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ScienceDirect
Individual cells within a population can display diverse

phenotypes due to differences in their local environment,

genetic variation, and stochastic expression of genes.

Understanding this cell-to-cell variation is important for

metabolic engineering applications because variability can

impact production. For instance, recent studies have shown

that production can be highly heterogeneous among

engineered cells, and strategies that manage this diversity

improve yields of biosynthetic products. These results suggest

the potential of controlling variation as a novel approach

towards improving performance of engineered cells. In this

review, we focus on identifying the origins of cell-to-cell

variation in metabolic engineering applications and discuss

recent developments on strategies that can be employed to

diminish, accept, or even exploit cell-to-cell variation.
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Introduction
As microscopy, flow cytometry, and other single-cell

measurement technologies advance, researchers have

begun to compare measurements of individual cells to

bulk population averages. These studies have revealed

that variability between cells can be significant, suggest-

ing that population-level averages may obscure underly-

ing heterogeneity [1–4]. Cell-to-cell variation can be

caused by many factors including genetic differences,

phenotypic heterogeneity, and differences in the local

microenvironment. In natural contexts, this type of vari-

ability can play an important functional role, such as

reducing burden of costly protein expression or increasing
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survival in changing environments [5–7]. In this review,

we discuss the origins of variation relevant to metabolic

engineering and highlight recent examples of strategies to

control diversity that hold promise for improving produc-

tion yields.

Despite the prevalence of cell-to-cell variation in nature,

it is not traditionally studied in the context of metabolic

engineering applications. The reasons behind this are

practical, as it can be technically challenging to measure

single-cell level effects, and reporters and methods for

quantifying metabolically-relevant states often do not

exist. However, the importance of understanding cell-

to-cell differences is highlighted by recent metabolic

engineering studies that have shown that cell-to-cell

variation can impose a significant impact on production.

For example, Xiao et al. demonstrated that 15% of cells in

an isogenic Escherichia coli population of free fatty acid

producers were responsible for over half of the total

product [8��]. In another study, approximately a third

of cells in cultures of the production host Bacillus mega-
terium were shown to persist in a low production state,

regardless of culturing conditions [9]. These studies

suggest that managing cell-to-cell-variation may offer a

potential approach for further optimization of production

pathways, which can be used in concert with traditional

metabolic engineering strategies.

In this review, we discuss the origins of cell-to-cell

variation in metabolic engineering and strategies to con-

trol variability. We divide the origins of variation into

environmental and cellular categories, the latter of which

includes variation due to native and engineered compo-

nents, and the interplay between them. We then discuss

strategies for controlling and exploiting variation in met-

abolic engineering contexts. These range from diminish-

ing, to accepting, to actively creating variation within

populations of cells. Finally, we describe technological

advances that would help to facilitate quantification and

the engineering of control strategies.

Origins of cell-to-cell variation in metabolic
engineering
Cell-to-cell variation in metabolic engineering applica-

tions can be divided into two categories. First, environ-

mental variation, which is due to the impact of gradients

in local conditions, such as nutrient availability or extra-

cellular product levels. Second, cellular variation, which is

due to properties internal to the cell, such as
www.sciencedirect.com

mailto:mjdunlop@bu.edu
https://doi.org/10.1016/j.copbio.2018.08.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2018.08.013&domain=pdf
http://www.sciencedirect.com/science/journal/09581669


Controlling and exploiting cell-to-cell variation in metabolic engineering Wang and Dunlop 11

Figure 1

Environmental
Variation

Genetic
Variation

Abundance
of Endogenous

Resources

Copy Number
Variation

Stochastic
Gene

Expression

Cellular
Variation

N
ative +

 E
ngineered

Current Opinion in Biotechnology

Origins of cell-to-cell variation in metabolic engineering. Sources of

variation can be divided into environmental and cellular variation.

Environmental variation originates from heterogeneity in the local

environment, such as due to poor-mixing in a large-scale bioreactor.

Cellular variation can result from both native and engineered pathways

due to genetic diversity or phenotypic heterogeneity. Significant

interplay exists between environmental and cellular variation, and

between native and engineered pathways.
heterogeneity in cellular resources or intracellular product

levels (Figure 1).

Although we generally assume that production environ-

ments are homogeneous, several studies have
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demonstrated that this assumption is not entirely valid

as volume scales are increased. Within industrial scale

bioreactors, mixing becomes challenging due to high

viscosities and large volumes [10]. Consequently, produc-

tion variation can occur even within isogenic cell popula-

tions due to the fact that cells are exposed to different

local conditions within the same bioreactor. Most

approaches for increasing homogeneity within scaled-

up bioreactors are mechanical and aim to ensure even

mixing [11–13], however it is also possible to design

genetic circuits that work to mitigate the effects of this

nonuniformity.

Cellular variability is impacted by both native properties,

such as ribosome and ATP levels, and heterologous

factors, such as expression of a burdensome, non-native

enzyme. In addition, diversity can arise due to the inter-

play between these native and engineered components.

For instance, some cells may have a higher capacity for

expression of a synthetic circuit than others due to single-

cell level differences in transcription or translation

machinery.

Examples of endogenous sources of cell-to-cell variation

are genetic diversity and phenotypic heterogeneity in

expression of native pathways. Genetic diversity can arise

from mutations accumulated during the production pro-

cess, which can lead to production differences between

cells [14��]. Alternatively, genetic differences may be

specifically engineered, such as in applications that

employ different stains or species in co-cultures for bio-

synthesis [15��]. In contrast to variation due to genetic

changes, phenotypic heterogeneity, which is commonly
t of
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pending on the circumstances, the optimal engineering strategy may

r create and exploit cell-to-cell variation.
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referred to as ‘noise,’ exists even in isogenic cells due to

stochasticity in how genes are expressed [16]. Phenotypic

heterogeneity can have a major impact on the physiologi-

cal state of the cell, and has been shown to affect growth

rate, ATP levels, overall protein abundance, and metab-

olism in single cells [17–21]. Endogenous variation ulti-

mately impacts biosynthesis, leading to differences in

production between cells. The addition of heterologous

elements can further exacerbate cell-to-cell variation, as

these components can impose burden, introduce toxicity,

and redirect metabolic flux, thereby affecting native path-

ways [22,23�,24,25].

Strategies for coping with cell-to-cell variation
in metabolic engineering
Depending on the circumstances, it may be advantageous

to reduce variability, to design strategies to accommodate

it, or even to increase and exploit variability (Figure 2).

Diminishing variation

Some variation in engineered constructs is a by-product of

noisy regulatory elements. For example, the arabinose

inducible PBAD promoter is commonly used to control

gene expression. In the arabinose regulatory network,

unequal expression of the transporters AraE and AraFGH

can create heterogeneous expression from the PBAD pro-

moter [26]. Cells with more transporters take up more

arabinose and further induce transporter expression,

forming a positive feedback loop which creates a bimodal

distribution of cells with the PBAD promoter ON and

OFF. Overexpressing AraE produces more uniform PBAD

promoter expression, effectively homogenizing the

response [27,28]. Similar response heterogeneity effects

and homogenizing strategies have also been described for

lactose/IPTG [29,30] and aTc [31,32] inducible promo-

ters. These examples demonstrate how heterogeneity can

be removed when native noisy regulatory elements are

repurposed.

Expression heterogeneity caused by differences in plas-

mid copy number is another source of variation relevant

for metabolic engineering. Plasmid numbers can vary

widely, even in clonal populations, due to stochastic

fluctuations in partitioning and replication [33] and envi-

ronmental perturbations [34–36]. For example, a recent

study on the production host B. megaterium found that

asymmetric plasmid distribution was responsible for

approximately 30% of the engineered cells existing in a

low-production state [9,37]. The uneven distribution of

plasmids can cause detrimental effects to both low and

high copy number cells, where cells with fewer plasmids

have decreased productivity, while those with more plas-

mids become overloaded, consequently ceasing growth

and stopping production. Integrating pathways into the

chromosome does not fully resolve the problem due to

variation in single-cell replication states in fast dividing

populations, which can result in genes located closer to
Current Opinion in Biotechnology 2019, 57:10–16 
the origin of replication having higher effective copy

numbers [38]. A recent study developed a novel method

for maintaining stable expression even in the face of

varying copy number [39��]. Segall-Shapiro et al. engi-

neered incoherent feedforward loops in E. coli promoters

using transcription-activator-like effectors (TALEs) to

detect changes in plasmid copy number and tune pro-

moter activity accordingly. Promoters equipped with the

genetic circuit were able to maintain constant expression

despite widely varying plasmid copy numbers and envi-

ronmental perturbations.

More general methods that do not aim at any specific

source of variation have also been developed to homoge-

nize populations by isolating high-performing cells. Xiao

et al. developed a population quality control circuit in E.
coli for free fatty acid and tyrosine production that allows

for continuous selection of high-producing variants [8��].
The genetic circuit links end-product synthesis with

expression of the tetracycline resistance gene using a

synthetic promoter controlled by a biosensor. The pro-

duction reaction is conducted under conditions with

tetracycline, thus low-production cells, which also exhibit

low antibiotic resistance, are eliminated, leaving only

high-production cells. Using this approach, the study

achieved a four-fold increase in free fatty acid production

and two-fold increase in tyrosine production over condi-

tions without the selection. In a second example, Rugb-

jerg et al. built a genetic circuit in E. coli to link production

of mevalonic acid with expression of the essential genes,

glmM and folP, limiting growth of low-production cells

[14��]. These strategies serve to homogenize the popula-

tion and eliminate underperforming cells.

Accepting variation and mitigating its detrimental

impact

Due to the complex nature of cell-to-cell variation, it may

not always be practical to homogenize the population.

Instead, methods that accept the variation and mitigate its

negative impact are often a strategic choice. Dynamic

control strategies that combine gene circuits with biosen-

sors can allow cells to respond to variation that arises from

either engineered or native pathways, and fine-tune het-

erologous (and other) pathways to achieve individualized

optimal production levels. For recent reviews on dynamic

control, see [40–42].

Intermediate and enzyme levels vary from cell to cell,

thus an ideal production process will allow each individ-

ual cell to turn on production as substrates accumulate in

order to achieve maximal efficiency. As an example,

Zhang et al. developed a dynamic sensor-regulator system

to allow engineered E. coli to sense the existence of acyl-

CoA and then turn on a production pathway to convert

this intermediate to fatty acid ethyl ester [24]. This

method allowed cells to produce three-fold higher titers

over those without the control system.
www.sciencedirect.com
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Differences in heterologous enzymes, pathway inter-

mediates, and end-product concentrations can also lead

to cell-to-cell differences in the burden and toxicity

imposed by the pathway. One way to mitigate this is to

tune down expression when toxic compounds accumulate

in each individual cell using dynamic control [22,24,25].

In addition to controlling production, it is also possible to

turn on detoxifying mechanisms to cope with product

accumulation. As an example, Siu et al. developed a

dynamic control strategy to counteract biofuel toxicity.

When biofuel accumulates, the host cell turns on expres-

sion of an efflux pump to export biofuel, thereby increas-

ing tolerance and growth [23�]. A recent review covered

engineering strategies for tackling burden and toxicity of

heterologous pathways [43].

Most dynamic control circuits are designed to cope with

one specific type of burden due to the specificity of their

biosensors. An alternative, more general approach is to

sense and regulate the overall cellular burden rather than

a particular product. Using RNA-seq to identify major

transcriptional changes that occur during burdensome

foreign protein expression, Ceroni et al. found that native

promoters related to heat-shock response can actively

respond to a wide range of heterologous pathway burdens,

including expression of an inducible reporter, a large

heterologous protein, and a metabolic pathway [44�].
The researchers used a dCas9-based feedback-regulation

system to downregulate pathway expression in response

to burden sensed by the heat shock promoters. Therefore

host cells equipped with these controllers tune produc-

tion based on an individual cell’s burden, instead of in

response to a specific compound.

In addition to dynamic control strategies that target

variation that arises from the addition of engineered

pathways, an alternative approach is to individualize

control in cells based on their endogenous physiological

states, such as based on the availability of ribosome

[45,46] and RNA polymerase [47] resources. For example,

Darlington et al. recently developed a ribosome allocator

in E. coli to enable dynamic partitioning of the limited

ribosome pool between native and heterologous pathways

[48�]. The system was able to tune expression of an

orthogonal ribosome-specific 16S rRNA gene to steer

ribosome resources between native and engineered path-

ways depending on the demand. A similar strategy has

also been used to build a RNA polymerase allocator to

direct transcriptional resources using orthogonal sigma

factors [49]. In addition, Venturelli et al. developed a

global cellular resource allocator by controlling the overall

decay rate of host mRNA to reduce competition between

endogenous and heterologous pathways [50�].

Creating, engineering, and exploiting variation

Under certain conditions, cell-to-cell variation can be

desirable and may be a feature that can be exploited in
www.sciencedirect.com 
engineering applications. Indeed, native pathways take

advantage of diversification, suggesting the potential

untapped benefits of this line of research. Examples

where there are fitness advantages to heterogeneous

populations include diversification to counter uncertain

environments and division of labor among cells [6].

Microbes can use cell-to-cell variation to increase their

fitness by hedging against environmental uncertainty

[51]. For example, during the glucose-cellobiose diauxic

shift, Lactococcus lactis populations diversify to have cells

that can metabolize cellobiose (Cel+) and cells that cannot

(Cel�). Although Cel� cells are not able to grow in the

cellobiose environment, when introduced into a new

environment with galactose they are able to divide much

faster than Cel+ cells. Thus, the non-growing population

(Cel�) plays a bet hedging role to jump-start growth on a

potential future carbon source [52]. When there is uncer-

tainty about the future, population diversity can serve as a

potential mechanism for insuring against environmental

perturbations.

Another potential benefit of creating variation is through

division of labor [53–55]. Division of labor allows separa-

tion of pathways either spatially or temporally, exploiting

advantages of different species and reducing complexity

and burden imposed on one cell type [15��].

Distributing production pathways within a synthetic con-

sortium can allow for division of labor in the spatial

regime. This approach has been employed for the bio-

synthesis of various compounds such as oxygenated tax-

anes, ferruginol, isobutanol, benzylisoquinoline alkaloids,

and flavonoids [56–61]. For example, Zhou et al. engi-

neered an inter-species microbial consortium of E. coli
and Saccharomyces cerevisiae to exploit the advantages of

each microbe. In this system, E. coli is used for rapid

production of intermediates based on its fast growth rate,

while S. cerevisiae catalyzes oxygenation reactions due to

its complete protein expression system. This approach

yielded 33 mg/L of oxygenated taxanes and also resulted

in the highest titer (18 mg/L) of ferruginol that had been

reported in the literature [56].

Production pathways can also be divided temporally.

For example, Xu et al. developed a method allowing

cells to separate different pathways in the temporal

regime [22]. To do this, they developed a genetic

circuit in E. coli that responds to accumulation of the

intermediate malonyl-CoA. After malonyl-CoA has

accumulated, the upstream pathway that produces it

is shut down, and the downstream pathway is turned on

to convert malonyl-CoA to fatty acids. Once malonyl-

CoA is depleted, the upstream pathway is turned on

again. This genetic circuit implements sequential

switching between upstream and downstream produc-

tion pathways, therefore using a temporal division of
Current Opinion in Biotechnology 2019, 57:10–16
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labor, which resulted in a more than two-fold improve-

ment in fatty acid titer.

Conclusions
Cell-to-cell variation in metabolic engineering applica-

tions can have distinct and even opposing impacts.

Depending on the circumstances, the optimal engineer-

ing approach may be to diminish, accept, or create cell-to-

cell variation. Strategies that diminish variation should be

employed when diversity has a negative impact on pro-

duction and in circumstances where it is straightforward

to design noise reduction circuits. However, in many

cases, the most practical choice may be to accept that

variation exists and to design gene circuits that mitigate

its detrimental impact. This can be achieved by employ-

ing dynamic control strategies to fine-tune heterologous

(or other) pathways corresponding to the variation.

Finally, creating and exploiting variation can be beneficial

for robust growth and improved production and can be

achieved by dividing pathways spatially or temporally in

order to exploit advantages of different genotypes or to

reduce complexity and burden in one cell. Ultimately, it

may be possible to combine subsets of these strategies for

distinct parts of the metabolic engineering process, for

example, exploiting temporal variation to avoid overload-

ing cells while diminishing the impact of negative varia-

tion in well-characterized genetic control elements.

Advances in this area will benefit from new technologies

for single-cell level quantification of variation in meta-

bolic pathways. For instance, there are tools to quantify

various intracellular compounds at the single-cell level,

such as riboswitches or RNA that enable sensing of

thiamine 5’-pyrophosphate [62], 5-diphosphate and S-
adenosylmethionine [63]; expanding this toolkit will

make quantification of variability more straightforward.

These tools can join biosensors coupled with expression

of reporters to read out single-cell levels of engineered

products, for instance L-methionine and branched-chain

amino acids [64,65]. A potential downside of these meth-

ods is that they rely on indirect measurements or require

identification of specific biosensors. An alternative is to

use chemical imaging methods to more directly quantify

pathway intermediates and end-products [66], and this

represents an important future area for technological

development. In addition, microarray and microfluidic

methods also show promise for quantifying variation in

a high throughput manner [67,68].

Researchers are just beginning to appreciate and quantify

cell-to-cell variation and to develop strategies for manag-

ing variation in metabolic engineering applications. We

anticipate that the continued development of technolo-

gies that enable single-cell level understanding will pro-

vide insight and new avenues for engineering cells for

improved production.
Current Opinion in Biotechnology 2019, 57:10–16 
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