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Abstract— This paper presents an online data collection
method that captures human intuition about what grasp types
are preferred for different fundamental object shapes and
sizes. Survey questions are based on an adopted taxonomy
that combines grasp pre-shape, approach, wrist orientation,
object shape, orientation and size which covers a large swathe
of common grasps. For example, the survey identifies at
what object height or width dimension (normalized by robot
hand size) the human prefers to use a two finger precision
grasp versus a three-finger power grasp. This information is
represented as a confidence-interval based polytope in the object
shape space. The result is a database that can be used to
quickly find potential pre-grasps that are likely to work, given
an estimate of the object shape and size.

I. INTRODUCTION

Enabling robots to grasp and manipulate objects robustly

is critical to expanding the use of robots in everyday living.

Significant progress has been made in the robotic grasping

and manipulation domain over the last few decades [17] [13].

Some newer methods to synthesize grasps include learning

grasping strategies from experience based on rich sensor

data [13], and using human demonstrations to learn good

grasps [11]. However, there is space for improvement.

Specifically, even in perfect laboratory settings where object

shape and location are exactly known, automatically gener-

ated robotic grasps fail one in four times [1]. Furthermore,

the search space for grasping is likely too vast for a brute

force computational approach to be successful. Specifically,

the grasp planning algorithm has to find a near-optimal grasp

across the near-infinite continuous space of object shapes,

textures, locations, orientations, topologies, tasks, and robot

hand morphologies [6] [16].

Learning from humans can reduce the impact of these

challenges. Prior work has explored learning “instance-

based” grasping, where wrist pose and finger angles specified

by humans are used [14]. Other work has also considered

human-specified grasp ranges, rather than individual grasp

instances, in order to view human grasp choices as continu-

ous clusters in the search space [9]. In this paper, we learn

how humans evaluate grasps as a function of object shape
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and size. This information can be utilized in automatic grasp

planning algorithms to reduce the search space.

Only a few studies have focused on human preference

of robotic grasps [18]. Instead, most studies have focused

on human preference for human grasps. They also focus on

only a handful of possible object shapes and sizes, making

the results difficult to generalize. Our approach, in contrast,

treats object dimensions as a continuously varying space,

and learns preferences for ranges of sizes instead of single

instances.

Unfortunately, obtaining information on grasping heuris-

tics from humans through physical experiments is difficult,

time-consuming, and expensive. We and others have shown

previously that collecting such human heuristic information

through online crowd-sourcing is effective [20] [19] [7].

In this paper, we also use online crowd-sourcing through

Amazon’s Mechanical Turk service in order to conduct

surveys. One challenge with online surveys is participants

lack a clear understanding of the physical properties of the

robotic hand; we address this problem through a series of

training videos.

For simplicity and generalizability, our initial work focuses

on a small number of fundamental shapes. We restrict

hand morphology to a three fingered hand. We also use

survey cross validation instead of physical trials to verify

our results. This paper makes two key contributions: 1) it

identifies that humans have clear preferences and transition

points in the type of grasp based on object shape and size;

2) it presents a scientific methodology in the human-robot

interaction domain for collecting grasp pre-shape preference

from humans through carefully created online surveys.

With respect to the first contribution, human preferences

for grasp type based on object size and shape was previously

unavailable to robotic grasp planning algorithms. Current

grasp planning software do not know when to transition grasp

types on object shape or size [4] [8]. While only the first step,

this works brings attention to how grasp planners can use

human heuristics to transition from one grasp type to another.

With respect to the second contribution, the surveys were

created by combining previously developed human grasping

classifications, which provide an understanding of different

human grasp types [2] [5], and an understanding of the

human ability for perceiving the shapes and size of objects

from two-dimensional images [12]. Additional paper details

can be found at https://goo.gl/s8vwdk.
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II. RELATED WORK

We discuss prior related work in three related domains:

1) Human grasp classification and robotic grasp planning;

2) Learning from humans through crowd-sourcing. 3) Human

perception.

A. Human grasp classification and robotic grasping plan-
ning

One of the earliest attempts to classify human grasping

focused on machine shop tasks and the use of machine

tools [2]. This taxonomy found sixteen unique grasps. More

recently, the GRASP taxonomy aggregated previous tax-

onomies across multiple domains like medical rehabilita-

tion, robotic grasping, and others to partition non-prehensile

grasps into thirty three grasps [5].

Complete grasp taxonomies have not yet been fully ex-

ploited in grasp planning software like GraspIt! [15] and

OpenRAVE [3]. This paper seeks to combine the grasp

taxonomies with grasp planning using human heuristics. We

utilize OpenRAVE [3] to create the grasp image sets for the

surveys.

B. Learning from humans through crowd-sourcing

Alongside the rise of simulation environments, crowd

source data collection has also gained traction [7]. Data

collection through services like Amazon’s Mechanical Turk

is much faster and cheaper than in-person studies. The

service has been used to evaluate the validity of physics

based simulation for grasping [10], and provide supervision

for learning object detection and grasp planning [7]. Data

collected through crowd sourcing yields similar quality and

accuracy as data collected through physical verification [20].

C. Human Perception

One concern when gathering performance data in a tele-

operation environment is the ability of the operator to

understand physical properties of the system like affect of

interaction forces and surface finish when presented with

only a two-dimensional image. Lau et al. [12] has shown

that people can consistently identify features of an object

from an image. Based on previous experience, people are

able to determine properties of an object solely based on the

object’s 2D representation. We leverage this fact by providing

training videos and images that inform participants to the

physical characteristics of the robot hand and object such as

weight, surface friction, and gripping strength.

III. METHODS: TAXONOMY AND DATA COLLECTION

The purpose of our study is to capture human preference of

robotic manipulator grasps. We focused on human evaluation

informed by training videos of how the hand operates to

extract human preference of pre-grasps.

We adapted the GRASP taxonomy [5] in order to enumer-

ate a representative set of grasp pre-shapes and objects. The

goal was to cover most common manipulator interactions in

the real world. The taxonomy was the basis of our online

surveys, which asks people “could you pick up this object

from this direction with this pre-grasp shape?”.

In the following sections we outline how we developed the

taxonomy, how we set up the human subjects data collection,

and how we represent and use the resulting data.

A. Developing the parameterized taxonomy

Traditionally, grasp taxonomies have focused on the final

grasp shape, largely ignoring the role of the object shape

and size or presenting participants with only a small number

of objects. Since we are interested in enumerating a large

portion of the grasp space, we make two deviations from

traditional taxonomy approaches. First, we parameterize by

object shape and size in addition to grasp. Second, we

enumerate by grasp pre-shape. This approach enables us to

ask “how likely is it that this grasp will work?” without spec-

ifying details, making the results more broadly applicable as

a filtering mechanism. One disadvantage is that we no longer

are explicitly differentiating between how the fingers close

around the object. Since this data could be collected later

(either from human studies or calculated from simulation),

we feel this is an acceptable trade-off.

In order to keep our taxonomy at a feasible size, we

focused on a three-fingered manipulator, the BarrettHand,

because we have one available for physical validation tests.

However, one of the grasps we tested (Figure1-Precision F)

is equivalent to a binary gripper more commonly seen on

industrial applications. Since we only consider grasp pre-

shape, our data is broadly applicable to pincher and 3-

fingered hands, even if the gripper morphology and actuation

is different.

1) Grasp pre-shape classification: To select the possible

grasp pre-shapes, we started with the GRASP taxonomy [5].

Figure 1 shows those grasps converted to a 3-fingered hand.

Because the robotic hand has significantly fewer degrees

of freedom than a human hand, a variety of the human

grasps are represented by the same gripper configuration.

For example, grasps 1,2, and 3 from the GRASP taxonomy

are all wrap grasps around different-sized objects. All of

these can be achieved by starting from the same grasp pre-

shape (Figure1-Power F).

In addition to the grasp pre-shape, we considered the

approach direction and orientation for the grasp. We limited

the approach directions to one of the three primary axes of

the shape. This excludes potential grasps such as picking

up a cube from the corner. For orientation, we oriented the

thumb along the primary axes (four possible orientations).

The one exception to this is, for the cube from the top with

spread fingers, we also oriented the thumb/fingers along the

diagonal.

Many potential approaches and orientations are identical to

each other because of hand and object symmetries. The total

number of possible pre-shapes is 4×5×4= 80 assuming the

object is resting on the table. However, taking symmetries

into account this number is reduced to between 8 and 64.

2) Object classification and parameterization: For our

object shape, we have identified four simple shapes (cube,
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Fig. 1. Grasp taxonomy adapted for Barrett hand, based on GRASP
(Human) Taxonomy [5]. Grasps with red boundaries, such as those utilizing
the side of the finger as the main opposing force, were not achievable due
to limitations with the Barrett hand’s kinematics. Four grasp preshapes were
identified for the Barrett hand and were applied to all achievable grasp types.
These grasp types are named at the bottom of the figure based on the main
opposing forces and human inferred intent of each preshape grasp.

Manipulator
Feature

Dimension
(cm)

Parameterized Object Dimensions
(percentages of manipulator features)

Min MinMid Mid MidMax Max
Maximum

Finger Span
32.0 0.03 0.28 0.53 0.78 1.03

Minimum
Palm

Dimension
6.2 0.16 1.45 2.74 4.03 5.32

Maximum
Palm

Dimension
8.9 0.11 1.01 1.91 2.81 3.71

TABLE I. PARAMETRIZED DIMENSIONS FOR OBJECTS USED IN THIS

STUDY. THE RANGE OF DIMENSIONS WERE CHOSEN BASED ON

MAXIMUM FINGER SPAN.

ellipsoid, cone, and cylinder), and two complex ones (hour-

glass and handle). The simple shapes can be parameterized

by width, height, and extent, relative to gravity and hand in a
base configuration. Extent is how far the object extends from

the palm, width is relative to the direction of the fingers, and

height is the third direction which is the direction gravity acts

in the base configuration. All object dimensions are relative

to a feature of the hand. The parametrized dimensions can

be found in Table I.

For the cone, hourglass, and handle, additional parameters

are used to allow for full variation of the shape.

In addition to object shape and size, we also consider

whether the object is on an end or on side. As before,

we exclude symmetries resulting in two orientations for the

cylinder, cone, and hourglass, but only one for the cube and

ellipsoid. The handle has three orientations.

Again, taking symmetries into account, we have 154

unique hand-object configurations, of which 11 are for the

cube, 21 for the cylinder, 8 for the ellipsoid, 18 for the

cone, 32 for the hourglass, and 64 for the handle, with three

parameters for the cube, cylinder, ellipsoid, and cone, and

five each for the hourglass and handle. A subset of the final

questions for the cube is given in Figure 2. Other object

shapes produce similar trees.

B. Data Collection, Human Studies

Our goal with the human-subject studies is to define for

each unique combination in the taxonomy the range of object

Fig. 2. Taxonomy for Cube shape for all possible orientations and approach
directions. Taxonomy levels are shown on the right. Grasp preshape names
correspond to labels given in Figure 1. Wrist orientations are angle relative
to each pre-shape’s base configuration.

sizes that are graspable (if any). The most interesting parts

of this space are at the boundaries where small changes

in object dimensions causes grasps to go from successful

to unsuccessful. Our human study surveys are designed to

quickly find the boundary.

We first describe our framing of the problem for par-

ticipants, then our different methods for collecting data,

designed to both reduce the overall number of questions

needed and to provide validation through data triangulation.

1) Participant Guidance and Framing: We used online

surveys, which necessitated textual and contextual clarity.

Additionally, we need to familiarize participants with the

robot hand capabilities (finger strength, surface finish, kine-

matics) so that we get consistent answers. We pilot tested

different phrasing and presentation, looking for both clarity

and balancing conciseness of the instructions. Our final

format (shown in the accompanying video) consists of: an

example question, a video showing the real robot hand

demonstrating the acceptable motions, a video of a simulated

hand demonstrating the acceptable motions, video and text

describing the gripping ability of robot, and surface texture

of object, and five questions to verify that the participants

understood how the hand is allowed to move.

2) The surveys: We developed three types of survey. All

surveys use stimulus of the form shown in Figure 3, with

the hand offset from the object and a floor plane. The inset

shows a top-down view of the same scene. Images were

cropped and sized so that the hand shape remains constant

across all images. The image size was set so that all of the

images were visible at the same time, given a reasonable

sized laptop screen. Potential survey takers were warned

that the survey required a decent Internet connection and

screen size. Questions were presented in randomized order to

prevent learning and fatigue effects, and survey time limited

to 25 minutes. The human-subject study was approved by

OSU’s Institutional Review Board.

3) One-dimension bracketing: Each question consists of

a unique configuration (object and grasp). The two fixed

dimensions were set to the middle of their respective ranges

(Table I). Five images were generated by evenly sampling
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Fig. 3. Example survey question where height dimension of cylinder changes for a single manipulator pre-shape, approach, and object type.

that dimension from the smallest feasible to the largest.

Sliders are more sample efficient than yes/no questions for

bracketing boundariess of a range. Participants were asked

to pick the smallest and largest graspable size by setting two

sliders (see Figure 3).

We asked bracketing questions for width, height, and

extent per unique configuration, yielding a total of 6 data

points per configuration (averaged across the participants).

Note that this survey technique is not limited to axis-aligned

sampling, but could be applied to any line in parameter space.

4) Two-dimensions sampling: In this survey type, we si-

multaneously vary two dimensions around a point of interest

creating a grid of 9 object sizes. Participants selected the

images showing object sizes that they think are graspable.

This sampling method essentially captured the transition

from graspable to not graspable.

We generated the points of interest and sampling directions

from our one-dimensional bracketing surveys as follows. The

six (averaged) data points form a polytope in shape parameter

space (see Figure 5). Take the center of each triangle in

the polytope as the point of interest, and the normal of the

triangle as one of the sampling directions. Take as the other

sampling direction a vector lying in the triangle; by using

two orthogonal vectors (two questions) we generate samples

that better refine the boundary around the triangle.

5) Grasp validation: Our third survey type serves two

purposes: Data validation and an initial ranking of preferred

grasps given a fixed object size and shape. Participants are

shown all of the potential grasp pre-shapes and orientations

for a given object, and are asked to select the ones they

think will work. For each selected pre-grasp, they are further

asked to provide a confidence value (0-100%) percent as well

as sort the valid pre-grasps by preference. For each unique,

parameterized configuration this provides three confidence

values: How many people ranked it as valid, the confidence

value, and where it appeared in the ranking.

We enumerated every object shape, orientation, and grasp

approach direction, but with object size fixed at the mid point

for all dimensions (Table I). We used this to independently

verify our one-parameter data by comparing to the bracketing

results. To verify the boundary results, we generated three

groups of grasps (definitely valid, on the boundary, and

definitely not valid) to compare against.

C. Data representation
In this section, we focus on how we represent (and use) the

continuous parameter data from the human subjects study.

For illustrative purposes, assume that we are working with

an object defined by three parameters; the representation

generalizes to higher dimensions.
Every question in the surveys results in a data point

with a valid/not valid label. Our goal is to use this data

to define a region where the grasp is valid. However, the

boundary of this region is fuzzy because people have varying

preferences. Our solution to this is to define a nested set of

polytopes that represent confidence intervals (see Figure 5).

Given an object’s size (a point in the space), we can return

a valid (inside the inner polytope), not valid (outside the

outer polytope) or a confidence value (relative distance to

the bracketing polytopes).
We use two methods to build the polytopes, the first is

used to “boot strap” subsequent sampling. Method one uses

statistical values from the one-dimensional survey results to

produce six points. The points can correspond to different

confidence intervals to define an upper and lower bound

polytope.
Method two works directly with sampled data, and creates

an iso-surface that separates the valid from the invalid space.

An alternative approach is to use Support Vector Machines

to define partitions in the data.

IV. RESULTS

Due to space constraints, only data for a single scenario,

namely a cube approached from the side with a Figure 1-

Claw pre-shape with one finger pointing directly up, is shown

in this paper.

A. Data Analysis
The surveys were conducted through Amazon’s Mechan-

ical Turk with survey generation done in Qualtrics. All

counted responses passed verification checks (data complete-

ness and consistency).
1) One-dimensional survey: The total number of partici-

pants was 48, with each participant answering 50 questions,

with an average of 13 answers per question (total 166 con-

figurations). Results for cube configurations are in Table II.

Non-parametric statistics were used to calculate the boundary

values for the polytope; we used the 75% confidence values

for the “valid” polytope.
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Grasp Type Approach
Viable
Grasp

Height Width Extent
Min Max Min Max Min Max

3 Finger Pinch Top Y 0.39 0.62 0.03 0.59 0.03 0.48
3 Finger Pinch Side Y 0.09 0.49 0.03 0.63 0.03 0.66

Equidistant Top Y 0.13 1.03 0.04 0.53 0.03 0.78
Equidistant Side Y 0.16 0.99 0.06 0.53 0.03 0.66

2 Finger Pinch Top Y 0.16 1.03 0.13 0.78 0.03 0.58
2 Finger Pinch Side Y 0.16 0.66 0.03 0.59 0.03 0.77

TABLE II. PARAMETRIZED EXTREME DIMENSIONS FOR HUMAN PREFERENCE FOR

DIFFERENT TYPES OF GRASPS FOR PICKING UP A CUBE FOR THE 75% CONFIDENCE

AROUND THE MEDIAN OF RESPONSES

Height Width Extent
0.33 0.48 0.39
0.53 0.48 0.36
0.49 1.49 1.34
0.61 0.40 0.41
0.52 0.30 0.38

TABLE III. POINTS ON THE BOUNDARY OF SHAPE

SPACE FOR THE GRASP AS SHOWN IN FIGURE 5.

DIMENSIONS ARE PARAMETRIZED TO MAXIMUM

FINGER SPAN. VALUES CORRESPOND TO 75%

CONFIDENCE INTERVAL.

Group consistancy
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Fig. 4. Grasp validation. Left, histogram of number of valid votes per
configuration. Right, per person consistency, comparing confidence score to
ranking (normalized to confidence ranges).

2) Verification survey: Mid-sized objects: The total num-

ber of participants was 11, with one excluded. The distribu-

tion of number of valid votes for each configuration is shown

in Figure 4. The majority of the not valid grasps are side

hooks; we hypothesize that this is due to the size range used.

Side Palm F are most applicable for skinny, long shapes.

We compared three measures: Ratio of valid votes to total,

confidence values, and ranking. For ranks, we used a linear

mapping to convert rankings to a scale between 25

3) Two-parameter survey: We collected responses from

16 participants for a subset of the cube polytopes. We use

majority vote to label each sample point as valid or invalid.

B. Grasp Validation

We collected 5 responses to the survey with none ex-

cluded. Respondents choose all points inside the 75% con-

fidence polytope and more than 75% of boundary points

as likely to succeed. This signifies that the boundary was

reflective of human preference.

C. Data Representation and Usage

The data enables the construction of polytopes in shape

parameter space which designate the graspable region. Figure

5 shows the resulting polytope for different confidence

intervals after the one dimension bracketing survey. Vertices

are a specified confidence interval from the median survey

response. As confidence decreases, the size of the region

grows. Figure 6 shows objects at vertices of the region.

The 2 dimensional sampling survey further resolves the

boundaries. Figure 5 shows the point of interest for the 2

dimensional survey with red markers.

Figure 8 shows the refined polytope with data from the

2 dimension survey. A region with different confidence

intervals can be built from these responses.

V. DISCUSSION

A. Grasping Preference and Grasping Success Models

A fundamental challenge in current automated grasp plan-

ning algorithm is the inability to choose human-preferred

grasp types based on object shape and size. Currently,

people struggle to predict which grasp a robot will use.

Through daily experience, humans have learned to robustly

use different grasp types for different objects and tasks. It

will be very useful for robots to learn those preferences.

This work shows that it is feasible to use online surveys to

obtain this information from humans. Specifically, the online

survey enables us to define a human-preferred “graspable”

space for a large number of common grasps. This space

includes shape, orientation, approach direction for pre-shape

and object. We have validated that the collected data is

consistent, both within participant and across participants.

We have also used a hierarchical view of the grasp space to

make data collection from humans efficient.

We can analyze the resulting polytopes as well. The center

point of the region is an object that is about half the max

finger span in all dimensions. This is an expected result since

very small objects and very large objects are difficult to pick

up. Instead, an object that can easily interact with all the

features of a manipulator is easiest to pick up.

Another interesting application of the data is to see how

the shape space of different grasps correspond. By looking

at where overlap occurs of polytopes of different pre-shapes,

objects that can be successfully grasped by two different

pre-shapes can be determined. The border between regions

demonstrates when to change from one grasp to another.

Figure 7 shows when a robot should switch grasps to improve

likelihood of success.

Furthermore, the approach also provides grasp preferences

at continuously varying levels of confidence and a com-

parison across pre-grasp-object-shape combinations. This

flexibility allows planners and controllers to utilize the model

more effectively based on demand from context. Finally, data

collection using this method is cumulative. Areas of low

confidence can be re-sampled as needed or desired.

Future work includes physical testing to further verify

survey data. Subsequently, a system will be built based on

the collected data to aid grasp planners in reducing the search

the space.
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Fig. 5. Polytope built from the results of the one parameter dimension survey for a cube with a 3 finger pinch grasp from the side. Red markers are the
average points of boundary points for that surface. From left to right: Pre-shape, hand orientation, and approach of grasp, conservative (75% confidence),
average, and possible (25% confidence).

Fig. 6. Polytope at 75% confidence
interval showing grasps that lie at
boundary vertices.

Fig. 7. Transition between when
people prefer to change pre-shapes.
Approach, pre-shape, and hand ori-
entation shown for each polytope.

Fig. 8. Refined surface of the boundary between successful and unsuccess-
ful grasps in shape space. Unsuccessful grasps are shown with red markers.
The configuration is the same as in Figure 5

B. Human Preference Data Collection

This work carefully collects human preference data for

how a robot should grasp an object. In addition to logistics

issues (cost, tedium, finding motivated subjects), people also

struggle to explain their preferences. However, they may be

able to demonstrate a task in a certain way. Thus, the surveys

in this paper have been created so that researchers can iden-

tify critical decision points in the grasp space triggered by

object size and shape. Another important step in conducting

the surveys is that training materials were used to prime

participants about the physical properties of the robot and

objects. Future work includes refinement of survey questions

to maximize efficiency and efficacy.
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