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Abstract

The Time-Invariant String Kernel (TISK) model of spoken
word recognition (Hanngan et al., 2013) is an interactive
activation model like TRACE (McClelland & Elman, 1986).
However, it uses orders of magnitude fewer nodes and
connections because it replaces TRACE's time-specific
duplicates of phoneme and word nodes with time-invariant
nodes based on a string kernel representation (essentially a
phoneme-by-phoneme matrix, where a word is encoded as by
all ordered open diphones it contains; e.g., cat has /ka/, /&t/,
and /kt/). Hannagan et al. (2013) showed that TISK behaves
similarly to TRACE in the time course of phonological
competition and even word-specific recognition times.
However, the original implementation did not include
feedback from words to diphone nodes, precluding simulation
of top-down effects. Here, we demonstrate that TISK can be
easily adapted to lexical feedback, affording simulation of
top-down effects as well as allowing the model to
demonstrate graceful degradation given noisy inputs.
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To feedback or not to feedback

Theories of spoken word recognition agree on 3 principles:
(1) incrementally (as a word is heard), (2) words in memory
are activated as a function of similarity to the input and prior
probability (e.g., word frequency), and (3) activated words
compete for recognition. Theories differ in how they map
phonetic inputs to lexical items and mechanisms that they
propose to account for the dynamics of lexical competition
(Magnuson, Mirman & Harris, 2012). Notable differences
include proposals for or against lexical inhibition or top-
down (lexical-to-phoneme) feedback (McClelland & Elman,
1986 vs., respectively, Marslen-Wilson & Warren, 1994 or
Norris, Cutler & McQueen, 2000, 2016). The best-known
model of spoken word recognition (SWR) is the interactive-
activation model, TRACE (McClelland & Elman, 1986),
which uses explicit lexical-phonemic feedback to account
for top-down effects in SWR (several are described below).
In contrast, Norris et al. (2000; see also 2016) have argued
that anything a feedback system can do can be done in a
system without feedback

Top-down effects in SWR include the Ganong effect
(Ganong, 1980) effect, where phoneme identification is
biased according to lexical knowledge. For example,
compared to a nonword continuum between iss and ish,
where participants are asked to identify the final consonant,
identification shifts towards /s/ if the continuum is instead
between a word and nonword pair like kiss-kish or towards
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/l/ if the continuum is instead between a nonword-word pair
like fiss-fish. Another important top-down effect is phoneme
restoration (Samuel, 1981a,b, 1996, 1997), where a
phoneme replaced by noise is perceived (or at least
identified) consistently with lexical context (e.g., the same
noise, #, is heard as /t/ in /ef#"r/ but as /f/ in /ae#t r/).
Participants typically report hearing all phonemes in the
obscured word, and have difficulty identifying the phonemic
position of the noise. Crucially, if a phoneme is replaced
with silence, restoration does not occur and participants
easily identify which phoneme is missing.

Norris et al. (2000, 2016) have argued that direct
feedback from words to phonemes (what they call activation
feedback) cannot benefit speech processing. They claim that
any system employing activation feedback can be matched
by a purely feedforward system wherein top-down effects
emerge from post-lexical integration of lexical and
phonemic representations (rather than online modulation of
phoneme representations by lexical feedback). Norris et al.
(2000) demonstrated that an autonomous (feedforward)
network with post-lexical integration could simulate top-
down effects like those described above. They further
argued that a system tuned to optimally identify each
phoneme could not be improved by top-down feedback.

However, this ignores an important motivation for
feedback in parallel-distributed processing (PDP) models:
graceful degradation (for example, given noise). Magnuson,
Mirman, Luthra, Strauss and Harris (2018; see also
Magnuson, Strauss & Harris, 2005) have demonstrated
beneficial effects of feedback in TRACE. Magnuson et al.
compared accuracy and recognition time for every word in
the original 211-word TRACE lexicon as well as a larger,
907-word lexicon with and without feedback. As noise was
added, feedback preserved accuracy and recognition times
were faster with feedback than without.

Feedback and TISK

Hannagan, Magnuson and Grainger (2013) introduced the
Time-Invariant String Kernel (TISK) model of spoken word
recognition. We will describe TISK in more detail in the
next section. For now, we note that Hannagan et al. did not
include lexical-to-N-phone feedback in the original TISK
implementation, for purposes of simplicity. Our goal in this
paper is to examine whether it is possible to implement
feedback in TISK without impeding its ability to simulate
the phenomena covered by Hannagan et al. (2013) while
endowing it with the ability to simulate familiar top-down
effects and with the robustness in noise (graceful
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degradation) demonstrated for TRACE by Magnuson et al.
(2018). We also search for parameters that would allow
TISK to exhibit graceful degradation without feedback.

Representing sequences for word recognition

Two fundamental challenges for models of spoken word
recognition are representing temporal order and representing
repeated elements. To illustrate these challenges, consider
the simple network diagrammed in Figure 1. In this
network, phoneme nodes feedforward to word nodes. Each
word has incoming connections from each of its constituent
phonemes. However, this network cannot encode temporal
order. The phoneme sequences corresponding to ACT, CAT
and TACK (as well as nonwords such as /tka/, /kta/, or
/&tk/) would generate the same amount of activation for the
three corresponding word nodes. The network is also unable
to encode distinct codes for words with repeated phonemes.
The input /daed/ would equally activate nodes for DAD and
ADD. The second /d/ in /daed/ would simply be more
evidence that /d/ had occurred; the network cannot represent
two instances of /d/ in specific temporal positions.

Figure 1: A simple word recognition network where phonemes
feed to words, but neither order nor repeated elements can be
represented. Reproduced with permission:
https://doi.org/10.6084/m9.figshare.5852532.v1.

This model is not a caricature; a model like this can be
used productively to explore the dynamics of competition
where order does not matter (e.g., cases where amount of
overlap rather than temporal distribution of overlap
matters). Indeed, the Merge model (Norris et al., 2000) has
exactly this structure. But of course, ultimately, models of
spoken word recognition (SWR) must go beyond this
simplifying assumption and grapple with the representation
of order and repeated elements.

The TRACE model (McClelland & Elman, 1986) takes an
infamously brute-force approach to the problem. TRACE
essentially translate time to space, by creating time-specific
duplicates of feature, phoneme, and word nodes. A template
for CAT is maximally activated by strongly activated /k/,
/A/, and /t/ phonemes aligned with the word node, which
must be activated by appropriately aligned pseudo-spectral
inputs on the feature level (see Figure 2). As "time"
progresses in a TRACE simulation, inputs aligned with
specific time points activate aligned features, phonemes, and
words. This time-specific "reduplication" strategy
aligning copies of each feature, phoneme, and word with
specific time points -- allows TRACE to represent temporal
order, and repeated elements. The first /d/ of DAD and the
second will activate independent /d/ nodes.
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Figure 2: Schematic of TRACE's time-as-space encoding. At the
bottom of the figure, inputs (/k/, /&/, /b/,) have specific alignments
(in TRACE, these would be distributed representations of over-
time pseudo-spectral features). Inputs activate phoneme nodes
aligned with them, which in activate aligned word nodes. Darkness
of shading indicates approximate degree of activation. Reproduced
with permission: https://doi.org/10.6084/m9.figshare.5852556.v1.

This reduplication strategy has been criticized many
times, beginning with the original TRACE paper
(McClelland & Elman, 1986, p. 77). We do not agree with
claims that this architecture is completely implausible (see
responses and counterarguments in Hannagan et al. [2013]
and Magnuson [2015]). However, estimates of how large
TRACE would have to be to accommodate realistic
phonological and lexical inventories raise the question of
whether more efficient solutions might be possible.
Hannagan et al. estimated that extending TRACE to
accommodate 40 phonemes and 20,000 words would
require ~1.3 million nodes and more than 40 billion
connections. This is because of the large number of time-
specific nodes TRACE requires (copies of each phoneme
and word node aligned at many time slices in TRACE's
memory). Hannagan et al. developed a solution that replaces
almost all time-specific nodes with time-invariant nodes —
e.g., just one instance of each word node.

The way TISK does this is by using a variant of open
diphone coding. Open diphones are phoneme pairs (which
can be ordered or unordered; we use ordered pairs) that
occur in a string whether they are adjacent or not. For
example, the phonemes of act are /akt/. Its ordered open
diphones are /&k/, /kt/, and /&t/. We list several examples in
Table 1 that should give an intuitive sense that enumerating
open diphones could provide distinctive codes for similar
words. It might also seem problematic that the number of
diphones will grow with word length; how do we compare a
word with one open diphone (2 phonemes long) to one with



6 (4 phonemes long) or 10 (5 phonemes long)? This is
where kernel operations come in. We can represent each
word as a phoneme x phoneme matrix, where each cell
represents an ordered phoneme, and its value is (for
example) the count of the appropriate diphone. (If we
include a "blank" for the second position, we can also
encode each single phoneme in a word, crucially providing
a means for including words consisting of a single
phoneme.) Then kernel operations — e.g., matrix similarity —
can be applied independently of word length, as the matrix
provides a length-independent representation format.

Table 1: Examples of ordered open diphones.

Word Ordered open diphones
CAT kee, kt, &t

TACK tae, tk, &k

ACT xk, &t, kt

DAD dee, dd, &d

ADD ad

SOUL so, sl, ol

SOLO so x 2, sl, ol, oo

TISK does not use simple open-diphones, however. It
uses a symmetry network that weights diphone activation by
the distance between the two phones (such that /st/ would be
less activated by SPOT than STOP). Hannagan and
Grainger (2012) discuss biological plausibility of such
coding, and behavioral and brain imaging results consistent
with open bigram coding for visual word recognition. Work
by Hannagan et al. (2011) suggests that similar coding may
emerge in trained connectionist models. See Hannagan et al.
(2013) for finer details of TISK. To use TISK, see You and
Magnuson (2018), and the TISK Python repository at
https://github.com/maglab-uconn/TISK1.O0.

TISK 1.1: Adding lexical feedback

As we discussed above, there are several motivations for
adding feedback to TISK. First, without feedback, an
interactive activation model cannot simulate well-replicated
findings of top-down lexical effects on sublexical
processing (and to be clear, while feedback in an interactive
model achieves those lexical effects through direct lexical
influence, this remains controversial; see Norris et al., 2000
and 2016 for arguments that top-down influences can apply
post-perceptually without feedback). The second reason
appears to be less familiar to most cognitive scientists, even
though it is a primary motivation for feedback: feedback
allows graceful degradation (for example, when noise is
added to speech). This gives us a very clear 5-point agenda
in adding feedback to TISK, formulated as 5 questions:
1. TISK without feedback had similar time course and
item-specific RTs as TRACE; does TISK with feedback?
2.Can we find a parameter set (that includes top-down
lexical-to-N-phone feedback) that allows TISK to
simulate top-down effects while preserving its ability to
simulate phenomena it has already been tested on
(Hannagan et al., 2013)?
3. Are its top-down effects plausible (comparable to human
performance?
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4.Does feedback allow TISK
degradation in the face of noise?

5. Can we find parameters that afford graceful degradation
in the face of noise without feedback?

to exhibit graceful

Table 2: TISK and TISK b (with feedback) parameters.
N-phone includes both single phones and diphones. There is
positive feedback to words' constituents and inhibitory feedback
from words to non-constituents (units not contained in the word).

Class Parameter TISK TISKfb
Input phoneme decay 0.010 0.001

Decay N-phone decay 0.010 0.100
Word decay 0.050 0.050

Input to N-Phone 0.100 0.100

Gain Diphone to word 0.050 0.050
Single phone to word 0.010 0.010

Word to word -0.005 -0.010

Feedback +Word to N-Phone 0.000 0.100
-Word to N-phone 0.000 -0.050

Table 2 lists parameters for the original TISK model and
for TISKfb (with feedback). The original parameters were
determined via trial and error by Hannagan et al. (2013),
and are stable to modification (a fairly wide range of values
can be used for each parameter). We found that stable
performance with feedback requires both positive feedback
from words to constituents (component diphone and single
phone units in the N-phone layer) and weaker negative
feedback to inhibit non-constituents, as well as stronger
decay for N-phone units. In order to isolate effects of
feedback, we compare TISKfb to TISK with all feedback
parameters set to zero, but with the same changes in decay
and inhibition shown in Table 2. There is not space in this
paper to report full details of our explorations of the
parameter space, but we did find that these parameter
changes actually make TISK (with or without feedback)
more robust. We now turn to the 5 questions.

Figure 3 addresses part of question 1 (are item-specific
RTs similar in TISK with feedback as in TRACE and TISK?)
by plotting item-specific RTs for TISK without feedback,
TISKfb (TISK with lexical feedback), and TRACE for the
original 211-word TRACE lexicon. Clearly, item-specific
RTs are similar.
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Figure 3: RT correlations for TISK, TISKfb (TISK with feedback),
and TRACE. Solid line is the identity line; dashed line is linear
best fit; 'shadow' (so narrow it is difficult to see) indicates 95% CI.

Figure 4 addresses the other part of question 1 (is the
time course of phonological competition similar in TISKfb
as in TISK and TRACE?) as well as question 2 (does
TISKfb account for everything reported in Hannagan et al.,
2013?). The rank ordering of competitor types remains the



same, although each is damped somewhat. (Note that TISK
and TRACE differ in that 0.0 is the lowest possible
activation in TISK; hence, rank order is the crucial concern.)

Figure 5 further addresses question 2 (does TISKfb
account for everything reported in Hannagan et al., 2013?)
and plots RT in the three models as a function of "lexical
dimensions:" length, different types of competitors, and one
"external" count — the number of other words a target word
embeds into (see caption). We observe a remarkable degree
of similarity among the models in the strength and direction
of each predictor's relationship to item-specific RT.

Figures 6 and 7 address question 3 (are TISKfb's top-
down effects plausible?). Figure 6 explores the Ganong
effect (Ganong, 1980). We begin with a continuum from one
phoneme to another (e.g., changing in steps from /s/ to /J/,
i.e., ess to esh) and establish a baseline identification /s/-rate

at each step of the continuum. If we alter the continuum
such that one endpoint corresponds to a word, while the
other corresponds to a nonword (e.g., from bus /b"s/ to
*buhsh /bAJ/, or from *russ /ts/ to rush /rAJ/), and measure
identification again, we will find that the /s/-/[/ decision
boundary shifts towards the lexical endpoint. To test TISK
and TISKfb on this, we created a continuum from /s/ to /7
and tested it without lexical context (top row of Figure 6)
with and without feedback (left and right panels) to establish
a baseline. Then we placed this continuum in the word-
nonword contexts bus-*buhsh (middle row) and nonword-
word contexts *russ-rush (bottom row). The contexts have
no effect in the original TISK (left panels), but shift
"identification" in the same direction it would be shifted for
human subjects with feedback (right panels).
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Figure 4: Mean time course for targets and different classes of competitors in TRACE, TISK, and TISKfb. Each line represents the mean
for a class of items over all 211 words in the original TRACE lexicon. Cohorts overlap in the first two phonemes. Riyme items overlap in
all but the first phoneme. Neighbors differ by a single phonemic deletion, addition, or substitution. Embeddings are words embedded within
a target, while exEmbeddings are words a target is embedded within (e.g., cat has at embedded within it, at “ex-embeds” in car).
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Figure 6: Lexical effects on phoneme activations. Top: input is
/b~2/, where /?/ is a continuum between /s/ and /[/. On the left is
the result with TISK without feedback, with activations plotted for
/s/ and /J/; activations change approximately linearly across the
continuum. On the right, results are plotted with TISKfb; crucially,
activations of /s/ increase, as they are consistent with the lexical
item bus, while no changes is seen for /J/, which corresponds to a
nonword ending with s/ but the same onset as bus. On the bottom
row, the opposite pattern is observed, as /J/ is consistent with the
word rush, while /s/ would make the nonword *russ.
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Figure 7: Retroactive phoneme restoration by following context.
The input items are /pl*g/, /bI[/ (complete words plug and blush)
and /#1°g/ and /#17)/ (plug and blush with the first phoneme
replaced with noise). On the left, without feedback, there is robust
activation of /p/ and /b/ given clear words, and transient, equal
activation given noise replacement. On the right, we see that
feedback enhances the activation of intact phonemes, and sustains
context-appropriate phonemes after the transient response to noise.
The difference in the activation of restored phonemes (/b/ given
17/ is more activated than /p/ given /#1°g/) is due to differences
in neighborhood (blush has fewer competitors than plug).

In Figure 6, we see proactive effects of feedback;
preceding context modulates later phoneme activations. In
Figure 7, we examine potential retroactive influences in a
Ganong experiment. Here, the input is either the intact word
plug, the intact word blush, or a phoneme stimulus that is
perfectly ambiguous between /p/ and /b /followed by —lug or
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—lush (denoted as /#1"g/ vs. /#1"S/ in Figure 7). Thus, only
the final phoneme disambiguates. Without feedback (left
panel), there is no context effect. In TISKfb (right panel),
we see two effects of lexical context. First, there is
differential activation of /b/ and /p/ after the second
phoneme occurs (step 20), because there are more /p/-onset
words than /b/-onset words in the TRACE lexicon. Second,
we see the effect we predicted: the final phoneme drives
lexical disambiguation effects on the first phoneme's
activation. The smaller impact for /p/ follows from its
denser competition neighborhood.

Questions 4 and 5 are whether we will observe
benefits of feedback (graceful degradation) like those
observed with TRACE (Magnuson et al., 2018) with
TISKfb, and whether there are parameter configurations can
allow a model without feedback to exhibit graceful
degradation. In Figure 8 (following page), we present mean
accuracy and response time (for correctly recognized items)
for TISK with the original Hannagan et al. (2013)
parameters, TISKfb, and TISK with all the same parameter
changes as TISKfb as the amount of noise we add (to every
phoneme in a word) increases. As Magnuson et al. observed
with TRACE, feedback promoted graceful degradation of
accuracy as noise increased, though there was little variation
in RT for correctly recognized items. The new parameters in
Table 2 provided substantial robustness against noise with
or without feedback compared to the original parameters.
Crucially, though, feedback provides a substantial benefit
beyond those conferred by changes in decay and inhibition
(as can be seen in the right panel of Figure 8).

A crucial question is whether the results without
feedback could be improved with different parameters.
While we have not yet searched the parameter space
exhaustively, we have heuristically searched a fairly broad
range of what appear to be the critical dimensions. The
results in Figure 8 represent approximately the best results
we have been able to obtain with and without feedback.

Conclusions

The answers to our first four questions are clearly "yes". ;
TISKfb parameters can be selected that promote stable,
TRACE-like performance while providing a basis for
modeling top-down lexical effects. The answer to the fifth
question is a qualified "yes": changes in decay and
inhibition parameters provide substantial improvement in
graceful degradation, but not to a degree that matches TISK
with feedback. Thus, our results converge with those of
Magnuson et al. (2018) in demonstrating the beneficial role
of feedback in promoting graceful degradation, contra
claims by Norris et al. (2000, 2016) that feedback in
interactive activation models can provide no benefit.
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