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Abstract

Background: Association Rule Mining (ARM) has been widely used by
biomedical researchers to perform exploratory data analysis and uncover potential
relationships among variables in biomedical datasets. However, when biomedical
datasets are high-dimensional, performing ARM on such datasets will yield a
large number of rules, many of which may be uninteresting. Especially for
imbalanced datasets, performing ARM directly would result in uninteresting rules
that are dominated by certain variables that capture general characteristics.

Methods: We introduce a query-constraint-based ARM (QARM) approach for
exploratory analysis of multiple, diverse clinical datasets in the National Sleep
Research Resource (NSRR). QARM enables rule mining on a subset of data items
satisfying a query constraint. We first perform a series of data-preprocessing
steps including variable selection, merging semantically similar variables,
combining multiple-visit data, and data transformation. We use Top-k
Non-Redundant (TNR) ARM algorithm to generate association rules. Then we
remove general and subsumed rules so that unique and non-redundant rules are
resulted for a particular query constraint.

Results: Applying QARM on five datasets from NSRR obtained a total of 2,517
association rules with a minimum confidence of 60% (using top 100 rules for
each query constraint). The results show that merging similar variables could
avoid uninteresting rules. Also, removing general and subsumed rules resulted in
a more concise and interesting set of rules.

Conclusions: QARM shows the potential to support exploratory analysis of large
biomedical datasets. It is also shown as a useful method to reduce the number of
uninteresting association rules generated from imbalanced datasets. A preliminary
literature-based analysis showed that some association rules have supporting
evidence from biomedical literature, while others without literature-based
evidence may serve as the candidates for new hypotheses to explore and
investigate. Together with literature-based evidence, the association rules mined
over the NSRR clinical datasets may be used to support clinical decisions for
sleep-related problems.

Keywords: Query-constraint-based Association Rule Mining; National Sleep
Research Resource; Exploratory Data Analysis

Background
Biomedical and clinical data has been generated at an unprecedented speed and

scale [1, 2], providing researchers with significant opportunities for data-driven
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knowledge discovery in biomedicine [3]. The National Sleep Research Resource

(NSRR) is one of such data repositories freely available to the sleep research commu-

nity [4]. It aggregates and shares sleep-related clinical data as well as physiological

signals generated from clinical trials and epidemiological cohort studies funded by

the U.S. National Institutes of Health. Proper use of repositories like NSRR could

aid in informed decision making and improve patient safety [2]. From a research per-

spective, they could be used in knowledge discovery to facilitate rapid generation

or testing of hypotheses.

Association Rule Mining (ARM) is an exploratory data mining technique that

has shown great potential in the biomedical domain for knowledge discovery. It is

used extensively to find associations among variables that satisfy some predefined

interestingness parameters. A potential issue of ARM, especially when directly used

in large biomedical datasets, is that it will result in many uninteresting rules. For

instance, demographic features of patients (e.g., gender and race) always appear

in biomedical datasets, which may result in an overwhelming number of gender-

related association rules with high support and confidence, which are dominant

but less interesting. Another potential challenge of performing ARM in biomedical

datasets is the existence of semantically similar variables. Rules containing such

similar variables are of less interest because these variables capture similar or same

characteristics. Therefore, it is often needed to apply certain techniques which ad-

dress these issues and filter out those uninteresting rules.

In this paper, we introduce QARM, a query-constraint-based ARM method where

the rules mined are based on a subset of data satisfying a certain query constraint.

For example, if the criteria is “patients who have had a stroke”, then the genera-

tion of association rules will be only based on the subset of patients who have had

a stroke, thus the rules obtained will be more relevant to the criteria of interest.

Such query-constraint-based ARM empowers biomedical researchers to perform ex-

ploratory data analysis in large biomedical data repositories and generate or test

potential hypotheses.

National Sleep Research Resource (NSRR)

Launched in 2014, NSRR provides free access in a web-based portal to large collec-

tions of de-identified physiological signals and clinical data elements (or variables)

collected in well-characterized cohorts and clinical trials to support research on

risk factors and outcomes of sleep disorders [5]. Each de-identified patient record

of NSRR contains clinical data elements including demographic information (e.g.,

age, gender, race), anthropometric parameters (e.g., height, weight), physiologic

measurements (e.g., heart rate), medical history (e.g., asthma, cancer, diabetes,

stroke), medications (e.g., anti-coagulant, benzodiazepine), sleep symptoms (e.g.,

problems falling asleep), and other symptoms (e.g., chronic cough) [4].

For each dataset in NSRR, the clinical data as well as the data dictionary are

stored in comma-separated values (CSV) files. Here the data dictionary contains

the metadata of the clinical data (e.g., data type, value domains). Since the NSRR

datasets are collected from different sleep-related studies, there are both common

and disparate data elements across diverse datasets. The common data elements

are maintained in a Canonical Data Dictionary (CDD), and mappings are provided
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between the CDD elements and the data elements in each individual dataset. We

refer to common data elements in the CDD as canonical variables and data elements

in each individual dataset as dataset variables, respectively.

In this work, we use five datasets from NSRR: Cleveland Family Study

(CFS), Childhood Adenotonsillectomy Trial (CHAT), Hispanic Community Health

Study/Study of Latinos (HCHS/SOL), Heart Biomarker Evaluation in Apnea Treat-

ment (HeartBEAT), and Sleep Heart Health Study (SHHS). The five datasets were

chosen based on the availability of sufficient number of dataset variables mapping

to canonical variables. More details about these datasets can be found in Table 1.

Dataset variables in NSRR are typically imbalanced [6]. For example, the variable

stroke15 (MD Reported Stroke) in the SHHS dataset has two possible values: “yes”

and “no”, with a distribution of 3.3% and 96.7% respectively (i.e., an imbalance

rate [6] of 3.3%). In the SHHS dataset, the average imbalance rate of variables with

yes/no values is 5.16% (see Table 2).

Association Rule Mining (ARM)

Association rules can be formally defined as follows [3, 7, 8, 9]. Let D =

{t1, t2, ...., tn} be a set of transactions and I = {i1, i2, ...., im} be a set of items.

Each transaction ti in D contains a subset of the items in I, that is, ti ⊂ I. In asso-

ciation analysis, subsets of I are called itemsets. An association rule is defined as an

implication of the form X → Y , where X,Y ⊆ I are two itemsets and X ∩ Y = ∅.
X and Y are called antecedent and consequent, respectively.

The strength of an association rule X → Y can be measured by Support (the

proportion of transactions that contain both X and Y) and Confidence (the propor-

tion of the transactions that contains X which also contains Y ). Rules that satisfy

the user-specified minimum support (minsup) and minimum confidence (minconf )

thresholds are called strong association rules. They are the key elements obtained

from an analysis of all possible rules [3].

There are various algorithms introduced for ARM [10, 11]. In this work we leverage

the top-k non-redundant association rule mining algorithm [12].

Top-k Non-Redundant (TNR) ARM Algorithm

Choosing suitable values for parameters minsupp and minconf may be done by

trial which is time-consuming. In some cases, users may have limited resources to

analyze the obtained rules and hence are only interested in finding a certain amount

of rules (e.g. top-k rules). Fournier-viger et al. [12] introduced the top-k algorithm to

address the problem of difficulty in selecting suitable values for parameters minsupp

and minconf. In our query-constraint-based ARM, fine-tuning minsup and minconf

parameters for each query constraint would be a difficult task, thus we choose top-k

rules for exploratory analysis.

Fournier-viger et al. [13] later introduced the TNR algorithm to address the re-

dundancy issues existing in the original top-k algorithm. The TNR algorithm takes

k (the number of association rules to be found), minconf and ∆ (exactness improv-

ing parameter) as parameters, and approximates top-k rules with the top support

having a confidence above the minconf threshold. The algorithm shows good perfor-

mance and scalability, and in situations where the user wants to control the number

of rules obtained, it is an advantageous alternative to classical ARM algorithms.
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Related work

ARM has been widely used in biomedical domains to facilitate knowledge discovery

and disease prediction. For example, Hu et al. [14] have introduced a semantic-

based ARM method to discover hidden connections among biomedical concepts

from disjoint biomedical literature sets. The discovered novel relations could be used

by domain experts for purposes such as conducting new experiments, trying new

treatments etc. Wang et al. [3] have described preliminary results of applying ARM

techniques to University of Calgary Atlas of mammograms. They have proposed

a new breast mass classification method based on quantitative ARM. Agrawal et

al. [15] have done an ARM analysis on lung cancer data from the Surveillance,

Epidemiology, and End Results (SEER) program to identify hotspots in the cancer

data. These hotspots are where the patient survival time is significantly higher and

lower than the average survival time. Ordonez et al. [9] have introduced an ARM

method that uses search constraints to reduce the number of rules. It searches for

association rules on a training set and then validates them on an independent test

set. They have used this approach to predict heart diseases.

While ARM has been widely applied for knowledge discovery in biomedicine,

query-constraint-based ARM which performs ARM on a subset of patients, has not

been well investigated. This approach combines information retrieval with ARM,

which would help biomedical researchers to perform exploratory analysis of datasets

using query constraints.

Methods
In this work, we introduce QARM, a query-constraint-based ARM method for ex-

ploratory analysis of biomedical datasets. First a series of data pre-processing steps

are performed including variable selection, variable merging, combining multiple-

visit data, and query-constraint-based data transformation. Then the top-k non-

redundant ARM algorithm is used to mine association rules based on different

query criteria on the five datasets in NSRR. Two post-processing steps are taken

for removing general rules and subsumed rules.

Variable selection

Each variable in NSRR datasets has a type (e.g., categorical, numerical). Each

categorical variable has a domain defining the possible values of the variable. For

example, in the SHHS dataset, prev hx stroke (previous history of stroke) is a cat-

egorical variable having a domain of which the possible values consist of “yes”

and “no”; and the categorical variable fstk type (type of fatal stroke) has a domain

with possible values “hemorrhagic”, “intracerebral-hemorrhage”, “ischemic”, “isch-

unknown”, “subarachnoid hemorrhage”, and “unknown”.

In this work, we mainly focus on categorial variables with domains of the yes/no

type for simplicity. In addition, we choose variables with regard to patients’ medical

history, medications, sleep symptoms, and other symptoms.

Based on the above variable selection criteria, we obtained a set of variables from

the Canonical Data Dictionary (called canonical variables), as well as the study-

specific variables which are mapped to the canonical variables for each individual

dataset (called dataset variables). It is worth noting that one canonical variable
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may map to multiple dataset variables. Take the canonical variable “strokehist

(stroke - history)” as an example. It maps to two dataset variables in the SHHS

dataset: “stroke15 (MD reported stroke)” and “prev hx stroke (previous history of

stroke)”; it maps to one dataset variable in the HeartBEAT dataset: “dxstroke (di-

agnosed: stroke)”; and it maps to one dataset variable in the CFS dataset: “strodiag

(physician-diagnosed stroke)”. In addition, a query constraint can be any canonical

variable with value “yes”. For instance, “strokehist (stroke - history)” with value

“yes” can serve as a query constraint.

Variable merging

Since certain variables in a dataset may capture similar information, association

rules obtained including such similar variables would be of less interest. For example,

both variables prev hx stroke (previous history of stroke) and stroke15 (MD reported

stroke) in SHHS capture the information about whether a patient has had a stroke.

Occurences of such variables together in a rule might make it uninteresting, e.g.,

{prev hx stroke} → {stroke15}.
Therefore, we merge such variables before performing QARM to avoid obtain

association rules with such similar variables. This is done such that whenever a

patient exhibits a “yes” to at least one of the similar variables, then the value of the

merged variable will also be “yes”. Here, the dataset variables mapping to the same

canonical variable are considered similar, and hence merged. We refer to this method

as the “merged method”. For comparison, we also performed QARM without such

a merging, which we refer to as “unmerged method”. The latter is only used for

the purpose of comparison with the “merged method”. Therefore, unless otherwise

specifically mentioned, in all the scenarios we are using the “merged method”.

Combining multiple-visit data

In NSRR, some dataset contain patient data collected in multiple visits. For in-

stance, the datasets CHAT, HeartBEAT and SHHS contain data collected in two

patient visits. These multiple visits of a dataset were combined into one as a pre-

processing step before QARM was performed. Since multiple visits may contain

data collected for the same variable, the combination was performed as follows:

for the same patient, if the value of the variable appear as “yes” in at least one

of the visits, then the combined result will be “yes”; otherwise, the combined re-

sult will be “no”. For example, in the CHAT dataset, the variable “med1c1 (ever

had asthma?)” appears in both the baseline visit and follow-up visit; for the same

patient, the combined result is “yes” as long as one of the visits has the “yes” value.

Query-constraint-based data transformation

Given a query constraint, the clinical data of patients satisfying the query crite-

ria needs to be transformed to a suitable format before being fed into the TNR

algorithm. In clinical datasets like NSRR, the possible values of a patient variable

with the domain of yes/no type may be “yes”, “no”, or “unknown” (or “NA”). This

way it is clear whether the patient has the characteristic specified in the variable

(“yes”), or the patient does not have the characteristic (“no”), or the information is

unknown or not available. While “no” and “unknown” are important for capturing



Abeysinghe and Cui Page 6 of 15

more precise information of patients, they may not be useful for generating associ-

ation rules. For example, most patients in the SHHS dataset have not had a stroke

(i.e., stroke15 = “no” and prev hx stroke = “no”), in which cases the variables are

imbalanced towards “no” values. If the “no” values for such variables were used

for generating association rules (denoting the characteristics patients do not have),

then it would have produced a lot of uninteresting and irrelevant rules also making

the ARM process slow. Therefore, in this work, we only consider the “yes” values

of variables for patient records satisfying the query criteria.

QARM using TNR algorithm

Given a query constraint, QARM using TNR algorithm was applied to the pa-

tient data satisfying the query constraint after data transformation, with k = 100,

minconf = 60% and ∆ = 10. For example, if the query constraint is the canonical

variable strokehist (stroke history) based on the SHHS dataset, then only patients

with stroke15 (MD reported stroke) = “yes” or patients with prev hx stroke (pre-

vious history of stroke) = “yes” will be selected for QARM, since the canonical

variable strokehist maps to two dataset variables stroke15 and prev hx stroke. This

is as if selecting a sub-dataset with patients who have had a stroke and then per-

forming QARM on it. We set a lower-bound of 20 to the number of patient records

exhibiting this query constraint characteristic as a condition for the applicability

of QARM so that a sufficient number of patient records will be considered. Here,

we used the implementation of TNR in the SPMF open-source data mining library

[16]. After QARM is performed, we sort the obtained association rules first by their

support and then by their confidence.

Note that the support and the confidence of the obtained rules are based on the

sub-dataset of patients satisfying the query constraint, not the entire dataset. In

addition, the query constraint itself is not included to perform QARM since it is

satisfied by each patient record in the sub-dataset.

Removing general rules

For a given query constraint, the resulting rule set may contain rules which are

generally observed throughout the whole dataset. In other words, such rules are

not unique to patients exhibiting the query constraint characteristic, but general

to majority of the patients in the dataset. Therefore, we eliminate such rules as

follows. Assume that O is the set of top-k rules obtained for patients satisfying the

query constraint. We further apply the TNR algorithm to obtain another set N

of top-k rules for those patients who do not satisfy the query constraint. Then we

remove the common rules (O ∩N) from O, i.e., O − (O ∩N) or O −N .

Removing subsumed rules

The TNR algorithm defines redundancy in terms of Minimum Condition Maximum

Consequent Rules as follows [13]. An association rule ra : X → Y is redundant with

respect to another rule rb : X1 → Y1 if and only if:

1 confidence(ra) = confidence(rb) and support(ra) = support(rb); and

2 X1 ⊆ X and Y ⊆ Y1.
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Satisfaction of both conditions is important in determining redundant rules during

the ARM process. However, the resulting rule set may contain rules which satisfy

condition 2 but not condition 1. Exploring such subsumed rules may not help the

user in determining interesting associations among patient characteristics. There-

fore, as a post-processing step, we remove all such rules which are subsumed by

another rule. Note that removing common and subsumed rules may lead to a less

number of rules (≤ k) in the result.

Results
A total of 71 canonical variables were obtained after the variable selection process.

Since each canonical variable can serve as a query constraint, we interchangeably

use terms “canonical variable” and “query constraint” in the followings. Table 2

shows the numbers of canonical variables identified in each of the five datasets,

the numbers of mapped dataset variables corresponding to the canonical variables,

and the numbers of association rules obtained within each dataset. It can be seen

that SHHS covered the most number of canonical variables. In Table 2, a canonical

variable used in an individual dataset is based on the existence of mapped dataset

variables, as well as the existence of a considerable number of patients exhibiting

the characteristic specified in the variable (at least 20 patients).

Summary results

A total of 2,517 association rules were obtained by applying QARM within each

of the five datasets, using top k = 100 rules with a minconf threshold of 60% and

∆ = 10. On average a query resulted in 18 rules.

Table 3 contains the resulting association rules obtained for the query con-

straint strokehist (stroke-history) in the SHHS dataset. For example, {myocardial

infarction-history} → {hypertension-history} is an obtained association rule for the

query. This indicates that for a patient who have had a stroke, if the patient happens

to have myocardial infarction, they are likely to have hypertension as well.

Merged method versus unmerged method

We also performed QARM using the “unmerged method” for comparison with the

“merged method”. Table 4 shows the numbers of common and distinct rules ob-

tained by the “merged” and “unmerged” methods for 10 query constraints. For ex-

ample, the query constraint htnhist (hypertension-history) derived 19 common rules

by both the “merged” and “unmerged” methods, 1 distinct rule that is uniquely

obtained by the “merged method”, and 3 distinct rules that are uniquely obtained

by the “unmerged method”. Figure 1 contains a plot of Jaccard similarity values

for result sets of merged and unmerged methods for the 52 queries where common

rules were found between merged and unmerged methods. The first 10 queries in

Figure 1 refer to the 10 queries in Table 4.

General and subsumed rules removed

Table 5 contains the number of general and subsumed rules removed for 10 query

constraints. On average 36 general rules and 42 subsumed rules are removed from

resultant rules of a query constraint.
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Discussion
In this work, we investigated a query-constraint-based ARM method which we ap-

plied to five clinical datasets in NSRR. We also investigated the common and dis-

tinct association rules obtained using the merged method versus unmerged method.

Literature-based evidence to obtained association rules

Data mining techniques have been previously employed in clinical decision support

systems for diagnosis, prediction and treatment of diseases [17, 18]. The association

rules obtained based on the clinical datasets in NSRR may provide evidence for

making clinical decisions for sleep-related problems together with further literature-

based evidence.

Table 6 contains some preliminary findings of the supporting evidence from

biomedical literature for 20 randomly chosen rules for the queries found in Table 4.

For each query constraint, two rules have been randomly chosen.

For example, consider the rule {loop diuretic} → {hypertension-history, an-

giotensin converting enzyme inhibitor} for the query constraint congestive heart

failure-history in SHHS dataset. According to [19], a combined treatment with low

doses of loop diuretics and angiotensin converting enzyme inhibitors can be used to

treat hypertension without adverse reactions associated with larger doses of either

therapy alone. Loop diuretics and angiotensin converting enzyme inhibitors alone

are used to treat hypertension. So, these facts support this rule which states, when-

ever a patient is using loop diuretics, he or she is more likely to have hypertension

and be treated with angiotensin converting enzyme inhibitor. The existence of this

rule among patients with congestive heart failure can be validated by [20, 21], which

states loop duretics are widely used to treat congestive heart failure.

Araki et al.[22] mentions that hypertension is a common diabetes comorbidity. Ac-

cording to [23, 24] there exists an association between habitual snoring and diabetes

mellitus prominently in women. Therefore, these facts found in literature supports

the rule {diabetes mellitus-history} → {habitual snoring} for the query constraint

hypertension-history in HeartBEAT dataset.

Consider the rule angiotensin converting enzyme inhibitor} → {thiazide diuretic,

hypertension-history, diabetes mellitus-history} for query constraint coronary artery

disease-history in HCHS dataset. According to [25], angiotensin-converting enzyme

inhibitors are both used to treat hypertension and coronary artery disease. Chowd-

hury et al. [26] states that both angiotensin-converting enzyme inhibitors and thi-

azide diuretics are used for the treatment of hypertension. As mentioned earlier,

hypertension is a common diabetes comorbidity [22]. So these facts found in litera-

ture supports the above mentioned rule.

According to [27], sulfonylureas are oral antidiabetic agents. However, they may

cause hypertension by their extra-pancreatic effects [28]. Sehra et al. also mentions

that within a few years of diagnosis, patients with type 2 diabetes mellitus develop

hypertension. Therefore, the rule {hypertension-history} → {sulfonylurea, diabetes

mellitus-history} which states that whenever a patient is having hypertension, he or

she is more likely to be using sulfonylurea and having diabetes-mellitus is supported

by the given evidence. However, we could not find any evidence that this rule is

specific to patients using thiazolidinedione. So, this seems like a general rule which
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has not been removed during the general rule removal. A larger k value may have

removed this from the result set.

For those rules with no supporting evidence found in literature, they may serve as

candidates for generating new hypotheses for further discovery and investigation.

Distinction with related work

ARM has been widely applied to biomedical datasets for data-driven knowledge

discovery. However, exploratory ARM based on a particular query constraint has

been rarely investigated. QARM would allow researchers to perform exploratory

analysis based on a subset of data of interest by composing a specific query criteria

to filter out irrelevant data.

The heuristic of our approach is to some extent similar to that of traditional

constraint-based mining [29], which enables users to specify constraints to confine

the search space. In another related work, Kubat et al. [30] have presented an

approach that converts a market-based database into an itemset tree to get a quick

response to targeted association queries. Our approach differs from other constraint-

based mining approaches [29] and targeted association querying [30], in that we

directly apply the query constraint on the input data before starting the mining

process rather than applying it to the output rules or applying it during the mining

process. Another important distinction is that unlike other approaches that always

include the constraint in the mined rules, the rules mined by our approach do not

contain the query constraint itself. Although one of the motivations behind QARM

is to reduce the number of uninteresting rules generated from an imbalanced dataset,

it is not used to address the issue of the imbalance of the dataset. To the best of our

knowledge, constraint-based mining has not been employed for the reducing purpose

before. Furthermore, in terms of the datasets used, this is the first rule-mining-based

work on analyzing NSRR datasets.

We performed a preliminary study [31] on query-constraint-based ARM in NSRR

which motivated this work. However, in [31] we did not perform any post-processing

on the results. The results contained a lot of general as well as subsumed rules. To

address this issue, in this work, we have introduced two post-processing steps to

remove such rules from the results so that a concise, interesting rule set will be

provided as the output for a query. From Table 5 it could be noted that a large

potion of rules were removed as a result of these two steps. In addition, we also

perform a literature survey to validate a random sample of the rules obtained.

Merged versus unmerged

It was noted that some of the rules obtained distinctly by the unmerged method

are not interesting, since they contain rules which have similar dataset variables.

For example, for the query constraint thiazolidinedione in SHHS, there exists a

rule in the form of {sulfonylurea} → {sulfonylurea, hypertension-history} which is

not interesting due to the existence of the similar variable sulfonylurea in multiple

locations of the rule. Therefore, merging similar variables serves as a means of

filtering such uninteresting rules.

From Figure 1, it could be noted that for most queries, the resultant rules

of merged and unmerged methods are quite different. Although it was observed
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that unmerged method obtains uninteresting rules with similar variables while the

merged method does not, further analysis is needed to confirm what factors con-

tributed to this difference.

It was also noted that the unmerged method obtains a significantly lower num-

ber of association rules than the merged method. Using k = 100, the unmerged

method obtained 653 rules in total across all the datasets for all query constraints

while the merged method obtained a total of 2,517. This is because the unmerged

method obtained a lot of subsumed rules in the following format. Consider the rules

{hypertension (shhs2)} → {sleep habits (shhs1): ever snored} and {self-reported hy-

pertension (shhs1)} → {sleep habits (shhs1): ever snored} obtained for the query

constraint stroke-history in SHHS dataset using the unmerged method. Both these

rules contains similar variables hypertension (shhs2) and self-reported hypertension

(shhs1) as antecedents and the same variable sleep habits (shhs1): ever snored as

the consequent. Therefore, these rules actually could be considered similar because

they convey the same association: {hypertension-history} → {habitual snoring}.
Unmerged method produced a large number of such rules which were filtered dur-

ing the subsume rule removal.

Limitations and future work

In this work, we only considered categorical variables with domains of the yes/no

type for the query-constraint-based ARM. Other categorical variables involve com-

plex domains which need to be manually examined to determine whether they are

meaningful for rule mining, and thus we expect to explore them in future work.

It would also be interesting to further investigate numerical variables, where nu-

merical values can be categorized into some predefined ranges. In addition, we only

considered query constraints involving a single canonical variable, however, it can

be generalized to query constraints consisting of multiple canonical variables.

In the future we would like to perform an automated literature-based analysis as

well as a manual review by clinical experts to validate the obtained rules. We also

plan to incorporate QARM in a web-based system for biomedical researchers to

dynamically compose query constraints and interactively perform exploratory data

analysis in NSRR. We used top 100 rules when performing QARM in this paper.

To support interactive exploratory analysis, such parameters could be configured

and decided by the end users.

Conclusion
In this paper, we applied QARM, a query-constraint-based association rule mining

method, to five diverse clinical datasets in the National Sleep Resource Resource.

QARM shows the potential to support exploratory analysis of large biomedical

datasets by mining a subset of data satisfying a query constraint. It is also shown

as a useful method to reduce the number of uninteresting association rules generated

from imbalanced datasets. Our analysis indicates that merging similar variables in

datasets is an effective method to filter uninteresting rules. Also, removing general

and subsumed rules resulted in more concise and interesting rules. A preliminary

literature-based analysis showed that some association rules have supporting ev-

idence from biomedical literature, while others without literature-based evidence

may serve as the candidates for new hypotheses to explore and investigate.
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Figures

Figure 1 Jaccard similarity of queries having common rules by merged and unmerged methods.

Tables

Table 1 Five NSRR datasets used in this work: CFS, CHAT, HCHS/SOL, HeartBEAT, and SHHS.

Dataset Number of Age of Timeframe of

subjects subjects data collection

CFS 735 6-88 2001-2006

CHAT 1,243 5-9 2007-2012

HCHS/SOL 16,415 18-76 2009-2013

HeartBEAT 318 45-75 2010-2012

SHHS 5,804 40-89 1995-2010

Table 2 The number of canonical variables used in each dataset, number of dataset variables to
which the canonical variables map, average imbalance rate of dataset variables, and number of
association rules obtained.

Dataset No. of No. of mapped Average No. of

canonical variables dataset variables imbalance rate association rules

CFS 40 113 10.72% 898

CHAT 5 20 8.27% 29

HCHS/SOL 31 75 6.17% 661

HeartBEAT 13 31 12.60% 128

SHHS 50 138 5.16% 801

Table 3 Resultant association rules for the query constraint “strokehist (Stroke-history)” in SHHS
dataset.

Antecedent Consequent

habitual snoring nonsteroidal anti-inflammatory drug, hypertension-history

nonsteroidal anti-inflammatory drug habitual snoring, hypertension-history

hypercholesterolemia hypertension-history, hmg-coa reductase inhibitor

chronic obstructive pulmonary disease/emphysema-history nonsteroidal anti-inflammatory drug, hypertension-history

chronic obstructive pulmonary disease/emphysema-history habitual snoring, hypertension-history

loop diuretic hypertension-history

hypercholesterolemia habitual snoring, hmg-coa reductase inhibitor

myocardial infarction-history hypertension-history

angina pectoris nonsteroidal anti-inflammatory drug, hypertension-history
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Table 4 Numbers of common and distinct rules obtained by merged and unmerged methods for 10
query constraints.

Description Variable Dataset No. of No. of distinct No. of distinct

common rules rules (merged) rules (unmerged)

hypertension-history htnhist HeartBEAT 19 1 3

thiazolidinedione tzd SHHS 11 10 11

biguanide biguanide SHHS 11 15 9

congestive heart failure-history chfhist SHHS 9 15 9

typical Antipsychotic typicalantipsychot HCHS 6 20 0

angiotensin 2 receptor blocker arb SHHS 3 10 2

coronary artery disease-history cadhist HCHS 4 15 1

potassium salt potassiumsalt SHHS 2 7 1

cardiovascular disease-history cvdishist SHHS 4 9 10

pacemaker placement ppmhist SHHS 6 19 11

Table 5 Numbers of general and subsumed rules removed.

Description Variable Dataset No. of No. of general No. of subsumed

rules obtained rules removed rules removed

depression depresshist HeartBEAT 2 62 36

diabetes mellitus-history dmhist HeartBEAT 2 74 24

myocardial infarction-history mihist HeartBEAT 4 70 26

l-triiodothyronine triiodothy SHHS 7 89 4

chronic obstructive pulmonary copdhist HeartBEAT 7 68 25

disease/emphysema-history

histamine-2 Receptor Antagonist h2blocker SHHS 7 86 7

anxiety disorder anixietyhist HeartBEAT 7 55 38

asthma asthmahist HeartBEAT 7 64 29

nonsteroidal Anti-inflammatory nsaid HCHS 8 86 6

drug

stroke-history strokehist SHHS 9 80 11
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Table 6 Randomly chosen example association rules obtained for queries in Table 4 and Table 5 and
supporting literature.

Variable/Dataset Description Antecedent Consequent Supporting

Literature

htnhist/HeartBEAT hypertension-history diabetes mellitus-history hypercholesterolemia-history None

htnhist/HeartBEAT hypertension-history diabetes mellitus-history habitual snoring [22, 23, 24]

tzd/SHHS thiazolidinedione hypertension-history sulfonylurea, diabetes mellitus-history None

tzd/SHHS thiazolidinedione hmg-coa reductase inhibitor sulfonylurea, habitual snoring, None

nonsteroidal anti-inflammatory drug,

hypercholesterolemia

biguanide/SHHS biguanide hypercholesterolemia sulfonylurea, hypertension-history, None

hmg-coa reductase inhibitor

biguanide/SHHS biguanide hypertension-history sulfonylurea, hmg-coa reductase inhibitor, None

hypercholesterolemia

chfhist/SHHS congestive heart failure-history angina pectoris myocardial infarction-history [32, 33]

chfhist/SHHS congestive heart failure-history loop diuretic hypertension-history, [19, 20, 21]

angiotensin converting enzyme inhibitor

typicalantipsychot/HCHS Typical Antipsychotic coronary artery disease-history tricyclic antidepressant None

typicalantipsychot/HCHS Typical Antipsychotic diabetes mellitus-history tricyclic antidepressant [34, 35, 36]

arb/SHHS angiotensin 2 receptor blocker chronic obstructive pulmonary nonsteroidal anti-inflammatory drug, [37, 38, 39, 40]

disease/emphysema-history habitual snoring, hypertension-history

arb/SHHS angiotensin 2 receptor blocker hypertension-history nonsteroidal anti-inflammatory drug,

habitual snoring None

cadhist/HCHS coronary artery disease-history angiotensin converting thiazide diuretic, hypertension-history, [22, 25, 26]

enzyme inhibitor diabetes mellitus-history

cadhist/HCHS coronary artery disease-history persistent wheezing hypertension-history None

potassiumsalt/SHHS potassium salt loop diuretic habitual snoring, hypertension-history None

potassiumsalt/SHHS potassium salt habitual snoring nonsteroidal anti-inflammatory drug,

hypertension-history None

cvdishist/SHHS cardiovascular disease-history angina pectoris nonsteroidal anti-inflammatory drug, None

habitual snoring, hypertension-history

cvdishist/SHHS cardiovascular disease-history myocardial infarction-history hypertension-history [41]

ppmhist/SHHS pacemaker placement l-triiodothyronine nonsteroidal anti-inflammatory drug None

ppmhist/SHHS pacemaker placement nonsteroidal chronic obstructive pulmonary None

anti-inflammatory drug disease/emphysema-history,

hypertension-history, habitual snoring

depresshist/HeartBEAT depression chronic obstructive pulmonary hypercholesterolemia-history, None

disease/emphysema - history habitual snoring, hypertension-history

depresshist/HeartBEAT depression anxiety disorder hypercholesterolemia-history, None

habitual snoring, hypertension-history

dmhist/HeartBEAT diabetes mellitus-history anxiety disorder depression, habitual snoring [42, 43, 44, 45]

hypertension-history

dmhist/HeartBEAT diabetes mellitus-history asthma hypercholesterolemia-history, [40, 46, 47, 48]

habitual snoring, hypertension-history

mihist/HeartBEAT myocardial infarction-history chronic obstructive pulmonary hypercholesterolemia-history, None

disease/emphysema-history habitual snoring, hypertension-history

mihist/HeartBEAT myocardial infarction-history depression, hypercholesterolemia-history, None

diabetes mellitus-history hypertension-history

triiodothy/SHHS I-triiodothyronine hypercholesterolemia habitual snoring, None

hmg-coa reductase inhibitor

triiodothy/SHHS I-triiodothyronine hypercholesterolemia nonsteroidal anti-inflammatory drug, None

hmg-coa reductase inhibitor

copdhist/HeartBEAT chronic obstructive pulmonary anxiety disorder hypercholesterolemia-history, [48, 49, 50, 51]

disease/emphysema-history habitual snoring, hypertension-history

copdhist/HeartBEAT chronic obstructive pulmonary asthma hypercholesterolemia-history, None

disease/emphysema-history habitual snoring

h2blocker/SHHS histamine-2 receptor antagonist angiotensin converting nonsteroidal anti-inflammatory drug, None

enzyme inhibitor habitual-snoring, hypertension-history

h2blocker/SHHS histamine-2 receptor antagonist hypertension-history nonsteroidal anti-inflammatory drug, None

habitual snoring

anixietyhist/HeartBEAT anxiety disorder habitual snoring hypercholesterolemia-history, [40, 44, 48, 52]

depression, hypertension-history

anixietyhist/HeartBEAT anxiety disorder myocardial infarction-history hypercholesterolemia-history, [48, 53, 54]

depression, hypertension-history [44]

asthmahist/HeartBEAT asthma depression, chronic obstructive pulmonary None

disease/emphysema-history,

hypercholesterolemia-history

asthmahist/HeartBEAT asthma hypertension-history diabetes mellitus-history [55, 56]

nsaid/HCHS nonsteroidal hypertension-history thiazide diuretic [57, 58]

anti-inflamatory drug

nsaid/HCHS nonsteroidal leukotriene receptor asthma, persistent wheezing None

anti-inflamatory drug antagonist

strokehist/SHHS stroke-history myocardial infarction-history hypertension-history [41, 59]

strokehist/SHHS stroke-history chronic obstructive pulmonary nonsteroidal anti-inflammatory drug, None

disease/emphysema-history hypertension-history

Additional files
Results obtained: Results.zip contains the results obtained by merged and unmerged methods for different query

constraints across the five datasets in NSRR.


