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Abstract—Ontologies or terminologies have been widely used
as formal representation of biomedical knowledge. New concepts
are constantly added to biomedical ontologies due to the evolving
nature of biomedical knowledge. Much progress has been made
to identify new concepts in SNOMED CT, the largest clinical
healthcare terminology. However, proper naming of new concepts
remains challenging and relies on the ontology curators’ manual
effort. In this paper, we explore three deep learning-based
approaches, given bags of words, to automatically predict concept
names that comply with the naming convention of SNOMED
CT. These deep learning models are simple neural network,
Long Short-Term Memory (LSTM), and Convolutional Neural
Network (CNN) combined with LSTM. Our experiments showed
that LSTM-based approach achieved the best performance: a
precision of 65.98%, a recall of 61.04%, and an F1 score of
63.41% for predicting concept names for newly added concepts in
the March 2018 Edition of SNOMED CT. It also achieved a pre-
cision of 74.58%, a recall of 73.33%, and an F1 score of 73.95%
for naming missing concepts identified by our previous work.
Further examination of results revealed inconsistencies within
SNOMED CT which may be leveraged for quality assurance
purpose.

Index Terms—Biomedical Ontologies, Naming Prediction, Neu-
ral Networks, Ontology Completeness

I. INTRODUCTION

Ontologies provide formalized representation of concepts
and relations among concepts for a specific domain. Biomedi-
cal ontologies or terminologies provide domain knowledge to
support applications such as semantic annotation of biomedical
data, knowledge discovery and exchange, data integration,
natural language processing and decision support [1], [2].

To keep up with the rapid development of knowledge
in biomedicine, biomedical ontologies are often constantly
evolving [3] and new concepts are regularly added to newer
versions of ontologies. For example, SNOMED CT, the most
comprehensive clinical healthcare terminology product, is re-
leased regularly in every six months [4].

Therefore, identifying missing or new concepts in biomed-
ical ontologies (i.e., ontology enrichment) has been an active
research area [5]–[10]. He et al. developed a topological-
pattern-based method by leveraging mappings between the
Unified Medical Language System (UMLS) and its source
terminologies to identify potentially missing concepts in
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SNOMED CT [5] and the National Cancer Institute Thesaurus
(NCIt) [6]. Jiang and Chute proposed a Formal Concept
Analysis (FCA)-based method to construct the formal context
of SNOMED CT and then searched for possible missing
concepts [7]. Zhu et al. improved Jiang and Chute’s work
and developed a scalable multistage algorithm called Spark-
MCA [8] which enabled an exhaustive FCA evaluation on
all the SNOMED CT concepts within a reasonable amount
of time. Cui et al. introduced a structural-lexical method by
mining lexical patterns in non-lattice subgraphs, where one of
the patterns can identify missing concepts in SNOMED CT
and NCIt [9], [10].

Although much progress has been made to identify missing
or new concepts, proper naming of those new concepts remains
challenging and relies on the curators of biomedical ontolo-
gies. However, it is hard for different curators to maintain the
same standard and keep it consistent while naming thousands
of concepts. Also, according to the experiment results from
Zhu et al’s work [8], even in well-constructed and mature
ontologies such as SNOMED CT, there still exists a large
amount of missing concepts. It is labor-intensive and time-
consuming for curators to manually find appropriate and un-
ambiguous names for a large number of concepts. Therefore,
automated methods are highly desirable to provide suggestions
on concept names to reduce curators’ manual burden and
accelerate the ontology maintenance process.

Deep learning approaches have been widely used in text
related tasks such as language modeling, textual analysis,
information retrieval and sequence generation, and showed
better performance than traditional machine learning methods
in these tasks [11]. In this paper, we explore deep learning-
based approaches to provide suggestions on potential names
for new concepts in SNOMED CT.

Many existing works on ontology enrichment are capable
of generating necessary words to construct a concept name.
However, the words may be unordered, or the order of the
words may not be consistent with the naming convention of
the given ontology. For instance, one of the structural-lexical
patterns in [9] can suggest a bag of words for each potentially
missing concept, such as {of, neoplasm, malignant, upper,
lobe, right, of, lung} whose proper name should be “malignant
neoplasm of right upper lobe of lung”. Thus, our focus in this
paper is generating proper sequence order for a given bag of
words. We conquer this task by dividing it into two subtasks.



The first subtask is a binary classification problem to determine
if a given sequence of words is a correct concept name or not,
for which we explore three types of neural networks: a simple
neural network, a Long Short-Term Memory (LSTM) neural
network, and a combination of convolutional neural network
(CNN) and LSTM. The second subtask is, given a bag of
words, to predict correct sequence of words using the trained
models in the first subtask. To the best of our knowledge, this
is the first work that automatically predict names for new or
missing concepts in biomedical ontologies.

The remainder of this paper is organized as follows: Sec-
tion II specifies the problem and the deep learning models
we use. Section III introduces the experiments we conducted
and discusses the experiment result. Section IV discusses
the limitations of our approach and future work. Section V
concludes this paper.

II. METHOD

In this paper, we focus on addressing the problem of pre-
dicting the word sequence given a bag of words for naming a
concept. To achieve this, we divide this task into the following
two subtasks. Firstly, given a word sequence, we train the
models to determine whether the given sequence or ordering
is correct (meaningful and satisfying the naming convention
of SNOMED CT) or not (binary classification). Secondly,
given a bag of words, we utilize the trained models to predict
its correct word sequence. Since the trained models return
different confidence levels of the correctness judgment for
different sequences, we test all the possible sequences of the
given words and choose the one(s) with the highest confidence
as the predicted concept name(s). Further, we implement a
two-step filter to eliminate those potential incorrect candidate
concept name(s).

A. Word Embedding & Data Preprocessing

We first use Word2Vec [12] provided by Gensim [13] to
learn vector representation of words in SNOMED CT concept
names. Each word is mapped to a 125-length vector (word
embedding) based on the word(s) surrounding it, and thus
mapped to a higher dimensional space. The mappings between
words and their word embeddings are stored in a matrix which
later will be reused in training the neural network models.

To train the models, we need both positive and negative
training data. The original sequences of words (concept names)
are labeled as “1” or correct. Then, for each correct sequence,
we generate n incorrect sequences (n = 5 in this paper)
by randomly disordering the sequence and the generated
sequences are labeled as “0” or wrong. Since concept names
in SNOMED CT are in different lengths (ranging from 1 to
39), all sequences are padded to the same length of 45.

B. Neural Networks for Classifying Word Sequences

We use Keras [14], a high-level neural networks API, to
implement three types of deep learning models as shown in
Fig. 1. For all three models, there is an embedding layer right
after the input layer. It is responsible for mapping each word in

the input sequence to its word embedding. The pre-computed
word embedding matrix will serve as the trained weight for
this layer.

The first model (Fig. 1(a)) is a simple neural network
for binary classification. Since word embedding increases
the input dimension, we need to flatten the input. Then we
use a dense layer which has a sigmoid activation function
to generate the prediction result. For the classification task,
we use binary crossentropy in Keras, which is often used
for binary classification problems, in all three models while
training.

The concept names in SNOMED CT are in various lengths,
and the position of a word may not only depend on the
words next to it. This requires the model to be able to learn
long-term context and dependencies between words in the
input sequence. LSTM is proven to be good at learning such
dependencies [15]. Thus we also adopt LSTM (Fig. 1(b)) for
binary classification that contains a single LSTM layer with
100 LSTM memory unit in the middle.

When it comes to determining the correctness of a sequence,
there may exist featured patterns which can indicate whether
a sequence order is correct or not. Thus, to capture those
potential featured patterns, we employed a model in which
convolutional neural network (CNN) is adopted and combined
with LSTM (Fig. 1(c)). CNN is commonly applied to analyz-
ing visual imagery and it can identify lower level features
from the minimum unit of the input which eventually may
improve the classification process [16]. CNN also benefits
sentence classification, such as sentiment analysis and question
classification [17]. Regarding our work, the input is sequence
of words (concept name) which can be considered as one
dimension spatially. By using one-dimension CNN (Conv1D),
certain word combinations or patterns will be selected as lower
level feature and these learned spatial features will then be
learned by an LSTM layer. In this model, the number of output
filters in the Conv1D layer is 32 and the window size is set to
three. The pool size [18] for the MaxPooling1D layer is two.

As mentioned in the data preprocessing step, the number
of input data labeled as “1” is less than those labeled as “0”,
with a proportion of 1 : 5. To lessen the impact of unbalanced
data, we assign different weights to different classes so that
during training, the model will weight class “1” more when
adjusting the weight.

C. Predicting Concept Names Given Bags of Words

To suggest candidate concept name for a given bag of
words, we first generate all its permutations (i.e., all possible
sequences). Then we use the trained models to classify those
generated sequences to check which one is valid. While
performing classification, the neural network models could
return a confidence score (probability) for a sequence to
be valid. Thus, we select the sequence(s) with the highest
confidence score to be valid as the potential concept name(s)
for a given bag of words. Because the number of permutations
of n distinct objects is n factorial. When n becomes relatively
large, the computation time increases dramatically. Thus, in



Fig. 1. Three neural network models used for classification task. (a) is a simple neural network for binary classification; (b) is an LSTM neural network; (c)
is the combination of convolutional neural network and LSTM. “None” means that the dimension is variable.

this paper, we only provide prediction for concept names
whose length is less than or equal to 9.

Since there may exist multiple sequences with the highest
confidence score for a given bag of words, we implement
a two-step filtering process to further select the “best” can-
didate(s). In the first step, we leverage the idea of Viterbi
algorithm [19] which returns the most likely sequence of
hidden states, to removed those “invalid” ones. It is based on
the assumption that if a word A has never been placed before
(or after) another word B in the training data set, then A is not
likely to appear before (or after) B in the candidate concept
names. In the second step, we leverage similar concept names
to further reduce the candidate list. For a bag of words, we
first find the most similar concept name (in terms of the bag
of words) in the training data, where similarity is calculated
by dividing the number of words that appear in both bags
of words by the total number of distinct words in two bags.
Then we utilize “Levenshtein distance” [20] to compute the
distances between each candidate name and the most similar
concept name, and the one with the least distance will be
selected as the “best” candidate concept names.

III. EXPERIMENT & RESULT

To validate the effectiveness of our models, we focused on
two research questions:

1) Are the deep learning models able to determine if a
sequence of words is a valid concept name in SNOMED
CT? (binary classification)

2) Given a bag of words, can our method generate the
correct sequence using those words and thus provide
suggestions on how to name a concept in SNOMED
CT? (sequence prediction)

A. Experiment Setup

To explore the first question regarding binary classification,
we performed two experiments. In the first experiment, we
randomly separated the concept names in the March 2018 US
Edition of SNOMED CT into two groups: training and test
datasets. There are 1,753,513 labeled sequences in the training

data set and 1,784,744 labeled sequences in test data set. In the
second experiment, we trained our models by all the concept
names in September 2017 US Edition of SNOMED CT (along
with randomly disordered ones). For testing, we extracted all
the new concept names that were added into the March 2018
US Edition of SNOMED CT and generated disordered ones.
For each of these two experiments, after training our models
with the training dataset, we evaluated our models using the
test dataset.

For the second question regarding sequence prediction, we
evaluated our method in two ways. In the first way, we
considered the sequence orders of the newly added concept
names in the March 2018 US Edition of SNOMED CT as
the ground truth for sequence predication. For each concept
name, we regarded it as a bag of words and used our method
to generate candidate concept names. Then we compared these
suggestions with the ground truth. In the second way, we
identified a collection of missing concepts (in the September
2017 US Edition of SNOMED CT) and the corresponding bags
of words that are necessary to construct their names using Cui
et al.’s method [9]. A total of 60 concepts in the form of bags
of words were obtained for testing the performance of word
sequence prediction with the help of a human annotator for
validation.

B. Result for Binary Classification

In the first experiment for binary classification, we first
tested different thresholds of confidence (for a sequence to
be labeled as positive) for three models to achieve the best F1
score. The results are 0.5 for simple neural network, 0.8 for
LSTM, and 0.7 for CNN and LSTM, respectively. The results
of binary classification for three models using these thresholds
are shown in Table I, where it can seen that the LSTM model
outperformed the other two models, and achieved the best
performance: an accuracy of 94.72%, a precision of 84.59%,
a recall of 83.51%, an F1 score of 84.05%, and an FP-rate of
3.04%. The simple neural network performed the worst, and
generated more false positives than the other two models. This
is not surprising because while determining if a sequence is



correct or not, the order of words matters and the simple neural
network may not be able to learn long-term dependencies. In
addition, it is shown that the combination of CNN and LSTM
did not improve the performance of binary classification.

TABLE I
RESULT OF BINARY CLASSIFICATION FOR EXPERIMENT I.

Simple Neural Network CNN and LSTM LSTM
Accuracy 73.58% 92.15% 94.72%
Precision 35.42% 74.23% 84.59%
Recall 71.08% 81.03% 83.51%
F1 Score 47.28% 77.48% 84.05%
FP-rate 25.91% 5.63% 3.04%

The result of the second experiment for binary classification
is shown in Table II. It can be seen that the LSTM model still
achieved the best performance. The main difference between
the two experiments is that the first one’s evaluation is within
the same version of SNOMED CT, however, the second one
is using concept names from a newer version of SNOMED
CT to test the model which was trained by the older version.
Although the training data in the second experiment is much
more than the testing data, it exhibited a similar performance
as the first experiment.

TABLE II
RESULT OF BINARY CLASSIFICATION FOR EXPERIMENT II.

Simple Neural Network CNN and LSTM LSTM
Accuracy 71.75% 93.35% 95.05%
Precision 31.67% 81.63% 87.56%
Recall 60.05% 77.56% 81.97%
F1 Score 41.47% 79.54% 84.67%
FP-rate 25.90% 3.49% 2.33%

Since the LSTM model achieved the best performance in
the binary classification subtask, we utilized it to perform
sequence prediction for given bags of words in the next step.

C. Result for Sequence Prediction

For the sequence prediction subtask, we first used the
trained LSTM model to predict correct sequence orders for the
newly added concept names in the March 2018 US Edition of
SNOMED CT. Given the computational challenge for testing
all possible sequences and the fact that less than 5% of concept
names in SNOMED CT are in the length of more than or equal
to ten (see Fig. 2 for the distribution of concept names in
terms of their lengths), we performed the sequence prediction
for concepts whose lengths are less than ten.

For a bag of words, our method will provide a set of
candidate concept names. If a candidate name is in a correct
order (i.e., a valid name), then it is considered as a true positive
case; otherwise, it is considered as a false positive case. If the
correct sequence is not included in the set of candidate concept
names, we have one false negative case.

Table III shows the performance of our LSTM-based se-
quence prediction approach for predicting concept names with

Fig. 2. Number of concept names in terms of the name length for all concepts
in the March 2018 US Edition of SNOMED CT.

an overall F1 score of 63.41%. It can be seen that concepts
whose names are in the length of two and three received an
F1 score of above 80%, concepts in length of four and five
received an F1 score of above 60%, concepts in length of
six and seven received an F1 score of above 50%, concepts in
length of eight received an F1 score of 49.1% , and concepts in
length of nine received an F1 score of 39.91%. This indicates
that as the length of concept names grows, more sequences
(false positive cases) might be included in the candidate set
which leads to the decreasing performance. However, even
for concept names with length of six, seven or eight, the
performance are still acceptable. Overall, the F1 score of our
model is 63.41%.

We also performed another way to evaluate the performance
of our LSTM-based sequence prediction approach, by utilizing
Cui et al.’s method in [9] to generate bags of words which
are necessary to construct the names of new concepts. We
obtained 60 bags of words and performed name prediction for
them. For each predicted name, a human annotator manually
examined whether the generated sequence order is correct
and conforming to the name convention of SNOMED CT.
Among 60 cases, 44 out of them were considered as correct
by the human annotator. Table IV shows our LSTM-based
approach achieved an F1 score of 73.95%. The positive
examples include “malignant neoplasm of blood vessel of
thorax”, “structure of layer of tunica vaginalis” and “open
wound of limb without complication”. This indicates that the
LSTM-based method can be applied for naming a new concept
based on the bags of words featuring a concept.

D. Potential Factors Affecting the Prediction Performance

There are mainly two factors which potentially affect the
performance of our prediction model – the size of bags of
words and the words in the bag.

For the first factor, as the length of concept names increases,
it becomes more difficult for the model to predict the correct
sequence. This is because when the size of a bag of words
increases, the number of sequences that need to be classified
by the model increases dramatically. Since we assume that
there is only one correct concept name for a bag of words, the



TABLE III
RESULT OF LSTM-BASED SEQUENCE PREDICTION IN TERMS OF THE LENGTH OF CONCEPT NAMES. TRAINING DATA IS FROM SEPTEMBER 2017 US

EDITION OF SNOMED CT AND TEST DATA IS THE NEWLY ADDED CONCEPTS IN THE MARCH 2018 EDITION.

Length of Concept Name 2 3 4 5 6 7 8 9 All
Number of True Positives 735 1274 909 918 565 446 316 184 5347
Number of False Positives 154 310 556 465 375 278 287 332 2757
Number of False Negatives 155 321 590 665 627 465 368 222 3413
Precision 82.68% 80.43% 62.05% 66.38% 60.11% 61.60% 52.40% 35.66% 65.98%
Recall 82.58% 79.87% 60.64% 57.99% 47.40% 48.96% 46.20% 45.32% 61.04%
F1 Score 82.63% 80.15% 61.34% 61.90% 53.00% 54.56% 49.10% 39.91% 63.41%

TABLE IV
RESULT OF LSTM-BASED SEQUENCE PREDICTION FOR NAMES OF
MISSING CONCEPTS IDENTIFIED BY CUI ET AL.’S METHOD IN [9].

Number of Concepts Names 60
Number of True Positives 44
Number of False Positives 15
Number of False Negatives 16
Precision 74.58%
Recall 73.33%
F1 Score 73.95%

false positive cases may greatly lower the model’s precision.
For instance, for a bag of words of size five without duplicate
words, it has 120 permutations and only one of them is correct.
If we only have two false positive cases, the accuracy is
about 98%, however, the actual precision is only 33% and F1
measure is 49%. Thus, length of concept name is an important
factor affecting the performance of model. In our experiments,
50% of the testing data are of length that is larger than or equal
to five.

The second factor that may affect the model’s performance
involves the words in the bag. Our model may generate
multiple candidate concept names for a given bag of words.
This may be because that some words in the bag has the same
role in other concept names. For example, for the concept
name “ultrasound guided biopsy of left and right breast”, our
model may be confused about the order of words “left” and
“right”, because they may appear separately in other concepts
but with the same roles or patterns. Another typical case is
related to duplicate words in a bag. If a bag contain two (or
more) identical words (e.g. multiple “of” or multiple “and”)
such as “MRI of joint of right lower extremity”, it is even
harder for the model to decide which word should be attached
with the first one, which word should be attached with the
second one, and the order of these two parts. Thus in this
paper, we also compared the performance of the LSTM-based
model applied to the bags of words containing duplicate words
and those which do not contain duplicate words. The result is
shown in Table V. The model achieved a better F1 score when
applied to the bags of words without duplicates.

E. Analysis of False Positives

We manually examined some of the false positive cases in
Experiment II of binary classification for potential patterns that

TABLE V
RESULT OF LSTM-BASED SEQUENCE PREDICTION IN TERMS OF

WHETHER CONCEPT NAMES CONTAIN DUPLICATE WORDS OR NOT.

Without Duplicates With Duplicates
Number of True Positives 4789 558
Number of False Positives 2224 533
Number of False Negatives 3101 312
Precision 68.29% 51.15%
Recall 60.70% 64.14%
F1 Score 64.27% 56.91%

our model is not able to deal with. Meanwhile, we compared
our sequence predictions for those false positive cases with the
ground truth to explore possible causes for mislabeling. Two
observed patterns are listed as follows.

The first pattern is related to “of”. In SNOMED CT, “B A”
and “A of B” are both acceptable names for certain cases. One
of them is often defined as the fully specified name (FSN),
while the other one is listed as its synonym. For instance,
“cyst of lung” is an FSN, and “lung cyst” is its synonym.
However, in some cases, only one of them is included (e.g.,
concept “lung mass” does not have a synonym “mass of lung”).
Therefore, if a concept name falls into this pattern, our model
sometimes cannot predict it correctly.

The second pattern involves two items (e.g., noun or noun
phrase) that are connected by a preposition or conjunction,
in which case our model sometimes cannot decide which one
should be placed first. For example, for the concept “naproxen
sodium and sumatriptan”, our predicted name was “suma-
triptan and naproxen sodium”. Another example is that, for
the concept “fluoroscopy of left and right hip”, our predicted
name was “fluoroscopy of right and left hip”. In such cases,
even the predicted names were valid, they were considered as
false positives since they differ from the sequence of words
provided in the ground truth. In other words, our evaluation
was performed in a conservative way.

F. Beyond Naming Purpose

While analyzing false positive cases, we also noticed that
this work could identify potential inconsistencies in the nam-
ing convention of concepts which can be considered as part of
the quality assurance process for biomedical ontologies. For
an existing name, we can use our trained model to check if it
complies with the naming convention of SNOMED CT. For



example, in the March 2018 US Edition of SNOMED CT, a
new concept “Lesion of bone right upper arm” is added. Our
model labeled it as wrong. We found that it is a synonym of
“Lesion of right upper arm bone”. However, when it comes to
another similar concept “Lesion of left lower leg bone”, it does
not have a synonym “Lesion of bone left lower leg”. Instead,
it has “Lesion of bone in left lower leg” whose pattern does
not appear as a synonym of “Lesion of right upper arm bone”.

Another example is “Liver of normal size” that has been
added to SNOMED CT in the March 2018 Edition. Our
model labeled it as wrong. We found that it is an FSN, and
“Normal sized liver” is its synonym. However, in other similar
concepts such as “Normal sized tonsils” and “Normal sized
ear canal”, they are considered as FSNs, but they do not have
any synonym that has the pattern “xx of normal size”. This
indicates a name inconsistency. A potential fix is that “Normal
sized liver” should be the FSN, and the name “Liver of normal
size” should become inactive. These two examples indicate
that our model to some extent can reveal the inconsistency in
SNOMED CT names.

IV. LIMITATIONS & FUTURE WORK

Even though the experiment results showed that our method
can provide suggestion in naming concept for biomedical on-
tologies, there are still some limitations. First, when it comes
to training word embedding, even though we have 597,571
concept names which can be used as input for Word2Vec, the
context may still not be profound enough (e.g. some words
may only appear once or twice) to generate accurate word
embedding. Second, our sequence prediction method is based
on classifying all possible combinations of words, which is
computationally challenging when the length of names is large.
Third, the structures of our neural network models are simple,
a more complex and well-optimized model to address these
limitations is expected.

In future work, we plan to build a more powerful neural
network model which utilizes both the word orders within
the concept names and the logical definitions of concepts to
predict potential concept names. Logical definitions are related
to concepts’ semantic meanings and thus could potentially
be a determinant in how to name concepts. In this case, we
no longer need to rely on the bags of words and test all
the possible combinations. In addition, as mentioned before,
our work may also be used for quality assurance purpose
– discovering inconsistencies in concept names. However, in
this work, we only manually discovered the inconsistencies.
We plan to develop a more systematic way to uncover those
inconsistencies.

V. CONCLUSION

In this paper, we explored three deep learning-based ap-
proaches – simple neural network, LSTM, and CNN combined
with LSTM, to predict concept names for new concepts
in biomedical ontologies. Our experiments showed that the
LSTM-based approach achieved the best performance with an
F1 score of 63.41% for predicting names for newly added

concepts in the March 2018 Edition of SNOMED CT and an
F1 score of 73.95% for naming missing concepts identified by
Cui et al.’s method in [9]. This indicates that the LSTM-based
approach is effective in predicting concept names given bags
of words. Further analysis of the false positive cases revealed
that this work may also be leveraged for identifying potential
inconsistencies within the concept names of SNOMED CT.
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