

Journal of the  
American Academy of Audiology

**Bilingualism and Speech Understanding in Noise: Auditory  
and Linguistic Factors**

|                               |                                                                                                                                                                           |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal:                      | <i>Journal of the American Academy of Audiology</i>                                                                                                                       |
| Manuscript ID                 | 17-082.R2                                                                                                                                                                 |
| Manuscript Type:              | Research Article                                                                                                                                                          |
| Date Submitted by the Author: | n/a                                                                                                                                                                       |
| Complete List of Authors:     | Skoe, Erika; University of Connecticut, Speech, Language, and Hearing Sciences<br>Karayanidi, Kateryna; University of Connecticut, Speech, Language, and Hearing Sciences |
| Keywords:                     | Speech perception, bilingual, speech in noise                                                                                                                             |
|                               |                                                                                                                                                                           |

 SCHOLARONE™  
Manuscripts

FINAL PREPRINT PRIOR TO PUBLICATION

Skoe, E., & Karayanidi, K. (2018). Bilingualism and speech understanding in noise: Auditory and linguistic factors. *Journal of the American Academy of Audiology*.

doi:10.3766/jaaa.17082.

1  
2  
3  
4  
5  
6  
7  
8  
9  
10 Skoe & Karayanidi11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60 Bilingual Speech Understanding in Noise

## Bilingualism and Speech Understanding in Noise: Auditory and Linguistic Factors

Erika Skoe<sup>1,2,3†</sup>, and Kateryna Karayanidi<sup>1,3</sup>

### Affiliations:

<sup>1</sup>Department of Speech, Language, and Hearing Sciences; <sup>2</sup>Department of Psychological Sciences, Cognitive Sciences Program, Connecticut Institute for Brain and Cognitive Sciences;

<sup>3</sup>University of Connecticut, Storrs, CT 06269 USA

### †Corresponding author:

Erika Skoe, Ph.D.

University of Connecticut

850 Bolton Rd, U-1085

Storrs, CT 06129 USA

860-486-3685

Email: erika.skoe@uconn.edu

Submission date: 11/8/2017

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

## Abstract

**Background:** Bilingual speakers often have difficulty understanding speech in noisy and acoustically-degraded conditions.

**Purpose:** The first aim was to examine the potential source(s) of the difficulties that English-proficient bilingual listeners experience when hearing English speech in noise. The second aim was to assess how bilingual listeners perform on a battery of central auditory processing tests.

**Research Design:** A mixed design was used in this study.

**Study Sample:** Normal-hearing college students (n=24) participated in this study. The bilingual participants (n=12) self-reported that they learned a second language before age 9 and the monolingual participants reported that they only knew American English. All participants considered themselves to be native speakers of American English.

**Data Collection and Analysis:** Participants were administered the Revised Speech in Noise (R-SPIN) test to assess whether bilingual listeners' speech understanding in noise reflects auditory factors, linguistic factors, or a combination of the two. To minimize the influence of short-term memory and motor movements, only the final word of a sentence is repeated for this test. Sentence-final words were presented in two linguistic contexts: in the high predictability condition, the final word can be deduced from the context created by the preceding words, and in the low predictability condition it cannot. The R-SPIN test was administered at two signal-to-noise ratios (SNR) (0 dB, 3 dB). In addition, participants were given a reading comprehension test to measure their ability to use context when linguistic stimuli are delivered to the visual, not auditory, modality. The central auditory test battery consisted of three tests: Competing

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

Sentences, Dichotic Digits, NU-6 Time-Compressed Speech with Reverberation. All test materials were given in American English.

**Results:** The bilingual and monolingual groups performed similarly in the low context condition of the R-SPIN test. However, in comparison to the age-matched monolingual group, the bilingual group did not derive the same level of benefit from contextual cues, as seen by a smaller improvement in performance between the low and high predictability R-SPIN conditions. The bilingual and monolingual groups showed a similar decrement in performance when the SNR dropped. In addition, bilingual individuals underperformed on the Competing Sentences test, when instructed to attend to the left ear. However, the bilingual and monolingual groups performed equally well on the reading comprehension test, as well as on the Time-Compressed Speech with Reverberation Test and Dichotic Digits.

**Conclusions:** We show that individuals who are exposed to two languages from an early age, and self-report as having a high level of proficiency in English, perform like their monolingual counterparts in acoustically-degraded conditions where context is not facilitative, but they underperform in conditions where sentence-level linguistic context is facilitative to understanding. We conclude that deficits observed in noise are likely not due to a perceptual deficit or a lack of linguistic competence, but instead reflect a linguistic system that performs inefficiently in noise. In addition, we do not find evidence of an auditory processing weakness or advantage in our bilingual cohort; however, the use of speech materials to assess auditory processing is a confound.

**Key Words:** bilingual, speech in noise

|    |         |                                          |
|----|---------|------------------------------------------|
| 10 | AoA:    | age of acquisition                       |
| 11 | ANL:    | Acceptable Noise Level                   |
| 12 | CAP:    | Central Auditory Processing              |
| 13 | CAPD:   | Central Auditory Processing Disorder     |
| 14 | CST:    | Competing Sentences Test                 |
| 15 | DDT:    | Dichotic Digits Test                     |
| 16 | DPOAE:  | distortion product otoacoustic emissions |
| 17 | HINT:   | Hearing in Noise Test                    |
| 18 | L1:     | first language                           |
| 19 | L2:     | second language                          |
| 20 | MLV:    | monitored live voice                     |
| 21 | NEL:    | non-English language                     |
| 22 | PTA     | pure tone average                        |
| 23 | R-SPIN: | Revised Speech Perception in Noise       |
| 24 | SIN:    | speech in noise                          |
| 25 | SL:     | sensation level                          |
| 26 | SNR:    | signal-to-noise ratio                    |
| 27 | SRT:    | speech recognition threshold             |
| 28 | SUN:    | speech understanding in noise            |

## Introduction

There is a preponderance of evidence that bilingual speakers have more difficulty understanding speech in noisy and acoustically degraded conditions than their monolingual counterparts (Mayo, Florentine, and Buus 1997; Rogers et al. 2006; Bradlow and Alexander 2007; Shi 2010; Tabri, Abou Chacra, and Pring 2011; Shi 2012; Hervais-Adelman, Pefkou, and Golestani 2014; Krizman et al. 2016). This increased perceptual difficulty is akin to having a mild hearing loss, even for listeners with clinically normal audiometric thresholds. Lucks Mendel and Widner (2016) suggest that the bilingual disadvantage for speech in noise is the consequence of “auditory processing degradation”, although other work suggests a bilingual advantage for low-level auditory processing (Krizman et al. 2016). Bilingualism, thus, provides an interesting test case for examining the relative roles of auditory versus linguistic contributions to speech understanding in noise. The current study explores the potential source(s) of the perceptual difficulties that bilingual individuals experience when listening to speech in noise, and we specifically focus on bilingual listeners who consider themselves to be proficient in the test language.

Speech-in-noise (SIN) testing is a routine part of audiological practice. SIN tests are an attractive clinical tool because they access the most common complaint that brings a patient to the audiologist in the first place, namely difficulty understanding speech in noisy backgrounds. The tests in most wide-scale use include the Hearing in Noise Test (HINT) (Nilsson, Soli, and Sullivan (1994)), the Words in Noise Test (Wilson, Abrams, and Pillion 2003), and the QuickSIN test (Killion et al. 2004) (For a review see, Lagacé, Jutras, and Gagné (2010)). Most of these tests can be administered in a matter of minutes and require the listener to repeat a single word or the entire sentence. The requirement to have the listener repeat what they heard as a way

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

of indexing perceptual acuity is a complication to test interpretation because performance depends not only on the listener's auditory percept, but also on working memory, the ability to form and execute speech motor plans, top-down linguistic knowledge, among other variables. Most of these SIN tests, however, lack the specificity to isolate whether the listener's weakness is due to auditory factors, linguistic factors, cognitive, memory factors, motor factors (etc.) or some combination thereof. Understanding which factor, or set of factors contribute to decreased performance in noise is essential for providing appropriate clinical counseling as well compensatory and/or remediation strategies.

Lagacé, Jutras, and Gagné (2010) proposed using the Revised Speech in Noise (R-SPIN) test (Bilger et al. 1984) to evaluate whether decreased speech perception in noise is the result of weak auditory processing, weak language processing, or a combination of the two. It has been argued that both types of impairments can manifest in poor speech understanding in noise (SUN), although the underlying mechanisms are presumed to be different. To minimize the influence of short-term memory and motor movements, only the final word of a sentence is repeated in the R-SPIN test. In addition, the target words are presented as part of a design that uses two levels of linguistic predictability. In the high predictability condition, the final word can be deduced from the context created by the preceding words in the sentence, and in the low predictability condition it cannot. For example, "The lion gave an angry roar" (high predictability final word) vs. "He is thinking about the roar" (low predictability final word). The high and low predictability conditions can then each be presented with different levels of masking to manipulate the signal-to-noise ratio (SNR), creating low SNR and high SNR conditions. Comparing performance on the low and high SNR conditions can give insight into the auditory processes contributing to SUN. According to Lagacé, Jutras, and Gagné (2010), this

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

factorial design, which manipulates both predictability and SNR, provides an method for dissociating auditory processing from linguistic processing. The authors posit that a listener with a “pure” auditory processing issue (i.e., an auditory processing problem without concomitant language problem) will perform more poorly than a typical listener as the SNR becomes less favorable; however, they will receive the same, if not potentially greater, benefit when the word can be deduced from the linguistic context. Partial evidence for this pattern of findings can be found in Lagacé and colleague’s small scale study of children with central auditory processing disorder (CAPD) (Lagacé et al. 2011). Lagacé et al. (2011), argue that if reduced perception of speech in noise is the result of language-specific processes, the benefit from context will be small (if not at all) compared to typical listeners, but the listener will not be inordinately affected by changes in SNR. If an individual underperforms as the SNR decreases and they also do not benefit from context in the typical manner, this, Lagacé, Jutras, and Gagné (2010) argue, should be taken as evidence that both auditory and linguistic processes are contributing to poor perception of speech in noise. As a logical extension of the argument made by Lagacé, Jutras, and Gagné (2010), if a listener experiences less of a performance decrement than typical listeners when the SNR is decreased, this would be an indication of an auditory processing advantage.

We focused on bilingual adults who self-reported as being highly-proficient speakers of English. The bilingual college students in our sample learned English in combination with another language from a young age (before age 9), they were proficient at the native level in both their languages (self-report), were college students at an American university, and spoke English without a noticeable accent. Thus, the bilingual participants in our sample are likely to have been mistaken for monolingual English speakers during routine, daily communication by other native, monolingual speakers of English. For listeners who are still learning the test language, or

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60*Bilingual Speech Understanding in Noise*

who consider themselves to be non-native speakers of the test language, poor performance on SIN tests can be explained by an under-developed knowledge of the target language that results from reduced exposure to that language compared to monolingual speakers of that language. For some bilingual listeners, this reduced language exposure is the necessary consequence of having learned the target language at a later age (Shi 2010) and in most examples cited in the literature, underperformance on SIN tasks can be attributed to measurable differences in language proficiency, years of exposure, or the degree of balance between the two languages (Shi 2010, 2012). The current study asks whether such disadvantages persist even when the listener has achieved a high level of language proficiency in the target language. Schmidtke (2016) recently reported that bilingual speakers have poorer word recognition ability on a modified version of the R-SPIN, even after controlling for differences in verbal ability between the bilingual and monolingual subsamples. This lead to the hypothesis that underperformance on SIN tasks is an inevitable consequence of splitting resources across multiple languages (Schmidtke 2016).

The primary aim of the current study was to explore the auditory and/or linguistic basis of the bilingual disadvantage for speech understanding in noise (SUN) using the R-SPIN test. The second aim of our study was to assess the auditory processing skills of our bilingual listeners using a battery of tests that are commonly used in a clinical setting to diagnose CAPD. The CAPD test battery included Time-Compressed Speech with Reverberation, Dichotic Digits, and Competing Sentences. These tests, like the R-SPIN, utilize linguistic stimulation, but unlike the R-SPIN, they do not utilize background babble as a distractor. Krizman et al. (2016) recently hypothesized that bilingual listeners develop stronger auditory processing skills as a way to compensate for the challenges they face for SUN. This hypothesis emerged from a recent string of studies showing superior performance to monolingual listeners for processing auditory

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

signals, including signals that are masked by noise. Krizman et al. (2016), reported that adolescents who learned two language from an early age had lower thresholds for simultaneous and backward masking tasks compared to monolingual counterparts. Montagni and Peru (2011) provide additional evidence that early exposure to a second language confers an advantage to auditory processing tasks across both linguistic and musical stimuli. Moreover, early exposure to two languages (for both children and adults) has also been associated with more robust (pre-attentive) neural processing of speech sounds in both quiet and background babble conditions (Krizman et al. 2012; Krizman et al. 2014; Krizman et al. 2015; Skoe et al. 2017).

In addition to this recent evidence of an auditory processing advantage in bilingual individuals, there is compelling evidence that bilingual individuals have stronger executive functions, in particular, stronger inhibition of task-irrelevant stimuli that are both auditory and visual in nature (Soveri et al. 2011; Krizman et al. 2012; Bak, Vega-Mendoza, and Sorace 2014; Bialystok 2015). For bilinguals, inhibitory control has been theorized to emerge as a byproduct of needing to suppress one language when the other is the target language (Green 1998), although a more modern account is that increased inhibitory control is the result of needing to monitor which language to produce in different communication settings (Costa et al. 2009). There is a small body of literature suggesting that increased inhibitory control contributes to heightened dichotic processing in bilingual listeners (Soveri et al. 2011; Gresele et al. 2013). This literature predicts that bilingual listeners should outperform monolingual listeners on tests of dichotic listening, such as Competing Sentences and Dichotic Digits. When listening to dichotic speech stimulation, there is a bias towards listening to the right ear, even when instructed to attend to the left ear. This right-ear bias, which is well described in the scientific literature, is presumed to be the outcome of the right ear having a more direct pathway to speech-

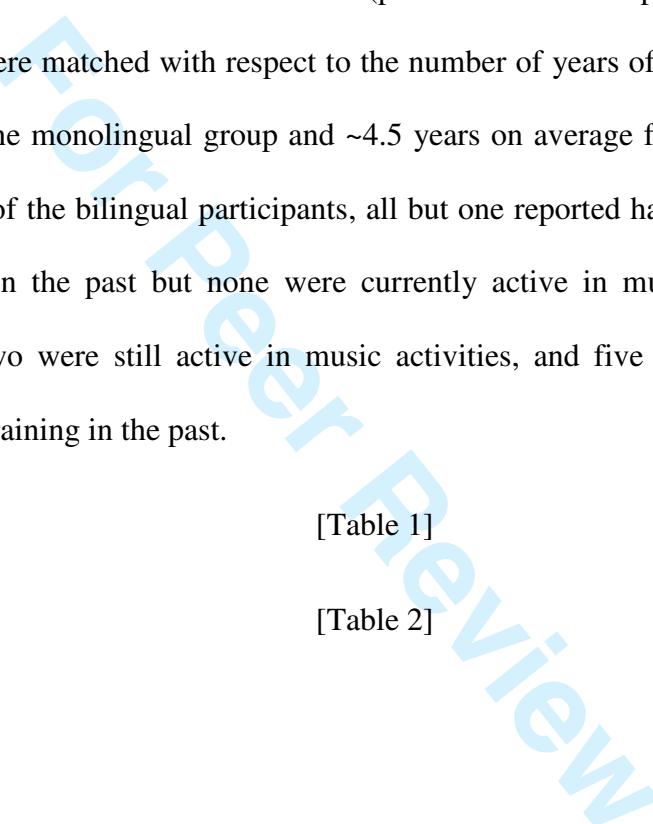
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60*Skoe & Karayaniidi**Bilingual Speech Understanding in Noise*

specialized regions in the left temporal lobe than the left ear. As a consequence of this circuitry, attending to the left ear is theorized to require more executive processing than attending to the right ear under dichotic stimulation (reviewed in Hugdahl et al. (2009). By this argument, heightened executive function is expected to boost bilingual listeners' ability to attend to the left ear. However, the whole notion that bilinguals have advantages in executive function has recently been called into question (Paap, Johnson, and Sawi 2014, 2015). In addition, because CAP tests are intended to assess impaired (not extraordinary) auditory processing, and because they typically utilize speech materials, they may lack the sensitivity to observe bilingual advantages for auditory processes and/or executive function.

## Methods

### Participants

The study included 12 monolingual speakers (9 females) and 12 bilingual speakers (9 females), all students at the University of Connecticut with a negative history of hearing impairment and negative history of speech or language pathology. All procedures were approved by the University of Connecticut Institutional Review Board. Participants gave their written informed consent to participate and they were either paid or compensated through course extra credit for their participation (their choice). Consent, and all testing materials and instructions were delivered in American English. Testing was conducted in a 1.5-2 hour session, with breaks given between tests. All testing was administered by the second author, an English-Russian bilingual, who learned English at age 11. The potential confounds of having a bilingual test administrator are addressed in the Clinical Implications section of the Discussion.


Participants completed a survey of their bilingual background and language exposure. The survey was a modified version of the survey developed by Garcia-Sierra et al. (2012). On the survey, participants rated their ability to use English and all other languages that they knew, using a Likert scale from 1-10, with 10 being labeled as “expert”. To validate the consistency of their ratings, at a later point in the survey, the participants were asked to indicate whether or not they considered themselves to have native-like proficiency for English and each non-English language (NEL). With respect to English, all participants rated themselves as 9 or 10, and described their proficiency as “native-like”. The survey also included questions about confidence reading in their NEL. In addition, participants were given a musical training questionnaire adapted from the one created by Kraus and colleagues (Slater and Kraus 2016), because of the literature showing an association between musical training and SUN advantages (Parbery-Clark et al. 2009; Bak, Vega-Mendoza, and Sorace 2014; Slater et al. 2015).

On the bilingual background survey, participants were instructed to indicate the degree to which they were exposed to English vs. their NEL at different points in their life, broken down in increments of three years (i.e. 0-3, 3-6, 6-9, etc.), using a rating of 0, 25, 50, 75, or 100%, with 100% indicating exposure to NEL only and 0% indicating exposure to English only. The monolinguals indicated that they were not exposed to a language other than English during their day-to-day communication at any point in their life. For all but four bilingual participants, exposure to English and the NEL began during the first three years of life. For the remaining four, English was learned as the second language after age 3 but before age 9. In all cases, the non-English language (NEL) was spoken by one or both of their parents. For two of the bilingual participants, one parent was a native speaker of English and the other was a native speaker of the NEL. At the time of testing, average exposure to the NEL was 29.1% (SD =

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

14.43%). In terms of language use, all participants were English dominant at the time of testing. The non-English languages included Bangla, Japanese, Mongolian, Polish, Portuguese (x2), Serbian, Spanish (x3), Tamil, and Telugu (Table 1).

11 The bilingual and monolingual groups were matched with respect to age, self-rated  
12 English proficiency, bilateral pure tone averages (0.5, 1, 2 kHz), as well as maternal education, a  
13 commonly used index of socio-economic status ( $p>0.05$  for all comparisons) (Table 2). In  
14 addition, the groups were matched with respect to the number of years of musical training (~3.4  
15 years on average for the monolingual group and ~4.5 years on average for the bilingual group)  
16 (Table 2). In the case of the bilingual participants, all but one reported having received voice or  
17 instrumental training in the past but none were currently active in music activities. For the  
18 monolingual group, two were still active in music activities, and five reported never having  
19 received any musical training in the past.

31  
32  
33 [Table 1]  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
[Table 2]

### Test Battery

All testing was completed in a double-walled sound booth (IAC Acoustics) in the Auditory Brain Research Laboratory at the University of Connecticut. Prior to any SIN testing, participants were first verified to have normal otoscopy, normal bilateral air conduction thresholds < 25 dB HL for octaves 125 to 8000 Hz (GSI 61 audiometer), and normal outer hair cell function as confirmed by a distortion product otoacoustic emissions (DPOAEs) screening protocol performed using a handheld screener (Madsen Alpha OAE+ Screener, GN Otometrics). Speech recognition thresholds (SRTs) were obtained using the modified Hughson-Westlake method for the right and left ears (separately) via monitored live voice, after first familiarizing the participants with the spondee words: ice cream, baseball, toothbrush, airplane, outside, mushroom and sunshine. Binaural SRTs were obtained in the same manner, except spondees were presented to both ears at the same time via monitored live voice. The test order was right SRT, left SRT, and then binaural SRT. All subsequent test materials were delivered relative to the SRT; for binaural tests, like the R-SPIN, binaural SRTs were used. The tests were administered in the following order: Competing sentences (right ear first), Dichotic Digits, NU-6 Time-Compressed Speech with Reverberation (right ear first), R-SPIN, and then the Passage Comprehension test (Woodcock-Johnson Mastery Tests of Achievement III, WRMT-III). The Competing Sentences, Dichotic Digits, and Time-Compressed Speech tests are distributed by Auditech, Inc. and test administration followed recommended guidelines. Test materials were delivered from a desktop computer routed through a two-channel GSI 61 audiometer to ER-2 insert earphones.

#### Competing Sentences Test (CST) (Willeford 1978)

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayananid

Bilingual Speech Understanding in Noise

This test of binaural separation includes 20 pairs of simple sentences spoken by a man, with the sentences being six to seven words in length. For each pair, one sentence is presented to the right ear and the other is presented simultaneously to the left ear. The two sentences in the pair have a similar theme. For illustrative purposes, here are two example pairs: (1) "I was late today" and "This watch keeps good time" and (2) "We had to repair the car" and "We usually take a taxi". The participant was instructed to listen and repeat back the sentence presented to one ear while ignoring the sentence presented to the other. For the first 10 sentences, the participant was instructed to repeat back the entire sentence presented to the right ear and for the final set of 10 sentences they were instructed to repeat back the sentence presented to the left ear. The target sentence was presented at 35 dB SL (re: SRT) and the competing sentence was presented at 50 dB SL (re: SRT). Each sentence is worth 10 points (2.5 per word), and there are 10 sentences, yielding a total possible maximum score of 100. For the purposes of assessing central auditory processing disorder, a score <90% for the right ear and < 90% for the left ear is considered abnormal for adults (11+ years).

#### Dichotic Digits Test (DDT) (Musiek 1983)

In this test of binaural integration, the participant repeats what s/he heard in both ears. For each of the 20 trials, two digits are presented to each ear (80 total digits, 40 per ear) at 50 dB SL (re: SRT). The digits include monosyllabic numbers between 1 and 10 (i.e., all numbers except 7). The participant is instructed to listen to both ears and repeat the numbers without concern about the order. Participants are encouraged to guess if they were not sure of what they heard. Prior to administering the test material, the participant is given three practice trials. To score the test, the number of correctly repeated digits is totaled for each ear separately (40 points per ear) and converted to a percentage. For the purposes of assessing central auditory processing disorder, a

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

score <90% for the right ear or <90% for the left is considered abnormal for adults. Like Competing Sentences, a right ear advantage is expected. Compared to the other tests that were administered, this has a relatively light linguistic load.

11 *NU-6 Time-Compressed Speech with Reverberation (Wilson et al. 1994)*  
12  
13

14 In this monaural test, the speech materials, spoken by a female, are time-compressed (45%) with  
15 0.3 seconds of reverberation. Participants are told that they will hear a woman's voice and that  
16 she will sound as if she is in a gymnasium. They are instructed to verbally repeat the word that  
17 they hear the woman say. Each sentence starts with the carrier phase "Say the word \_\_\_\_\_", with  
18 the final word being drawn from the NU-6 list of words. In this test, the final word cannot be  
19 derived from the preceding word. For each sentence, the listener must repeat back the final word  
20 that they heard, and guess if they are uncertain. Sentences were presented at 50 dB SL (re:  
21 SRT), with 50 target words per ear, starting with the right ear. The test is scored based on the  
22 number of correctly repeated words (50 points/ear). For the purposes of assessing central  
23 auditory processing disorder, a score <35% for the right ear or <35% for the left is considered  
24 abnormal. NU-6 List 5 was administered to the right ear and NU-6 List 6 was administered to the  
25 left ear.

43 *Revised Speech Perception in Noise Test (R-SPIN) (Bilger et al. 1984).*  
44  
45

46 For the R-SPIN test, participants are told that they will hear a man say a sentence in an  
47 environment that sounds as if he is at a party. They are instructed to repeat back only the last  
48 word of the sentence that the man says and to guess if they are uncertain. All sentences are  
49 syntactically correct, and, in all cases, the final word is a monosyllabic noun; however, in half of  
50 the sentences the final word is predictable from context. The final word predictability is pseudo-  
51  
52  
53  
54  
55  
56  
57  
58  
59

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
*Skoe & Karayananidi**Bilingual Speech Understanding in Noise*

randomly varied from sentence to sentence. The test is administered diotically with both the target sentence and 12-talker babble delivered to the left and right ears at the same time. In this study, the target sentence was delivered at 50 dB SL (re: binaural SRT), beginning first with the babble set to be 47 dB SL (+3 dB SNR). Two lists of 50-sentences were administered, with List 1 being presented at + 3 dB SNR and List 2 being presented at 0 dB. This yielded four conditions: +3 dB high predictability, +3 dB low predictability, 0 dB high predictability, and 0 dB low predictability. R-SPIN List 1 and 2 contain the same set of 50 target words, but the predictability of each target word is different across the two lists. For example, “spoon” occurs in a high predictability context in List 1 (“Stir your coffee with a spoon”) and in a low predictability context in List 2 (“Bob could have known about the spoon”). According to the test developers, the two lists contain the same types of syllables, vowels, and consonants and when administered at the same SNR, they are equivalent in terms of difficulty and reliability. Using the Corpus of Contemporary American English (<https://corpus.byu.edu/coca/>), we also confirmed that the lexical frequency of the high and low predictability target words was matched within a list.

The two SNR levels used in this study were selected based on pilot testing. Before starting the 0 dB condition, the participant was first instructed that the task would be the same but that it might be more difficult to hear the man’s voice. The percent correct for each condition was then calculated, with 25 being the highest possible raw score for each of the four conditions.

#### *Passage Comprehension (Woodcock-Johnson III Tests of Achievement)*

As a complement to the R-SPIN test, we administered an English reading comprehension that was taken from the Woodcock-Johnson III Tests of Achievement, in which a missing word must

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayanidi

Bilingual Speech Understanding in Noise

be filled in from context. Passage Comprehension evaluates written language comprehension at the sentence level by assessing the ability to make use of vocabulary, syntactic, and semantic knowledge to infer missing elements. For the purposes of this study, we selected this test to evaluate the ability to make use of top-down linguistic knowledge in a non-auditory condition (Woodcock, Mather, and McGrew 2001). For ages 14-30, the Passage Comprehension Test has high inter-test correlation ( $r \geq 0.6$ ) with the Oral Vocabulary, Oral Comprehension, Letter-Word Identification, and Spelling subtests of the Woodcock-Johnson III Tests of Achievement.

The Passage Comprehension Test was administered in a quiet room with the participant sitting across the table from the test administrator. During this test, the participant silently reads a sentence containing a missing word and then verbalizes the word that they think would best complete the sentence based on the context created by the other words in the sentence. This test is performed without a time limit. The test item was counted correct if it was included in the set of possible answers provided by the test manufacturers, or if it was a synonym of an answer provided by the manufacturer. The test includes a total of 38 items, beginning with simpler vocabulary and scaling to more advanced vocabulary. The first item administered was sentence 19, which is considered to be at a Grade 10 level. When tabulating the final score, the participant received credit for the first 19 sentences. Standard scores and percentiles were then calculated according to the test manufacturer's guidelines.

#### *Statistical analyses*

Percent scores were converted to rationalized arcsine transform units (RAU) for statistical analysis (Studebaker 1985). RAU linearizes percent scores, making the values better suited for analysis via linear tests (e.g., ANOVAs, t-tests).

## Results

### Dichotic Digits, Competing Sentence, Time-Compressed Speech

Participants performed at or near ceiling on the Dichotic Digits and Competing Sentences tests (Figure 1). For these tests, a mixed-model repeated-measures Analysis of Variance (ANOVA) was performed using group (bilingual, monolingual) as the between-subjects factor, and ear (left vs. right) as the within-subjects factors. All variables met the assumptions of Sphericity.

For the Dichotic Digits test, there was the expected main effect of ear ( $F(1,22) = 15.60$ ,  $p = 0.001$ , Partial Eta Squared ( $\eta^2$ ) = 0.41), with lower accuracy for the left ear compared to the right ear. Two of the participants (1 bilingual, 1 monolingual) fell below the 90% cutoff for the left ear, but achieved perfect or near perfect scores in the right ear. For the Dichotic Digits test, neither the main effect of group ( $F(1,22) = 0.05$ ,  $p = 0.83$ ,  $\eta^2 = 0.002$ ), nor the ear-by-group interaction was significant ( $F(1,22) = 0.05$ ,  $p = 0.82$ ,  $\eta^2 = 0.002$ ).

For the Competing Sentences test, the main effect of ear was trending ( $F(1,22) = 3.28$ ,  $p = 0.09$ ,  $\eta^2 = 0.13$ ), with performance being lower for the left ear relative to the right ear. In this case, three participants (all bilingual) scored below the 90% cutoff for the left ear. For this test, a group effect emerged ( $F(1,22) = 5.30$ ,  $p = 0.03$ ,  $\eta^2 = 0.19$ ), but the interaction between ear and group was only trending ( $F(1, 22) = 2.27$ ,  $p = 0.12$ ,  $\eta^2 = 0.11$ ). Planned post-hoc analysis revealed that the bilingual group underperformed the monolinguals on the left ear ( $t(22) = 2.37$ ,  $p = 0.03$ ,  $d = 1.0$ ), but that the groups were matched on the right ear condition, with both groups scoring ~98% ( $t(22) = 0.53$ ,  $p = 0.59$ ,  $d = 0.22$ ). For the bilingual group, the average score was 98.5% for the right ear ( $SD = 1.67$ ) compared to 93.92% for the left ear ( $SD = 6.14$ ) ( $t(11) = 2.02$ ,  $p = 0.07$ ,  $d = 1.38$ ).

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

For the Time-Compressed Speech With Reverberation Test, the effect of ear was trending ( $F(1,22) = 3.65$ ,  $p = 0.07$ ,  $\eta^2 = 0.12$ ); however, neither the main effect of group ( $F(1,22) = 0.27$ ,  $p = 0.61$ ,  $\eta^2 = 0.002$ ), nor the ear-by-group interaction was significant ( $F(1,22) = 0.04$ ,  $p = 0.84$ ,  $\eta^2 = 0.002$ ). On this test, all participants were in the clinically normal range.

[Figure 1]

#### *R-SPIN*

For the R-SPIN test, a mixed-model repeated measures ANOVA was performed using group (bilingual, monolingual) as the between subjects factor, and linguistic predictability (high vs. low) as well as SNR (0, 3 dB) as within-subjects variables (Figure 2).

We start by reporting the within-subjects comparisons followed by the group comparisons: As expected, main effects of SNR and Predictability were observed (SNR:  $F(1,22) = 39.82$ ,  $p < 0.005$ ,  $\eta^2 = 0.62$ ; Predictability:  $F(1,22) = 511.89$ ,  $p < 0.005$ ,  $\eta^2 = 0.96$ ), with less accurate final word recognition observed in the 0 dB SNR condition compared to the 3 dB SNR condition (mean (standard deviation) = 70.5% (SD = 10.06) vs. 79.17% (SD = 6.43)) and also less accurate word recognition in the low predictability compared to the high predictability conditions (58.92% (SD = 9.62) vs. 90.75% (SD = 6.61)). The facilitative influence of linguistic context, however, was different across the two SNR conditions (SNR x Predictability Interaction,  $F(1,22) = 13.54$ ,  $p = 0.001$ ,  $\eta^2 = 0.38$ ), with greater benefits of context observed for the 0 dB SNR condition than the 3 dB condition.

With respect to group comparisons, the overall main effect of group was trending towards significance ( $F(1,22) = 3.05$ ,  $p = 0.09$ ,  $\eta^2 = 0.12$ ). Moreover, the SNR by group interaction was not significant ( $F(1,22) = 0.21$ ,  $p = 0.65$ ,  $\eta^2 = 0.009$ ), with both groups showing a performance

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60*Bilingual Speech Understanding in Noise*

decrement of ~8% when the SNR dropped from 3 to 0 dB. This can be seen visually in Figure 2; the distance between the square markers (3 dB condition) and the circle markers (0 dB) is matched for the two groups. Thus, on the R-SPIN test, our bilingual group was not inordinately affected by background noise compared to the monolinguals on the R-SPIN test. However, the bilingual group did differ from the monolingual group in terms of how much they benefitted from the linguistic predictability of the final word. In Figure 2, this manifests as difference in the slope of the lines connecting the low and high predictability conditions, with the slope being less steep for the bilingual group compared to the monolingual group. Collapsing across the two SNR conditions, the bilingual group had an average performance boost of 28.17% for the high predictability sentences over the low predictability sentences, compared to a 35.5% increase for the monolingual group. This is a small, yet, significant effect (Predictability x Group interaction  $F(1,22) = 14.27$ ,  $p = 0.001$ ,  $\eta^2 = 0.39$ ). Planned post-hoc comparisons revealed that the groups had equivalent performance in the low predictability condition ( $t(22) = -0.21$ ,  $p = 0.84$ ,  $d = 0.08$ ) but differed on the high predictability condition ( $t(22) = 2.72$ ,  $p = 0.01$ ,  $d = 1.2$ ). Finally, the three-way interaction between Group, SNR, and Predictability was not significant ( $F(1,1,1,22) = 0.01$ ,  $p = 0.91$ ,  $\eta^2 = 0.001$ ), suggesting that the differential effect of predictability for the two groups did not differ as a function of SNR.

[Figure 2]

#### Passage Comprehension

The two groups performed similarly on the Passage Comprehension test ( $t(22) = 0.10$ ,  $p = 0.92$ ,  $d = 0.04$ ). For the monolingual group, the average standard score was 113.50 ( $SD = 7.78$ ), with a range from 103-126 (58<sup>th</sup> to 96<sup>th</sup> percentile). For the bilingual group, the average standard score was 113.83 ( $SD = 8.34$ ), with a range from 96-126 (39<sup>th</sup> to the 96<sup>th</sup> percentile).

11  
12  
13  
14 Discussion15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Speech understanding in noise is a complex process that reflects many different factors. Successful performance relies not only on the integrity of peripheral hearing and central auditory processes, but also on the ability to map the neural representation of the acoustic signal to a phonetic unit, match this phonetic information to lexical items, and use top-down linguistic knowledge including lexical, syntactic, semantic, and pragmatic information to interpret missing or obscured bottom-up information. Lagacé, Jutras, and Gagné (2010) propose that the R-SPIN test has the advantage over other SIN tests by being able to dissociate whether the SIN weakness has its roots in auditory or language-based functions. Using the R-SPIN, together with a battery of three commonly used tests of Central Auditory Processing Disorder, we do not find any evidence that bilingual listeners who self-rate as being proficient in the test language differ from monolingual listeners on their global auditory processing skills when utilizing testing materials that involve speech stimuli. Instead, our constellation of findings suggest that differences between monolingual and bilingual individuals on the R-SPIN test reflect less efficient top-down processing of speech. However, we are careful to point out that any apparent weakness or disadvantage observed in our bilingual group, should not be construed as an impairment, given the overall high level performance seen across all tests.

In the following sections, we examine the degree to which the bilingual disadvantage in SUN reflects linguistic and not global auditory processes, the possibility that SUN weaknesses are an inevitable byproduct of speaking two languages, how our findings fit within the debate on the advantages and disadvantages of speaking two languages, and the clinical implications of this

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

line of work. Throughout these sections, we will highlight the novelty and limitations of our study, and propose new avenues for investigating SUN in bilingual speakers, including the need for multimodal testing and other forms of SIN testing to further evaluate how bilingual listeners perform in acoustically-degraded conditions.

*The bilingual SUN disadvantage reflects linguistic not general auditory processing abilities*

Our cohort of bilingual speakers was found to underperform on the R-SPIN test but only under specific conditions. When manipulating the level of the background noise relative to the target sentence, we found that bilingual and monolingual listeners received a similar level of performance benefit when the SNR was more favorable, contradicting the claim that bilinguals listeners are experiencing “auditory processing degradation” (Lucks Mendel and Widner 2016).

Instead, the outcomes of the R-SPIN test conditions suggest that bilingual listeners, even those who self-rate as being highly-proficient in the test language, are weaker at utilizing compensatory cues to aid their speech understanding in noise, leading them to underperform on R-SPIN but only in conditions where the final (English) word can be restored from context. For some of the R-SPIN sentences, the contextual cues are so strong that the final word can be deduced without any clues about the auditory signal. However, when asked to fill in a missing word based on context in a written sentence, with no time limits and no auditory clues, the two groups performed similarly, with both achieving high, near ceiling scores on the Passage Comprehension WRMT-III test. The bilingual group also performed on par with their monolingual counterparts in acoustically-degraded conditions when the target English word was not predictable from context, as seen in the low predictability conditions of the R-SPIN test and the Time-Compressed Speech with Reverberation test, in which listeners are prompted to repeat a target word without any aiding linguistic context (“Say the word \_\_\_\_”). From this collective

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

evidence, we conclude that the bilingual college students in our sample were able to access and utilize top-down linguistic knowledge but that they may not have been able to capitalize on it to the same degree as monolingual listeners when sensory input was degraded (as in the R-SPIN test).

Consistent with the source of the bilingual disadvantage for SUN being top-down not bottom-up in nature, previous work has shown that the performance gap between bilingual and monolingual listeners does not increase as the amount of energetic masking increases (Rogers et al. 2006) or as the amount of time-compression increases (Shi and Farooq 2012), supporting the finding that our bilingual group is not inordinately affected by increasing levels of background noise on such tests. Moreover, when word- and sentence-level factors are stripped away from the SIN task, and the focus is shifted to identifying individual English phonemes, monolinguals and non-native listeners have also been found to perform similarly (Cutler et al. 2004). In addition, there is evidence to suggest that noise tolerance levels, as measured by the Acceptable Noise Level (ANL) test, are matched between bilingual and monolingual individuals, even when speech understanding is reduced (von Hapsburg and Bahng 2006); however, other findings suggest that ANL scores are influenced by the listener's language background (Shi, Azcona, and Buten 2015).

In our healthy young adult population, using the R-SPIN test, we isolated the bilingual disadvantage to top-down linguistic factors, although in our case the disadvantage (relative to monolingual peers) is small. This weakness in leveraging top-down information is consistent with what has been found for listeners who are less proficient in the target language. For example, von Hapsburg and Bahng (2006) found that individuals who self-report as being moderately proficient in the test language (English) derived less benefit from context on the R-

1 Skoe &amp; Karayaniidi

2 *Bilingual Speech Understanding in Noise*

3 SPIN test than monolingual individuals, but those who self-report as having low proficiency in  
4 the target language show no benefit of linguistic predictability. Likewise, Mayo, Florentine, and  
5 Buus (1997) reported that bilingual listeners who acquire the target language late (after age 12),  
6 reach native-like proficiency on sentence recognition in quiet but they do not derive the same  
7 benefit from cross-word context when the speech signals are presented in noise, again suggesting  
8 less efficient top-down linguistic processing. A similar pattern of findings was reported for  
9 bilinguals speakers who were asked to recall English passages in noise: compared to  
10 monolingual speakers, bilinguals speakers with high self-rated English proficiency, but more  
11 wide ranging ages of acquisition than the current study, did not derive the same benefit from the  
12 linguistic cues afforded by inter-connected, linguistically-related English sentences (Shi 2012).  
13 These findings in diverse bilingual populations echo what has been shown in non-native listeners  
14 who likewise have less efficient use of top-down cues in their non-native compared to their  
15 native language in background noise but also quiet conditions (Hervais-Adelman, Pefkou, and  
16 Golestani 2014). Similar to the von Hapsburg and Bahng (2006) findings for bilingual speakers  
17 with (self-rated) low proficiency in the target language, Bradlow and Alexander (2007) reported  
18 that non-native speakers could not take advantage of sentence-level context unless the speech  
19 signal was produced in clear speech, a type of speaking style often adopted by talkers in adverse  
20 communication environments in which the speaking rate is slowed and individual speech sounds  
21 are more discernable. Thus, whereas non-native speakers may not benefit from top-down  
22 linguistic cues to facilitate word recognition in noise until the speech signal becomes  
23 perceptually favorable, bilingual speakers with more native-like proficiency in the test language  
24 appear to be able to benefit from such cues, even in adverse listening conditions, but the benefit  
25 is not as great as a monolingual might achieve. Consistent with our findings, Schmidtke (2016)  
26

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

reported that bilingual listeners continued to underperform on R-SPIN sentences with high predictability relative to the monolingual listeners, even when using subsamples of bilingual and monolingual participants who were matched in language proficiency (as assessed by multiple standardized tests), suggesting that differences in language proficiency cannot fully account for these group differences. For a similar account see, Shi (2011).

Taken together, this combined evidence suggests that perceptual weaknesses for speech understanding in noise that are observed in bilingual individuals are not necessarily due to a lack of knowledge in the target language, or a lack of linguistic knowledge more generally, but that they are instead more likely due to a linguistic system that underperforms when the bottom-up acoustic input is less reliable. However, a central limitation of our study, is that we relied on self-report to estimate language proficiency. Moreover, although the high scores on the test of Passage Comprehension provide confirmatory evidence that the bilingual speakers in our sample have good mastery of English, this single test cannot provide a complete picture of language proficiency. Thus, although bilingual and monolingual groups were matched with respect to self-rated proficiency and performance on the Passage Comprehension tests, it is premature to conclude that they are necessarily matched on all aspects of English language use and knowledge. While it is common practice to rely on self-report, Shi (2011) calls this practice into question, especially for late language learners who are more likely to over-estimate their abilities. Another factor that is not adequately addressed by our study, or by the literature more generally, is how the quality of the exposure to the test language affects SIN performance and self-ratings of language proficiency, although the effect of language quantity and quality on language development are well recognized (Hart and Risley 1995; Ramírez-Esparza, García-

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

Sierra, and Kuhl 2014). Our study findings, and comparisons to the broader literature, should, therefore, be interpreted with these limitations in mind.

*Are SUN weaknesses inevitable for bilingual listeners?*

It has recently been proposed that bilingual disadvantage for SUN is an inevitable consequence of being bilingual (Schmidtke 2016). Under this theoretical framework, weaknesses on SUN tasks are not due to a lack of knowledge about the target language but they are instead considered to be byproduct of knowing two languages and having to split one's time, as well as lexicon and phonetic inventory, across multiple languages. Thus, even when a bilingual speaker is a native speaker of the target language, she may still be at a communicative disadvantage, compared to monolinguals, when listening to speech in noise. Evidence supporting this "inevitability" viewpoint comes from current, well-accepted models of speech processing.

Current models of speech processing posit that upon hearing a (target) word, other similar sounding words and semantically related words, are simultaneously activated in the mental lexicon (McClelland and Elman 1986; Luce and Pisoni 1998; Magnuson et al. 2007). These simultaneously activated words compete internally for recognition with the target word, and the listener must select the word that is deemed most plausible. When the bottom-up sensory signal is obscured by noise or otherwise degraded, the signal becomes less reliable, creating less certainty about what was said, and, this, it is theorized, leads to a greater number of candidate words being activated, which in turn increases the processing load. In such cases, the listener must rely more on non-auditory processes to consider the plausibility of each candidate word and discard those deemed least probable based on lexical knowledge, such as word frequency and other top-down linguistic information. A variety of evidence suggests that bilingual individuals face an increased processing load as the result of both languages being activated in parallel

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

1 during speech processing (Weber and Cutler 2004; Kerkhofs et al. 2006; Paulmann et al. 2006; 2 Marian, Blumenfeld, and Boukrina 2008). This dual-activation results in both within- and 3 across-language competitors being activated, producing a greater number of lexical competitors 4 for bilingual compared to monolingual speakers. So, for example, when a monolingual English 5 speaker hears the word, “kite”, phonological neighbors such as “bite” and “right” will be 6 activated. However, for a bilingual listener, the set of activated (competing) words may also 7 include non-English words with similar phonology. As an illustration, a German-English 8 bilingual speaker may also activate words like “kein” (none) or “weit” (far) (pronounced “kine” 9 and “vite”, respectively), when hearing “kite”, creating more internal competition for bilingual 10 listeners, who then must depend more on top-down knowledge to select the appropriate target 11 word.

12 Further compounding these theorized lexical selection inefficiencies for bilingual 13 individuals are lexical frequency effects. For all listeners, whether they are proficient in one or 14 multiple languages, faster recognition and recall times are seen for frequently encountered words 15 compared to less frequent words (Taft 1979). However, in the case of bilingual individuals, the 16 disadvantage for low frequency words is exacerbated (Gollan et al. 2008). Consistent with this 17 finding, Schmidtke (2016) found that low frequency words and words in less predictable 18 linguistic conditions were recognized less accurately by bilingual listeners compared to 19 monolingual listeners on a modified version of R-SPIN. Golan and colleagues (2008) propose 20 that this disadvantage for low frequency words is the result of weaker connections between a 21 lexical item and its phonological form, which arises because bilingual listeners activate each 22 word in their lexicon less frequently than monolingual listeners simply because they know more 23 words, on average, than a monolingual individuals. For example, a bilingual individual and 24

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60*Bilingual Speech Understanding in Noise*

monolingual individual may encounter the English word “kite” the same number of times but because the bilingual individuals has a larger number of phonological representations within their lexicon by virtue of knowing two languages, the word “kite” will be processed/activated as if it is less frequent compared to the monolingual individual, leading to slower and less efficient lexical recall for “kite”. In further support of weaker lexical recall in bilinguals, bilingual speakers have also been shown to have lower verbal recall, slower reactions times on verbal recall measures, and poorer memory span for verbal information in both languages (Mägiste 1979; Bialystok et al. 2009)

This literature, in combination with our findings, support the notion that bilinguals individuals, even those who are native speakers of the test language, are at a comparative disadvantage, compared to monolinguals, when performing SUN tasks, as a consequence of less efficient lexical retrieval. Our study illustrates that the disadvantage can, in some cases, be quite small.

### *Bilingual advantages and disadvantages*

In interpreting our findings, we are mindful that our participant sample was limited in size, that we used self-ratings of language proficiency, and that although our dataset captured an array of different language families, it was by no means representative of the diversity of languages worldwide. Nevertheless, our small study provides an important data point in the larger discussion on the potential disadvantages of being bilingual by helping to delineate the conditions under which the bilingual disadvantage for SUN may or may not emerge for bilinguals speakers who self-report as having native-like abilities in the test language. In addition, our study adds to the conversation on the potential benefits of being bilingual by providing evidence that the auditory processing advantages that have emerged for non-linguistic

stimuli (Bak, Vega-Mendoza, and Sorace 2014; Krizman et al. 2016) and for auditory-evoked potentials to passively-attended speech stimuli (Vihla, Kiviniemi, and Salmelin 2002; Krizman et al. 2012; Krizman et al. 2015; Skoe et al. 2017) do not lead to any apparent behavioral benefits on the R-SPIN test nor on three tests routinely used to clinically assess Central Auditory Processing Disorder. However, as seen in the current study, most of the participants (regardless of group) performed at or near ceiling on Dichotic Digits and Competing Sentences tests, suggesting that these linguistic-based tests of central auditory processing lack the sensitivity to evaluate individual or group-level differences in central auditory processing for high performing (non-impaired) listeners. In addition, although Lagacé et al. (2011) theorize that the R-SPIN can be used to delineate auditory factors from linguistic factors, this claim has not undergone extensive scrutiny in the literature. Because it utilizes speech materials, we cannot rule out the possibility that the auditory processing component of the test (i.e., the manipulation of SNR in the R-SPIN) may reflect linguistic processing, at least to some degree. Phenomena such as the Ganong Effect further illustrate the difficulty of separating linguistic and perceptual processes when the stimuli are speech or speech-like (Ganong 1980). To better distill what specifically is being measured by the auditory dimension of the R-SPIN test, performance on the R-SPIN test should, in future investigations, be compared to performance non-linguistic tests to determine whether an auditory processing advantage observed on non-linguistic tests is associated with better performance for low SNR R-SPIN conditions. Until then, we also leave open the possibility that the auditory processing advantages observed in previous work in bilinguals may counteract disadvantages for SUN by increasing the fidelity of the bottom-up signal, as suggested by Krizman et al. (2016). Thus, enhanced basic auditory processing may help to level

1  
2  
3  
4  
5  
6  
7  
8  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

the playing field for processing speech in noise, although the data we present here do not provide evidence that either supports or refutes that possibility.

In addition, we did not observe evidence of a dichotic listening advantage in our bilingual participants. This stands in contrast to previous evidence of heightened dichotic processing in bilinguals (Soveri et al. 2011; Gresele et al. 2013). Gresele et al. 2013, like the current study, used the Dichotic Digits test, but that study covered a much wider age range (18-59) and did not control for differences in educational level. These differences could account for the discrepant findings. Soveri et al. (2011), in contrast, administered a phonemic version of a dichotic listening test in which two syllables (constant-vowel) were played dichotically at the same intensity (dB level not reported) to Finnish-Swedish bilingual listeners and Swedish monolingual listeners between the ages of 30 and 74. In the “non-forced” condition, where the listener was not given explicit instructions as to which ear to attend to, and was instead told to report back which syllable they heard best/first, both groups displayed a right-ear advantage and the groups did not differ in the degree of this advantage. This finding is consistent with what we observed for the Dichotic Digits test, in which the listener is asked to report back the numbers that they heard without selectively attending to one ear. In addition to the non-forced condition, Soveri et al. (2011) included two other listening conditions, where the listeners were instructed to attend to either the right or the left ear and report back what they heard. When attending to the left ear in dichotic listening situations, the listener must inhibit this right ear bias, and as a consequence, attending to the left ear is theorized to require more executive processing than attending to the right ear under dichotic stimulation (reviewed in Hugdahl et al. (2009)). In the Soveri et al. (2011) study, bilingual individuals had more accurate recall than the monolinguals for the left-

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

attend and the right-attend conditions, which the authors took as evidence that bilingual individuals have stronger executive function.

As mentioned above, the Dichotic Digits Test administered in our study does not include a selective attention condition (at least not as part of standardized procedures), which limits comparison with the Soveri et al. (2011) study. However, we did administer the Competing Sentences Test, which does provide a more comparable analog to the Soveri et al. (2011) study. The Competing Sentences Test uses full sentences not syllables, and unlike the dichotic syllables test used by Soveri et al. (2011), the target sentence is presented at a lower intensity than the distractor. However, a right-ear advantage is still expected for the Competing Sentences Test, even under conditions where the signal to the right ear is 15 dB below the signal to the left ear (reviewed in Hugdahl et al. (2009)). Using the Competing Sentences Test, in our cohort of college students (who were younger than the Soveri et al. (2011) sample), we found that performance was at or near ceiling for both the left-attend and right-attend conditions, with the scores ranging from a low of 92.5% to a high of 100%. Yet, even in the face of these high scores, the bilingual group still showed a small but statistically significant drop in performance compared to the monolingual group. This was most evident when the task was to focus on the left ear compared to the right ear, consistent with the right-ear advantage for this task. The monolingual group, by contrast, showed no ear bias by performing at or near ceiling on both conditions. One interpretation of this finding is that the monolingual group in our dataset has more refined executive function than the bilingual group. Thus, while previous studies suggest that bilingual individuals may be able to draw on more refined executive skills to outperform monolingual individuals on selective auditory attention tasks that involve non-linguistic stimuli (Bak, Vega-Mendoza, and Sorace 2014) or simple linguistic stimuli such as numbers (Krizman

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60*Skoe & Karayaniidi**Bilingual Speech Understanding in Noise*

et al. 2012) and syllables (Soveri et al. 2011), our findings suggest that the purported bilingual advantage in harnessing executive function does not necessarily transfer to more linguistically-challenging stimuli or that it may not manifest at all. A different, yet not contradictory interpretation is that listening tasks that require more cognitive control expose an underlying (subtle, in our case) difference in linguistic processing.

Although our small study, like recent more large-scale studies of bilinguals (Paap, Johnson, and Sawi 2014, 2015), does not provide direct or even indirect evidence of enhanced executive function in our young adult bilingual cohort, this does not necessarily discount the possibility that bilingualism may advantage certain aspects of executive function and/or auditory processing at points in life (Bialystok, Martin, and Viswanathan 2005). Future studies that include comprehensive assessments of language, executive, and auditory function are needed to more fully explore the linguistic and non-linguistic conditions under which selective listening advantages emerge for bilingual speakers at different points in life.

### *Is the bilingual disadvantage in noise modality specific?*

We now turn to the question of whether the bilingual disadvantage is modality specific. In the case of dyslexia, difficulties understanding speech in noise has been theorized to be the outcome of a sensory-wide difficulty with excluding noise for both auditory (speech and non-speech), as well as visual conditions (Sperling et al. 2005). For musically trained populations, advantages have been seen for adverse (i.e., degraded or distorted) conditions across both visual and auditory modalities (Anaya, Pisoni, and Kronenberger 2016). In the case of bilingual individuals, current data suggest that the disadvantages that face bilingual speakers in noise are specific to speech and that they do not generalize to non-speech signals (Krizman et al. 2016); however, more work needs to be done to examine whether the bilingual weakness in noise is

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

specific to language within the auditory modality or whether it might be more sensory pervasive and extend to written forms of language.

In the current investigation, we incorporated a visual test of language processing (Passage Comprehension) that assesses the ability to use top-down linguistic information. While both the auditory-based R-SPIN test and visual-based Passage Comprehension assess top-down language skills, the two tests are not true analogs (Bellis, Billiet, and Ross 2011). In the case of R-SPIN, the sensory input was degraded, but for the Passage Comprehension test the sensory (i.e., visual input) was not. Although we did not test the R-SPIN tests in a “quiet” condition without multi-talker babble, we can infer from the results of the Time-Compressed Speech Test with Reverberation and previous work in bilingual and trilingual speakers (Mayo, Florentine, and Buus 1997; Rogers et al. 2006; Tabri, Abou Chakra, and Pring 2011; Shi 2012) that the groups would likely perform similarly in an R-SPIN condition without background noise, at least on the low predictability condition. Another way in which the R-SPIN and Passage Comprehension tests differ is in their performance loads. The Passage Comprehension Test is administered without a time limit. Although the R-SPIN test is not a timed test, *per se*, the listener is expected to keep to the pace that the test materials are delivered in the digital recordings. The comparatively slower pace of the Passage Comprehension Test may have allowed the bilingual individuals to reach monolingual-like levels. Future research should consider incorporating a visual analog of the R-SPIN test in which the text is difficult to make out (e.g., blurred, faintly colored text, visual masker) to illuminate whether this bilingual weakness with top-down information under degraded condition is specific to auditory input (Zekveld and Kramer 2014; Anaya, Pisoni, and Kronenberger 2016). An investigation using noise in both auditory and visual would not only shed light on mechanisms of why bilingual speakers are likely to underperform

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

on SUN tasks, but also help to guide clinical recommendations for accommodating such weakness.

#### *Clinical implications*

Specialists in all areas of healthcare, including audiologists and speech-language pathologists, are now treating a larger percentage of bilingual patients. Census reports from 2010 estimated that roughly 20% of the U.S. population is bilingual, with a nearly 40% rise in bilingualism between 1980 and 2010; however, clinical services, and the number of bilingual audiologists, have not necessarily kept pace with the growing bilingual population. The challenge with caring for bilingual populations is that most clinical norming criteria are based on monolingual datasets, and utilize English-only materials, and therefore do not take into account that bilingual individuals might have different performance baselines (von Hapsburg and Peña 2002). Our finding emphasize that (1) bilinguals listeners, even those with normal hearing, no noticeable accent, and who consider themselves to have high proficiency in English, may underperform on English SUN tests, under certain conditions and (2) the choice of test materials is critical. Shi (2011) recommended that for English-dominant, early bilinguals that proficiency-ratings of 8 or better (out of 10) are required for using monolingual normative values for the NU-6 test, although our findings suggest that this recommendation does not generalize to all SIN and CAP tests. The idea of developing bilingual-specific norms, and language-specific materials, for audiological use, as well as training more bilingual audiologists, is intuitively appealing; however, it is an inherently complex, potentially fraught process, given the diversity of bilingual backgrounds (different languages, different proficiency levels, etc.) that may be encountered in a clinical setting. Another area that needs further exploration is the potential impact of having a bilingual audiologist administer and score SIN tests. In the case of the current study, the test

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
Skoe & Karayaniidi*Bilingual Speech Understanding in Noise*

administrator was bilingual, and given that test scoring for many audiologist tests is contingent on the test administrator's perception of what the patient says, this could be viewed as a potential confound.

An alternative to developing language-specific norms is to use a test like the R-SPIN that can (theoretically) dissociate auditory and linguistic factors, and/or to use SIN tests that have a low linguistic load. A recent study suggests that children who learn two languages simultaneously can achieve the same level of performance on SIN tests as SES-matched children, when the age of English acquisition is matched and speech materials use simple vocabulary that minimizes linguistic load/bias (Reetzke et al. 2016). Reetzke et al. (2016) replicated this finding across multiple SNR conditions, under different types of maskers, and in auditory-only and audio-visual conditions, providing strong converging evidence that bilingual and monolingual individuals can achieve similar levels of performance in noise when linguistic materials are adequately controlled. For the purposes of assessing central auditory function in bilingual (as well monolingual) speakers, there is also value in incorporating non-linguistic measures of central auditory function (Moore et al. 2010; Ludwig et al. 2014), utilizing speech in noise tests that do not rely on a direct report of speech understanding, such as electrophysiological testing (Krizman et al. 2012), creating tests that allow for a greater spread of performance among non-impaired listeners, and/or administering subjective tests of noise tolerance and/or listening effort in noise (von Hapsburg and Bahng 2006; Shi, Azcona, and Buten 2015).

However, a first step in developing more bilingual-focused care, is to establish more widespread clinical recognition and scientific exploration of the specific advantages and disadvantages that bilinguals may display on tests that are routinely administered in the

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
50  
59  
60 Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

evaluation of central and peripheral auditory function. This will be key for developing more tailored strategies for counseling and remediation in disordered bilingual populations, as well as developing hearing conservation programs that address the specific difficulties faced by bilingual individuals.

### Acknowledgements

This study was completed as partial fulfillment of the second author's Au.D. Degree. We'd like to extend our thanks to Parker Tichko for his comments on an earlier version of this manuscript, and Kelly Linehan for her assistance with data coding and copyediting.

### Author Contributions

K.K and E.S. designed the study, K.K collected the data, K.K and E.S. analyzed the data, and E.S. wrote the paper with input from K.K.

### References

Anaya EM, Pisoni DB, Kronenberger WG. (2016) Long-term musical experience and auditory and visual perceptual abilities under adverse conditions. *J Acoust Soc Am* 140: 2074-2081.

Bak TH, Vega-Mendoza M, Sorace A. (2014) Never too late? An advantage on tests of auditory attention extends to late bilinguals. *Front Psychol* 5.

Bellis TJ, Billiet C, Ross J. (2011) The utility of visual analogs of central auditory tests in the differential diagnosis of (central) auditory processing disorder and attention deficit hyperactivity disorder. *J Am Acad Audiol* 22: 501-14.

Bialystok E, Martin MM, Viswanathan M. (2005) Bilingualism across the lifespan: The rise and fall of inhibitory control. *Int J Biling* 9: 103-119.

Bialystok E, Craik FI, Green DW, Gollan TH. (2009) Bilingual minds. *Psychol Sci Public Interest* 10: 89-129.

Bialystok E. (2015) Bilingualism and the development of executive function: The role of attention. *Child development perspectives* 9: 117-121.

Bilger RC, Nuetzel JM, Rabinowitz WM, Rzeczkowski C. (1984) Standardization of a test of speech perception in noise. *J Speech Hear Res* 27: 32-48.

Bradlow AR, Alexander JA. (2007) Semantic and phonetic enhancements for speech-in-noise recognition by native and non-native listeners. *J Acoust Soc Am* 121: 2339-2349.

Costa A, Hernández M, Costa-Faidella J, Sebastián-Gallés N. (2009) On the bilingual advantage in conflict processing: Now you see it, now you don't. *Cognition* 113: 135-149.

Cutler A, Weber A, Smits R, Cooper N. (2004) Patterns of english phoneme confusions by native and non-native listeners. *J Acoust Soc Am* 116: 3668-3678.

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayani

Bilingual Speech Understanding in Noise

Ganong WF. (1980) Phonetic categorization in auditory word perception. *J Exp Psychol: Human Percept Perform* 6: 110.

Garcia-Sierra A, Ramirez-Esparza N, Silva-Pereyra J, Siard J, Champlin CA. (2012) Assessing the double phonemic representation in bilingual speakers of spanish and english: An electrophysiological study. *Brain Lang* 121: 194-205.

Gollan TH, Montoya RI, Cera C, Sandoval TC. (2008) More use almost always means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis. *J Mem Lang* 58: 787-814.

Green DW. (1998) Mental control of the bilingual lexico-semantic system. *Bilingualism: Lang Cog* 1: 67-81.

Gresele AD, Garcia MV, Torres EM, Santos SN, Costa MJ. (2013) Bilingualism and auditory processing abilities: Performance of adults in dichotic listening tests. *Codas* 25: 506-12.

Hart B, Risley TR. (1995) *Meaningful differences in the everyday experience of young american children*. Paul H Brookes Publishing.

Hervais-Adelman A, Pefkou M, Golestani N. (2014) Bilingual speech-in-noise: Neural bases of semantic context use in the native language. *Brain Lang* 132: 1-6.

Hugdahl K, Westerhausen R, Alho K, Medvedev S, Laine M, Hamalainen H. (2009) Attention and cognitive control: Unfolding the dichotic listening story. *Scand J Psychol* 50: 11-22.

Kerkhofs R, Dijkstra T, Chwilla DJ, de Brujin ER. (2006) Testing a model for bilingual semantic priming with interlingual homographs: Rt and n400 effects. *Brain Res* 1068: 170-83.

Killion MC, Niquette PA, Gudmundsen GI, Revit LJ, Banerjee S. (2004) Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners. *J Acoust Soc Am* 116: 2395-2405.

Krizman J, Marian V, Shook A, Skoe E, Kraus N. (2012) Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. *Proc Natl Acad Sci USA* 109: 7877-81.

———. (2012) Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. *Proceedings of the National Academy of Sciences USA* 109: 7877-81.

Krizman J, Skoe E, Marian V, Kraus N. (2014) Bilingualism increases neural response consistency and attentional control: Evidence for sensory and cognitive coupling. *Brain Lang* 128: 34-40.

Krizman J, Slater J, Skoe E, Marian V, Kraus N. (2015) Neural processing of speech in children is influenced by extent of bilingual experience. *Neurosci Let* 585: 48-53.

Krizman J, Bradlow AR, Lam SS-Y, Kraus N. (2016) How bilinguals listen in noise: Linguistic and non-linguistic factors. *Bilingualism: Lang Cog*: 1-10.

Lagacé J, Jutras B, Gagné J-P. (2010) Auditory processing disorder and speech perception problems in noise: Finding the underlying origin. *Am J Audiol* 19: 17-25.

Lagacé J, Jutras B, Giguère C, Gagné J-P. (2011) Speech perception in noise: Exploring the effect of linguistic context in children with and without auditory processing disorder. *Int J Audiol* 50: 385-395.

Luce PA, Pisoni DB. (1998) Recognizing spoken words: The neighborhood activation model. *Ear Hear* 19: 1-36.

Lucks Mendel L, Widner H. (2016) Speech perception in noise for bilingual listeners with normal hearing. *Int J Audiol* 55: 126-34.

Ludwig AA, Fuchs M, Kruse E, Uhlig B, Kotz SA, Rubsamen R. (2014) Auditory processing disorders with and without central auditory discrimination deficits. *J Assoc Res Otolaryngol* 15: 441-64.

Mägiste E. (1979) The competing language systems of the multilingual: A developmental study of decoding and encoding processes. *J Verbal Learning Verbal Behav* 18: 79-89.

Magnuson JS, Dixon JA, Tanenhaus MK, Aslin RN. (2007) The dynamics of lexical competition during spoken word recognition. *Cog Sci* 31: 133-156.

Marian V, Blumenfeld HK, Boukrina OV. (2008) Sensitivity to phonological similarity within and across languages. *J Psychol Res* 37: 141-170.

Mayo LH, Florentine M, Buus S. (1997) Age of second-language acquisition and perception of speech in noise. *J Speech Hear Res* 40: 686-93.

1  
2  
3 Skoe & Karayani  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
50 McClelland JL, Elman JL. (1986) The trace model of speech perception. *Cog Psychol* 18: 1-86.  
51 Montagni I, Peru A. (2011) Effects of language and music learning on pitch and duration perception: An  
52 experimental investigation. *Int J Psychol Behavior Sci* 1: 33-40.  
53 Moore DR, Ferguson MA, Edmondson-Jones AM, Ratib S, Riley A. (2010) Nature of auditory processing  
54 disorder in children. *Pediatrics* 126: e382-90.  
55 Musiek FE. (1983) Assessment of central auditory dysfunction: The dichotic digit test revisited. *Ear Hear*  
56 4: 79-83.  
57 Nilsson M, Soli SD, Sullivan JA. (1994) Development of the hearing in noise test for the measurement of  
58 speech reception thresholds in quiet and in noise. *J Acoust Soc Am* 95: 1085-99.  
59 Paap KR, Johnson HA, Sawi O. (2014) Are bilingual advantages dependent upon specific tasks or  
60 specific bilingual experiences? *J Cogn Psychol* 26: 615-639.  
61 ———. (2015) Bilingual advantages in executive functioning either do not exist or are restricted to very  
62 specific and undetermined circumstances. *Cortex* 69: 265-278.  
63 Parbery-Clark A, Skoe E, Lam C, Kraus N. (2009) Musician enhancement for speech-in-noise. *Ear Hear*  
64 30: 653-61.  
65 Paulmann S, Elston-Guttler KE, Gunter TC, Kotz SA. (2006) Is bilingual lexical access influenced by  
66 language context? *Neuroreport* 17: 727-31.  
67 Ramírez-Esparza N, García-Sierra A, Kuhl PK. (2014) Look who's talking: Speech style and social  
68 context in language input to infants are linked to concurrent and future speech development. *Dev  
69 Sci* 17: 880-891.  
70 Reetzke R, Lam BP-W, Xie Z, Sheng L, Chandrasekaran B. (2016) Effect of simultaneous bilingualism  
71 on speech intelligibility across different masker types, modalities, and signal-to-noise ratios in  
72 school-age children. *PLoS One* 11: e0168048.  
73 Rogers CL, Lister JJ, Febo DM, Bising JM, Abrams HB. (2006) Effects of bilingualism, noise, and  
74 reverberation on speech perception by listeners with normal hearing. *Applied Psycholinguist* 27: 465-  
75 485.  
76 Schmidtke J. (2016) The bilingual disadvantage in speech understanding in noise is likely a frequency  
77 effect related to reduced language exposure. *Front Psychol* 7.  
78 Shi L-F. (2010) Perception of acoustically degraded sentences in bilingual listeners who differ in age of  
79 English acquisition. *J Speech Hear Res* 53: 821-835.  
80 ———. (2011) How "proficient" is proficient? Subjective proficiency as a predictor of bilingual  
81 listeners' recognition of English words. *Am J Audiol* 20: 19-32.  
82 ———. (2012) Contribution of linguistic variables to bilingual listeners' perception of degraded English  
83 sentences. *J Speech Hear Res* 55: 219-234.  
84 Shi L-F, Farooq N. (2012) Bilingual listeners' perception of temporally manipulated English passages. *J  
85 Speech Hear Res* 55: 125-138.  
86 Shi L-F, Azcona G, Buten LI. (2015) Acceptance noise level: Effects of the speech signal, babble, and  
87 listener language. *J Speech Hear Res* 58: 497-508.  
88 Skoe E, Burakiewicz E, Figueiredo M, Hardin M. (2017) Basic neural processing of sound in adults is  
89 influenced by bilingual experience. *Neurosci* 349: 278-290.  
90 Slater J, Skoe E, Strait DL, O'Connell S, Thompson E, Kraus N. (2015) Music training improves speech-  
91 in-noise perception: Longitudinal evidence from a community-based music program. *Behav  
92 Brain Res* 291: 244-52.  
93 Slater J, Kraus N. (2016) The role of rhythm in perceiving speech in noise: A comparison of  
94 percussionists, vocalists and non-musicians. *Cogn Process* 17: 79-87.  
95 Soveri A, Laine M, HÄMÄLÄINEN H, Hugdahl K. (2011) Bilingual advantage in attentional control:  
96 Evidence from the forced-attention dichotic listening paradigm. *Bilingualism: Language and  
97 Cognition* 14: 371-378.  
98 ———. (2011) Bilingual advantage in attentional control: Evidence from the forced-attention dichotic  
99 listening paradigm. *Bilingualism: Lang Cog* 14: 371-378.  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
2510  
2511  
2512  
2513  
2514  
2515  
2516  
2517  
2518  
2519  
2520  
2521  
2522  
2523  
2524  
2525  
2526  
2527  
2528  
2529  
2530  
2531  
2532  
2533  
2534  
2535  
2536  
2537  
2538  
2539  
2540  
2541  
2542  
2543  
2544  
2545  
2546  
2547  
2548  
2549  
2550  
2551  
2552  
2553  
2554  
2555  
2556  
2557  
2558  
2559  
2560  
2561  
2562  
2563  
2564  
2565  
2566  
2567  
2568  
2569  
2570  
2571  
2572  
2573  
2574  
2575  
2576  
2577  
2578  
2579  
2580  
2581  
2582  
2583  
2584  
2585  
2586  
2587  
2588  
2589  
2590  
2591  
2592  
2593  
2594  
2595  
2596  
2597  
2598  
2599  
2510  
2511  
2512  
2513  
2514  
2515  
2516  
2517  
2518  
2519  
2520  
2521  
2522  
2523  
2524  
2525  
2526  
2527  
2528  
2529  
25210  
25211  
25212  
25213  
25214  
25215  
25216  
25217  
25218  
25219  
25220  
25221  
25222  
25223  
25224  
25225  
25226  
25227  
25228  
25229  
25230  
25231  
25232  
25233  
25234  
25235  
25236  
25237  
25238  
25239  
25240  
25241  
25242  
25243  
25244  
25245  
25246  
25247  
25248  
25249  
25250  
25251  
25252  
25253  
25254  
25255  
25256  
25257  
25258  
25259  
252510  
252511  
252512  
252513  
252514  
252515  
252516  
252517  
252518  
252519  
252520  
252521  
252522  
252523  
252524  
252525  
252526  
252527  
252528  
252529  
252530  
252531  
252532  
252533  
252534  
252535  
252536  
252537  
252538  
252539  
252540  
252541  
252542  
252543  
252544  
252545  
252546  
252547  
252548  
252549  
252550  
252551  
252552  
252553  
252554  
252555  
252556  
252557  
252558  
252559  
252560  
252561  
252562  
252563  
252564  
252565  
252566  
252567  
252568  
252569  
252570  
252571  
252572  
252573  
252574  
252575  
252576  
252577  
252578  
252579  
252580  
252581  
252582  
252583  
252584  
252585  
252586  
252587  
252588  
252589  
252590  
252591  
252592  
252593  
252594  
252595  
252596  
252597  
252598  
252599  
252510  
252511  
252512  
252513  
252514  
252515  
252516  
252517  
252518  
252519  
252520  
252521  
252522  
252523  
252524  
252525  
252526  
252527  
252528  
252529  
252530  
252531  
252532  
252533  
252534  
252535  
252536  
252537  
252538  
252539  
252540  
252541  
252542  
252543  
252544  
252545  
252546  
252547  
252548  
252549  
252550  
252551  
252552  
252553  
252554  
252555  
252556  
252557  
252558  
252559  
252560  
252561  
252562  
252563  
252564  
252565  
252566  
252567  
252568  
252569  
252570  
252571  
252572  
252573  
252574  
252575  
252576  
252577  
252578  
252579  
252580  
252581  
252582  
252583  
252584  
252585  
252586  
252587  
252588  
252589  
2525810  
2525811  
2525812  
2525813  
2525814  
2525815  
2525816  
2525817  
2525818  
2525819  
2525820  
2525821  
2525822  
2525823  
2525824  
2525825  
2525826  
2525827  
2525828  
2525829  
25258210  
25258211  
25258212  
25258213  
25258214  
25258215  
25258216  
25258217  
25258218  
25258219  
25258220  
25258221  
25258222  
25258223  
25258224  
25258225  
25258226  
25258227  
25258228  
25258229  
25258230  
25258231  
25258232  
25258233  
25258234  
25258235  
25258236  
25258237  
25258238  
25258239  
25258240  
25258241  
25258242  
25258243  
25258244  
25258245  
25258246  
25258247  
25258248  
25258249  
25258250  
25258251  
25258252  
25258253  
25258254  
25258255  
25258256  
25258257  
25258258  
25258259  
25258260  
25258261  
25258262  
25258263  
25258264  
25258265  
25258266  
25258267  
25258268  
25258269  
25258270  
25258271  
25258272  
25258273  
25258274  
25258275  
25258276  
25258277  
25258278  
25258279  
25258280  
25258281  
25258282  
25258283  
25258284  
25258285  
25258286  
25258287  
25258288  
25258289  
25258290  
25258291  
25258292  
25258293  
25258294  
25258295  
25258296  
25258297  
25258298  
25258299  
252582100  
252582101  
252582102  
252582103  
252582104  
252582105  
252582106  
252582107  
252582108  
252582109  
252582110  
252582111  
252582112  
252582113  
252582114  
252582115  
252582116  
252582117  
252582118  
252582119  
252582120  
252582121  
252582122  
252582123  
252582124  
252582125  
252582126  
252582127  
252582128  
252582129  
252582130  
252582131  
252582132  
252582133  
252582134  
252582135  
252582136  
252582137  
252582138  
252582139  
252582140  
252582141  
252582142  
252582143  
252582144  
252582145  
252582146  
252582147  
252582148  
252582149  
252582150  
252582151  
252582152  
252582153  
252582154  
252582155  
252582156  
252582157  
252582158  
252582159  
252582160  
252582161  
252582162  
252582163  
252582164  
252582165  
252582166  
252582167  
252582168  
252582169  
252582170  
252582171  
252582172  
252582173  
252582174  
252582175  
252582176  
252582177  
252582178  
252582179  
252582180  
252582181  
252582182  
252582183  
252582184  
252582185  
252582186  
252582187  
252582188  
252582189  
252582190  
252582191  
252582192  
252582193  
252582194  
252582195  
252582196  
252582197  
252582198  
252582199  
252582200  
252582201  
252582202  
252582203  
252582204  
252582205  
252582206  
252582207  
252582208  
252582209  
252582210  
252582211  
252582212  
252582213  
252582214  
252582215  
252582216  
252582217  
252582218  
252582219  
252582220  
252582221  
252582222  
252582223  
252582224  
252582225  
252582226  
252582227  
252582228  
252582229  
252582230  
252582231  
252582232  
252582233  
252582234  
252582235  
252582236  
252582237  
252582238  
252582239  
252582240  
252582241  
252582242  
252582243  
252582244  
252582245  
252582246  
252582247  
252582248  
252582249  
252582250  
252582251  
252582252  
252582253  
252582254  
252582255  
252582256  
252582257  
252582258  
252582259  
252582260  
252582261  
252582262  
252582263  
252582264  
252582265  
252582266  
252582267  
252582268  
252582269  
252582270  
252582271  
252582272  
252582273  
252582274  
252582275  
252582276  
252582277  
252582278  
252582279  
252582280  
252582281  
252582282  
252582283  
252582284  
252582285  
252582286  
252582287  
252582288  
252582289  
252582290  
252582291  
252582292  
252582293  
252582294  
252582295  
252582296  
252582297  
252582298  
252582299  
252582300  
252582301  
252582302  
252582303  
252582304  
252582305  
252582306  
252582307  
252582308  
252582309  
252582310  
252582311  
252582312  
252582313  
252582314  
252582315  
252582316  
252582317  
252582318  
252582319  
252582320  
252582321  
252582322  
252582323  
252582324  
252582325  
252582326  
252582327  
252582328  
252582329  
252582330  
252582331  
252582332  
252582333  
252582334  
252582335  
252582336  
252582337  
252582338  
252582339  
252582340  
252582341  
252582342  
252582343  
252582344  
252582345  
252582346  
252582347  
252582348  
252582349  
252582350  
252582351  
252582352  
252582353  
252582354  
252582355  
252582356  
252582357  
252582358  
252582359  
252582360  
252582361  
252582362  
252582363  
252582364  
252582365  
252582366  
252582367  
252582368  
252582369  
252582370  
252582371  
252582372  
252582373  
252582374  
252582375  
252582376  
252582377  
252582378  
252582379  
252582380  
252582381  
252582382  
252582383  
252582384  
252582385  
252582386  
252582387  
252582388  
252582389  
252582390  
252582391  
252582392  
252582393  
252582394  
252582395  
252582396  
252582397  
252582398  
252582399  
252582400  
252582401  
252582402  
252582403  
252582404  
252582405  
252582406  
252582407  
252582408  
252582409  
252582410  
252582411  
252582412  
252582413  
252582414  
252582415  
252582416  
252582417  
252582418  
252582419  
252582420  
252582421  
252582422  
252582423  
252582424  
252582425  
252582426  
252582427  
252582428  
252582429  
252582430  
252582431  
252582432  
252582433  
252582434  
252582435  
252582436  
252582437  
252582438  
252582439  
252582440  
252582441  
252582442  
252582443  
252582444  
252582445  
252582446  
252582447  
252582448  
252582449  
252582450  
252582451  
252582452  
252582453  
252582454  
252582455  
252582456  
252582457  
252582458  
252582459  
252582460  
252582461  
252582462  
252582463  
252582464  
252582465  
252582466  
252582467  
252582468  
252582469  
252582470  
252582471  
252582472  
252582473  
252582474  
252582475  
252582476  
252582477  
252582478  
252582479  
252582480  
252582481  
252582482  
252582483  
252582484  
252582485  
252582486  
252582487  
252582488  
252582489  
252582490  
252582491  
252582492  
252582493  
252582494  
252582495  
252582496  
252582497  
252582498  
252582499  
252582500  
252582501  
252582502  
252582503  
252582504  
252582505  
252582506  
252582507  
252582508  
252582509  
252582510  
252582511  
252582512  
252582513  
252582514  
252582515  
252582516  
252582517  
252582518  
252582519  
252582520  
252582521  
252582522  
252582523  
252582524  
252582525  
252582526  
252582527  
252582528  
252582529  
252582530  
252582531  
252582532  
252582533  
252582534  
252582535  
252582536  
252582537  
252582538  
252582539  
252582540  
252582541  
252582542  
252582543  
252582544  
252582545  
252582546  
252582547  
252582548  
252582549  
252582550  
252582551  
252582552  
252582553  
252582554  
252582555  
252582556  
252582557  
252582558  
252582559  
252582560  
252582561  
252582562  
252582563  
252582564  
252582565  
252582566  
252582567  
252582568  
252582569  
252582570  
252582571  
252582572  
252582573  
252582574  
252582575  
252582576  
252582577  
252582578  
252582579  
252582580  
252582581  
252582582  
2

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Skoe & Karayaniidi

Bilingual Speech Understanding in Noise

Sperling AJ, Lu ZL, Manis FR, Seidenberg MS. (2005) Deficits in perceptual noise exclusion in developmental dyslexia. *Nat Neurosci* 8: 862-3.

Studebaker GA. (1985) A “rationalized” arcsine transform. *J Speech Hear Res* 28: 455-462.

Tabri D, Abou Chakra KM, Pring T. (2011) Speech perception in noise by monolingual, bilingual and trilingual listeners. *Int J Lang Commun Disord* 46: 411-22.

Taft M. (1979) Recognition of affixed words and the word frequency effect. *Mem Cogn* 7: 263-272.

Vihla M, Kiviniemi K, Salmelin R. (2002) Auditory cortical activation in finnish and swedish speaking finns: A magnetoencephalographic study. *Neurosci Let* 322: 141-4.

von Hapsburg D, Peña ED. (2002) Understanding bilingualism and its impact on speech audiometry. *J Speech Hear Res* 45: 202-213.

von Hapsburg D, Bahng J. (2006) Acceptance of background noise levels in bilingual (korean-english) listeners. *J Am Acad Audiol* 17: 649-658.

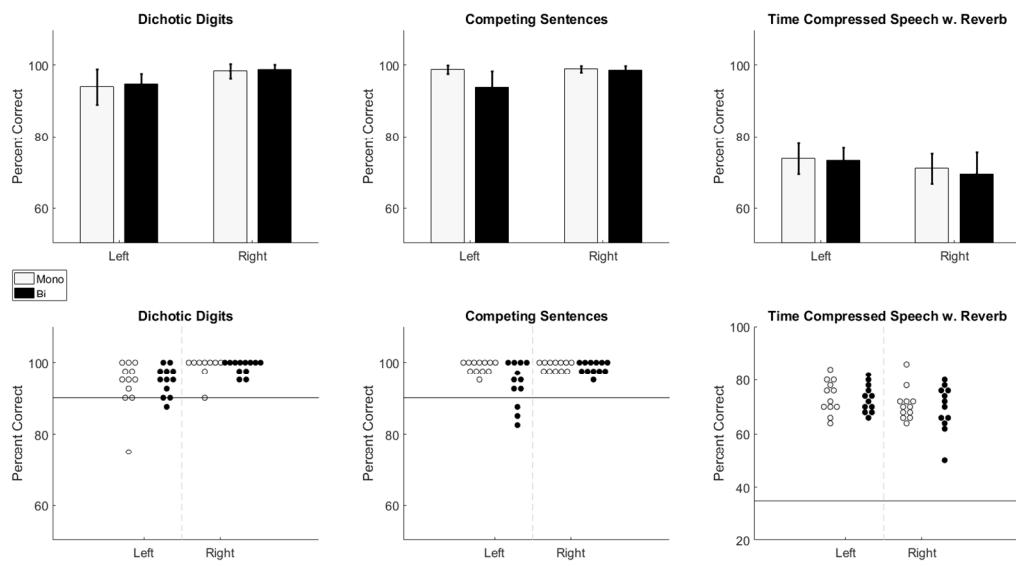
Weber A, Cutler A. (2004) Lexical competition in non-native spoken-word recognition. *J Mem Lang* 50: 1-25.

Willeford JA. (1978) Sentence tests of central auditory dysfunction. In: Katz J, Medwetsky L, Burkard R, eds. *Handbook of clinical audiology*, Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, PA

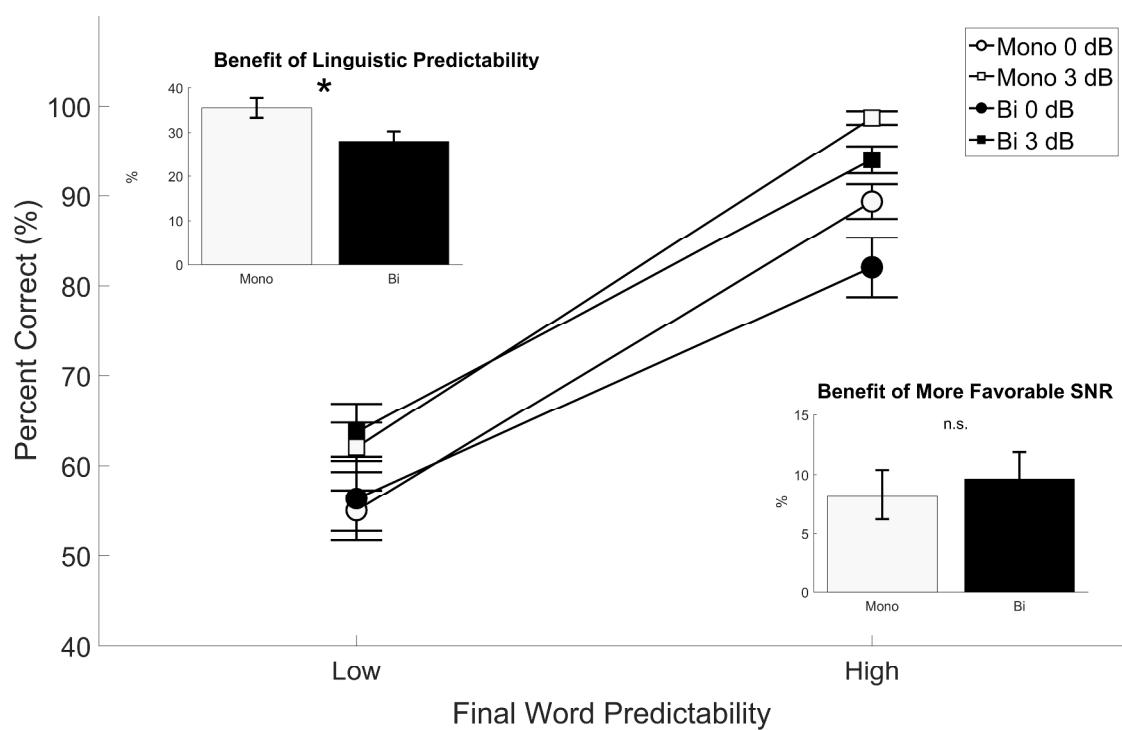
Wilson RH, Preece JP, Salamon DL, Sperry JL, Bornstein SP. (1994) Effects of time compression and time compression plus reverberation on the intelligibility of northwestern university auditory test no. 6. *J Am Acad Audiol* 5: 269-77.

Wilson RH, Abrams HB, Pillion AL. (2003) A word-recognition task in multitalker babble using a descending presentation mode from 24 db to 0 db signal to babble. *J Rehabil Res Dev* 40: 321-7.

Woodcock R, Mather N, McGrew K. (2001) *Woodcock-johnson iii tests of cognitive abilities examiner's manual*. Riverside, Itasca.


Zekveld AA, Kramer SE. (2014) Cognitive processing load across a wide range of listening conditions: Insights from pupillometry. *Psychophysiol* 51: 277-284.

## Figure Captions


1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

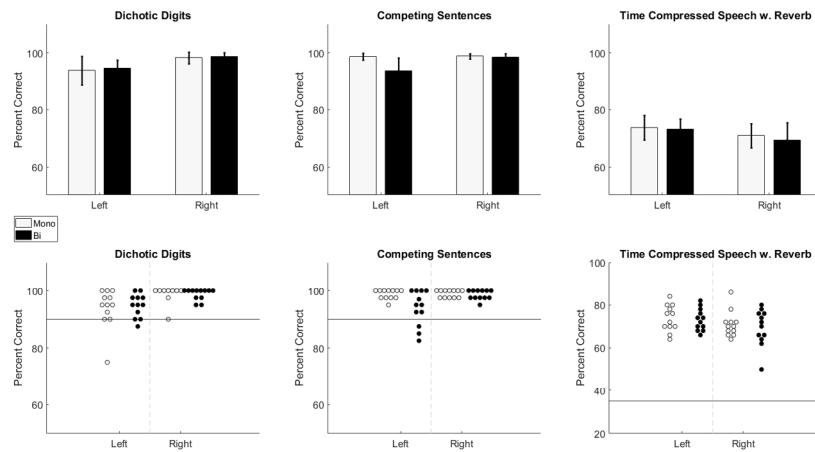
Skoe &amp; Karayannidis

Bilingual Speech Understanding in Noise



**Figure 1.** Comparisons between the Monolingual (gray) and Bilingual (black) groups on the Dichotic Digits, Competing Sentences, and Time-Compressed Speech with Reverberation Tests. In the top row, group means are plotted for each test, with error bars representing one standard error of the mean. In the bottom row, one-dimensional scatter plots show the distribution of scores across groups, ear, and tests. The horizontal line represents the cutoff score used for evaluating Central Auditory Processing Disorder (CAPD); scores below the line are considered abnormal. Note the number of perfect scores (100%) for the right ear for both Dichotic Digits and Competing Sentences. In the case of Dichotic Digits, also note that a number of the data points are overlapping for the monolingual group for the right ear.




**Figure 2.** Comparisons between the Monolingual (gray) and Bilingual (black) groups on the R-SPIN Test. Center plot: Results of the four conditions for the two groups, with 0 dB SNR conditions plotted with squares and the 3 dB condition plotted with circles. Across both the Low (left) and High (right) predictability conditions, performance improved as the SNR increased from 0 to 3 dB; however, both group benefited to the same degree (bottom right inset panel). There was also a sharp improvement in performance when the final word could be deduced from context (high predictability condition) compared to when it could not (low predictability condition). In this case the extent of the improvement was greater for the monolingual group than the bilingual group (top left inset panel).

| Age window of First Exposure to English (years) | Age | Sex | Non-English Language (NEL) | English Proficiency (/10) | NEL Proficiency (/10) | Literate in NEL | Live outside U.S |
|-------------------------------------------------|-----|-----|----------------------------|---------------------------|-----------------------|-----------------|------------------|
| 0-3                                             | 26  | F   | Spanish                    | 10                        | 8                     | Yes             |                  |
| 0-3                                             | 21  | F   | Portuguese                 | 10                        | 9                     | Yes             |                  |
| 0-3                                             | 19  | F   | Telugu                     | 9                         | 8                     | No              |                  |
| 0-3                                             | 22  | F   | Spanish                    | 10                        | 10                    | Yes             | 2 years          |
| 0-3                                             | 20  | F   | Spanish                    | 10                        | 7                     | No              |                  |
| 0-3                                             | 20  | F   | Mongolian                  | 10                        | 9                     | No              | 2 years          |
| 0-3                                             | 23  | F   | Bangla                     | 10                        | 8                     | No              |                  |
| 0-3                                             | 18  | M   | Tamil                      | 10                        | 8                     | No              | 3 years          |
| 3-6                                             | 22  | M   | Japanese                   | 10                        | 9                     | Yes             | 4 years          |
| 3-6                                             | 20  | F   | Polish                     | 10                        | 7                     | No              |                  |
| 3-6                                             | 20  | F   | Serbian                    | 10                        | 7                     | Yes             | 2 years          |
| 6-9                                             | 24  | M   | Portuguese                 | 9                         | 10                    | Yes             | 14 years         |

Table 1. Bilingual group demographics

|                                      |      | N  | Mean  | Std. Deviation |
|--------------------------------------|------|----|-------|----------------|
| Age (years)                          | Mono | 12 | 20.30 | 1.22           |
|                                      | Bi   | 12 | 21.31 | 2.22           |
| L1 Self-Rated Proficiency (/10)      | Mono | 12 | 9.92  | 0.29           |
|                                      | Bi   | 12 | 9.25  | 1.22           |
| L2 Self-Perceived Proficiency (/10)  | Mono | 12 | 3.17  | 1.64           |
|                                      | Bi   | 12 | 8.92  | 1.00           |
| English Self-Rated Proficiency (/10) | Mono | 12 | 9.92  | 0.29           |
|                                      | Bi   | 12 | 9.75  | 0.45           |
| Musical Training (years)             | Mono | 12 | 3.42  | 4.33           |
|                                      | Bi   | 12 | 4.50  | 3.82           |
| Maternal Education (years) *         | Mono | 12 | 15.33 | 2.95           |
|                                      | Bi   | 11 | 14.73 | 3.26           |
| PTA: RIGHT (dB HL)                   | Mono | 12 | 12.22 | 5.92           |
|                                      | Bi   | 12 | 10.56 | 3.65           |
| PTA: LEFT (dB HL)                    | Mono | 12 | 10.00 | 4.55           |
|                                      | Bi   | 12 | 8.75  | 3.42           |

**Table 2. Group means and standard deviations for age, self-rated current proficiency of L1, L2 and English, musical training, maternal education, and pure tone audiometric thresholds (pure tone averages (PTA)).** (One of the bilingual participants did not answer this question as the result of a photocopying error.)



Comparisons between the Monolingual (gray) and Bilingual (black) groups on the Dichotic Digits, Competing Sentences, and Time-Compressed Speech with Reverberation Tests. In the top row, group means are plotted for each test, with error bars representing one standard error of the mean. In the bottom row, one-dimensional scatter plots show the distribution of scores across groups, ear, and tests. The horizontal line represents the cutoff score used for evaluating Central Auditory Processing Disorder (CAPD); scores below the line are considered abnormal. Note the number of perfect scores (100%) for the right ear for both Dichotic Digits and Competing Sentences. In the case of Dichotic Digits, also note that a number of the data points are overlapping for the monolingual group for the right ear.

508x255mm (96 x 96 DPI)