
An Online Algorithm for Detecting Anomalies using Fuzzy
Clustering

Darrin M. Hanna1, Michael F. Lohrer1, David E. Stern1, Alexander Postlmayr1,
Adam Kollin2, Shuo Wang3, and Gang-yu Liu3

1Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, United States
2RHK Technology, Inc., Troy, MI, United States

3Department of Chemistry, University of California Davis, Davis, CA, United States

Abstract— A fuzzy clustering algorithm with the ability to
learn unsupervised can be used to detect objects of interest
in semi-structured data. An online application of a fuzzy
clustering algorithm with merging was implemented in both
software and hardware to test anomaly detection in atomic
force microscopy (AFM). The requisite components of the
algorithm were all estimated, measured, and verified to meet
real time constraints for incoming data. After clusters have
been formed, representing the background of an image, any
new cluster is an abnormality to the surface which is of
interest to the user. This real-time detection of anomalies is
important for identifying regions of interest for faster and
higher resolution scanning. Results show this application
is successfully capable of detecting anomalies in AFM
topographic images. The approach taken in this paper is
generic and can be applied to other applications with a
continuous data stream.

Keywords: Fuzzy clustering, anomaly detection, atomic force
microscopy

1. Introduction
With a growing number of applications ranging from

security to computer vision, there is an increasing demand
for the ability to identify anomalies in a continuous data
stream [1], [2]. The literature in sequential data modeling is
predominantly time-dependent where far fewer publications
exist for time-independent data, such as [3]. Anomalies
among periodic and structured data are generally easy to
identify while detecting an irregularity among unstructured,
aperiodic data is more difficult. For applications where data
are streaming and the anomaly detection is used in control
loops or in embedded systems such as network routers and
firewalls, the anomaly detection must happen in embedded
hardware with constraints on resources and power while
operating at high speeds. Further, while identifying irregu-
larities in data streams, the algorithm must be able to adapt
to the changing environment where an anomaly detected at

This material is based upon work supported by the National Science
Foundation under Grant No. 1721926.

one point in time may become a regular occurrence in the
longer run.

In this paper, we describe a clustering method in which
a set of clusters are formed to represent patterns in data
and to identify when anomalies occur. Clustering algorithms
have several obstacles when used in online applications. In
general, many clustering algorithms require that the number
of clusters is specified a priori and must be re-clustered at
a great computational expense in order to train from online
data. Accordingly, foundational clustering algorithms such
as c-means and k-means clustering where the number of
clusters must be known in advance [4] are not conducive
to applications that have an unknown number of regular
patterns. Additionally, the re-clustering of recurring patterns
can be extremely costly.

High-dimensional data streams are particularly challeng-
ing [5], [6]. Many modifications for clustering algorithms
have been created for such online applications aimed at
organizing high-dimensional data in real time. In previous
work such as [7] a method is presented that is able to
detect anomalies in a continuous data stream while adapt-
ing over time without having to specify the number of
patterns/clusters a priori. The fuzzy clustering algorithm
described in the paper uses an efficient merging method that
allows for new clusters to be merged or added to the global
cluster set every iteration without having to re-cluster. This
paper proposes an embedded solution to online learning with
streaming data that can:

1) Detect anomalies in real-time
2) Adapt over time to changing data
3) Operate directly in hardware using an FPGA
We implement this method in an FPGA given tight timing

constraints to perform anomaly detection on an image taken
with atomic resolution while the image is being acquired
from an atomic force microscope.

1.1 Atomic Force Microscope Scan Data
We apply our algorithm to a data stream of topographical

data sampled continuously from an atomic force microscope
(AFM). Examples of anomalies that are of interest in an
AFM scan include static deformations or height differences

in the soft surface and dynamic surface reactions taking place
on the sample. The benefit of identifying the anomalies in
real-time is to change the scan characteristics from a broad
sample scan to one that is limited to the specific location
where the deformation is or reaction is taking place and
scanning at a higher scan speed and resolution. Since this
detection is part of the scan control loop it must be imple-
mented in hardware to minimize delay between detecting
a dynamic surface reaction, for example, and changing the
scan characteristics to capture it. Depending on the surface
of interest, the scan data ranges in periodicity and structured;
a smooth gold surface, for example can be relatively periodic
and structured while a rough gold surface is semi-structured
and lacks periodicity making identifying anomalies difficult.

2. System Specifications Outline
Scan probe microscopy (SPM) controllers control scan

probe movement and acquire data related to the samples’
topology in a high speed control loop in hardware. These
data are typically sent through an Ethernet connection to
a computer where software processes the data, assembling
them into an image. In order to accomplish our objective,
once an anomaly is detected, the probe positioning, scan
window, and scan speed must be altered as quickly as
possible to start scanning the area of interest. Speed is
particularly important if the area of interest is a surface
reaction that is progressing quickly.

We developed our system based on a combination of low-
noise electronics from RHK Technologies’ R9 SPM con-
troller, a well-known leading controller for nano-imaging,
and custom hardware developed at Oakland University. [8].

The software (R9S) runs on a PC and communicates
with the controller through an Ethernet connection. The PCs
have more than enough processing power to accommodate
running the feature finding algorithm. However, the feature
finding system will require reading data from the controller
and sending data back to update the scan. Sending data
from the R9 to the PC and back adds latency. The runtime
of the feature finding algorithm in software combined with
the Ethernet latency would mean a response time would not
be guaranteed. Since our system is a control loop, variable
latency times could cause major issues, thus a software
implementation was not chosen. The impact of variable
latency would mean the application is no longer real-time.

We use Field Programmable Gate Arrays (FPGAs) to
process the data being sent and received in the system. The
hardware on the FPGAs has access to all the data and has
no extra communication latency with the incoming samples,
but are limited by space. The FPGA that would be used
for feature finding is already 84% full with other hardware
necessary for the standard scan system. Although limited
hardware space is available, it is estimated by synthesis tools
that the feature finding algorithm can be designed to fit in
the remaining space.

Algorithms implemented on FPGA hardware are inher-
ently more difficult to design and verify. Therefore, a soft-
ware implementation was created to simulate the hardware.
Quickly prototyping algorithm changes is possible in the
software simulation and verifying correctness is much easier.
Finally, the hardware results were compared to the software
results to verify the hardware’s accuracy.

3. Fuzzy Feature Finding
There are three main components of the fuzzy clustering

algorithm with merging that make it ideal for detecting
anomalies in continuous data streams: generating features,
clustering without a predetermined number of clusters, and
merging clusters without re-clustering all data. The features
generated are specific to the application for which they
are being used. After generating features, the fuzzy clus-
tering algorithm creates clusters in feature space. Lastly, the
new clusters are merged with the existing clusters using a
resource-saving method that does not require all data to be
re-clustered.

3.1 Generating Features
Once a segment of n samples has been received, the fuzzy

clustering algorithm generates features for each sample.
The features are used for characterizing the clusters to be
calculated in feature-space. For each sample, p features are
generated to create a p× n matrix P .

3.2 Clustering Without a Predetermined Num-
ber of Clusters

An important aspect of this fuzzy clustering algorithm
is its ability to create clusters without prior knowledge of
how many global clusters should exist in the data. This is
achieved through multiple manipulations of the generated
features. After the features have been generated, an n × n
fuzzy compatibility relation matrix Q is calculated to find
the similarity of each sample to every other sample, where
x ∈ P .

qij = 1− 1

p

(p∑
k=1

∣∣∣∣xik − xjkMk −mk

∣∣∣∣s) 1
s

(1)

For feature k, Mk and mk represent the maximum and
minimum values respectively so |Mk − mk| is that fea-
ture’s range. Dividing each feature difference by the range
normalizes the data and prevents any of the features from
having a larger impact than the others and also reduces the
effects of noise in the data. The norm calculated is set by
s where s ≥ 1. The Manhattan distance between features is
calculated when s = 1 and s = 2 calculates the Euclidean
distance.

As shown in [9], creating clusters involves taking α-
cuts of the fuzzy equivalence relation matrix; the fuzzy
equivalence relation is calculated by taking the transitive
closure of the fuzzy compatibility relation matrix. Using the

max-min transitive closure The fuzzy equivalence relation
matrix is transitive if every entry meets the condition shown
in Equation 2. Since the transitive closure does not modify
the size of the matrix, its result T will also be an n × n
matrix where n is the number of samples.

tij ≥ max
1≤k≤n

min (tik, tkj) (2)

The result of the transitive closure T is compared to α to
create a set of clusters C. α is the clustering threshold and
has a range of [0,1]. An α closer to zero means sample data
will form fewer, larger clusters. An α closer to one means
sample data will form more, smaller clusters.

∀i, j ∈ Ck, tij ≥ α (3)

Next, local clusters are created using Equation 4. Using
this method, a new local cluster could be formed for every
single data point analyzed, or all of the data in the sample
set could be grouped into the same cluster.

ai =
1

|Ci|
∑
j∈Ci

xj (4)

The centroids, A, representing the set of clusters are
calculated using Equation 4. |Ci| is the cardinality of that
specific cluster set and xj represents the data points from
which the cluster sets are comprised.

3.3 Merging Without Re-clustering All Data
The last step of the algorithm is to merge the newly

created clusters into the set of existing, global clusters. This
step is important because if a new cluster is formed during
merging, a new pattern has been detected. Merging occurs
every time new clusters are calculated, but does not take
more time to calculate because it is accomplished in a way
that does not require the re-clustering of all the data. First,
a fuzzy compatibility relation is found between the newly
created clusters and the existing clusters using Equation 5.
The fuzzy compatibility relation here is done for the same
reason it was done when creating clusters.

zij = 1− 1

p

(p∑
k=1

∣∣∣∣ajk − bikrk

∣∣∣∣s) 1
s

(5)

ajk is a data point coming from the set of local clusters
found belonging to cluster set A and bik is a data point
from the set of global clusters belonging to cluster set B.
The range of the feature across both data sets is rk.

After computing the relation, the maximum of each row is
found and their columns are recorded. Each row represents
the distances between a single cluster in A and all clusters
in B. Each maximum is then compared to β, the merging
threshold that has a range of [0,1]. If the row’s maximum is
less than β, the cluster that row represents does not merge

with any global clusters. Instead, the local cluster becomes
a new global cluster.

ρBi = max
j
zij (6)

If the row’s maximum is greater than or equal to β, the
local cluster is merged with the global cluster using Equation
7.

wajaj + wbibi
waj + wbi

∣∣∣∣zij = ρBi (7)

The weights of the cluster set’s features are waj and wbi.
These represent how many clusters are in those data sets.
When merging, ρBi replaces the entry in B, thus updating
the global cluster set.

A new, non-merged global cluster represents a pattern in
the data stream that has not been seen before. When scanning
the first few sets of sample data in our application, new
global clusters do not signify something has been found. In-
stead, the first new global clusters represent the background
of an AFM scan, or what most of the image should look
like. The number of iterations the algorithm goes through
for gathering background data could be played around with
by the user and optimized for different applications. After
scanning the background and generating its related clusters,
any new global cluster represent an objects of interest.

4. Software Implementation
Large hardware designs are much harder to verify than the

equivalent software design. Thus, software was developed to
simulate the hardware design and allow testing and verifi-
cation of the algorithm. Unlike a standard implementation
of fuzzy clustering which would likely use floating-point
arithmetic, fixed-point arithmetic was used to be hardware-
friendly. Other optimizations for hardware such as a pipeline
are implemented and are in their respective sections.

4.1 Sampling
The data points are received individually as 21-bit frac-

tional numbers ranging [−1, 1−2−20] from the microscope.
This fixed-point format is Q0.20, read as a signed 21-bit
number with a sign bit, no integer bits, and 20 fractional
bits. To form clusters, 16 samples must be grouped into
an individual segment. This number is chosen as a trade
off between robustness of the algorithm and computational
power. A higher number of samples in each cluster reduces
the susceptibility to noise, on the other hand, the transitive
closure bottleneck of the algorithm would decrease through-
put and increases the latency of the component pipeline. A
power of 2 length is ideal for hardware memory accesses;
therefore, the optimal segment length for this application
was found to be 16, where 32 samples in a segment is not
possible using a real-time application of the hardware.

In addition to the 16 samples that form a segment, 16 ad-
ditional samples are stored to be used in feature generation.

0 1 · · · 6 7 8 9 · · · 22 23 24 25 · · · 30 31

Past Samples Current Samples Future Samples

Fig. 1: Data Samples as they are passed into the Feature
Generator Component.

The eight samples previous and the eight following samples
are saved as well. Requiring eight samples beyond the active
segment means adding a latency of eight samples, but this is
acceptable to our application as the latency is insignificant.
Further discussion can be found in the hardware section
of this paper. Every time 16 new samples are recorded,
the 32 total samples get passed to the feature generator as
shown in Fig. 1. Using the eight past and future samples
allows bidirectional features to be extracted. Whereas, the
one-dimensional data stream using segments to compute the
clusters from memory is preserved.

4.2 Feature Generation
In order to detect a surface anomaly, it is expected

that at some locations a sample will have a drastically
different value than nearby neighbors. For this reason, the
features used in this application are mostly one-dimensional
differences between samples’ neighbors and the values of the
samples themselves. Simple features were chosen to reduce
the hardware implementation’s resource usage and increase
its speed. One-dimensional features were used to limit how
many samples needed to be stored in memory; there is not
enough memory available in the FPGA to store multiple
rows of data for two dimensional feature capabilities. It
should be noted that this would drastically increase latency
from the existing eight data points to multiple rows of the
scan. Currently, the implementation for this algorithm is for
images created from a raster scan; however, by using one-
dimensional features, the functionality of the algorithm can
be kept the same while using different scan patterns such as
a Lissajous curve.

With the 16 samples of each segment, eight features are
generated:

1) The sample itself.
2) The sample minus the previous sample.
3) The sample minus three samples previous.
4) The sample minus six samples previous.
5) The sample minus eight samples previous.
6) The sample minus the next sample.
7) The sample minus three samples ahead.
8) The sample minus eight samples ahead.

Since each sample is 21 bits, the features are also kept
as 21-bit fixed-point numbers in Q0.20 format. Thus, the
features selected are easy to compute.

4.3 Compatibility Relation
The first step in the fuzzy compatibility relation is to

calculate the range of each feature over the entire segment.
By dividing each feature by the range of the feature, the
segment is normalized. However, performing a division in
hardware is relatively expensive. To eliminate the division,
a method that divides by powers of two is developed. A
division by a power of two is simply a bit shift, which
requires much less time to execute in hardware.

To avoid a square root operation, Manhattan distance is
used so s is set to 1. Equation 1 with bit shifts and s = 1
becomes

qs_ij = 1− 1

p

p∑
k=1

2−dlog2(Mk−mk)e|xik − xjk| (8)

where Qs is the bit shifting version of the fuzzy compat-
ibility relation. Since the number of features p is a power
of 2, all divisions have been reduced to bit shifts. Note that
Qs ≤ Q since 2−dlog2(Mk−mk)e ≤ (Mk −mk)

−1. Thus the
α parameter should be set lower when using this approxi-
mation. This shifting method was also implemented for the
compatibility relation done in the merging portion of the
algorithm. For that compatibility relation, the β parameter
should also be set lower when using this approximation.

4.4 Transitive Closure
The transitive closure is an expensive operation to com-

pute, so optimizations were necessary. Using the fact that
a fuzzy compatibility relation is reflexive, the diagonal
elements are all ones and will remain as ones for the output
of the transitive closure. Also, fuzzy compatibility relations
are symmetric so the elements qs_ij = qs_ji for all i and j.
Therefore only the lower or upper triangular part needs to
be computed. With these modifications the transitive closure
computation time is approximately halved. Additionally, the
Floyd-Warshall algorithm was used to reduce the worst-case
time complexity, as detailed in Algorithm 2 in the Hardware
Implementation section.

4.5 Clustering
The result of the transitive closure is used to determine

which samples belong to a fuzzy equivalence class and
therefore get clustered together. Instead of computing a
binary matrix representing the fuzzy equivalence classes and
then computing centroids from that, the fuzzy clustering
algorithm has been implemented such that only a single
pass is required. Meaning that the α cut is taken iteratively.
The algorithm is given as Algorithm 1, with T the result of
the transitive closure, P the feature matrix, n the number
of samples to cluster, p the number of features, and α the
clustering threshold parameter.

Algorithm 1 Clustering from Fuzzy Relation
Input: Matrix T, Matrix P, Dimension n, Dimension p,

Parameter α
Output: Clusters C, Weights w
gi ← 0, i = 1, . . . , n . All samples unclustered
m← 1 . Current cluster
for i = 1, . . . , n do

if gi = 0 then
wm ← 0
fj = 0, j = 1, . . . , p
for j = 1, . . . , n do

if qij ≥ α then
gj ← 1
wm = wm + 1
for k = 1, . . . , p do

fk = fk + pkj
end for

end if
end for
for k = 1, . . . , p do

Ckm = fk/wm

end for
m← m+ 1

end if
end for

4.6 Merging
In the fuzzy clustering algorithm, an existing global

cluster is updated in the merging process using Equation
7. This calculation was reduced to using one multiplication
by transforming it into Equation 9.(

wbj

waj + wbi

)(
bi − aj

)
+ aj

∣∣∣∣zij = ρBi (9)

Making this optimization to the algorithm saved enough
clock cycles to make the component meet the timing re-
quirement and it requires less space in hardware. These
specifications will be touched upon in further detail in the
Hardware Implementation section.

4.7 Software Implementation Results
A scan of gold [10] was converted from a 512x512 pixel

image to a data stream that simulates a raster scan. This data
was fed to the algorithm the same way an SPM controller
would receive it. Anomalies detected have been marked on
the image in Fig. 2 with a dotted black and white cross.
The first thirty data were used for background training. Any
global clusters created after the training data were flagged.

The first white circle in the top-right of the image is the
first anomaly detected. The next small circle on the left side
of the image is not flagged. This is expected because the
algorithm has already analyzed something similar, the first
anomaly. The second anomaly detected is the larger surface

Fig. 2: Topographic scan of Au(111). The α-cut is set to
0.75 and β is set to 0.65. For the fuzzy equivalence relation,
the division of the range was used, fixed point math was
used instead of floating-point, and the number of possible
global clusters was limited to 16.

deformation in the bottom-left quadrant of the image. This
was detected because a deformation that large had not been
seen by the algorithm yet. These are the optimal results
because the two surface deformations that were expected
to be found were detected.

When using the bit-shifting method, α and β may need
to be lowered in order to achieve the same results as the
division method. By lowering α to 0.70 from 0.75 and β
from 0.65 to 0.56, the results were reproduced. This shows
that the bit-shifting method is capable of producing the same
optimal results as the division method for Fig. 2.

The final global cluster data resulting from simulating
Fig. 2 was compared to results using floating-point. All
other parameters for the simulation were kept the same. As
expected, the results had slight differences since data was
truncated in the fixed point version. The absolute relative dif-
ference between the data sets, including both cluster features
and weights, was below 1.5%. For both versions, the same
two anomalies were detected at the same location. None
of the clusters for the anomalies were merged differently
between the two versions and less than 0.02% of clusters
merged differently for the background data. These results
show the same results are achieved using the fixed point
method without needing to alter parameters.

A critical aspect of implementing the merging portion
of the algorithm was determining the maximum number of
possible global clusters. Due to a finite amount of memory in
hardware, a limit had to be set to prevent unbounded growth.
Under a well tuned alpha and beta, such as those used in Fig.
2, the number of clusters was found to not exceed 16. Only

four global clusters were created to describe the background
data when simulating Fig. 2 and two clusters were used when
the anomalies were detected. For the application of AFM
scanning, it is not expected to need more than a couple
clusters for anomalies because action will be taken after
discovering one such as setting up a new focused scan. Due
to the limited number of clusters needed in this example and
others similar to it that were tested, it was determined that
limiting the number of clusters was acceptable.

5. Hardware Implementation
Numerous restrictions shaped the design of the hardware

implementation. The main restriction was to make sure
the hardware could perform the fuzzy clustering algorithm
online. Given the specifications of the our system in Table
1, the algorithm must have a run time under 8,000 clock
cycles.

One of the methods used for reaching this goal was
breaking the algorithm into parts that could be pipelined. A
result of this is each component has to operate in under 8,000
clock cycles instead of the entire algorithm reaching this
timing goal. The algorithm was broken into the following
parts: generate features, find fuzzy equivalence relation,
compute transitive closure, create clusters, and merge new
clusters into existing clusters. By breaking the algorithm into
five components, there is a latency of four iterations. For our
application this equates to 32,000 clock cycles, or a 320 µs
latency.

The top-level implementation of the hardware is displayed
in Fig. 3. Each of the components are given a signal to
start every 8,000 clock cycles. As samples enter the R9,
they are routed to the Sample Collector component. The
Sample Collector stores data sequentially in memory until a
full sample set is collected, at which point a flag is raised
signaling the data is ready. When a full data set is ready
and the start signal is high, the Feature Generator calculates
the features. The features are then stored in P , a set of
four RAMs. The P RAM that the features get stored in is
rotated sequentially every iteration. There are four of these
RAMs because the Feature Generator is the first component
in the pipeline and the features are needed to create the
clusters, which is three stages down the pipeline. Then, the
Compatibility Relation uses the data most recently stored
in P to compute the compatibility relation, which is then
stored in Q. Q is also a set of four RAMs; although it is
one stage farther down the pipeline, the Transitive Closure
component loads the data from Q and then stores it back

Table 1: System Specifications
Incoming Data Speed 200 kHz
R9 FPGA Clock Speed 100 MHz
Data Points in a Sample Set 16
Clock Cycles per Sample Set 8,000

Sample Collector Incoming Data

Feature Generator

P (RAM ×4)

Compatibility Relation

Q (RAM ×4)

Transitive Closure

Create Clusters

B (RAM ×2)

Merge ClustersAnomaly Detected

A (RAM)

Fig. 3: Top-level diagram of the hardware implementation.
Components that have an arrow directed toward a RAM store
an output in that RAM. Components with an arrow directed
towards it from a RAM use data stored in that RAM.

into the same RAM it loaded from. The Create Clusters
component then takes the generated features in P and result
of the transitive closure in Q from the same sample set and
creates a set of local clusters. The created clusters are stored
in B, a set of two RAMs. There are only two of the B RAMs
because these clusters are only used for merging. During one
iteration, the data from one B RAM is used to merge while
the other is being filled with new clusters. Lastly, the Merge
Clusters component takes the last created clusters in B and
merges them with the global clusters in A. If the hardware is
done scanning background data and a new global cluster is
formed, the Merge Clusters component raises a flag alerting
the user an anomaly has been detected.

An alternative to pipelining would be parallelization.
Memory is not an issue in the existing R9 architecture
because 90% of the FPGA’s memory is available. However,
it was discovered that as more random-access memories
(RAM) were added, the overhead increased. This is because
the input and output signals for the RAMs had to pass
through an increased number of multiplexers to get in and
out of the RAMs. The overhead grew so large that it was

Algorithm 2 Floyd-Warshall Min-Transitive Closure
Input: Matrix Q, Dimension n

for i = 1 to n do
for j = 1 to n− 1, j 6= i do

for k = j + 1 to n do
qjk ← max(qjk,min(qji, qik))
qkj ← qjk

end for
end for

end for

not possible to reach the timing goal through parallelization.
The FPGA only has 16% of its space remaining. Also,

there are no multipliers available for use with our added
hardware. Modifications were made to the algorithm to limit
the amount of space used, mainly by limiting the use of
divisions and multiplications. When calculating the fuzzy
compatibility relation (Equation 1), the difference between
sample features is divided by the range of the feature.
The division by the range was substituted with a series of
logical right shifts. The difference is shifted right to get a
result as close as possible to the division with the range.
The transformation of this equation was also done for the
fuzzy equivalence relation done before merging clusters in
Equation 5. This method was tested in software to verify the
end result would still be valid.

As described previously, the max-min transitive is cal-
culated by iteratively applying Equation 2 to the fuzzy
compatibility relation. This equation is relatively simple
and easy to implement in hardware, however it requires
O(n3 log n) time where n is the sample size. It was not
possible to perform this step in the 8,000 clock cycle limit,
so to avoid adding more pipeline stages a different algorithm
was used. In [11], the Floyd-Warshall algorithm is shown
to be another simple yet quicker method of computing the
max-min transitive closure. The algorithm is modified to
take advantage of the reflexivity and symmetry of the fuzzy
compatibility relation.

The complexity is reduced to O(n3) in Floyd-Warshall’s
method while still only using max and min operations. This
method sufficiently speeds up the hardware implementation
such that it now can execute in under the 8,000 clock cycle
limit.

6. Conclusions
In applications such as the one described, there are

instances where things need to be detected that have not
been seen before. This paper has demonstrated why the
fuzzy clustering algorithm with merging is well-suited for
detecting new patterns online. The algorithm used was
optimal for applications of this type because of its ability
to merge clusters in a way that does not require all data to
be re-clustered every iteration. The approach taken to utilize

this algorithm in hardware could easily be used for similar
applications simply by changing the features.

As seen with the software results, the algorithm was
successfully implemented and able to detect a significant
surface height difference. Modifications were made to the
algorithm to make it easier to design in hardware. Hardware
simulations show that the designed hardware outputs the
same result as the software when given the same data stream
in the required amount of time. Also, when synthesizing the
hardware to be put on the FPGA, there is enough remaining
space for the hardware and memory needed.

This application can be further expanded upon to produce
better results from AFM scans. A user may wish to focus
on an object of interest after it has been found. If only the
area around the object is scanned, the scan could be taken
faster and at a higher resolution. Logic could be added to
the hardware described in this paper to automate the process
of stopping the current scan when an object is found and set
up the new, focused scan.

References
[1] G. Pallotta, M. Vespe, and K. Bryan, “Vessel pattern knowledge

discovery from ais data: A framework for anomaly detection and route
prediction,” Entropy, vol. 15, no. 6, pp. 2218–2245, 2013.

[2] W. Wang, T. Guyet, R. Quiniou, M.-O. Cordier, F. Masseglia,
and X. Zhang, “Autonomic intrusion detection: Adaptively detecting
anomalies over unlabeled audit data streams in computer networks,”
Knowledge-Based Systems, vol. 70, pp. 103–117, 2014.

[3] O. Akbilgic and J. A. Howe, “Symbolic pattern recognition for
sequential data,” Sequential Analysis, vol. 36, no. 4, pp. 528–540,
2017.

[4] S. Ghosh and S. K. Dubey, “Comparative analysis of k-means
and fuzzy c-means algorithms,” International Journal of Advanced
Computer Science and Applications, vol. 4, no. 4, 2013.

[5] P. Agarwal, M. A. Alam, and R. Biswas, “Issues, challenges and tools
of clustering algorithms,” arXiv preprint arXiv:1110.2610, 2011.

[6] L. Zhang, J. Lin, and R. Karim, “Sliding window-based fault detection
from high-dimensional data streams,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 47, no. 2, pp. 289–303, 2017.

[7] R. E. Haskell, D. M. Hanna, P. Li, K. Cheok, and G. Hudas, “Finding
pattern behavior in temporal data using fuzzy clustering,” Intelligent
Enginering Systems Through Artificial Neural Networks, vol. 10,
pp. 703–711, 2000.

[8] A. Kollin, S. Porthun, D. Hanna, C. Otlowski, A. Covyeau, K. La-
Belle, M. Lohrer, and J. Gorski, “Design of an efficient object-oriented
software for an fpga-based scan probe microscope controller,” in
Proceedings of the International Conference on Scientific Computing
(CSC), p. 178, The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2013.

[9] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic, vol. 4. Prentice hall
New Jersey, 1995.

[10] S. Xu, S. J. Cruchon-Dupeyrat, J. C. Garno, G.-Y. Liu, G. Kane Jen-
nings, T.-H. Yong, and P. E. Laibinis, “In situ studies of thiol self-
assembly on gold from solution using atomic force microscopy,” The
Journal of chemical physics, vol. 108, no. 12, pp. 5002–5012, 1998.

[11] H. Naessens, H. De Meyer, and B. De Baets, “Algorithms for the
computation of t-transitive closures,” IEEE Transactions on Fuzzy
Systems, vol. 10, no. 4, pp. 541–551, 2002.

