, it takes about 30 seconds for our algorithm to detect all non-lattice pairs
for each version of SNOMED CT, consistent with our linear time analysis. We run each
version 10 times and report the average time in row “Compute Time for Non-lattice Pairs”
in Table 1.

The generation of all non-lattice fragments took less than 13 minutes for each version of
SNOMED CT. This phase is more time-consuming than detection of non-lattice pairs because
all nodes in-between a node in the non-lattice pair and the lowest common ancestors make
up a fragment. For this part, we run each version 5 times and report the average time in

row “Compute Time for Non-lattice Fragments” in Table 1.

4.2. Gene Ontology

We used 8 versions of GO from July 2015 to Febuary 2016. Table 2 shows the basic
results about each version of GO. The 02/2016 version contained a total of 44,222 concepts,
with 72,742 direct is-a relations connecting concepts. Among all possible concept pairs, 3,642
were identified as pairable after the initialization step in Algorithm 1, a total of 328,760 were
detected as pairable, among which 102,948 were found to be non-lattice pairs. It took 3

seconds to compute non-lattice pairs and 32 seconds to compute non-lattice fragments.

17

Table 2: Summary of the basic statistics using ANT-LCA to process 8 versions of GO.
‘07/2015 ‘08/2015‘09/2015‘10/2015‘11/2015‘12/2015‘01/2016‘02/2016‘

Total Number of Concepts 43,330 43,507 43,654 43,758 43,880| 43,980 44,049 44,222
Total Number of is-a Relations 70,826 71,167| 71,443| 71,700) 71,926 72,153| 72,268 72,742
Initial Number of Pairable Pairs 3,502 3,537 3,547 3,564 3,574 3,573 3,575 3,642
Total Number of Pairable Pairs 305,270 308,314| 309,684| 311,490| 312,667 314,340 314,448| 328,760
Total Number of Non-lattice Pairs 92,322 93,828| 94,275| 94,821 94,912 95,458 95,506| 102,948
Compute Time for Non-lattice Pairs 2 3 3 3 3 2 2 3
(in seconds)

Compute Time for Non-lattice Fragments 31 31 32 32 33 30 30 32
(in seconds)

4.8. Fxperiments on random graphs

We also evaluated the performance of ANT-LCA on randomly generated, ontologically
shaped DAGs. We implemented an algorithm (see Appendix B) to generate a random
DAG(N,d, Ciin, Cinax), where N is the number of nodes, d is edge density of the DAG,
and Chin/Chax are the minimum /maximum number of children a node can have. The edge
density is defined as the ratio of the extra edges (that will be added after a random tree is
generated) to the number of edges in the tree.

Densities in real world ontologies tend to be smaller than 1, even though it can be as
high as % In our experiments, the edge density parameter was set between 0.02 and 1. This
is a reasonable range to consider, since GO (02/2016 version) has d = 0.64 and SNOMED
CT (01/2016 version) has d = 0.48 as their edge density, respectively.

Figure 10 is a plot of the average running time of ANT-LCA on randomly generated
ontological structures of different sizes (number of nodes ranging from 100,000 to 1,200,000)
and densities (0.02 to 1). The experimental results are consistent with our algorithmic
analysis (see section 5): they show linear increase in time complexity across the density
spectrum, with the slope (linear coefficient) getting larger for denser graphs.

Figure 11 is a 3D view which illustrates the trend of time increase with respect to graph
size and density. The experiments were performed on a linux running the CentOS with 16GB

RAM and Intel(R) Xeon(R) X3430 2.40GHz quad core CPU.

18

16000

14000

/ «=Den-0.02

12000 «==Den-0.05
/ /7 ==Den-0.1

==Den-0.15

10000

«==Den-0.2

E 8000 «==Den-0.3
===Den-0.4

6000 «==Den-0.5
“==Den-0.6

4000 «==Den-0.7

/ «==Den-0.8
2000 “==Den-0.9
/ Den-1.0

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000
Size

Figure 10: A plot of size vs. computational time in milliseconds. Different colors represent graphs of different

density, with higher density requiring more computational time.

15000

5000

Figure 11: A 3D rendering showing the effect of size and density on required computational time.

5. Discussion

5.1. Time Complezity for Algorithm 2

Let og be the pairability degree of graph G, defined as max,cym(u), i.e. the maximum
number of pairable nodes a single node can have in graph G. Algorithm 2 involves a main

iteration process over all edges (i, u) € E of the input graph, as given in lines 1 and 2. Then

19

the time complexity for line 3 is (using set union complexity)

Z pi(u)l,

(i,u)eE

which is bounded by (with the assumption that the union cost is proportional to the size of

the resulting set [12])

Hence,

> Iniw)| < og-|E].

(i,u)eE

Similarly, the time complexity for lines 4 and 5 is

Z Z |pi(v)].

(Z,U) €E VEP;i—1 (1)

We have

Yo D Il <oz |El

(4,u)€E veEp;—1(7)

Therefore, the overall time-complexity of Algorithm 2 is bounded by ¢ - |E|. Space com-
plexity is similarly bounded, but less of a concern here due to the availability of sufficiently
large, standard sizes of RAMs. For sparse graphs with small og, Algorithm 2 performs well,
as our experimental result in the next section shows. In the worst case g = |V, and the
running time in the worst case is O(|V|? - |E|) and is the same as brute force search. In
the best case o¢ is a constant, and the running time in the base case is O(|E|). The actual
time needed for the algorithm, >Z, cp> e,) [Pi(v)], is very close to the best case for
the data set in our experiments. Even though o4 may be in the thousands, the average size
of m(v), a more realistic estimation for the actual computational time, is below 50.

Intuitively, the more tree-like the input ontology is, the closer to the best case time-
complexity of O(|E|) our algorithm will achieve. The worst cases are when every pair of
nodes is pairable, achievable when the ontology is dense with shared descendant concepts

among its concept nodes.

20

5.2. Time Complexity for Algorithm 3

Note that we intentionally nested the for-loop in lines 4-6 of Algorithm 2, to faithfully
account for the time-complexity for Algorithm 3. For Algorithm 3, the double nesting is
necessary in order to compute pairable pairs while accumulating common ancestors (between
uw and v). If we are interested only in computing pairability, then the nesting in lines 4-6 of
Algorithm 2 is not necessary, and we obtain a better time-complexity of o¢ - (|E| + [V]).

The key steps involved in Algorithm 3 can be captured by Algorithm 2 except for the
accumulation of common ancestors in steps 13 and 14. We assume the computation required
for these two steps to be a constant by keeping up to two LCAs, in order to provide a fair
comparison with existing algorithms (which only output a representative LCA for each pair).
Therefore, the time-complexity of Algorithm 2 is also bounded by ¢ - |E|. Therefore, the

best case and worst case analyses for Algorithm 2 apply to Algorithm 3 as well.

5.3. Related work on LCA

Many attempts have been made on improving the efficiency of algorithms for the all-pairs
all-LCA problem [13, 14], i.e., finding all LCAs associated with each pair of nodes. More
recently, Dash et al. [15] presented an approach that combines the efficiency of existing LCA
algorithms on trees with range-interval labeling scheme and an efficient matrix multiplication.
This approach achieves near-linear time for tree-like, rooted DAGs, but query results are
limited to a single representative LCA per each pair of nodes. This is a limit for applications
that require all-LCAs as query results. In general, the all-pairs all-LCA problem remains
to be super-quadratic, since its time-complexity is inherently tied to algorithms for matrix-
multiplication [16, 14]. For many DAGs arising in real-world applications such SNOMED
CT (with over 300,000 of nodes), existing algorithms become impractical.

In general approaches to the LCA problem, one distinguishes the off-line and online
computations. Off-line computation serves to preprocess the input graph in order to speedup
online LCA queries. Our paper focuses on off-line processing in order to support constant
online query for a representative LCA, or online query for all LCAs (with performance
parameterized in the size of the resulting set).

A key distinction of ANT-LCA from existing approaches is that it ensures computation

21

is performed on all and only non-trivial pairs. In fact, the time complexity of ANT-LCA is
determined by the number of non-trivial pairs in the input graph, as our complexity analysis
shows. Using the average size of pairable pairs for a give node, which is a more realistic
reflection of the actual computational time, the time complexity for our experimental cases
is approximately (50)% - | E|.

Another distinction of our approach is that we compute all LCAs (of all non-trivial
pairs) instead of a representative LCA. This makes our task more computationally intensive,
and also makes many existing approaches to the LCA problem inapplicable. Our all LCA
requirement is motivated by real-world application needs for implementing lattice-based
approach to ontology quality assurance. Compared with the fastest all pairs representative
LCA algorithm known to date with an O(|V|-|E|) time complexity [15], ANT-LCA provides
a rough speed-up of three orders of magnitude for SNOMED CT. However, the worst time-
complexity for our algorithm, |V|?-|E|, is attained when virtually all nodes are pairable with

all other nodes.

5.4. Related work using non-lattice subgraphs

This paper focused on an efficient algorithm to compute non-lattice pairs as a key part
of step 1 in a 4-step non-lattice approach outlined in Introduction. More recent work has
addressed other steps and reported specific application for improvements on SNOMED CT
and NCI Thesaurus. In [7], a structural-lexical method was used to mine lexical patterns in
non-lattice fragments in SNOMED CT to identify missing is-a relations and concepts. This
method used 4 patterns to cover about 4% of all non-lattice fragments in SNOMED CT, with
a solid precision rate (59%) of confirmed errors by domain experts. More recently, a new
structural-lexical approach leveraged more existing knowledge in SNOMED CT by enriching
the lexical attributes of each concept in non-lattice subgraphs to facilitate the identification of
missing is-a relations [17]. This approach covered 7.4% of non-lattice subgraphs with higher
precision (82.96%). Work reported in [9] demonstrated that the non-lattice approach can
be applied to other ontologies than SNOMED CT (9.93% coverage of non-lattice fragments
with 66% precision on identified errors in NCI Thesaurus).

Given such developments, it may seem reasonable to propose the reduced proliferation

22

of non-lattice substructures (i.e., the total number of non-lattice pairs) as a ontology quality
metric. However, due to many factors that are involved in creating newer releases of an
ontology, we found it not to be the case that newer releases would measure better than
earlier releases. It may still be possible to use this method to measure and track the quality of
specific sub-hierarchies where non-lattice fragments are unusually dense, or to demonstrate
that a non-trivial portion of ontological changes between the releases involve non-lattice

fragments.

6. Limitations

Since ANT-LCA is designed for detecting lowest common ancestors for all non-trivial
pairs in a DAG, it is generally applicable to other ontologies or terminologies which are
hierarchically organized in a DAG. We have applied it to SNOMED CT, Gene Ontology,
and NCI Thesaurus for ontology quality assurance.

There are two types of limitations. One is specific to the ANT-LCA algorithm, and the
other is related to the non-lattice approach. The limitation of the ANT-LCA algorithm is
that, although it is efficient and suitable for ontological graph structures that are tree-like, it
may not work well with other types of graph structures when all pairs of nodes are pairable.

Limitations of the non-lattice approach include the following. (1): The approach may
not be efficient for ontologies that are “shallow,” such as Ontology for General Medical
Science (maximum depth 6), BRENDA Tissue and Enzyme Source Ontology (maximum
depth 6), and Current Procedural Terminology (maximum depth 7), from BioPortal. (2):
Our algorithm itself is agnostic to relation types, so it will still work for such relations as
“part-of.” However, the non-lattice approach is not applicable to other types of relations since
this approach is only meaningful for the is-a hierarchy (of any ontology) due to its theoretical
underpinning based Formal Concept Analysis. We are not aware of any (theoretical) reasons
that indicate non-lattice fragments to be problematic for other types of relations. However,

this should not diminish the value of our non-lattice approach.

23

7. Conclusions

To summarize, this paper introduced an efficient algorithm for detecting non-lattice pairs
and generating non-lattice fragments, for ontology quality assurance work. Our algorithm
overcomes a fundamental computational barrier in sub-graph based structural analysis of
large ontological systems. It enables the implementation of a new breed of structural auditing
methods that not only identifies potential problematic areas, but also automatically suggests

changes to fix the issues.

Acknowledgements

This work was supported by the National Science Foundation through grants I1S-1657306
and ACI-1626364, and the National Institutes of Health (NIH) National Center for Advancing
Translational Sciences through grant UL1TR001998. The content is solely the responsibility

of the authors and does not necessarily represent the official views of the NIH.

References
[1] SNOMED CT. http://www.snomed.org/snomed-ct, 2018 (accessed 13 January 2018).

[2] P. Zweigenbaum, B. Bachimont, J. Bouaud, J. Charlet, J.F. Boisvieux, Issues in the
structuring and acquisition of an ontology for medical language understanding, Methods

of information in medicine 34(1995) 15-24.

[3] B. Ganter, R. Wille, Formal concept analysis: mathematical foundations, Springer Sci-

ence & Business Media, Berlin, Germany, 2012.

[4] G. Jiang, C.G Chute, Auditing the semantic completeness of SNOMED CT using formal
concept analysis, J. Am. Med. Inform. Assoc. 16(1) (2009) 89-102.

[5] G.Q. Zhang, O. Bodenreider, Large-scale, exhaustive lattice-based structural auditing
of SNOMED CT, In AMIA Annual Symposium Proceedings (2010) 922-926.

[6] L. Cui, S. Tao, G.Q. Zhang, Biomedical ontology quality assurance using a big data
approach, ACM T. Knowl. Discov. D. 10(4) (2016) 41.

24

[7]

8]

[12]

[13]

[14]

[15]

[16]

L. Cui, W. Zhu, S. Tao, J.T. Case, O. Bodenreider, G.Q. Zhang, Mining non-lattice
subgraphs for detecting missing hierarchical relations and concepts in SNOMED CT, J.
Am. Med. Inform. Assoc. 24(4) (2017) 788-798.

X. Zhu, J.W. Fan, D.M. Baorto, C. Weng, J.J. Cimino, A review of auditing methods
applied to the content of controlled biomedical terminologies, J. Biomed. Inform. 42(3)

(2009) 413-425.

R. Abeysinghe, M.A. Brooks, J. Talbert, L. Cui, Quality Assurance of NCI Thesaurus
by Mining Structural-Lexical Patterns, In AMIA Annual Symp Proc (2017) 364-373.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to Algorithms. The
MIT Press. Cambridge MA. 1990.

C. Demetrescu, G.F. Italiano, Fully dynamic transitive closure: Breaking through the
O(n?) barrier, In 41st Annual Symposium on Foundations of Computer Science Pro-

ceedings (2000) 381-389.

7. Galil, G.F. Italiano, Data structures and algorithms for disjoint set union problems,

ACM Computing Surveys (CSUR) (1991) 23(3) 319-44.

M.A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin, Lowest common

ancestors in trees and directed acyclic graphs, J. Algorithm. (2005) 57(2) 75-94.

A. Czumaj, M. Kowaluk, A. Lingas, Faster algorithms for finding lowest common an-

cestors in directed acyclic graphs, Theor. Comput. Sci. (2007) 380(1) 37-46.

S.K. Dash, S.B. Scholz, S. Herhut, B. Christianson, A scalable approach to computing
representative lowest common ancestor in directed acyclic graphs, Theor. Comput. Sci.

(2013) (513) 25-37.

Eckhardt S, Mihling AM, Nowak J. Fast lowest common ancestor computations in

DAGs. In Algorithms ESA (2007) 705-716.

25

[17] L. Cui, O. Bodenreider, J. Shi, G.Q. Zhang. Auditing SNOMED CT hierarchical rela-
tions based on lexical features of concepts in non-lattice subgraphs. J. Biomed. Inform.

https://doi.org/10.1016/j.jbi.2017.12.010

Appendix A: correctness proofs

7.1. Proof of Lemma 4

We prove this by induction on the i-th alternation index «;.

Basis ¢ = 1. Without loss of generality, suppose v; < u; for all 1 < 57 < t. Then
Uy € Py, (v1). By monotonicity and Lemma 3 we have u; € p,, (vy).

For the inductive step, assume v; < ug defines the (i + 1)-th alternation index, for some
s > 1. We must have u,_; < v;. By Definition 1, the i-th alternation index must be of the
form us,_; < v,, for some 7 < ¢. By induction hypothesis and the symmetry of the graph
structure, we have v, € p,, ,(us_1).

By Algorithm 2, we have

Pus_y (Us) = Puy_y—1(Us) Uny Duy_y—1(Us—1)-

Since py, , (us—1) = pu,_,-1(us_1) by diagonality, we have v, € p,._,(us). Furthermore,

Vr € Pu,_, (Us) = Us € pu,_, (vr) (by symmetry)
= us € py, (vr) (by monotonicity)
= U € Py, (V1) (by Lemma 3)

7.2. Proof of Theorem 2
Basis: i = 1,2. We have (1) = 0, 1 & 7(2), and 2 & m(2). Therefore, w(1) N [1,1] =
©(2)N[1,2] = 0.
For the inductive step, suppose, using course of value induction, that for all j < k, for
all w < 7,
pi(w) 2 m(w) N [1, j].

We plan to prove that for k£ + 1 we have that for all u < k + 1,
Prr1(u) 2 w(u) N [1, k+ 1.

26

For a given u < k + 1, there are two possible cases for u:

Case 1: k+1¢&m(u);
Case 20 k+1¢€n(u).

We show that for each case, the desired set containment holds.

Case 1. If K+ 1 & 7(u), then we have
m(u) N[k+ 1] =7(u) N1,k C pr(u) C pri1(u)

as needed, by induction hypothesis and monotonicity.

Case 2. Suppose k+1 € m(u), with u < k+1. Then there exists b with b € lca(k+1, u) such
that (ug,uy), (u1,u2), ..., (Um_1, Uy) and (v, v1), (V1,02), ..., (Vn_1,v,) are distinct edges of
E with b = uy = vg, 4, =u and v,, = k + 1.

We show that u € p,, (v,). There are two cases: (a) u,, < vy, and (b) v, < u,, for some
a < n —1 (note that o cannot be n in this case).

For (a), by Lemma 4, we have vy € p,,, (U,). Furthermore,

V1 € Pu,, (U) = v1 € py(u) (U, = u)
= u € pu(n) (by symmetry)
= U € p, () (by monotonicity)
= U € p,, () (by Lemma 3)

For (b), assume « is the largest index such that v, < u,. Then by Lemma 4, we have
U, € Py, (Vo). By Lemma 3, we have u € p,, (v,). Hence k + 1 € pry1(u), by symmetry.

By induction hypothesis, we have

pr+1(u) 2 pr(u)
> r(w) N [L, &].

Since k + 1 € pyy1(u), we have pgy1(u) 2 m(u) N[1, k + 1] as needed.

7.8. Proof of Lemma 5

We prove this by induction on ¢, where q; is the i-th alternation index.
Basis ¢ = 1. If wa, = vy and wa, 41 = u1, then we have v; < uy for all 1 < j <¢. We

prove that x € g, (v;,up) for all 1 < j <t. When j = 1, we have u; € p,, (v1), by the fact

27

that u; € po(v1) and by monotonicity. Since = € go(uy,v1) (by line 5 of Algorithm 3, we
have = € q,, (v1,u1) by monotonicity and symmetry.

Suppose x € gy, (v;,u1) for some 1 < j <t. Then € q,,_1(v;,u1) by diagonality. Since
u1 € py,(v;) (by Lemma 3), we have u; € p,,_1(v;), again by diagonality. Since (v, vj41) € E,
we have

qvj(vjﬂ, uy) = qu—l(UjH, uy) U qu—l(’Uj: uy).

Therefore, » € gy, (vj11,u1) and so & € qy,,, (vj41,u1) (by monotonicity). This finishes the
induction to give us & € ¢y, (v, u;). A similar argument holds for the case when w,, = u;
and wy,4+1 = V1.

For the inductive step, let v; < ug define the (i + 1)-th alternation index. We must have
us_1 < v;. By Definition 1, the ¢-th alternation index must be of the form u, ; < v,, for
some 7 < t. In increasing order, we have the sequence u, 1 < v, < vy < ug. By induction
hypothesis, we have = € q,, ,(us_1,v,;), and so x € q,,_,-1(us_1,v,) (by diagonality).

We now show that x € gy, (vj11,us) for each j € [7,t] by induction.

For basis j = 7, we first show that (a): us € p,._1(v,;), and (b): x € g, (v,, us), because

if these are true, then by diagonality we have = € ¢, _1(v,, us), and Algorithm 3 gives us

Quv, (v‘r+1>u5) = QUTfl(UTJrDUS) U Qvffl(vnus»

Therefore = € q,, (v;11, us), as needed.
(a): To show that us € p,__1(v,), note by Lemma 4, we have v, € p,,_, (us_1) (us_1 < v,

is an alternation). Furthermore,

Ur € Puy_, (Us—1) = vy € Py, (us) (by Lemma 3)
= U5 € Py, (V) (by symmetry)
= Us € va—l(UT> (us—l < v — 1)

(b): To see that we have = € g, (v.,us), note that induction hypothesis gives us = €

Qu,_, (us—1,v;). Also,
qu371 <u87 UT) = qusfl—l(u& UT) U QUsfl—l(us—la U’T)
by instantiating Algorithm 3 with (us_1,us) € E and v, € p,,_,—1(us—1). Therefore, z €

28

Qu,_, (us,v,). Furthermore,

T E Qu, ,(Uus,v;) = T € qy, (Us,v;) (by monotonicity)

= T € (U7, us) (by symmetry)

If 7 =t then the proof is already compete. If 7 < t, this completes the induction basis
j =7, because = € q,, (v, us) implies z € q,_(v,11, us).

For the inductive step, assume x € g, (v;41,u,) for some j such that 7 < j <t—1. Since
v; < wvjp1— 1, we have v € gy, —1(vj41, us). Since ug € py,_1(v7), we have ug € py,,,—1(vj41)
by diagonality and Lemma 3. By instantiating Algorithm 3 with (vj41,vj12) € E and

uS E pUj+1—1(Uj+1)7
qu+1 (Uj+2’ us) = qvj+1*1(vj+27 uS) U qvj+1*1(vj+la US)'

Therefore, z € q,,,, (vj12,us). By induction, we have x € q,,_, (v¢, us), and so & € gy, (ve, us)
(by monotonicity).
A similar argument holds for the case when the (i 4+ 1)-th alternation index is defined by

U < Vg.

7.4. Proof of Theorem 4

If u,, < v; defines the last alternation index, then by Lemma 5, we have x € q,,, (4, v;).
That is, € gu(u,v;). If n =1, then j =n =1 and we have x € g,(u,v).
We show that x € gy, (vg+1, u) for each k € [7, n—1] by induction for the case when n > 1.

Basis: k = j. By Lemma 4, we have v; € p,,, (4,,) = pu(u). Moreover,

vj € pu(u) = u € p,(vy) (by symmetry)
= u € py,(v)) (u < ;)
= U € py;-1(vy) (by diagonality)

By instantiating Algorithm 3 with (v;,v;41) € E and u € p,,_1(v;), we have

Qv, (Uj+17 u) = quf1(Uj+1> u) U C]ujfl(vp).

Since = € qu(u,v;), we have x € q,,_1(u,v;) = qv;—1(v;,u) by monotonicity (u < v; — 1) and

symmetry. Therefore, v € qu,; (vji1,u).

29

For inductive step, assume = € gy, (Vk4+1,u) for some k such that j < k < n — 1. Since
u € py,(v;), we have u € py, ., (vk41) by Lemma 3, and so u € p,, ., ~1(vk41) by diagonality.

By instantiating Algorithm 3 with (vg41,vp42) € E and u € py,,,—1(vp41), we have

QUk+1(Uk+2a U) = 9vk+171(vk+27 U) U qu+171(Uk+1, U)

Since © € gy, (Vg+1,w) (induction hypothesis), we have x € q,,,,—1(vk+1,u) by monotonicity
(with vy, < vpgq — 1). Therefore, x € gy, (Ves2, u).

This completes the induction, and we have x € ¢, _, (vn, u). Therefore, x € g, (v,,u) by
monotonicity, i.e., x € g,(v,u).

When v,, < u; defines the last alternation index, a similar argument gives = € g, (u, v).
Appendix B: pseudocode for random graph generation

The random ontological graph generator algorithm (Algorithm 4) works in two steps:

1. Lines 7 to 18 generate a random rooted tree. Starting from the root, the number of
children is randomly selected between C\,;, and C.«. This process will continue until
the number of nodes in the generated tree is equal to V.

2. Lines 19 to 26 add extra edges by selecting two random nodes. The number of edges

that will be added is controlled by the density.

30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

InPUt: N7 d7 C(rniny C’max

Output: An randomly generated ontology.

q = new Queue();

root := new node;
E:=(N-1)x(1+4d);
q.enqueue(root);
numO f Nodes := 0;
numO f Edges := 0;

edges = ¢;

while numO fNodes < N do
p := q.dequeue();

¢ := random(Chin, Ciax);
for i <cdo

child := new node;
edges = edges U {(p, child)};
numO f Nodes++;
numO f Edges+-+;

i++;

end

end
while numO f Edges < F do

src := random(0, numO f Nodes);

numO f Edges+-+;

end

end

dest := random/(0, numO f Nodes);

edges = edges U {(src, dest)};

if src # dest and (src,dest) ¢ edges then

Algorithm 4: Procedure to generate a random ontology.

31

