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Abstract: Human speech perception involves transforming a countinuous acoustic signal into discrete

linguistically meaningful units (phonemes) while simultaneously causing a listener to activate words

that are similar to the spoken utterance and to each other. The Neighborhood Activation Model posits

that phonological neighbors (two forms [words] that differ by one phoneme) compete significantly

for recognition as a spoken word is heard. This definition of phonological similarity can be extended

to an entire corpus of forms to produce a phonological neighbor network (PNN). We study PNNs

for five languages: English, Spanish, French, Dutch, and German. Consistent with previous work,

we find that the PNNs share a consistent set of topological features. Using an approach that generates

random lexicons with increasing levels of phonological realism, we show that even random forms

with minimal relationship to any real language, combined with only the empirical distribution of

language-specific phonological form lengths, are sufficient to produce the topological properties

observed in the real language PNNs. The resulting pseudo-PNNs are insensitive to the level of

lingustic realism in the random lexicons but quite sensitive to the shape of the form length distribution.

We therefore conclude that “universal” features seen across multiple languages are really string

universals, not language universals, and arise primarily due to limitations in the kinds of networks

generated by the one-step neighbor definition. Taken together, our results indicate that caution

is warranted when linking the dynamics of human spoken word recognition to the topological

properties of PNNs, and that the investigation of alternative similarity metrics for phonological forms

should be a priority.

Keywords: networks; neighborhood activation model; phonology; phonological neighbor network

1. Introduction

1.1. Background

The perception and recognition of acoustic speech, known in psycholinguistics as spoken word

recognition (SWR), requires that human listeners rapidly map highly variable acoustic signals onto

stable linguistically relevant categories (in this case, phonemes, i.e., the consonants and vowels
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that comprise a language’s basic sound inventory) and then piece together sequences of phonemes

into words, all without robust cues to either phoneme or word boundaries (see [1,2] for reviews).

Decades of research on human spoken word recognition have led to a consensus on three broad

principles: (1) SWR occurs in a continuous and incremental fashion as a spoken target word unfolds

over time; (2) words in memory are activated proportionally to their similarity with the acoustic

signal as well their prior probability (computed as a function of their frequency of occurrence) in the

language; and (3) activated words compete for recognition. A key difference between theories is how

to characterize signal-to-word and word-to-word similarity. Most theories incorporate some sort of

similarity threshold, and pairs of words meeting that threshold are predicted to strongly activate each

other and compete. Perhaps the most influential definition for the phonological similarity of spoken

words is the concept of phonological neighbors posited under the Neighborhood Activation Model

(NAM) by Luce and colleagues [3,4]. NAM includes a gradient similarity metric and a threshold

metric, although only the latter is widely used (and we focus on it here). The threshold metric defines

neighbors based on the Deletion-Addition-Substitution (DAS) string metric, which states that two

words are neighbors (i.e., they are sufficiently similar to strongly activate one another and compete)

if they differ by no more than the deletion, addition, or substitution of a single phoneme. Thus, cat has

the deletion neighbor at, addition neighbors scat and cast, and many substitution neighbors, such as

bat, cot, and can. NAM predicts that a target word’s recognizability is determined according to a simple

frequency-weighted neighborhood probability rule which is defined by the ratio of the target word’s prior

probability to the summed prior probability of all its DAS-linked neighbors. The NAM rule predicts

a greater proportion of the variance in spoken word recognition latencies (10–27%, depending on task

[lexical decision, naming, or identification in noise] and conditions [signal-to-noise ratio] [3]) than any

other measure that has been tested (e.g., log word frequency alone accounted for 5–10% of variance in

Luce’s studies).

The focus of the NAM approach has typically been to characterize the recognizability of single

words according to the sizes (densities) of their locally defined neighborhoods. More recently, it has

been realized that viewing the structure of the phonological lexicon globally as a complex network

enables the probing of connections between both large and small scale network topology and human

spoken word recognition. Thus, rather than considering a word and its neighbors in isolation, the set of

neighbor relationships for an entire lexicon can be represented as an unweighted, undirected graph [5]

in which words (phonological forms) are represented by nodes and two words are joined by an edge if

they meet the standard NAM DAS threshold. The NAM approach can be translated to the network

context to mean that (frequency-weighted) node degree is important for predicting latencies in spoken

word recognition. There are also prior indications that other topological properties (e.g., the clustering

coefficient [6,7], closeness centrality [8], and second neighbor density [9]) may also explain some

aspects of SWR that the frequency-weighted neighborhood probability it is based upon does not.

Previous studies have shown that what we will call the phonological neighbor network, or PNN,

for English has some features of both Watts-Strogatz [10] and Barabasi-Albert [11] graphs. It has

a relatively short mean geodesic path length and high clustering coefficient, but also has a degree

distribution that is at least partially power law [5]. Subsequent analyses of additional languages

(English, Spanish, Hawaiian, Basque, and Mandarin) have shown these characteristics to be broadly

shared across languages when PNN graphs are constructed using NAM’s DAS rule [12]. On the basis

of these results, Vitevich and colleagues have assigned importance to these language “universals”

and argued that many of these properties are sensible if not essential (e.g., high degree assortativity,

which measures the tendency of nodes to be connected to other nodes of similar degree, can buffer

against network damage) [12] (Consistent with the idea that these properties may be universal,

networks connected based on part-whole relations between word forms [13] and networks connected

based on semantic relations [14] exhibit similar properties. However, while the similarity across

these networks is intriguing, we think skepticism about deep universals is warranted pending deeper

analysis. Similarities across these networks is most salient in degree distributions, which appear
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consistent in each case with relatively scale-free networks. As we discuss below, for the case of

phonological networks, scaling parameter estimates are quite sensitive to analysis decisions such

as whether or where to truncate distributions. It is important in each case to determine the relative

importance of constraints imposed by connecting rules vs. analysis decisions vs. intrinsic aspects of

language in determining network characteristics (that is, understanding why a particular network

has certain characteristics). In this paper, we restrict our scope to the most prominent approach to

phonological networks in the literature, the DAS rule from the NAM, and leave similar consideration

of other approaches for future research).

However, making claims about SWR on the basis of the properties of PNNs alone is potentially

fraught for at least two reasons. First, PNNs are static representations of lexical structure, whereas

spoken words are processed incrementally over time. Second, different measures of word similarity

will result in radically different PNNs. NAM’s DAS rule is based on a relatively simple string distance

metric that provides a local measure of inter-word similarity that is insensitive to the sequence

of phonemes in a word. Thus, while NAM’s DAS metric accounts for substantial variance using

a regression-based approach (predicting response latencies for many words), there is substantial

evidence from studies examining competition between specific pairs of words with different patterns

of position-dependent phonological overlap that words whose onsets overlap compete more strongly

than words that are matched in DAS similarity but whose onsets are mismatched (e.g., battle would

compete more strongly with batter than with cattle [15]). Marslen-Wilson and colleagues [16,17]

proposed a threshold metric that gives primacy to onset similarity. They focused on the notion

(consistent with many priming and gating studies [17]) that the “cohort” of words activated by

a spoken word is restricted to words overlapping in their first two phonemes. Thus, the cohort

competitors of cat include not just DAS neighbors overlapping at onset (can, cab, cast) but also longer

words that would not be DAS neighbors (cattle, castle, cabinet). In addition, the cohort metric predicts

that rhyme (i.e., a word’s vowel and following consonants) neighbors (cat-bat, cattle-battle) do not

compete because they mismatch at onset, despite high DAS similarity. A PNN based on a simple onset

cohort rule (connect words that overlap in the first two phonemes) would obviously have very different

structure than a DAS-based PNN. When using PNNs to compare lexical structure between languages,

we must consider the potential role of the similarity metric itself in determining the network’s structure

and topology. This possibility calls into question any universal (language-independent) claims about

SWR based on DAS networks. Prior work has demonstrated that this is likely true at least in English,

as PNNs constructed from a random lexicon with the same phonological constraints as English are

basically indistinguishable from the real language network [18,19].

1.2. Hypotheses

Based on the discussion above and prior work in English [18,19], we have the following

hypotheses. First, we believe that the one-step DAS neighbor rule will produce phonological neighbor

networks that look very similar to those for real languages, even if the set of strings to be connected

has only some of the features of a real lexicon. Second, we hypothesize that the strong contraints on

connectivity induced by the DAS rule give rise to the observed “universal” topological features seen

across multiple languages [12]. Third, we believe that the topological properties of a PNN will be

form-length dependent. That is, a PNN constructed of only short (monosyllabic) words will have

different properties from a PNN constructed from long (polysyllabic) words. The observed PNN

degree distribution will therefore be a mixture distribution of size-class specific distributions.
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Figure 3 clearly shows that connectivity among only monosyllabic words differs from polysyllabic

word connectivity. The monosyllabic degree distributions look less like power laws than do the

polysyllabic degree distributions, and monosyllabic words are in general more densely connected

than are polysyllabic words. This raises the possibility that the PNN degree distribution may arise

as a mixture of distributions. In all five languages, networks formed from polysyllabic words have

degree distributions that are much closer to (truncated) power laws than are the monosyllabic word

networks. In addition, note that (with the exception of French) the polysyllabic degree distributions

are much more similar across the five languages than the monosyllabic graph degree distributions or

those of the full graphs (see Figure 1).

In Appendix A, we look more closely at phonological neighbor graphs formed exclusively

from monosyllabic or polysyllabic words, and compare them to graphs containing all words in

each corpus (see Table A1). We found that some of the full PNN topological properties are present

in both the monosyllabic and polysyllabic networks (e.g., degree assortativity and the clustering

coefficient). However, others are markedly different or disappear. The component or “island” size

distribution Pc is driven entirely by the polysyllabic words; the monosyllabic words are almost

completely connected (an unsurprising outcome of the DAS rule; shorter words, such as cat, are much

more likely to have DAS neighbors than long words like catapult). The full PNN graphs have short

(∼ 7) average path lengths primarily because the monosyllabic graphs have extremely short average

path lengths (∼ 5) and the polysyllabic graphs have long (∼ 10) ones. When we compare the

local properties of the monosyllabic words in both the monosyllabic and full graphs, numbers of

neighbors and second neighbors are highly correlated. However, clustering is more weakly correlated,

indicating that explanations of latencies in SWR that appeal to node clustering [6] coefficient as

a predictor may be quite sensitive to whether or not polysyllabic words were included as items in the

experiment. Figure 3 and Table A1 confirm our second hypothesis, which is that the topologies of

the monosyllabic and polysyllabic PNNs are different, and that the full PNN is a mixture of multiple

size-class specific networks.

At least three questions remain. First, do constraints imposed by the one-step neighbor DAS

similarity measure explain the apparently universal topological features seen across all five languages?

If so, what explains the observed differences in the degree distributions in Figure 1? Finally, how much

lexical structure is required to generate PNNs that resemble those of real languages? In what follows,

we address these three questions in detail.

3. Pseudolexicons

Figure 3 and additional results that we present in the Appendix A suggest that the truncated

power law behavior observed in the five PNNs might be the result of mixing subgraphs with different

connectivity properties. The left panel of Figure 4 again shows the degree distributions for the five

languages, this time with all homophones removed. We discuss homophones in detail in Appendix B;

in brief, we remove homophones because our random lexicon models produce phonological forms

(rather than written words) directly and cannot properly account for homophones. The right panel

shows the distribution Pl of words of length l phonemes. The Pl distributions are underdispersed

relative to Poisson (not shown); note also that they are all zero-truncated, as there are no words in any

language that consist of zero phonemes. A particularly intriguing feature of the five language Pl is that

they cluster similarly to the degree distributions shown in Figure 1. English and French are together,

then German and Dutch, and Spanish by itself. This suggestive correspondence between the PNN

degree distribution and Pl for the five languages under study led us to refine one of our hypotheses in

Section 1.2: our refined hypothesis is that one of the important linguistic inputs determining the PNN’s

properties is Pl . While this correspondence between network and Pl could be entirely coincidental or

a result of previously undetected cross-linguistic similarities, below we will show that it is not.
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real lexicon. Specifically, we use the real language’s corpus to compute the position-dependent

probability that position l is a C or a V. The particular consonant or vowel placed at that position

is drawn uniformly from the target language’s list of consonants and vowels. Unlike UNI,

CVUNI would produce CVC more often than CCC if asked to generate a three-phoneme English

pseudoword. However, the model is provided no knowledge of individual consonant and vowel

frequencies, so common and uncommon phonemes will be mixed.
• Noninteracting, Consonant/Vowel Field (CV). Positions are selected to be consonants or vowels

exactly as in CVUNI. The particular consonant or vowel placed at each position is selected using

observed frequencies of consonants and vowels from the real lexicon.
• Noninteracting, Spatially Varying Field (SP). Each phoneme is drawn randomly from real

positional frequencies in the target lexicon. For example, if a language has an inventory of twenty

phonemes, we use the real lexicon to compute a πl,x that gives the probability that phoneme x

occurs at position l, and then use this table to assign a phoneme to each position of the random

string. SP and CV use similar but not identical information from the real language. One important

feature of a real language that they do not capture is phonotactic constraints. That is, pairs of

phonemes occur in real languages with frequencies different from the product of the frequencies

of the individual phonemes, and in a word form location-dependent manner. For example,

/t/ and /b/ are common consonants in English, but the diphone /tb/ rarely ever appears except

in multisyllabic words at syllable boundaries (i.e., the words outbreak, outburst, frostbite).
• Nearest Neighbor Interactions (PAIR). The first phoneme in each string is drawn using

a positional probability. Subsequent phonemes are drawn via the following rule. If the phoneme

at position k is x, then the phoneme at position k + 1 is drawn using the empirical probability

(from the real lexicon) that phoneme x′ follows phoneme x. PAIR is the model we consider with

the most (though not full) linguistic detail; unlike any other model above, PAIR will not produce

unobserved diphones even if the constituent phonemes are quite common.

We have listed the models in rough order of complexity; INFT uses the least amount of information

about the real language’s structure and PAIR the most. We note that while it is possible to generate real

words (particularly short ones) from the models above, the vast majority of the strings produced bear

no resemblance to real words in any of the five languages. The only model that avoids unpronounceable

diphones is PAIR; in the other models unpronounceable diphones occur frequently.

For each pseudolexicon, we discarded any duplicate items. This is why we removed homophones

from the real languages; we did not generate orthographic tags for the random phonological forms,

so duplicated forms in the pseudolexicon all represent a single node. We then formed a pseudo-PNN

by using the DAS rule to connect items in the pseudolexicon to one another. As with the real PNNs,

before any analysis we discarded nodes in the pseudo-PNNs with degree zero. Figure 5 shows the

degree distribution of the Francis and Kucera 1982 English corpus (FK) [28] and its six corresponding

pseudolexicons. We first show the fit to FK, rather than CLEARPOND English, due to our ability to

better control the contents of the FK corpus (see Appendix B for details). Each of the six pseudolexicons

had as its input Pl the empirical English Pl (e.g., Figure 4, right panel). We note that, while the sizes

of the pseudolexicons were fixed to the real-language target lexicon, once the pseudonetworks are

formed, they may have fewer nodes than this, since many pseudowords may be neighborless and

hence not appear in the graph.
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Table 5. Topological measures for four UNI pseudo-PNNs (EMP, ZTP-1X, ZTP-1.5X, GEO) and the real

FK phonological neighbor network. All rows of the table are as described in Table 2.

FK EMP ZTP(1x) ZTP(1.5x) GEO

N 7861 2959 2753 211 3592
m 22,745 7954 13,127 304 35,938
k̄ 5.79 5.38 9.54 2.88 20.0

GC size 0.69 0.85 0.85 0.64 0.95
C 0.21 0.24 0.28 0.19 0.35
l 6.38 5.19 4.48 4.71 3.73
α 1.0 * 1.0 * 1.0 * 1.74 1.0 *
r 0.67 0.44 0.53 0.46 0.49

JSD 0.0 0.011 0.040 0.086 0.16

It is clear from Figure 9 that the shape of the PNN degree distribution is extremely sensitive

to the form length distribution. The JSD between each model’s degree distribution and that of the

real English FK network is closest for UNI plus EMP, and diverges rapidly as Pl takes on shapes

increasingly unlike EMP. Even the relatively small differences in the shape of EMP and ZTP(1x) lead to

large changes in the tail mass of the degree distribution. The difference between the degree distribution

of ZTP(1x) and ZTP(1.5x) is similar to the difference between the degree distributions of English or

French and Spanish (see Figure 4). In addition, Table 5 shows that the PNN made from ZTP(1.5x)

is much smaller (fewer nodes and edges) than any of the other models. This is expected given the

reduction in probability of short phonological forms in ZTP(1.5x) when compared to EMP, ZTP(1x),

or GEO; the probability that two strings from the UNI pseudolexicon that differ in length by one unit

or less are neighbors decays exponentially with string length. Note also from Table 5 that no matter

what effect Pl has on the degree distribution of the resulting PNN, all graphs show high clustering

coefficients, short mean free paths, and high degree assortativity. The size of the giant component

is much more variable, which agrees with previous work on the English PNN showing the second

moment of the form length distribution strongly influences the giant component size [29] (note the

difference in giant component size between ZTP(1x) and ZTP(1.5x)).

4. Discussion

We have shown that observed “universal” topological features of phonological neighbor

networks [12]—truncated exponential degree distributions, high clustering coefficients, short mean

free paths, high degree assortativity and small giant components—are string rather than language

universals. That is, inferences from networks based on similarity regarding language ontogeny or

phylogeny are suspect, in light of our analyses demonstrating that similar network structures emerge

from nearly content-free parameters. One might object to this strong interpretation. The DAS rule

obviously captures important relations that predict significant variance in lexical processing due to

similarity of phonological forms in the lexicon. Networks based on DAS are able to extend DAS’s reach,

as was previously demonstrated with the clustering coefficient [6,7]. Note, though, that clustering

coefficient relates to familiar concepts in word recognition that have not been deeply explored in the

spoken domain: the notion of neighbors that are friends or enemies at specific positions, discussed by

McClelland and Rumelhart in their seminal work on visual word recognition [30]. Consider a written

word like make, with neighbors such as take, mike, and mate. Take is an enemy of the first letter position

in make, but a friend at all other letter positions, where it has the same letters. A written word with

a clustering coefficient approaching 1.0 would have many neighbors that all mismatch at the same

position (thus making them neighbors of each other). A word with a similar number of neighbors but

a low clustering coefficient (approaching N/L, that is, N neighbors evenly distributed of L [length]

positions) would have more evenly distributed neighbors. For spoken word recognition, the results of

Chan and Vitevitch [6] suggest that a high clustering coefficient exacerbates competition because it is
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heavily loaded on a subset of phoneme positions, creating high uncertainty. In our view, this reveals

important details about phonological competition, but not ontogeny or phylogeny of English, or other

specifically linguistic structure. Indeed, given the similarity in the distribution of clustering coefficients

(among other parameters) in English and in our abstract PNNs, we interpret instances of (e.g.,) high

clustering coefficient as string universals rather than language universals.

While phonological neighbor network topology is largely insensitive to the degree of real

phonological structure in the lexicon used to construct the neighbor network, we found some amount

of sensitivity to the input form length distribution Pl . Even relatively subtle changes in Pl can lead to

observable changes in the degree distributions of the resulting neighbor networks, and differences

among the five languages we studied here can be almost wholly attributed to differences in form length

distributions among the five languages. However, even this sensitivity is only partial. Form length

distributions that look nothing like any of the languages we consider here (GEO, although GEO may

partially resemble the Pl of a language like Chinese), that generate network degree distributions that

we do not observe, still yield high clustering coefficients, short mean free paths, and high degree

assortativity. The question of what leads to a given language’s Pl is a question about language evolution

that will be much more difficult to explain, though some parallels might be drawn with work that

seeks to understand the evolution of orthography [31–33].

At an even deeper level, it may be perilous to attach too much meaning to the topology

of any similarity network of phonological forms, at least with respect to human performance in

psycholinguistic tasks. This is because these networks do not “do” anything; they have no function.

They are not connectionist networks that attempt to model phoneme perception, like TRACE [34] or

TISK [35]. No matter how they are constructed, they are basically static summaries of the structure of

the speech lexicon; they do not perform a processing function. Insofar as the similarity measure aligns

with latency data from human spoken words tasks (e.g., picture naming [7], lexical decision [6], etc.),

network properties may encode some features of human performance. While there is evidence that

some aspects of human task performance may be predicted from features of neighbor networks [5–9],

it is clear from our study that care must be taken in interpreting the results of studies of phonological

networks. If the static structure of the lexicon were to be paired with a dynamics that represents mental

processing, it would be possible to test the utility of phonological similarity networks for explaining

human performance in psycholinguistic tasks.

Vitevitch and his colleagues [36] have done pioneering work in this regard. They introduced

the important innovation of diffusion over PNNs to generate time course simulations. However,

these time-course simulations differ in crucial ways from the task demands of actual SWR, and the

time-course simulations possible with connectionist models like TRACE. Vitevitch et al. [36] used

fairly small English DAS graphs (one for each of 24 words, consisting of the word and its 1-hop and

2-hop DAS neighbors, limiting the complexity of possible interactions). Half the words had relatively

high and half had relatively low clustering coefficients. Vitevitch et al. [36] compared the rate at which

activation spread in graphs with different clustering coefficients. Simulations began with all of the

“activity” on the target word. With a positive diffusion coefficient, “activation” spread towards highly

connected items. This implements a view of SWR as retrieval, taking seriously the proposal of Chan

and Vitevitch [7] that theorists of SWR should reconsider the possibility that the lexicon has robust

internal structure that strongly constrains the process of lexical retrieval. This view contrasts sharply

with most theories and models of SWR, which focus on the incremental process of mapping a series of

consonants and vowels onto possible word forms. The diffusion model and connectionist network

models account for different aspects of human SWR. A challenge for future research is determining

whether one approach may be able to provide a more comprehensive account of SWR, or whether

a novel approach will be required.
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5. Materials and Methods

5.1. Data

We used the freely available online CLEARPOND [20] database to construct DAS-based PNNs

for five languages: English, Dutch, German, French, and Spanish. CLEARPOND is described in

detail elsewhere [20], but in brief, it includes phonological transcriptions of orthographic forms

and frequency information for over 27,000 words from each language. Frequency information for

English [37], Dutch [38], German [39], and Spanish [40] is derived from the SUBTLEX database which

counts word occurrences in television and movie subtitles. French frequency information is derived

from Lexique [41], a fusion of an older French language database (Frantext) with word occurrence

information derived from webpages. For all five languages we constructed PNNs based on the

DAS rule described above: two words were neighbors and therefore linked with a bidirectional,

unweighted edge, if they differed by no more than a single phoneme deletion, addition, or substitution.

After PNN construction, we found that, in each language, a significant percentage of the words had

no phonological neighbors, ranging from 24% (French) to 45% (Dutch). All singleton words were

excluded from any further analysis, since their topological properties are either trivial (e.g., they are

all degree zero) or undefined (e.g., the clustering coefficient). In all five languages, the mean length

of the neighborless words is larger than that of the words with neighbors, but this difference is not

statistically significant (permutation test).
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Abbreviations

The following abbreviations are used in this manuscript:

NAM Neighborhood Activation Model

PNN Phonological Neighbor Network

DAS Deletion-Addition-Substitution

SWR Spoken Word Recognition

WS Watts-Strogatz

BA Barabasi-Albert

CLEARPOND Cross-Linguistic Easy-Access Resource for Phonological and Orthographic

Neighborhood Densities

FK Francis and Kucera

EN English

NL Dutch

DE German

ES Spanish

FR French

GC Giant Component

INFT Infinite Temperature Pseudolexicon

UNI Noninteracting, Uniform Field Pseudolexicon

CVUNI Noninteracting, Consonant/Vowel Uniform Field Pseudolexicon

CV Noninteracting, Consonant/Vowel Field Pseudolexicon
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SP Noninteracting, Spatially Varying Field Pseudolexicon

PAIR Nearest Neighbor Interactions Pseudolexicon

EMP Emprical Form Length Distribution

ZTP Zero-Truncated Poisson Distribution

GEO Geometric Distribution

Appendix A. Syllable Level Analysis

To deterimine the number of syllables, we count vowels and dipthongs in the phonological

transcription of each word. In addition, we correct for words that end in a phonological “l” with no

vowel preceeding the final phoneme. For example, the English word able has only a single vowel but is

a two-syllable word. We note here that syllable boundaries are much harder to determine, but we do

not need to decompose the word into its constituent syllables for any of our analysis.

For each language we built two additional graphs: one for the monosyllabic (MS) words only

and one for the polysyllabic (PS) words only. Just as in the full PNN, these two new graphs used the

DAS rule to determine if two words should be connected by an edge. We show results for English and

Dutch in Table A1. Table A1 shows that the topological properties of the PNNs arise by mixing two

very different kinds of graphs. For quantities like the clustering coefficient and degree assortativity,

this mixing is very mild. The MS graphs tend to cluster more strongly than the PS graphs, and vice

versa for degree assortativity, but the differences are not extreme. This is not the case for the rest of

the topological measures. Despite having far fewer nodes, the MS graphs have tenfold greater edge

density. The MS graphs are almost completely connected; all “islands” in the English and Dutch PNNs

are induced by the structure of PS graphs. Mean geodesic paths are quite short in the MS graphs and

long in the PS graphs. The MS graphs do not have power law degree distributions at all; that arises

due to mixing with the PS graphs (all power-law or truncated power law) in the full graph.

Table A1. Topological measures for graphs produced from the CLEARPOND English and Dutch

corpora. MS+PS is the full PNN (see also Table 1), MS is a graph formed from only the monosyllabic

words, and PS a graph formed from only the polysyllabic words. With the exception of edge density

d and frequency assortativity coefficient r f , all symbols in this table are the same as those in Table 1,

and the quantities in the tabhle separated by forward slashes have the same meaning as in Table 1.

Edge density is defined as 2m/N(N − 1), where m is the number of edges and N the number of nodes

in the graph.

EN MS + PS EN MS EN PS NL MS + PS NL MS NL PS

N 18,983 5979 13,004 15,630 2808 12,552
m 76,092 50,232 19,808 36,158 16,785 18,396
d 0.0004 0.003 0.0002 0.0003 0.004 0.0002
k̄ 8.01 16.8 3.0 4.71 11.96 2.93

GC size 0.66 0.98 0.46 0.31 0.97 0.43
C 0.23/0.28 0.3/0.3 0.19/0.26 0.16/0.23 0.31/0.30 0.13/0.20
l 6.68 4.63 10.3 4.62 11.8 8.73
α 1.0 * - 1.04 * 1.84 * - 1.72
r 0.73/0.70 0.65/0.65 0.74/0.66 0.74/0.69 0.59/0.59 0.74/0.65
r f 0.104(4) [26σ] 0.068(4) [15σ] 0.089(7) [13σ] 0.126(5) [25σ] 0.055(8) [7σ] 0.100(7) [14σ]

We also compared node-level topology for the MS words in the MS only graph and the full PNN

(MS + PS). Most quantities are almost perfectly correlated for these two: these include number of

neighbors (degree), number of second neighbors, and eigenvector centrality. All of these quantites

are highly correlated with R2 ≥ 0.95. The clustering coefficient for the MS words in the two English

graphs is more weakly similar (R2 = 0.8), with large outliers (see Figure A1). It would be interesting to

revisit the proposed relationship between node clustering and spoken word recognition [6] facility in

light of these findings.
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German (all nouns are capitalized), we cannot systematically remove proper nouns for all five

languages in CLEARPOND.
• Inflected Forms. FK includes lemma numbers for all the words, so we can simply remove any

words that are not lemmas. We do not have this information for any words in CLEARPOND

and thus cannot remove them. To try to remove inflected forms in CLEARPOND we could,

for example, remove all words with word-final phonological “z”. This would remove English

plurals but also improperly remove some lemmas (size). Even if this were desirable, we would

need different rules for all five languages. Therefore we are forced to keep all inflected forms in

the CLEARPOND PNNs.
• Homophones. Homophones are items with identical phonological transcriptions but different

orthography. These are relatively simple to remove in both FK and CLEARPOND English, and the

same procedure works in any language. We search the nodes for sets of items with identical

phonological transcriptions. For example, see and sea would comprise one homophone set in

English, and lieu, loo, and Lou another. One of the items from each homophone set, chosen at

random, is kept in the PNN and the nodes corresponding to all other items in the set are deleted.

Table A2. The thirteen words in English CLEARPOND with the highest degree. Note the prevalence

in this list of (i) proper nouns and (ii) homophones (e.g., see, sea).

Word Degree

Lea 68
Lee 68
Lew 66
loo 66
lieu 66
Lai 63
lye 63
lie 63

Lowe 62
low 60
male 60
see 60
sea 60

Figure A2 shows the degree distribution of the FK PNN when inflected forms, proper

nouns, and homphones were successively removed. Two features of this figure deserve mention.

First, the main effect of these classes of words is in the tail of the degree distribution. Secondly, removal

of inflected forms causes very little change compared to removal of proper nouns and homophones.

It is relatively easy to understand why the largest changes to the degree distribution occur at large

k, at least for homophones. Consider a single orthographic form w that is also a homophone with

degree d. All of the other orthographic forms in its homophone set are connected to both w and all of

the d neighbors of w. If there are N words in the homophone set, we end up with N nodes each with

degree d + N − 1. Thus, homophone sets can boost the degree of both their neighbors (since a neighbor

of one is a neighbor of all other words in the set) and the homophones themselves. As an example,

a homophone set of size 10 in which one of the words has 10 neighbors yields 10 nodes with degree

19. Removing members of the homophone set will therefore tend remove nodes of large degree and

therefore shift the tail of Pk.
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Table A3. Number of homophone sets NH , mean homophone set size µH and the number of nodes

removed from the CLEARPOND PNNs when homophones are removed. Note the wide variation in

the number of homophones across the five languages.

Language NH µH Nodes Removed

EN 731 2.09 795
DE 440 2.10 485
ES 1059 2.03 1123
FR 9013 2.63 14,735
NL 417 2.08 449
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