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a b s t r a c t

The concept of relative degree plays an important role in nonlinear control theory. It provides, for example,
a necessary and sufficient condition for the existence of a feedback linearizing control law for a single-
input, single-output (SISO) input-affine nonlinear state space system. It also gives a sufficient condition
under which a left inverse exists. In applications it is common for systems to be composed of smaller
interconnected subsystems. It is known that various feedback structures preserve relative degree, but
it is largely unknown how to compute the relative degree of interconnected systems using only their
properties. So the goal of this paper is to determine the relative degree of two nonlinear control systems
interconnected in a variety of different ways. A collection of illustrative examples is given.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In linear system theory, the notion of relative degree plays a
fairly modest role. It is usually defined in terms of a system’s
transfer function written as either a rational function or in terms
of a power series about the origin [1]. In the context of nonlinear
control systems, the concept is of central importance. For example,
it provides a necessary and sufficient condition for the existence of
a feedback linearizing control law for a single-input, single-output
(SISO) input-affine nonlinear state space system [2]. It also gives
a sufficient condition under which a left inverse exists [3], which
is useful for solving output tracking control problems. In process
control relative degree is used to describe the structural properties
of networked systems [4–8]. The relative degree of a nonlinear
system is usually defined via a state space model [2], but, as in
the linear systems case, relative degree can also be described in
a purely input–output setting using Chen–Fliess functional series
(also called Fliess operators) [9,10]. This definition is consistent
with the state space notion of relative degree, but not every Fliess
operator is realizable. So the series definition is in fact more gen-
eral.

In applications it is common for systems to be composed of
smaller interconnected subsystems. Take the linear time-invariant
case as an example. Let g and h be two strictly proper rational
transfer functions with corresponding relative degrees rg and rh.
Then the relative degrees of the parallel, series, and feedback
interconnections, respectively, g+h, gh, and g(1−hg)−1, are easily
computed in terms of rg and rh as given in Table 1. Feedback in
this case can be viewed in terms of the group {1 + g} acting on
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the plant, where the group product is (1 + g)(1 + h) = 1 + g +

h + gh := 1 + g ⊚ h so that the group inverse is (1 + g)−1
=

1 +
∑

k>0(−g)k := 1 + g◦−1. The relative degree of the product
g ⊚ h and inverse g◦−1 are also easily determined. In the nonlinear
setting, much less is known about this topic. Specifically, it has
been shown that static state feedback preserves relative degree [2],
and an analogous claimholds for a certain feedback transformation
group acting on Fliess operators [11,12]. But beyond that, the topic
is largely unexplored. In addition, once the restriction of linearity
is removed, other types of system connections are admissible. For
example, one could consider the parallel product connectionwhere
the outputs of two systems having the same input are multiplied
pointwise in time. Finally, there is an issue that never occurs for
linear systems, namely that a nonlinear system can fail to have a
well defined relative degree. This invites the possibility that the
interconnection of two systems with relative degree can fail to
have relative degree or vice versa. So the general goal of this paper
is to provide a nonlinear version of Table 1. It will be expanded to
include operations that are admissible in the nonlinear setting, and
conditions will be given to ensure that new interconnected sys-
tems have a well defined relative degree. Of course, these results
will apply to the special case of Fliess operators that are realizable,
and thus, the calculation of relative degree can be done directly
using a realization of the interconnected system. But the analysis
presented here indicates that such a calculation is not necessary.
The relative degree of each subsystem can be computed separately
by any method and then aggregated. This approach is especially
useful for designing an interconnected system with some a priori
specified relative degree, such as in the case of rendering a passive
system, where a necessary condition is that the composite system
must have relative degree one [13]. A variety of simple examples
and counterexamples will be presented. A more comprehensive
example will also be given with the aid of Mathematica software.
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Table 1
Relative degrees for interconnections of SISO linear time-invariant systems.
rg+h min(rg , rh) if rg ̸= rh
rgh rg + rh
rg(1+h) rg
rg⊚h min(rg , rh) if rg ̸= rh
rg◦−1 rg
rg(1−hg)−1 rg

For brevity, the focuswill be on the SISO case. Finally, a preliminary
version of this paper appeared in [14].

The paper is organized as follows. The mathematical prelimi-
naries are summarized in the next section. The main results of the
paper along with some simple examples are given in Section 4. A
larger example is presented in Section 5. The conclusions of the
paper and suggestions for future work are summarized in the final
section.

2. Preliminaries

A finite nonempty set of noncommuting symbols X = {x0, x1,
. . . , xm} is called an alphabet. Each element of X is called a letter,
and any finite sequence of letters from X , η = xi1 · · · xik , is called a
word over X . Its length is |η| = k. In particular, |η|xi is the number of
times the letter xi ∈ X appears in η. The set of all words including
the empty word, ∅, is denoted by X∗, and X+

:= X∗
\∅. The set X∗

forms a monoid under catenation. The set of all words with prefix
η is written as ηX∗. Any mapping c : X∗

→ Rℓ is called a formal
power series. The value of c at η ∈ X∗ is denoted by (c, η) and called
the coefficient of η in c. A series c is proper when (c,∅) = 0. The
support of c , supp(c), is the set of all words having nonzero coef-
ficients. Normally, c is written as a formal sum c =

∑
η∈X∗ (c, η)η.

(This does not require or imply any notion of convergence.) The
collection of all formal power series over X with coefficients from
Rℓ is denoted by Rℓ⟨⟨X⟩⟩. It constitutes an associative R-algebra
under the catenation product and an associative and commutative
R-algebra under the shuffle product, that is, the bilinear product
uniquely specified by the shuffle product of two words

(xiη) ⊔⊔ (xjξ ) = xi(η ⊔⊔ (xjξ )) + xj((xiη) ⊔⊔ ξ ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η [15].
It is worth pointing out that any binary product □ on Rℓ⟨⟨X⟩⟩ is
well defined provided that c□d is summable [16], that is, it can be
written in terms of a family of series in Rℓ⟨⟨X⟩⟩ so that (c□d, η) is
finite for every η ∈ X∗. Both the catenation and shuffle products
are known to be summable, as are all the binary products to be
presented in the next section [17].

2.1. Fliess operators

Let p ≥ 1 and t0 < t1 be given. For a Lebesgue measurable
function u : [t0, t1] → Rm, define ∥u∥p = max{∥ui∥p : 1 ≤ i ≤ m},
where ∥ui∥p is the usual Lp-norm for a measurable real-valued
function, ui, defined on [t0, t1]. Let Lmp [t0, t1] denote the set of all
measurable functions defined on [t0, t1] having a finite ∥ · ∥p norm
and Bm

p (R)[t0, t1] := {u ∈ Lmp [t0, t1] : ∥u∥p ≤ R}. Given any series
c ∈ Rℓ⟨⟨X⟩⟩, one can uniquely associate a causalm-input, ℓ-output
Fliess operator

Fc[u](t) =

∑
η∈X∗

(c, η) Eη[u](t, t0),

where E∅[u] = 1 and

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ )Eη̄[u](τ , t0) dτ

with xi ∈ X , η̄ ∈ X∗, and u0 = 1 [15]. The letter x0 is useful
for representing nonhomogeneous operators, i.e., those for which
Fc[0] ̸= 0. If there exist constants K ,M > 0 such that

|(c, η)| ≤ KM |η|
|η|!, ∀η ∈ X∗,

then Fc constitutes a well defined mapping from Bm
p (R)[t0, t0 + T ]

into Bℓq(S)[t0, t0 + T ] for sufficiently small R, T > 0, where the
numbers p, q ∈ [1,∞] are conjugate exponents, i.e., 1/p+1/q = 1
[18]. HereRℓLC ⟨⟨X⟩⟩will denote the set of all such locally convergent
generating series.

A Fliess operator Fc defined on Bm
p (R)[t0, t0 + T ] is said to be

realizablewhen there exists a state space model

ż(t) = g0(z(t)) +

m∑
i=1

gi(z(t)) ui(t), z(t0) = z0 (1a)

yj(t) = hj(z(t)), j = 1, 2, . . . , ℓ, (1b)

where each gi is an analytic vector field expressed in local coordi-
nates on someneighborhoodW of z0, and each output function hj is
an analytic function onW such that (1a) has awell defined solution
z(t), t ∈ [t0, t0 + T ] for any given input u ∈ Bm

p (R)[t0, t0 + T ], and
yj(t) = Fcj [u](t) = hj(z(t)), t ∈ [t0, t0 + T ], j = 1, 2, . . . , ℓ. It can
be shown that for any word η = xik · · · xi1 ∈ X∗

(cj, η) = Lgηhj(z0) := Lgi1 · · · Lgik hj(z0), (2)

where Lgihj is the Lie derivative of hj with respect to gi. In this
context, the letter x0 is identified with the drift vector field g0. For
any c ∈ Rℓ⟨⟨X⟩⟩, the R-linear mapping Hc : R⟨X⟩ → Rℓ⟨⟨X⟩⟩

uniquely specified by (Hc(η), ξ ) = (c, ξη), ξ , η ∈ X∗ is called
the Hankel mapping of c. The series c is said to have finite Lie rank
ρL(c) when the range of Hc restricted to the R-vector space of Lie
polynomials over X , i.e., the free Lie algebra L(X) ⊂ R⟨X⟩, has
dimension ρL(c). It is well known that Fc is realizable if and only
if c ∈ RℓLC ⟨⟨X⟩⟩ has finite Lie rank [2,15].

2.2. System interconnections

Given Fliess operators Fc and Fd, where c, d ∈ RℓLC ⟨⟨X⟩⟩, the
parallel and product connections satisfy Fc + Fd = Fc+d and FcFd =

Fc ⊔⊔ d, respectively [15]. For example, if Fc = Exi and Fd = Exj then
ExiExj = Fxi ⊔⊔ xj = Exixj + Exjxi . This is exactly the integration by
parts formula from integral calculus. When Fliess operators Fc and
Fd with c ∈ RℓLC ⟨⟨X⟩⟩ and d ∈ Rm

LC ⟨⟨X⟩⟩ are interconnected in a
cascade fashion, the composite system Fc◦Fd has the Fliess operator
representation Fc◦d, where the composition product of c and d is
given by

c ◦ d =

∑
η∈X∗

(c, η)ψd(η)(1) (3)

[19]. Here 1 denotes the monomial 1∅, and ψd is the continuous
(in the ultrametric sense) algebra homomorphism from R⟨⟨X⟩⟩ to
the set of vector space endomorphisms on R⟨⟨X⟩⟩, End(R⟨⟨X⟩⟩),
uniquely specified by ψd(xiη) = ψd(xi) ◦ ψd(η) with ψd(xi)(e) =

x0(di ⊔⊔ e), i = 0, 1, . . . ,m for any e ∈ R⟨⟨X⟩⟩, and where di
is the ith component series of d (d0 := 1). By definition, ψd(∅)
is the identity map on R⟨⟨X⟩⟩. For example, if Fc represents a
SISO linear time-invariant system, then its impulse response is
hc(t) =

∑
i≥0(c, x

i
0x1)t

i/i!. The cascade connection of this system
with another in this class, say hd, renders a composite systemwith
an impulse response given by the convolution product hc ∗ hd. It is
not hard to show in this special case that the composition product
as defined above satisfies (hc∗hd)(t) =

∑
i≥1(c◦d, x

i
0x1)t

i/i!, where
(c ◦ d, xi0x1) =

∑i−1
j=0(c, x

i−j−1
0 x1)(d, x

j
0x1). That is, the composition

product can be viewed as a nonlinear noncommutative generaliza-
tion of series convolution.
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When two Fliess operators Fc and Fd are interconnected to
form a feedback system with Fc in the forward path and Fd in the
feedback path, the generating series of the closed-loop system is
denoted by the feedback product c@d. It can be computed explicitly
using the Hopf algebra of coordinate functions associated with
the underlying output feedback group [20]. Specifically, in the SISO
case where X = {x0, x1}, define the set of unital Fliess operators
Fδ = {I + Fc : c ∈ RLC ⟨⟨X⟩⟩}, where I denotes the identity
map. It is convenient to introduce the symbol δ as the (fictitious)
generating series for the identity map. That is, Fδ := I such that
I + Fc := Fδ+c = Fcδ with cδ := δ+ c. The set of all such generating
series for Fδ will be denoted by RLC ⟨⟨Xδ⟩⟩. The central idea is that
(Fδ, ◦, I) forms a group of operators under the composition

Fcδ ◦ Fdδ = (I + Fc) ◦ (I + Fd) = Fcδ◦dδ ,

where cδ ◦ dδ := δ + c ⊚ d, c ⊚ d := d + c ◦̃ dδ , and ◦̃ denotes the
mixed composition product. That is, the product

c ◦̃ dδ =

∑
η∈X∗

(c, η)φd(η)(1),

where φd is analogous to ψd in (3) except here φd(xi)(e) = xie +

x0(di ⊔⊔ e) with d0 := 0 [17]. For linear time-invariant systems,
the group product c ⊚ d reduces to the feedback group product
defined in the introduction in terms of transfer functions. The
mixed composition product gives the corresponding group action.
The coordinate maps for the underlying Hopf algebra H have the
form

aη : R⟨⟨X⟩⟩ → R : c ↦→ (c, η),

where η ∈ X∗. The commutative product is defined as

µ : aη ⊗ aξ ↦→ aηaξ ,

where the unit 1 is defined to map every c to zero. If the degree of
aη is defined as deg(aη) = 2 |η|x0 + |η|x1 + 1, then H is graded and
connected with H =

⨁
n≥0 Hn, where Hn is the set of all elements

of degree n and H0 = R1. The coproduct ∆ is defined so that the
formal power series product c ⊚ d for the group Fδ satisfies

∆aη(c, d) = aη(c ⊚ d) = (c ⊚ d, η).

Of primary importance is the following lemma which describes
how the group inverse c◦−1

δ := δ + c◦−1 is computed.

Lemma 2.1 ([20]). The Hopf algebra (H, µ,∆) has an antipode S
satisfying aη(c◦−1) = (Saη)(c) for all η ∈ X∗ and c ∈ R⟨⟨X⟩⟩.

With this concept, the generating series for the feedback con-
nection, c@d, can be computed explicitly as described in the next
theorem. The formula has the same formas in linear system theory,
where a feedback group element acts from the right on a descrip-
tion of the plant.

Theorem 2.1 ([20]). For any c, d ∈ R⟨⟨X⟩⟩ it follows that

c@d = c ◦̃ (−d ◦ c)◦−1
δ .

In addition to the elementary system interconnections de-
scribed above, there is the quotient connection that is useful in the
context of system inversion. This is a type of parallel connection
where the quotient of the subsystems’ outputs is computed. In
terms of generating series, the quotient is realized using the shuffle
inverse as described next. Division by zero is avoided by requiring
the divisor series to be non proper.

Theorem 2.2 ([9]). The set of non proper series in R⟨⟨X⟩⟩ is a group
under the shuffle product. In particular, the shuffle inverse of any such
series c is

c ⊔⊔ −1
= ((c,∅)(1 − c ′)) ⊔⊔ −1

= (c,∅)−1(c ′) ⊔⊔ ∗,

where c ′
:= 1 − c/(c,∅) is proper and (c ′) ⊔⊔ ∗

:=
∑

k≥0(c
′) ⊔⊔ k.

Theorem 2.3 ([9]). For c, d ∈ RLC ⟨⟨X⟩⟩, the quotient connection
Fc/Fd has a Fliess operator representation if and only if d is non proper.
In particular, Fc/Fd = Fc/d, where c/d := c ⊔⊔ d ⊔⊔ −1. In addition, the
quotient c/d preserves local convergence.

3. Relative degree

Two concepts are needed to define the notion of relative degree
for a series c ∈ R⟨⟨X⟩⟩ when X = {x0, x1}, that of linear words and
the class of a series.

Definition 3.1. A word in X∗ is said to be linear if it belongs to the
language

L = {η ∈ X∗
: η = xn10 x1x

n0
0 , n1, n0 ≥ 0}.

To define the class of a series, a certain partial ordering is
used. Consider the collection of pairwise disjoint sets

{
xi0x1X

∗
}
i∈N0

.
Observe that X∗

\
(⨆

i∈N0
xi0

)
=

⨆
i∈N0

xi0x1X
∗ and define the map

T : X∗
\
(⨆

i∈N0
xi0

)
−→ N0 so that T (η) = k if x−k

0 (η) ∈ x1X∗,
where η ∈ X∗

\
(⨆

i∈N0
xi0

)
, and x−k

0 denotes the left-shift operator.
Clearly T is a surjective map. Define an order ≺ on X∗

\
(⨆

i∈N0
xi0

)
as follows:

ζ ≺ η ⇐⇒ T (ζ ) > T (η), ∀ζ , η ∈ X∗
\
(⨆
i∈N0

xi0
)
.

Lemma 3.1.
(
X∗

\
(⨆

i∈N0
xi0

)
,≺

)
is a strict partial order.

Proof. For all η, ζ , β ∈ X∗
\
(⨆

i∈N0
xi0

)
it is immediate that

η ⊀ η ⇐⇒ T (η) ≯ T (η)

and

((η ≺ ζ ) ∧ (ζ ≺ β) H⇒ η ≺ β) ⇐⇒

((T (η) > T (ζ )) ∧ (T (ζ ) > T (β)) H⇒ T (η) > T (β)).

Hence,
(
X∗

\
(⨆

i∈N0
xi0

)
,≺

)
is a strict partial order. ■

Since the words in x1X∗
⊂ X∗

\
(⨆

i∈N0
xi0

)
act as upper bounds,

every chain in
(
X∗

\
(⨆

i∈N0
xi0

)
,≺

)
is upper bounded. Inwhich case,

by Zorn’s lemma, every chain in X∗
\
(⨆

i∈N0
xi0

)
has a maximal

element.

Lemma 3.2. If D ⊂ X∗
\
(⨆

i∈N0
xi0

)
, and say η, ζ are the distinct

maximal elements in D, then T (η) = T (ζ ).

Proof. The claim is proved by contradiction. Assume that T (η) ̸=

T (ζ ). Then either (T (η) < T (ζ )) ⇐⇒ (ζ ≺ η) or (T (ζ ) <
T (η)) ⇐⇒ (η ≺ ζ ), which is a contradiction. ■

Now the notion of class is defined. It uses the fact that every c ∈

R⟨⟨X⟩⟩ can be decomposed into its natural and forced components,
that is, c = cN + cF , where cN :=

∑
k≥0(c, x

k
0)x

k
0 and cF := c − cN .

Definition 3.2. A series c ∈ R⟨⟨X⟩⟩ is said to be of r-class, denoted
by C (c) = r , if supp(cF ) ⊆ xr−1

0 X+ and supp(cF ) ⊈ xr0X
+. By

definition, let C (c) = ∞ if cF = 0.

Lemma 3.3. Every series c ∈ R⟨⟨X⟩⟩ has a class. In particular, if
cF ̸= 0, the class can be defined as C (c) = T (η) + 1, where η
is a maximal word in supp(cF ). Thus, class is realized by the map
C : R⟨⟨X⟩⟩ −→ N ∪ {∞}.

Proof. The claim is immediate since T is surjective on N0. ■
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Example 3.1. Let c = 1 + x0x1 + x20x1, so that cF = x0x1 + x20x1.
Observe that supp(cF ) ⊆ x0X+ but supp(cF ) ⊈ x20X

+. Thus, C (c)
= 2. □

Finally, the main definition of the section is given.

Definition 3.3. A series c ∈ R⟨⟨X⟩⟩ has relative degree r if
C (c) = r and the linear word xr−1

0 x1 ∈ supp(cF ). Otherwise, c does
not have relative degree.

This notion of relative degree is equivalent to that given in [9],
namely, that c has relative degree r if and only if it has the decom-
position

c = cN + Kxr−1
0 x1 + xr−1

0 e (4)

for some K ̸= 0 and proper e ∈ R⟨⟨X⟩⟩ with x1 ̸∈ supp(e). In
addition, this definition of relative degree is consistent with the
classical definition whenever y = Fc[u] is realizable [9,10]. In
this setting, the requirement that all the words in supp(cF ) have
a prefix xr−1

0 is equivalent to the input u not appearing in the first
r − 1 derivatives of the output y as in the classical definition. The
requirement of a linear word in supp(cF ) provides a sufficient con-
dition for local left invertibility of the input–output map. A system
without relative degree may simply not be left invertible by any
means, for example, by series inversion or feedback linearization. A
stronger notion of relative degree is defined below. In a state space
setting it provides a sufficient condition for global left invertibility
of the input–output map.

Definition 3.4 ([11]). A series c ∈ R⟨⟨X⟩⟩ has extended relative
degree r if there exists some K ̸= 0 and e ∈ R⟨⟨X⟩⟩ such that

c = cN + Kxr−1
0 x1 + xr0e.

Example 3.2. Consider the generating series for a SISO linear time-
invariant system with transfer function h(s) =

∑
k≥r≥1 hks−k and

hr ̸= 0:

c =

∞∑
k=r

hkxk−1
0 x1 = hrxr−1

0 x1 + xr0

∞∑
k=0

hr+k+1xk0x1.

Such systems always have extended relative degree. □

4. Main results

The main results are organized into three groups: parallel con-
nections, composition connections, and connections involving in-
version. The more generic results where the subsystems have
relative degree are summarized in Table 2, which is subdivided
accordingly. It is assumed throughout that X = {x0, x1}.

4.1. Parallel connections

The following lemma will be useful in this section.

Lemma 4.1. If r, s ∈ N with r ≤ s then xs−1
0 X+

⊆ xr−1
0 X+.

Proof. Setting q = s− r ≥ 0, observe that xs−1
0 X+

= xr−1
0 (xq0X

+) ⊆

xr−1
0 X+. ■

Now the relative degree of the parallel sum connection is ad-
dressed.

Theorem 4.1. Suppose c, d ∈ R⟨⟨X⟩⟩ have distinct relative degrees
rc and rd, respectively. Then c + d has relative degree min(rc, rd). On
the other hand, if rc = rd =: r then c + d has relative degree r if and
only if (c, xr−1

0 x1) + (d, xr−1
0 x1) ̸= 0.

Table 2
Relative degrees for interconnections of SISO nonlinear control systems having
relative degree.
rc+d min(rc , rd) if rc ̸= rd
rc ⊔⊔ d r = min(rc , rd) if rc ̸= rd , and the series with r· ̸= r is non proper

rc◦d rc + rd
rc ◦̃ dδ rc
rc⊚d min(rc , rd) if rc ̸= rd
rc◦−1 rc
rc@d rc
rc ⊔⊔ −1 rc if c is non proper
rc/d r = min(rc , rd) if rc ̸= rd , and c, d are non proper

Proof. If rc ̸= rd then from (4)

(c + d)F = Kcx
rc−1
0 x1 + xrc−1

0 ec + Kdx
rd−1
0 x1 + xrd−1

0 ed.

Assume, for example, that rc < rd. Using Lemma 4.1 it follows that

(c + d)F = Kcx
rc−1
0 x1 + xrc−1

0 ec+d

for some suitable ec+d in R⟨⟨X⟩⟩ so that supp(c + d)F ⊆ xrc−1
0 X+.

Therefore, c + d has relative degree rc . Now if rc = rd =: r then
c + d has relative degree r if and only if the linear words do not
cancel out. Hence, the necessity and sufficiency of (c, xr−1

0 x1) +

(d, xr−1
0 x1) ̸= 0 is obvious. ■

Example 4.1. Let c = x0+x0x1+x0x21 and d = 1+x1 so that rc = 2
and rd = 1. Then c + d = 1 + x0 + x1 + x0x1 + x0x21 has relative
degree min(rc, rd) = 1. □

Example 4.2. Suppose c = x0 + x0x1 and d = 1 − x0x1 + x0x21 so
that rc = rd = 2. Observe that c + d = 1+ x0 + x0x21 does not have
relative degree since the linear words have canceled. □

Next, the relative degree of the parallel product connection is
analyzed. The following notation will be used: if S1, S2 ⊆ X∗ then
S1 ⊔⊔ S2 := {supp(η1 ⊔⊔ η2) : ηi ∈ Si}. Four preliminary lemmas are
needed first.

Lemma4.2. If r, s ∈ Nwith r ≤ s then xr−1
0 X+

⊔⊔ xs−1
0 X+

⊆ xr−1
0 X+.

Proof. The lemma can be proved by induction on q = s − r and
applying Lemma 4.1 ■

Lemma 4.3. If r ∈ N0 and s ∈ N then xr0 ⊔⊔ xs−1
0 X+

⊆ xs−1
0 X+.

Proof. The claim follows immediately since every word in xr0 ⊔⊔

xs−1
0 X+ must have a prefix xq0 with q ≥ s − 1. ■

Lemma 4.4. Suppose c, d ∈ R⟨⟨X⟩⟩ are such that supp(cF ) ⊆

xrc−1
0 X+ and supp(dF ) ⊆ xrd−1

0 X+. If min(rc, rd) = s, then
supp((c ⊔⊔ d)F ) ⊆ xs−1

0 X+.

Proof. From the stated assumptions,

c = cN + xrc−1
0 ec, d = dN + xrd−1

0 ed

for some proper ec, ed ∈ R⟨⟨X⟩⟩. Therefore,

c ⊔⊔ d = (cN + xrc−1
0 ec) ⊔⊔ (dN + xrd−1

0 ed)
= (c ⊔⊔ d)N + (c ⊔⊔ d)F ,

where (c ⊔⊔ d)N = cN ⊔⊔ dN and (c ⊔⊔ d)F = (cN ⊔⊔ dF ) + (xrc−1
0 ec ⊔⊔ d).

Using Lemmas 4.1 and 4.3, it follows that supp(cN ⊔⊔ dF )
⊆ xrd−1

0 X+
⊆ xs−1

0 X+. Similar analysis of the other term in (c ⊔⊔ d)F
gives supp((c ⊔⊔ d)F ) ⊆ xs−1

0 X+ as desired. ■
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Lemma 4.5. The class map C : R⟨⟨X⟩⟩ −→ N ∪ {∞} is a
monoid epimorphism, where the underlying monoid structures are
(R⟨⟨X⟩⟩, ⊔⊔ , 1) and (N ∪ {∞},min,∞).

Proof. It follows from Lemma 4.4 that C ((c ⊔⊔ d)) = min(C (c),
C (d)). By definition, C (1) = ∞. Therefore, since the map C is
surjective, it is a monoid epimorphism. ■

Now the main result for the parallel product connection is
presented. Note, in particular, that only one series is required to
have relative degree.

Theorem 4.2. Suppose c,d ∈ R⟨⟨X⟩⟩ such that c has relative degree r
and d is of class s, where s > r. Then c ⊔⊔ d has relative degree r if and
only if d is non proper. If s = r, then c ⊔⊔ d has relative degree r if and
only if (c,∅)(d, xr−1

0 x1) + (c, xr−1
0 x1)(d,∅) ̸= 0.

Proof. From Lemma 4.5 it is clear that C (c ⊔⊔ d) = min(r, s) = r .
Now suppose s > r . To have relative degree it is necessary that
xr−1
0 x1 ∈ supp(c ⊔⊔ d). The sufficiency of having d be non proper
is obvious. But since xr−1

0 x1 ̸∈(xr−1
0 X+

⊔⊔ η) for all η ∈ X+, the non
properness of d also becomes a necessity. In the case where s = r ,
the requirement that the coefficient of xr−1

0 x1

(c ⊔⊔ d, xr−1
0 x1) = (c,∅)(d, xr−1

0 x1) + (c, xr−1
0 x1)(d,∅)

be nonzero gives the new condition which subsumes that of non
properness. ■

Example 4.3. Let c = x1, which has relative degree one, and
d = 1+ x0x1x0, where C (d) = 2 but has no relative degree. Since d
is non proper, c ⊔⊔ d = x1+x1x0x1x0+x0x21x0+x0x1x0x1 has relative
degree one. □

Corollary 4.1. Suppose c, d ∈ R⟨⟨X⟩⟩ have distinct relative degrees
rc and rd, respectively. Then c ⊔⊔ d has relative degree min(rc, rd) if
and only if the series with the largest relative degree is non proper.
If rc = rd =: r then c ⊔⊔ d has relative degree r if and only if
(c,∅)(d, xr−1

0 x1) + (c, xr−1
0 x1)(d,∅) ̸= 0.

Example 4.4. Suppose c = x1 and d = 1 + x0x1 so that rc = 1
and rd = 2. Then c ⊔⊔ d = x1 + x1x0x1 + 2x0x21 has relative degree
rc ⊔⊔ d = min(rc, rd) = 1 since d is non proper. □

Example 4.5. Let c = d = x1. Both series are proper and
have relative degree one, but c ⊔⊔ d = 2x21 does not have relative
degree. □

4.2. Composition connections

The main results for the composition connections are given
next. Somewhat counterintuitively, it is the basic composition
product c ◦ d that is the most difficult to handle as addressed next.

Theorem 4.3. Suppose c, d ∈ R⟨⟨X⟩⟩ have relative degrees rc and rd,
respectively. Then rc◦d has relative degree rc + rd.

Proof. Writing c in the form (4) and using the left linearity of the
composition product, it follows directly that

c ◦ d = (cN + Kcx
rc−1
0 x1 + xrc−1

0 ec) ◦ d

= cN + Kcx
rc
0 d + (xrc−1

0 ec) ◦ d.

From the identity (xk0c)◦d = xk0(c ◦d) for any k ≥ 0, this expression
becomes

c ◦ d = cN + Kcx
rc
0 d + xrc−1

0 (ec ◦ d).

In the second term above, write d in the form (4) to get

c ◦ d = cN + Kcx
rc
0 dN + KcKdx

rc+rd−1
0 x1+

Kcx
rc+rd−1
0 ed + xrc−1

0 (ec ◦ d).

Since x1 ̸∈ supp(ed) by assumption, is it clear that c ◦ d has the
linear word necessary for c ◦ d to have relative degree rc + rd. It
only remains to be shown that supp(ec ◦ d) ⊆ xrd0 X∗. To see this,
observe first that

ψd(x1)(1) = x0(d ⊔⊔ 1)
= x0dN + Kdx

rd
0 x1 + xrd0 ed.

Therefore, supp((ψd(ηx1))F ) ⊆ xrd0 X∗ for any η ∈ X∗. Thus, in light
of (3), the conclusion follows. ■

The following theoremwas proved in [11]. Note that here there
is no requirement that d have relative degree.

Theorem 4.4 ([11]). Suppose c, d ∈ R⟨⟨X⟩⟩ and c has relative degree
rc . Then c ◦̃ dδ has relative degree rc .

Example 4.6. Let c = x0x1 and d = x21. Here rc = 2 and d has
no relative degree. Nevertheless, c ◦̃ dδ = x0x1 + x20x

2
1 has relative

degree two. □

Theorem4.5. Suppose c, d ∈ R⟨⟨X⟩⟩ have distinct relative degrees rc
and rd, respectively. Inwhich case, c⊚d has relative degreemin(rc, rd).

Proof. In light of Theorem 4.1, the previous result, and the defini-
tion c ⊚ d = d + c ◦̃ dδ , the conclusion follows immediately. ■

4.3. Connections involving inversion

The main results concerning the composition inverse are pre-
sented first. Then the shuffle inverse is addressed.

Theorem 4.6. Relative degree is invariant under the composition
inverse.

Proof. In [20] it was shown as a consequence of c◦−1
δ being a right

inverse of cδ = δ + c , i.e., cδ ◦ c◦−1
δ = δ, that c◦−1

= (−c) ◦̃ c◦−1
δ .

Hence, it follows directly from Theorem 4.4 that c and c◦−1 have
the same relative degree. ■

Example 4.7. When c is a linear series, the product c ◦̃ dδ is both
left and right R-linear. It then follows that

(δ + c)◦−1
= δ − c + c◦2

− c◦3
+ · · · ,

where c◦k denotes the composition power. If, for example, c = x1,
which has relative degree one, then

(δ + x1)◦−1
= δ − x1 + x0x1 − x20x1 + · · · .

Clearly c◦−1 has relative degree one as expected. □

In light of Theorem 2.1, it is clear that the following result is
just a special case of Theorem 4.4. In which case, there is again no
requirement that d have relative degree.

Theorem 4.7. Suppose c, d ∈ R⟨⟨X⟩⟩ and c has relative degree rc .
Then c@d has relative degree rc .

Next the theorems related to the shuffle inverse are given. Two
preliminary lemmas are needed.

Lemma 4.6. If c ∈ R⟨⟨X⟩⟩ has relative degree rc , then supp((c ⊔⊔ k)F )
⊆ xrc−1

0 X+ for all k ∈ N. If, in addition, c is also proper, then xrc−1
0 x1

̸∈ supp((c ⊔⊔ k)F ) for all k > 1.
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Proof. The proof is by induction on k. For k = 1 clearly supp(cF )
⊆ xrc−1

0 X+ from the definition of relative degree. Assume now that
the claim is true for k = n − 1 ≥ 1. Then c ⊔⊔ n

= c ⊔⊔ (c ⊔⊔ (n−1)),
and by Lemma 4.4 it follows that supp((c ⊔⊔ n)F ) ⊆ xrc−1

0 X+. Hence,
one must conclude that supp((c ⊔⊔ k)F ) ⊆ xrc−1

0 X+ for all k ∈ N. If c
is also proper, then xrc−1

0 x1 ̸∈ supp(xrc−1
0 X+

⊔⊔ η) where η ∈ X+, and
thus, xrc−1

0 x1 ̸∈ supp((c ⊔⊔ k)F ) for all k > 1. ■

Lemma 4.7. If c ∈ R⟨⟨X⟩⟩ is proper and has relative degree rc , then
c ⊔⊔ ∗ has relative degree rc .

Proof. The claim follows directly from Lemma 4.6. ■

Theorem 4.8. If c ∈ R⟨⟨X⟩⟩ is non proper and has relative degree rc ,
then c ⊔⊔ −1 has relative degree rc .

Proof. From the definition of (c ′) ⊔⊔ ∗ in Theorem 2.2, c ′ is proper.
Thus, the result follows from Lemma 4.7. ■

Example 4.8. Suppose c = 1 + x1, which has relative degree one.
Then from the identity x ⊔⊔ k

1 = k!xk1, k ≥ 0 observe

(1 + x1) ⊔⊔ −1
=

∞∑
k=0

(−x1) ⊔⊔ k

= 1 − x1 + 2x21 − 3! x31 + 4! x41 − · · · ,

which also has relative degree one. □

Theorem 4.9. Suppose c, d ∈ R⟨⟨X⟩⟩ such that d is non proper. If c
and d have distinct relative degrees rc and rd, respectively, then c/d
has relative degree r = min(rc, rd). If rc = rd =: r then c/d has
relative degree r if and only if (d,∅)(c, xr−1

0 x1)−(c,∅)(d, xr−1
0 x1) ̸= 0.

Proof. If rc ̸= rd, then from Theorem 4.8 it follows that d ⊔⊔ −1

has relative degree rd. By virtue of Corollary 4.1, c ⊔⊔ d ⊔⊔ −1
= c/d

has relative degree r = min(rc, rd). On the other hand, if rc =

rd = r , then since d is non proper it follows from Corollary 4.1
that c ⊔⊔ d ⊔⊔ −1 has relative degree r if and only if

(c ⊔⊔ d ⊔⊔ −1, xr−1
0 x1)

= (c,∅)(d ⊔⊔ −1, xr−1
0 x1) + (d ⊔⊔ −1,∅)(c, xr−1

0 x1)
̸= 0.

A direct computation gives (d ⊔⊔ −1,∅) = (d,∅)−1, so that from
Lemma 4.6

(d ⊔⊔ −1, xr−1
0 x1) = −

(d, xr−1
0 x1)

(d,∅)2
,

and thus,

(c ⊔⊔ d ⊔⊔ −1, xr−1
0 x1) =

(d,∅)(c, xr−1
0 x1) − (c,∅)(d, xr−1

0 x1)
(d,∅)2

.

Since (d,∅) ̸= 0 by assumption, the necessary and sufficient
condition for relative degree follows. ■

Example 4.9. Let c = 1 + x0x1 and d = 1 + x1, which have
relative degrees two and one, respectively. Applying the results
from Example 4.8 gives

c/d = (1 + x0x1) ⊔⊔ (1 + x1) ⊔⊔ −1

= (1 + x0x1) ⊔⊔ (1 − x1 + 2x21 − 3! x31 + · · ·)

= 1 − x1 + x0x1 + 2x21 − 2x0x21 − x1x0x1 − 6x31+

6x0x31 + 4x1x0x21 + 2x21x0x1 + 24x41 − · · · ,

which has relative degree min(1, 2) = 1 as expected. On the other
hand, if c = 1 + x1 then trivially c/d = 1, which does not have
relative degree and is consistent with the condition (d,∅)(c, x1) −

(c,∅)(d, x1) = 0. □

5. State space example

The following two state space systems are considered in [2,
p. 151 and p. 167, respectively]:

ż =

⎡⎣ 0
z1 + z22
z1 − z2

⎤⎦ +

[ez2
ez2
0

]
u, y = z3

and

ż =

⎡⎣z3 − z32
−z2

z21 − z3

⎤⎦ +

[ 0
−1
1

]
u, y = z1.

The first system has full relative degree rc = 3 about any point z
satisfying 1 + 2z2 ̸= 0. Its generating series with z0 = 0 is found
using (2) to be

c = −x20x1 − 3x20x
2
1 − 4x30x

2
1 − 3x20x1x0x1 − 8x20x

3
1−

4x40x
2
1 − 2x30x1x0x1 − 24x30x

3
1 − 19x20x1x0x

2
1−

8x20x
2
1x0x1 − 28x20x

4
1 − 60x40x

3
1 − 42x30x1x0x

2
1−

22x30x
2
1x0x1 − 116x30x

4
1 − · · ·

The second system has relative degree rd = 2 about z whenever
1 + 3z22 ̸= 0. Its generating series with z0 = 0 is

d = x0x1 − x20x1 + x30x1 + 6x0x31 − x40x1 − 18x20x
3
1−

12x0x1x0x21 − 6x0x21x0x1 + x50x1 + 4x40x
2
1+

2x30x1x0x1 + 54x30x
3
1 + 36x20x1x0x

2
1 + 18x20x

2
1x0x1+

24x0x1x20x
2
1 + 12x0x1x0x1x0x1 + 6x0x21x

2
0x1−

x60x1 − 16x50x
2
1 − · · ·

The relative degree for any interconnection described in Table 2
can now be determined directly from the theory, i.e., no addi-
tional calculations are needed. But, as an independent check, the
corresponding series operations are computed with the aid of
Mathematica. Their relative degree is then determined directly
fromDefinition 3.3 to validate the results presented in the previous
sections. For the parallel connections,

c + d = x0x1 − 2x20x1 + x30x1 − 3x20x
2
1 + 6x0x31 − x40x1−

4x30x
2
1 − 3x20x1x0x1 − 26x20x

3
1 − 12x0x1x0x21−

6x0x21x0x1 + x50x1 + 30x30x
3
1 + 17x20x1x0x

2
1+

10x20x
2
1x0x1 − 28x20x

4
1 + 24x0x1x20x

2
1+

12x0x1x0x1x0x1 + 6x0x21x
2
0x1 − · · ·

c ⊔⊔ d = −6x30x
2
1 − 3x20x1x0x1 − x0x1x20x1 + 12x40x

2
1+

6x30x1x0x1 − 27x30x
3
1 + 2x20x1x

2
0x1−

12x20x1x0x
2
1 − 3x20x

2
1x0x1 − 3x0x1x20x

2
1−

20x50x
2
1 − 10x40x1x0x1 + 54x40x

3
1 − 4x30x1x

2
0x1+

27x30x1x0x
2
1 + 9x30x

2
1x0x1 − 72x30x

4
1 − · · ·

As expected, rc+d = min(rc, rd) = 2, and rc ⊔⊔ d is not defined
since both c and d are proper. On the other hand, the parallel
product connection of 1 + c and 1 + d has relative degree rc ⊔⊔ d =

min(rc, rd) = 2. For the composition type connections,

c ◦ d = −x40x1 + x50x1 − x60x1 − 6x40x
3
1 + x70x1−

18x60x
2
1 − 9x50x1x0x1 + 18x50x

3
1 − 3x40x1x

2
0x1+
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12x40x1x0x
2
1 + 6x40x

2
1x0x1 − x80x1 + 8x70x

2
1+

4x60x1x0x1 − 54x60x
3
1 + 2x50x1x

2
0x1−

36x50x1x0x
2
1 − 18x50x

2
1x0x1 − 24x40x1x

2
0x

2
1−

12x40x1x0x1x0x1 − 6x40x
2
1x

2
0x1 + · · ·

c ◦̃ dδ = −x20x1 − 3x20x
2
1 − x40x1 − 4x30x

2
1 − 3x20x1x0x1−

8x20x
3
1 + x50x1 − 10x40x

2
1 − 5x30x1x0x1 − 24x30x

3
1−

3x20x1x
2
0x1 − 19x20x1x0x

2
1 − 8x20x

2
1x0x1−

28x20x
4
1 − x60x1 − 14x50x

2
1 − 7x40x1x0x1−

90x40x
3
1 − x30x1x

2
0x1 − 58x30x1x0x

2
1 − · · ·

c ⊚ d = x0x1 − 2x20x1 + x30x1 − 3x20x
2
1 + 6x0x31 − 2x40x1−

4x30x
2
1 − 3x20x1x0x1 − 26x20x

3
1 − 12x0x1x0x21−

6x0x21x0x1 + 2x50x1 − 6x40x
2
1 − 3x30x1x0x1+

30x30x
3
1 − 3x20x1x

2
0x1 + 17x20x1x0x

2
1+

10x20x
2
1x0x1 − 28x20x

3
1 + 24x0x1x20x

2
1+

12x0x1x0x1x0x1 + 6x0x21x
2
0x1 − · · ·

In this case, rc◦d = rc + rd = 5, rc ◦̃ dδ = rc = 3, and rc⊚d =

min(rc, rd) = 2, which is consistent with the theory. Finally, for
the connections involving inversion,

d◦−1
= −x0x1 + x20x1 − 6x0x31 − x40x1 + 18x20x

3
1+

12x0x1x0x21 + 6x0x21x0x1 + x50x1 − 4x40x
2
1−

2x30x1x0x1 − 30x30x
3
1 − 24x20x1x0x

2
1−

12x20x
2
1x0x1 − 12x0x1x20x

2
1 − 6x0x1x0x1x0x1 + · · ·

c@d = −x20x1 − 3x20x
2
1 − 4x30x

2
1 − 3x20x1x0x1 − 8x20x

3
1−

4x40x
2
1 − 2x30x1x0x1 − 24x30x

3
1 − 19x20x1x0x

2
1−

8x20x
2
1x0x1 − 28x20x

4
1 − 60x40x

3
1 − 42x30x1x0x

2
1−

22x30x
2
1x0x1 − 116x30x

4
1 − 22x20x1x

2
0x

2
1−

14x20x1x0x1x0x1 − 105x20x1x0x
3
1 − 64x20x

2
1x0x

2
1−

28x20x
3
1x0x1 − 124x20x

5
1 + x70x1 − · · ·

(1 + d) ⊔⊔ −1
= 1 − x0x1 + x20x1 − x30x1 + 4x20x

2
1 + 2x0x1x0x1−

6x0x31 − 12x30x
2
1 − 6x20x1x0x1 − 2x0x1x20x1+

28x40x
2
1 + 14x30x1x0x1 − 36x30x

3
1 + 6x20x1x

2
0x1−

24x20x1x0x
2
1 − 12x20x

2
1x0x1 + 96x20x

4
1 + 2x0x1x30x1−

12x0x1x20x
2
1 − 6x0x1x0x1x0x1 + 48x0x1x0x31+

24x0x21x0x
2
1 + 12x0x31x0x1 − · · ·

(1 + c)/(1 + d) = 1 − x0x1 − x30x1 + x20x
2
1 + 2x0x1x0x1 − 6x0x31−

10x30x
2
1 − 6x20x1x0x1 − 8x20x

3
1 − x0x1x20x1+

12x40x
2
1 + 6x30x1x0x1 − 33x30x

3
1 + 4x20x1x

2
0x1−

31x20x1x0x
2
1 − 17x20x

2
1x0x1 + 68x20x

4
1 + 2x0x1x30x1−

9x0x1x20x
2
1 − 6x0x1x0x1x0x1 + 48x0x1x0x31+

24x0x21x0x
2
1 + 12x0x31x0x1 + · · ·

Again, as predicted by the theory, rd◦−1 = rd = 2, rc@d = rc = 3,
r(1+d) ⊔⊔ −1 = r(1+d) = 2, and r(1+c)/(1+d) = min(r(1+c), r(1+d)) = 2.

6. Conclusions and future work

In this paper the relative degree of two interconnected SISO
nonlinear control systems was determined under a number of
different scenarios. The analysis applies in both the state space set-
ting and for input–output systems represented as Fliess operators.
Future work will include the multivariable setting using the series
notion of vector relative degree given in [21,22]. One could also
consider stronger versions of relative degree in the SISO case, such
as extended relative degree, and the interconnection of more than
two systems.
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