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Latent Model-Based
Clustering for Biological Discovery
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SUMMARY

LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used
across a range of datasets to generate both overlapping and non-overlapping clusters. In our formu-
lation, a cluster comprises variables associated with the same latent factor and is determined from an
allocation matrix that indexes our latent model. We prove that the allocation matrix and correspond-
ing clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological
responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune
responses) resulting in meaningful biological output. For all three datasets, the clusters generated by
LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of
13 state-of-the-art methods using previously established benchmarks and found that LOVE outper-
formed these methods across datasets. Our results demonstrate that LOVE can be broadly used
across large-scale biological datasets to generate accurate and meaningful overlapping and non-over-
lapping clusters.

INTRODUCTION

One of the most critical aspects of handling large biological datasets is identifying and accurately quanti-
fying similarities and differences in the data. Clustering is one of the most popular ways to do this, and
many clustering algorithms with specific biological applications have been developed over the last two de-
cades. However, despite the availability of numerous clustering algorithms, three key issues still remain un-
addressed. Most clustering methods use heuristics to assign clusters and do not come with rigorous statis-
tical performance guarantees. Second, existing clustering methods work well only for specific datasets. A
comprehensive benchmarking of 13 well-known methods across 24 datasets revealed that there was no uni-
versal best performer; rather, methods typically worked best for the datasets that they were specifically de-
signedfor (Wiwie et al., 2015). Even in our own experience, the choice of an appropriate clustering method is
highly specific to the dataset being analyzed (Das et al., 2012, 2013, 2015; Vo et al., 2016). Furthermore, clus-
tering methods typically work for generating either overlapping or non-overlapping clusters, but not both.

These led us to envision a clustering approach that comes with rigorous statistical guarantees regarding

both cluster identification and assignment of variables to clusters. The method would be generically appli-

cable across a wide range of datasets, as there would be no assumptions regarding how the data were

generated. Furthermore, the method is designed to estimate the type of clusters that best fit a dataset,

which in some cases may be overlapping and in other situations non-overlapping. Here, we report LOVE, 'Department of Statistical
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Dataset Number Number Quantiles of Correlation of Measurements
of Variables of Measurements (0%, 25%, 50%, 75%, 100%)

Gene expression 16,134 114 —0.51 —0.06 —0.01 0.04

Progressors and controllers 19 72 —0.68 —0.10 0.08 0.30

Vaccine-induced humoral immune 60 191 -0.99 0.03 0.22 0.44

responses

Table 1. Applicability of LOVE across Datasets with Different Correlation Structures

We define K clusters based on the K latent factors. Assignment of variables to clusters is based on the mem-
bership matrix A, which assigns some variables to only one cluster, to anchor that cluster, and other vari-
ables to multiple clusters.

There are three main steps in LOVE (Figure 1). The first step involves determination of the covariance
network connecting the variables of interest, and the structure of the underlying latent variables (Figure 1A).
The second involves inferring the strongest connections between variables. Based on the strength of these
connections, variables are designated as “mixed” and “unmixed.” Mixed variables are defined as those
that are associated with multiple latent factors, whereas unmixed variables are those that are associated
with a single latent factor. The unmixed variables are then used to identify the unique clusters (Figure 1B).
The final step comprises assignment of the mixed variables to multiple clusters based on the membership
matrix A (Figure 1C). There are three primary tuning parameters in LOVE—determination of cluster anchors
using delta, membership matrix determination using lambda, and thresholding during assignment of vari-
ables to clusters using mu. The mathematical details of each step, as well as the associated parameter tun-
ing, are provided in the Transparent Methods. We also provide code to implement each step of LOVE as
well as associated detailed documentation (Data S1). LOVE is highly scalable as a method. The determina-
tion of pure and mixed variables is an O(n2) algorithm, where nis the number of variables to be clustered.
The estimation of the membership matrix A involves solving K linear programs (where K'is the number of
latent factors). To practically test the scalability of LOVE across datasets with different numbers of variables,
we tested LOVE on a wide range of datasets from a few hundred (1072) to a million variables (1076). Run-
times on a single core ranged from under a second to ~140 h (Table 2). Thus even for the largest dataset of
a million variables, this extrapolates to a runtime of a few hours on a typical server or cluster node. Thus
LOVE is highly scalable and can efficiently cluster even ultralarge datasets in hours.

Overlapping Clustering Using LOVE

To test overlapping clustering using LOVE, we used a previously described compendium of human gene
expression data (Das et al., 2012). The dataset corresponds to expression measurements for 16,134 genes
across 114 different points in the cell cycle. Using LOVE, we obtained >1,000 overlapping clusters, which
corresponded well with prior biological expectation. For example, we obtained three overlapping clusters,
where cluster 1 contained the genes RWDD3, BRD30S, and IRF2; cluster 2 contained the genes BRF30S,
IRF2, CTGF, INHBA, and INHBB; and cluster 3 contained the genes INHBA, INHBB, and COLA1A2 (Fig-
ure 2A). Based on KEGG pathway annotations, RWDD3 is associated with nuclear factor (NF)-kB signaling
and CTGF is associated with leishmaniasis, whereas the genes shared between clusters 1 and 2—BRD30S
and IRF2—are known to be associated with both NF-kB signaling and leishmaniasis (Figure 2A). CTGF is
also associated with the KEGG inflammatory bowel disease (IBD) pathway, and COL1A2, the only gene
in cluster 3, is in the KEGG pathogenic E. coliinfection pathway. Completely consistent with this, the genes
shared between LOVE clusters 2 and 3—INHBA and INHBB—are associated with both the IBD and the
pathogenic E. coli pathways. These results show that the clusters detected by LOVE correspond to specific
functions, illustrating that the latent factors in our modeling formulation are not only mathematical entities
but also have underlying biological significance. Genes that are only in one cluster, but not others, define
the biological relevance of the clusters; this perfectly matches our mathematical latent factor formulation.
Furthermore, LOVE is very specific at detecting meaningful overlaps based on shared biological func-
tions—different sets of genes were detected as overlapping between clusters 1 and 2 and 2 and 3, and
both sets were consistent with prior biological expectations based on genes that are present in only one
of the clusters. The clusters presented in Figure 2A, and the corresponding overlaps, serve as examples
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Figure 1. Overview of LOVE
(A-C) Schematic illustrating the steps of the LOVE algorithm. (A) Estimation of the covariance network and latent variable
structure, (B) cluster inference based on strength of connections, and (C) final assignment of clusters based on estimation

of the membership matrix.

of how LOVE detects biologically meaningful relationships in an unsupervised framework. Next, we system-
atically examine the quality of all the clusters and the corresponding overlaps.

As clusters correspond to biological functions, one expects pleiotropic genes to be overlapping across
clusters as these carry out several functions. We defined pleiotropic genes based on the network degree
of the proteins encoded by these genes, i.e., protein-protein interaction network hubs were defined as
pleiotropic. This is a standard way to characterize multiplicity of function as proteins perform their functions
by interacting with other proteins (Rolland et al., 2014; Vo et al., 2016; Yu et al., 2008) and previous studies
have shown that network hubs are the most functionally important genes (Albert et al., 2000; Jeong et al.,
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Dataset Number of Variables Number of Measurements Runtime
Gene expression 16,134 114 4 min
Progressors and controllers 19 72 0.021s
Vaccine-induced humoral immune 60 191 0.023 s
responses

TCGA™ 293 293 0.064 s
Cassini” 250 2 0.027 s
Synthetic_1 100,000 100 1.4h
Synthetic_2 1,000,000 100 142.4 h

Table 2. Runtimes of LOVE for Different Datasets

We record the running time of LOVE on different datasets with one specified value for each tuning parameter on a single core
of a machine (2.2 GHz Intel Core i7) with 16GB RAM.

?For the TCGA dataset, we have a pairwise similarity matrix of dimension n x n where, n = number of variables (n = 293).
PThe TCGA and Cassini datasets are obtained from Wiwie et al. (2015).

2000; Yu et al., 2008). We used a consensus high-quality protein interaction network to define hubs
(Das and Yu, 2012) and found that hubs belonged to significantly more clusters than non-hubs (Figure 2B,
p = 1.2 x 107" using a Mann-Whitney U test). Thus the assignment of overlapping clusters was consistent
with biological expectation—pleotropic genes were more likely to be assigned to multiple clusters than
non-pleotropic genes. We then compared our results with two existing clustering methods—fuzzy Cmeans
clustering (Bezdek et al., 1984) and ClusterOne (Nepusz et al., 2012). Fuzzy Cmeans clustering is a well-es-
tablished and widely used distance-metric-based algorithm. ClusterOne is graph based and has recently
been demonstrated to be superior to several similar approaches (Nepusz et al., 2012). Thus fuzzy Cmeans
clustering and ClusterOne are two state-of-the-art methods, use orthogonal concepts, and serve as excel-
lent benchmarks to compare against. We found that hubs were assigned to significantly more clusters by
LOVE than they were by Cmeans clustering or ClusterOne (Figure 2C, p < 107" using a Mann-Whitney U
test), suggesting that the overlaps detected by LOVE are more consistent with prior biological expectation
than the overlaps detected by other methods.

We also checked whether overlapping genes are also assigned to appropriate clusters, i.e., the clusters
from LOVE coincide with prior biological expectation as defined by protein network modules. We found
that the network distances (i.e., minimum path length between the two nodes) between overlapping genes
and non-overlapping genes from the same cluster were low. This distribution of network distances had a
median of 3.3, and 75% of network distances were under 3.6. Thus most overlapping and non-overlapping
genes from the same cluster are within four hops (<25% of the network diameter) away in the protein
network.

Although the above analyses show that genes with multiple functions are correctly assigned by LOVE to
multiple appropriate clusters, a good clustering method should also not assign genes with similar expres-
sion levels to multiple clusters. To test this, we looked at how housekeeping genes, as defined by stable
expression across 16 human tissue types (Eisenberg and Levanon, 2013), were distributed across the clus-
ters generated by LOVE. As housekeeping genes are uniformly expressed, i.e., have low variability in their
expression levels, ideally these should only be assigned to one or a few clusters and not the other clusters.
To systematically test this, we calculated the under-representation of housekeeping genes in the clusters
generated by LOVE and quantified this using an under-representation index (see Transparent Methods).
We found that housekeeping genes were under-represented across most LOVE clusters (Figure 2D) and
the corresponding index was significantly higher (p < 107" using a Mann-Whitney U test) for LOVE
compared with fuzzy Cmeans clustering and ClusterOne (Figure 2D). These results illustrate that LOVE
not only accurately identifies overlaps but also effectively discriminates between basally expressed genes
and genes with specific expression profiles.

We then explored how biologically relevant the clusters discovered by LOVE are. To define relevance, we
examined whether a cluster was over-represented for at least one known Gene Ontology biological
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Figure 2. Overlapping Clustering Using LOVE

(A) An example of how overlapping clusters detected by LOVE are consistent with known biological pathways, both in
terms of the genes assigned to single clusters and the genes shared between clusters.

(B) Median number of LOVE clusters that protein network hubs and non-hubs belong to. Error bars correspond to a decile
around the median. P value calculated using a Mann-Whitney U test.

(C) Distributions of the number of clusters protein network hubs belong to, for each of the three methods—LOVE, fuzzy
Cmeans clustering, and ClusterOne. P values calculated using a Mann-Whitney Utest (P < 107'° for LOVE vs Fuzzy Cmeans
and LOVE vs Cluster One).

(D) Distribution of under-representation indices corresponding to how under-represented housekeeping genes are
across clusters generated by the three methods—LOVE, fuzzy Cmeans clustering, and ClusterOne. P values calculated
using a Mann-Whitney U test (P < 107'° for LOVE vs Fuzzy Cmeans and LOVE vs ClusterOne).

(E) Fraction of clusters enriched for GO BP categories across a range of delta values, the cluster anchor tuning parameter.
(F) Fraction of clusters enriched for GO BP categories across a range of lambda values, the cluster membership matrix
tuning parameter.

(G) Fraction of clusters enriched for GO BP categories across a range of mu values, the assignment threshold tuning
parameter.

process (GO BP) category (Ashburner et al., 2000). Significant over-representation was defined using a
false discovery rate cutoff of 0.05 (p value calculated from a hypergeometric test followed by Benjamini-
Hochberg multiple testing correction) and computed using WebGestalt (Wang et al., 2013). The
number of biologically relevant clusters identified using this approach represents a lower bound on
the actual number of biologically relevant clusters as current GO annotations are not complete. Thus
any cluster enriched for at least one GO BP category is definitely biologically relevant, whereas clusters
not enriched for a GO BP category may still be meaningful. Despite this stringent evaluation criterion,
we found that at optimal parameter settings, >30% of clusters detected by LOVE are enriched for a
GO BP category (Figures 2E-2G), suggesting that the latent variables and corresponding clusters
detected by LOVE are highly relevant biologically. Furthermore, several clusters are enriched for multiple
GO categories, suggesting that we accurately recapitulate an even higher fraction of functional similarity
relationships. Overall, we found 1,723 over-represented GO categories across 1,222 clusters.

Finally, we tested how the relevance of the clusters discovered by LOVE changed when key tuning param-
eters of the method are varied. We first performed a grid search around the optimal delta, the parameter
that determines cluster anchors, i.e., which “unmixed” variables will serve to define clusters. We found that
across a range of parameter values around the optimal delta, the fraction of clusters known to be biolog-
ically relevant remained stable (Figure 2E). Next, we performed a similar analysis with lambda—the
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parameter used to tune the membership matrix based on the conditional independence structure of the
variables. Again, the fraction of clusters known to be biologically relevant remained stable around the
optimal lambda (Figure 2F). We also observed similar results with a grid search around the optimal
mu—the thresholding parameter that determines tuning of the latent variables (Figure 2G). Thus LOVE dis-
covers biologically meaningful clusters across a range of parameter choices.

Non-overlapping Clustering Using LOVE

Most methods are good at either generating overlapping or non-overlapping clusters (Wiwie et al., 2015).
However, due to the inherent formulation of LOVE, it can be used for either purpose. To test the effective-
ness of LOVE in generating non-overlapping clusters, we chose a recently published dataset of humoral
immune measurements from 19 human subjects from two distinct clinical phenotypes—long-term HIV con-
trollers and chronic progressors (Sadanand et al., 2018). For each subject, 18 different measurements of
antibody-effector functions and titers were available at four different time points, corresponding to a total
of 72 measurements (Sadanand et al., 2018). This dataset is different with regard to several key aspects from
the earlier gene expression dataset. First, the desired clusters here are non-overlapping as HIV controllers
and chronic progressors are clinically distinct groups and are known to be very different in terms of their
humoral responses (Alter et al., 2018; Sadanand et al., 2018). Second, the sources of biological and tech-
nical variance in the two datasets are different. In terms of biological variability, the modulation of transcript
expression levels across time points in the cell cycle is structurally very different from variation across hu-
man subjects with different clinical phenotypes. The extent of technical noise is also different as microarray
measurements are relatively noisy, whereas this dataset comprises serological measurements collected us-
ing modern methods. Finally, the number of entities being clustered (number of input variables for LOVE) is
also very different. The gene expression dataset had >16,000 genes profiled over 114 different points in the
cell cycle. The dataset of controllers and progressors have 19 human subjects. The differences across these
two datasets reveal the inherent variation across different biological datasets. Testing LOVE on two ex-
tremes provides an opportunity to benchmark how the clustering method performs at different ends of
the spectrum.

The 19 human subjects were split into two clusters—one of that comprised eight progressors and two control-
lers and the other comprised seven controllers and two progressors (Figure 3A). As each cluster primarily com-
prises individuals from one clinical phenotype, the latent factors in this case can be interpreted as the average
humoral signature corresponding to each phenotype. Thus LOVE comes up with biologically meaningful latent
factors for this dataset too, illustrating that the model formulation is both intuitive and interpretable.

Next, we evaluated the performance of LOVE in terms of accuracy, true positive rate, and true negative
rate. Although clustering by definition is unsupervised, we were able to measure these metrics for this
dataset as we already know the clinical outcomes for each human subject. We assumed that the ideal
result would be two clusters—one comprising only controllers, and the other comprising only chronic pro-
gressors. Based on this definition of ground truth, we obtained an accuracy, a true positive rate, and a true
negative rate each of ~80% for LOVE (Figure 3B). We contend that an accuracy of ~80% is really high, espe-
cially for an unsupervised method, as previously even a supervised approach had a median classification
accuracy of ~75% (Sadanand et al., 2018). We also found that LOVE outperformed both Cmeans clustering
and ClusterOne in terms of all three metrics—accuracy, true positive, and true negative rate (Figure 3B).

Next, we sought to explore how LOVE performs across a range of assignments. Although the most optimal
assignments correspond to all subjects being assigned to a cluster with high accuracy (as shown in
Figure 3B), we wanted to check how LOVE does across a range of assignment thresholds (including
those where not all subjects are assigned to clusters). A receiver operating characteristic curve drawn across
assignment thresholds revealed robust performance across thresholds (Figure 3C, area under the curve = 0.82).

Finally, we wanted to evaluate how stable LOVE is across the three key parameters—delta (cluster anchor
tuning), lambda (membership matrix tuning), and mu (latent variable tuning). We performed a grid search
around the optimal parameters and found that all the three indicators of performance—accuracy, false
positive rate (1, true positive rate), and false negative rate (1, true negative rate), are stable across a range
of tuning parameters (Figures 3D-3F). These results demonstrate that LOVE is able to accurately cluster
even if somewhat less than optimal parameter choices are made and are analogous to those observed
for overlapping clustering.
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Figure 3. Non-overlapping Clustering Using LOVE

(A) Distribution of HIV controllers and chronic progressors in the two LOVE clusters.

(B) True positive rate, true negative rate, and accuracy for each of the three methods—LOVE, fuzzy Cmeans clustering,
and ClusterOne.

(C) Receiver operating characteristic curve illustrating the performance of LOVE across a range of assignment thresholds
for the membership matrix.

(D) Variation of true positive rate, true negative rate, and accuracy for LOVE across a range of delta values, the cluster

anchor tuning parameter.

(E) Variation of true positive rate, true negative rate, and accuracy for LOVE across a range of lambda values, the cluster
membership matrix tuning parameter.

(F) Variation of true positive rate, true negative rate, and accuracy for LOVE across a range of mu values, the assignment
threshold tuning parameter.

LOVE on High-Dimensional Data

Finally, we sought to evaluate LOVE on a high-dimensional dataset of vaccine-induced humoral immune re-
sponses. Recently, we found that the route of immunization, even for the same immunogen, can modulate
mechanisms of protection in the context of vaccination against simian immunodeficiency virus (SIV) (Ackerman
et al., 2018). Our study had three vaccination arms—IM239 (administration of the SIVmac239 immunogen
intramuscularly), IM mosaic (administration of a mosaic envelope immunogen intramuscularly), and AE239
(administration of the SIVmac239 immunogen via inhaled aerosol). We found that each vaccine arm induced
a distinct profile of humoral immune responses (Ackerman et al., 2018). We sought to evaluate whether these
differences that we had captured using a supervised approach (Ackerman et al., 2018) could also be discov-
ered using LOVE, an unsupervised clustering method. Furthermore, here the data are high dimensional, i.e.,
the number of measured humoral immune responses >> the number of primates. This is typical in a study
involving human subjects or non-human primates, as the cost per subject or primate is high and there are
ethical guidelines outlining the maximum number of primates that can be used in such studies. Thus sample
sizes for these studies are usually much smaller than the number of measured analytes. Thus having a clus-
tering method that works on high-dimensional data is of paramount importance.

LOVE split the six primates into three clusters, each of which was clearly enriched for one of the vaccination
arms (Figure 4A). Here too, the latent variable formulation has an intuitive biological explanation; they
correspond to the induced humoral signature corresponding to each vaccination strategy. Overall,
LOVE correctly assigned 80% of primates to the corresponding vaccination arm (Figure 4B). This is signif-
icantly better than the performance of the two other clustering methods—fuzzy Cmeans and ClusterOne
(Figure 4B). Fuzzy Cmeans was reasonably accurate at discriminating between the IM239 and IM mosaic
arms, i.e., the vaccination arms with different immunogens, arguably the easier split. However, it failed
to discriminate the AE239 arm, i.e., the arm that had the same immunogen as IM239, but differed only
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Figure 4. Using LOVE on High-Dimensional Data

(A) Distribution of primates from the three vaccination arms in the three clusters generated by LOVE.

(B) Confusion matrix for each of the three methods, LOVE, fuzzy Cmeans clustering, and ClusterOne, showing the
fractions of primates correctly or incorrectly assigned to the different vaccination arms.

(C) Variation of specificity and sensitivity for LOVE across a range of delta values, the cluster anchor tuning parameter.
(D) Variation of specificity and sensitivity for LOVE across a range of lambda values, the cluster membership matrix tuning
parameter.

(E) Variation of specificity and sensitivity for LOVE across a range of mu values, the assignment threshold tuning
parameter.

based on the route of administration (Figure 4B). ClusterOne had a high error rate overall (Figure 4B).
Furthermore, although LOVE is completely unsupervised, the accuracy obtained is comparable to what
we had previously obtained using a supervised approach (Ackerman et al., 2018). Together, these results
show that LOVE is very accurate even when clustering a high-dimensional dataset and significantly outper-
forms existing methods.

We also evaluated how stable LOVE is across the three key tuning parameters—delta (cluster anchor tun-
ing), lambda (membership matrix tuning), and mu (latent variable tuning). A grid search around the optimal
parameters revealed that both the sensitivity and specificity of LOVE are stable across a range of parameter
values (Figures 4C—4E). As for the previous two datasets, these results confirm that LOVE is able to accu-
rately cluster even if somewhat less than optimal parameter choices are made.

Benchmarking LOVE against a Wide Range of Clustering Methods

Our previous results demonstrate that LOVE works well across datasets with different properties both in terms
of size and correlation structure. We also showed that LOVE outperforms two state-of-the art methods that
use different approaches—fuzzy Cmeans clustering and ClusterOne. To comprehensively compare LOVE's
performance in a wide range of existing methods, we used previously established benchmarks for 13 different
clustering methods across datasets (Wiwie et al., 2015). Also, both the methods to benchmark against and the
datasets were chosen by an independent study (Wiwie et al., 2015). Based on F1 scores (harmonic mean of
precision and recall), LOVE outperforms the 13 existing methods on two very different datasets (Table 3).
The first dataset quantified similarities between 293 The Cancer Genome Atlas (TCGA) clinical samples across
three different cancer types—breast cancer, lung cancer, and glioblastoma. Specifically, the data were a pair-
wise similarity matrix of dimension 293 x 293 (n X n, where n = 293, the number of variables/samples). For this
dataset, LOVE outperformed 11 of the 13 other methods, in terms of the F1 score, and had a rank of 3 across
the 14 methods (Table 3). The other dataset on which we benchmarked LOVE was synthetic and low dimen-
sional (we have already evaluated LOVE on a high-dimensional dataset earlier), purposely chosen to be very
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Dataset TCGA Synthetic_cassini
Affinity propagation 0.389 0.524
ClusterDP 0.921 1
ClusterOne 0.678 0.524
Density-based spatial clustering of applications with noise 0.944 1
Fanny 0.914 0.957
Hierarchical clustering 0.998 1
Cmeans clustering - 0.78
Partitioning around medoids 0.9 0.95
Markov clustering 0.678 0.524
Molecular complex detection (MCODE) 0.894 0.992
Self-organizing maps - 0.778
Spectral clustering 0.5 1
Transitivity clustering 0.986 0.885
LOVE 0.976 0.984

Table 3. F1 Scores for LOVE and 13 Other Methods for Different Datasets

different from the previous dataset. Here, the dataset consisted of 250 variables, and each variable had two
corresponding features (i.e., each variable could be represented by a dot on a two-dimensional dot-plot).
Again, LOVE outperformed nine of the 13 other methods, in terms of the F1 score, and had a rank of 5 across
the 14 methods (Table 3). Overall, LOVE consistently had one of the highest ranks across the two datasets (Ta-
ble 3). The only other method that had comparable performance across these two datasets was hierarchical
clustering. However, hierarchical clustering does not support fuzzy clustering, whereas LOVE can generate
both overlapping and non-overlapping clusters. This is an inherent strength of LOVE. Moreover, hierarchical
clustering is not applicable to some of the other datasets, such as the high-dimensional dataset of vaccine-
induced humoral immune responses, used in this study. Hierarchical clustering typically uses L, or allied L,
norms and clusters based on a distance metric. For high-dimensional datasets with highly correlated features,
these L, norms pose as inherent bias as the distance metric will be skewed toward the trends of the “larger”
correlation blocks. Thus among all the methods evaluated in his study, LOVE is the only method that works
consistently well across datasets of varying sizes (both number of variables and number of features) and
correlation structures. This strength is rooted in LOVE's theoretical principles, as our method makes no distri-
butional assumptions regarding the data-generating mechanisms, beyond the latent factor model
formulation.

DISCUSSION

Here, we present a versatile, robust, and scalable clustering method—LOVE. Our method comes with
numerous statistical guarantees regarding identifiability of clusters that existing methods do not provide.
Furthermore, whereas our method uses covariance as a measure of similarity, our approach will work for
any similarity measure, linear or non-linear, as long as the measure satisfies certain very generic criteria
regarding its decomposition (please see Transparent Methods for additional details). The only assump-
tions that LOVE make are regarding the decomposition of the matrix of similarity measures, the covari-
ance matrix in our case. It makes no further assumptions regarding the data-generating mechanism; for
instance, we do not need to know or assume the distribution of the data. Most existing methods work
well for specific datasets only, as there are underlying assumptions regarding how the data were gener-
ated (Wiwie et al., 2015), but LOVE is broadly applicable as it makes no such assumptions. Furthermore,
whereas most existing methods generate either overlapping or non-overlapping clusters, LOVE can
generate both kinds of clusters. Finally, the clusters generated by LOVE are highly stable across param-
eter choices.
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We successfully applied LOVE to three very different systems-scale datasets. Although the nature of the
data varies both within each kind of dataset (e.g., the structure and quality of gene expression measure-
ments vary depending on the platform or technology used to generate it), and across datasets (different
datasets had different correlation structures as summarized in Table 1), the theoretical guarantees pro-
vided by LOVE remain unchanged. Further benchmarking against 13 state-of-the-art methods demon-
strated that LOVE is the only approach that has consistently high performance across datasets with varying
properties (Table 3). This is primarily due to the latent model formulation of LOVE, which does not make any
assumptions regarding data-generating mechanisms. Furthermore, the latent factors are not only mathe-
matical constructs but also biologically meaningful and context dependent. Given these unique and novel
features, we anticipate that LOVE will be widely adopted in systems biology analyses and open new ave-
nues of biological discovery.

Limitations of Study

LOVE's inherent formulation fits most typical contexts—either each variable belongs to a single cluster (non-
overlapping clustering) or some variables belong to a single cluster, whereas the others belong to multiple clus-
ters (overlapping clustering). However, in a scenario where all variables belong to multiple clusters, LOVE would
not perform optimally as the method assumes that there are at least some variables that belong to only a single
cluster and uses these variables to determine the latent factors. Furthermore, LOVE, like any typical clustering
method, is unsupervised. However, we envision being able to extend our latent model framework to classify vari-
ables in a supervised fashion (i.e., taking into account an outcome variable or outcome labels).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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1 Model introduction

In this work, we consider the problem of clustering variables into groups that are allowed to overlap.
To formalize this problem, we assume that: (i) each group is represented by one unobservable latent
factor, (ii) each group has observable variables that anchor it, in that they are only associated with

one latent variable/group, and (iii) possibly many variables have multiple group association.

To be specific, we consider the following latent factor model, which has been first introduced and

analyzed theoretically in Bing et al. (2017):
X=AZ+F (1)

where X € RP is a vector of p variables to be clustered, Z € RX denotes the vector of K latent,
unobservable, factors, A € RP*X is the membership matrix assigning p variables to K groups , and
E denotes the random error. In model (1), X, Z and E are random with E[E] = 0 and E and Z are
independent. We assume that the covariance matrix of the errors, Cov(E) :=T = diag(%,...,03)
is diagonal, and that the covariance matrix of the latent factors, Cov(Z) = C' is strictly positive
definite. Without loss of generality, we can assume that X and Z have mean zero since we can
always subtract their means. The data consists in Xi,..., X, assumed to be independent and

identically distributed as X given by (1):
X, =AZ, + E;, (2)

for 1 <i < n, and with Cov(Z;) = C, for all i. We emphasize that only X is observable, and that

both the group number K and the membership matrix A are unknown, and are the parameters



of interest, to be estimated from the data. Our final clusters of X are defined via A. To be more
specific, for each group k € {1,..., K}, we cluster all X;, j € {1,...,p}, into group k if A # 0,
that is,

Gr=1{je{l,...,p}: Aji # 0}, for each k € {1,..., K}. (3)

Since each row of A is allowed to have more than one non-zero entries, we expect that groups are
overlapped.

Model (1) is not identifiable without further conditions, in that one can always write AZ =
AQQT Z, for any orthogonal matrix Q. Therefore, without imposing further structural assumptions,
the cluster allocation matrix A cannot be uniquely defined. We thus assume the following model

specifications:
(i) Zszl |Aji| <1 and Aj. is sparse, for each j = {1,...,p};

(ii) For each k = {1,..., K}, there exists at least two indices j # ¢ € {1,...,p} such that
|Aj| = [Aa| = 1;

(iii) A(C) := mink#/((]kk A Cyrgr — |Crir]) > 0, with a A b := min{a, b}.

Our specification (i) rules out the scaling ambiguity between A and Z. It also allows the existence
of some variable which is not associated with any group, that is Aj, = 0 for all k € {1,..., K}.
This is practically meaningful. For example, while analyzing a gene expression dataset, it allows
genes with poor/noisy expression measurements to not be associated with any latent factor, where
each latent factor could correspond to a unique biological function (as demonstrated in the main
manuscript). Specification (ii) requires that, for each group, we have at least two variables that are
solely associated with this group. In many areas of factor analysis, this assumption is arguably the
most well-received, such as psychology (McDonald, 1999) and non-negative matrix factorization
(Donoho and Stodden, 2004) in computer science, to name just a few. It has the following practical
implication: if X; satisfies (ii), then it is only related to one Zj, for some k. Then, the cluster
corresponding to the unobservable Zj inherits the properties of X;, which clarifies the cluster
interpretation, and renders the multi-clustering association meaningful. We name variables as in

(ii) the non-mized variables and define its set as

Z=A{L,...,Ix}, Io={je{l,....p}: |Ajr| =1, Ajy = 0,VE' # k}.



Correspondingly, we name the variables in the complement set mized variables. Specification (iii)
implies |Zy| # |Zy| almost surely for any two latent variables, and can be viewed as the minimal
assumption to make two latent variables, and therefore two clusters, distinguishable.

Under model (1) and assuming that (i) - (iii) hold, Theorems 1 and 2 in Bing et al. (2017)
show that K and Z can be uniquely determined from ¥ := Cov(X) up to a group permutation.
Moreover, the allocation matrix A can also be determined, uniquely, from X up to a K x K signed
label permutation.

In practice, instead of having access to the theoretical covariance matrix 3, we only have access
to the data that consists in n i.i.d. copies of the vector X, organized in the n x p data matrix
X = (X1,...,X,)T, where by slight abuse of notation we denote by X; € RP the i-th measurement
on the vector X. By using 5= %X T X as an estimator of ¥, and assuming that X has sub-Gaussian
tails, Algorithms 1 and 2 in Bing et al. (2017) yield statistically accurate estimates Z and A of T
and A, respectively, as shown in Theorems 3 and 4 of Bing et al. (2017), under suitable conditions.

After estimating A, we can estimate the clusters Gy by
ék:{je[p]:gjk;éO}, for each k € {1,...,K}. (4)

Under suitable conditions, Part 3 of Remark 4 in Bing et al. (2017) guarantees that G = Gy, for
all 1 < k < K, with high probability, up to label permutation. This shows that the clusters defined

by our latent variable model can be estimated consistently, via a scalable algorithm.

Remark: The original paper (Bing et al., 2017) focuses on clustering varaibles based on their
covariance structure which is a linear measure of the dependency. In particular, model (1) is an

example when the linear similarity measure ¥ := Cov(X) has the following decomposition
> = ACAT +T. (5)

Since the definition of clusters in (3) is via A and A is identified from the linear similarity measure
>, we can naturally extend this to any non-linear similarity measure of variables. To be precisely, let

IC € RP*P be any similarity measure of those p variables. If IC satisfies the following decomposition
K=ACAT +T

with A and C following our model specifications (i) - (iii) and I" being diagonal, then as long as

one can estimate C well from the observed data, LOVE algorithm is still applicable to estimate the



matrix A, from which the clusters can be constructed.

2 Identifiability and estimation of /1,7, A and G

The details given in this section have been developed in Bing et al. (2017). For the convenience of
the reader, and to keep this work self-contained, we repeat them here.
We first present two theorems which guarantee that I, Z, A and G are identifiable. The criterion

of Theorem 1 is constructive for the later estimation.

2.1 Identifiability

Let

Mz‘ = 1mnax Ei' 6
je[p]\{i}’ i ©)

be the largest absolute value of the entries of row i of ¥ excluding |%;;|. Let S; be the set of indices

for which M; is attained:
Si = {j € [p]\ {i} : [Ei| = M;}. (7)

Theorem 1. Assume that model (1) and (i) - (iii) hold. Then:
(a)iel <<= M;=DM; foralljes.

(b) The pure variable set I can be determined uniquely from ¥ := Cov(X). Moreover, its partition

T :={Is}1<a<k 15 unique and can be determined from ¥ up to label permutations.

The identifiability of the allocation matrix A and that of the collection of clusters G = {G1, ..., Gk}

in (3) use the results from Theorem 1 in crucial ways. We state the result in Theorem 2 below.

Theorem 2. Assume that Model (1) with (i) - (iii) holds. Then, there exists a unique matriz A,
up to a signed permutation, such that X = AZ + E. This implies that the associated overlapping

clusters Gg, for 1 < a < K, are identifiable, up to label switching.

2.2 Estimation

We develop estimators from the observed data, which is assumed to be a sample of n i.i.d. copies

XM XM of X € RP, where p is allowed to be larger than n. Our estimation procedure consists



of the following four steps:

(1) Estimate the pure variable set I, the number of clusters K and the partition Z;
(2) Estimate Ay, the submatrix of A with rows A;. that correspond to i € I;
(3) Estimate A, the submatrix of A with rows A;. that correspond to j € J;
(4)

4) Estimate the overlapping clusters G = {G1,...,Gk}.

2.2.1 Estimation of [ and 7

Given the different nature of their entries, we estimate the submatrices Ay and A; separately. For
the former, we first estimate I and its partition Z = {Iy,...,Ix}, which can be both uniquely
constructed from X, as shown by Theorem 1. We use the constructive proof of Theorem 1 for this

step, replacing the unknown ¥ by the sample covariance matrix

n

~ 1 A )
== XxO(xT,
- ; (X)

Specifically, we iterate through the index set {1,2,...,p}, and use the sample version of part (a)
of Theorem 1 to decide whether an index i is pure. If it is not deemed to be pure, we add it to the
set that estimates J. Otherwise, we retain the estimated index set S; of S; defined in (7), which
corresponds to an estimator of M; given by (6). We then use the constructive proof of part (b) of
Theorem 1 to declare S; U {i} = 11 as an estimator of one of the partition sets of Z. The resulting
procedure has complexity O(p?), and we give all the specifics in Algorithm 1 of Section 2.2.5. The

algorithm requires the specification of a tuning parameter ¢, which will be discussed in Section 3.

2.2.2 Estimation of the allocation submatrix A;

Given the estimators 1, , KandZ = {]A'l, ey T, #) from Algorithm 1, we estimate the matrix A7 by
a |f| x K matrix with rows i € I consisting of K — 1 zeros and one entry equal to either +1 or —1

~

as follows. For each a € [K],

(1) Pick an element i € j:l at random, and set /Tm = 1. Note that A\m can only be +1 or —1 by

the definition of a pure variable.

(2) For the remaining j € I, \ {7}, we set /Tja = sign(iij).



This procedure induces a partition of I, = f; U _?az , Where I! and fj are defined below:

a

Apo = Ag, for keIl or k,lel? .
Apa # A, forkel andlel?

a
2.2.3 Estimation of the allocation submatrix A;

We continue by estimating the matrix A;, row by row. To motivate our procedure, we begin by
highlighting the structure of each row A;. of Ay, for j € J. We recall that A;. is sparse, with
|Aj.|li <1, for each j € J, as specified by assumption (i). In addition, model (1) subsumes a
further constraint on each row A;. of A, as explained below. To facilitate notation, we rearrange

Y, Aand I' := Cov(E) as follows:

z by A r 0
o | = IJ’ A | and T = |1

EJ] EJJ AJ 0 1_‘JJ

Model (1) implies the following decomposition of the covariance matrix ¥ of X:

> Z[[ E[] A[CA? A[CAI; n P[[ 0
S Sa AjCAT  A;CAT 0 Tyy

In particular, ;5 = AIC’AF. Thus, for each i € I, with some a € [K] and j € J, we have

K K
A X = A2 Z ApCop = Z ApCoy = CT A, (9)
b=1 b=1
Averaging display (9) over all i € I, yields
1
Al Z A Xi; = CLA;,  for each a € [K]. (10)
| ol icl,
For each j € J, we let
B = A;
and
T
) 1 1
0’ = 72141‘12@']',...,7 Z AiKEij . (11)
[11] 4 k|
i€l 1€l

Since A;, € {—1,1}, for each i € I, and a € [K], the entries of 6/ are respective averages of the

sign corrected entries of ¥ corresponding to the partition of the pure variable set. Summarizing,



modeling assumption (i) and equation (10) above show that the estimation of A reduces to esti-
mating, for each j € J, a K-dimensional vector 3/ that is sparse, with norm [|87|; < 1, and that
satisfies the equation

¢ =Cpl.
Both C and 67, for each j € J, can be estimated directly from the data as follows. For each j € J, ,

we estimate the a-th entry of 6/ by

. 1 A ~
9& = — Z Amzi]’, a < [K], (12)
[ ol iel,
and compute
Caa = = P Z ’Zij‘, Cab = —<—=< Z AiaAibEija (13)
’IamIa’ _1) il idti |IaHIb’ =
,‘]GIQ,Z#‘] ZEIa,]GIb

for each a € [K] and b € [K]\ {a} to form the estimator C of C. The estimates (12) and (13) rely
crucially on having first estimated the pure variables and their partition, according to the steps

described in Sections 2.2.1 and 2.2.2 above.

We have developed a computationally efficient method to estimate 37. We exploit the fact that
the square matrix C is invertible and take the equation 87 = C~'67 as our starting point. The
idea is to first construct a pre-estimator 57 = 0 , based on an appropriate estimator Q of the
precision matrix Q := C~!, followed by a sparse projection of 37. Alternatively, and recommended
to speed up the computation, we could use a simple hard threshold operation in the second step.
To estimate {2, we propose the linear program

(ﬁ,f) = arg min ¢ (14)
teRT, QERK XK
subject to

Q=0T |QC —I|loo <M, [Qfoer <, (15)

with tuning parameter \. After we compute /7 = 06 , for each j € J. , we solve the following

optimization problem

B/ = arg min_||8]s (16)
BERK
subject to
18 = B llos < 1, (17)



for some tuning parameter u that is proportional to ||C~!||s.1, to obtain our final estimate Bj as
the optimal solution of this linear program. This solution is also sparse and properly scaled, in
accordance to our model specification (i). Then, A 7 is the matrix with rows Ej, for j € J. Our
final estimator A of A is obtained by concatenating fo and A 7

2.2.4 Estimation of the overlapping groups

Recalling the definition of groups in (3), the overlapping groups are estimated by
G = {C:’l, . .,CA;IA(}, Go = {ielp: A # 0}, for each a € [K)]. (18)

Variables X; that are associated (via A\) with the same latent factor Z, are therefore placed in the

same group @a. To accommodate potential pure noise variables, we further define
Go:={je{l,...,p}: Aj,=0, forallaec{l,...,K}} (19)
as the pure noise cluster. We can estimate Gq in (19) by
éoz{ie [p] : Aig =0, for all a € [IA(}} (20)

However, our main focus is on G because it completely determines Gy.

2.2.5 LOVE: A Latent variable model approach for OVErlapping clustering.

We give below the specifics of Algorithm 1, motivated in Section 2.2.1, and summarize our final

algorithm, LOVE in Algorithm 2.

3 Identifying tuning parameters

In order to apply Algorithms 1 and 2 in Bing et al. (2017), there are three tuning parameters
(6, \, 1) to be chosen. We clarify them in the sequel.

1. The tuning parameter § is used for finding 7 and defined as

- SIE]
i g 1B~ Bl

When X has sub-Gaussian tail, we know 6 = ¢y/log(p V n)/n for some constant ¢ depending

on the variance of X with a Vb := max{a,b}. Thus, we can choose a fine grid for the leading



constant of § with rate equal to y/log(p vV n)/n, and use cross-validation to find the best
leading constant (cf. page 25 in Bing et al. (2017)).

2. To see the role of ), note that we need to estimate C~! in the Algorithm 2 by using C which
is not guaranteed to be positive definite. Thus, a linear program is proposed in (14) and (15)
in Bing et al. (2017) to deal with this issue, and the resulting estimator of C~! is denoted by
Q. The rate of \ is the same as that of 6.

3. Finally, in order to obtain sparsity of ﬁ, a soft-thresholding procedure is proposed for the
estimation of each row of A as (16) and (17) in Bing et al. (2017). The tuning parameter
11 controls the sparsity of the resultant A. The rate of j is [C|oo,11/10g(p V n)/n where
|C~ oot := maxy S35_, [Cra|. In practice, we can replace C~! by its estimate obtained in

the previous step.

Practically, as long as we use cross-validation to select 0, Bing et al. (2017) recommends using
A =0%and p = ||§\2Hoo,15w where Q) is the estimate of C~!. It is worth mentioning that, the

algorithm is very robust to p and A as long as § is selected.

4 Gene expression dataset

The data has expression values corresponding to p = 16134 genes as columns and n = 114 time-

points as rows.

e For LOVE, we select 0 from the grid c\/m with ¢ € {0.3,0.31,...,0.49,0.50} by cross-
validation . The selected 6 is 0.43\/W. We then use A = §“Y as recommended in Bing
et al. (2017). For selecting p, recall that it controls the sparsity of A which determines the
size of each group via (4). We tune u to have a large number of clusters with size between

[50, 1000] and we end up using p = 1.91\]@“0071(58“.

e For FuzzyCmeans, we use the function cmeans in the R-package e1071 (Bezdek, 1981). Re-
call that X € R14x16134 where the rows correspond to independent observations. Therefore,
FuzzyCmeans is designed to cluster rows instead of columns. This suggests that it is mean-

ingless to naively apply FuzzyCmeans to XT to cluster 16134 genes. Moreover, the number



of observations is too small to make the result meaningful. To remedy this, we try to apply

PuzzyCmeans to XTX instead; however it is still outperformed by LOVE.

The number of clusters needs to be pre-determined. To make the results comparable with
LOVE, we specify it equal to 1222 which is the number of clusters obtained from LOVE. Since
FuzzyCmeans doesn’t yield sparsity of its membership matrix (the quantity analogous to our
ﬁ), we manually threshold it by using different thresholding levels. To tune the thresholding
level, we choose it via a grid such that it yields the largest proportion of clusters with size

within [50,1000], in accordance of the biological expectation. The thresholded membership

matrix is used to define clusters as (4).

e For ClusterOne, we first compute the weighted gene co-expression network using pairwise
correlations as edge weights. Significant edges are defined when the (unsigned) correlation
is superior to threshold 0.5, with the added condition that the Benjamini-Hochberg multiple
testing correction produces a p-value associated with the t-test inferior to 0.05. On that
weighted correlation graph we apply the ClusterOne method aiming to detect highly cohesive,
potentially overlapping complexes (Nepusz et al., 2012). We generate overlapping clusters

using all default parameters, specifically a default density threshold of 0.3.

To calculate the under-representation index of housekeeping genes in each cluster, we first
measure the significance of the under-representation using a hypergeomtric test. We then report
the distributon of under-representation indices as the — log of the 100 most significant p-values for

each method.

5 Dataset of progressors and controllers

We have 19 subjects (10 progressors and 9 controllers). For each subject, we have 18 measurements
(antibody-dependent effector functions and antibody titers) across 4 time points. We use all time
points for each subject and end up with a 72 x 19 data matrix X. There are 1.5% missing values
and we impute them using means.

LOVE could directly be applied to this dataset if the rows were independent and identically
distributed. However, measurements of effector functions and titers at different time points are

independent, but not necessarily identically distributed. We explain below why LOVE can still be

10



used in in this situation. To start with, we note that for this data set n = 72 and p = 19, with
the interpretation of n and p given by model (1), but where the data consists now in independent
observations X; € R, 1 < i < n, and each observation is allowed to have a different distribution,

in that for each i € {1,...,n} we have
X; = AZ; + E;, (21)

with Cov(Z;) = G'. This emphasizes the fact that the vector containing the i-th clinical phenotype
(controller vs progressor) for all 19 subjects is linked, via an allocation matrix A, to an unobservable
latent factor vector Z; € R¥, but that unlike (2), where Cov(Z;) = C, for all i, here we allow the
covariance structure of the latent factors to change with ¢. The random error term FE; € RP is

assumed to have mean zero and diagonal covariance matrix. Then, (21) implies
M= E[X;X}] = AE[Z;Z]'|AT + E[E;E]] .= AGTAT + T,

with I'¥ being diagonal, and recalling that G* denotes the covariance matrix of the latent factors,
for i = 1,...,n. This further yields
M = liMi =A <1§:Gi> AT + liri = AGAT +T.
gt i gt

A close look at the development of the LOVE algorithm in Bing et al. (2017) reveals the fact that
it can be employed to estimate an allocation matrix A from a decomposition as above whenever: A
satisfies the requirements (i) and (ii) introduced in the first section, G satisfies the mild requirement
(iii) from the first section, and M can be estimated well from the data. Assuming that the theoret-
ical model requirements are satisfied, an estimator of M € RP*? is given by M =n~1XTX c RP*P ,
which can be used as the input of the LOVE algorithm. One of the tuning parameters, 9, is de-

fined now as ¢ := maxi<j<j<p |]\/4\” — M|, and will continue to be proportional to n—1/2

, up to
logarithmic terms, under appropriate conditions on the error distributions. The other two tun-
ing parameters will change accordingly, but will have the same interpretation as in the previous

analysis. Specifically:

e For LOVE, we choose ¢ from cy/logn/n with ¢ € {0.01,0.02,...,0.19,0.2} and we ended up
with 0V = 0.1y/logn/n. We choose A = 1.360°” via the criterion on page 25 in Bing et al.

(2017). Finally, p = HfAZHOQl(SC” is used as recommended; for this analysis € is an estimator of

11



. . =1 R .
the inverse matrix G ~. We demonstrate in Figure 3 that our results are robust to the choice
of A. We use the largest membership weight to assign each subject to one cluster.The initial
groups are merged to generate 2 clusters (a-priori expectation is 2 clusters as there are two

different clinical phenotypes).

e For FuzzyCmeans, using the arguments outlined in the previous section, we apply Fuzzy-
Cmeans to X' X by using the true group number K = 2. Since we are interested in the
performance of non-overlapping, we manually assign each subject to one cluster by using the
largest membership weight. The fuzziness parameter is the default value as the resultant

clusters change little when we vary the fuzziness paramter.

e For ClusterOne, we use the same procedure as above, we apply the method with default
parameters on the weighted gene co-expression network using pairwise correlations as edge
weights. The significant edges are defined as the previous section. However, here we use an

FDR cutoff of 0.2 so that the correlation graph is not too sparse.

6 Dataset of vaccine-induced humoral immune responses

We have 60 primates in 3 vaccination arms - IM239, IM mosaic and AE239. For each primate, we
measured 191 different humoral immune responses post vaccination. The data matrix X € R191x60
contains 60 columns representing 60 primates and 191 rows of measurements. We impute the
missing values using k-nearest-neighbour imputation where k = 5. Since each humoral immune
response is on a different scale, we standardize each measurement to have unit variance. Note
that the 191 measurements here are independent but not necessarily identically distributed. From
the explanations of the previous dataset (Dataset of progressors and controllers), LOV E cound be

directly applied to n 'X7X in this dataset.

e For LOV E, we choose § = c\/w from the grid ¢ € {0.05,0.06, . ..,0.39,0.4} which gives
oV = O.lh/logT/n. The chosen A®Y is 0.8§°Y via the criterion on page 25 in Bing et al.
(2017). The thresholding parameter p is set to be 0.85”@“00,15“’ in order to guarantee that
no primate is excluded. To obtain non-overlapping groups, we assign each primate to the
group having the largest membership weight. The initial groups are merged to generate 3

clusters (a-priori expectation is 3 clusters as there are 3 different vaccination arms).

12



e For FuzzyCmeans, we use the true group number K = 3 as input and assign each primate
based on the largest weight of the membership matrix to obtain non-overlapping groups.
Since the fuzziness parameter controls the level of overlap in FuzzyCmeans, we manually
tune it from the grid of {1.1,1.2,...,2.9,3} based on the best performance in terms of the

confusion matrix. We end up with a fuzziness parameter of 1.5.

e For ClusterOne, since the pairwise correlation is rather weak in this dataset, ClusterOne
tends not to assign many subjects into any group. To obtain the upper bound of performance
for ClusterOne, we used effect size and significance thresholds that allowed most primates to
be assigned to at least one group. We used an FDR cutoff of 0.2 as in the earlier section. Even
after tuning parameters to ensure that most primates are assigned to at least one cluster, some

remained unassigned. Each of these primates was randomly assigned to one of the clusters.
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A

Igorithm 1 Estimate the partition of the pure variables Z by 7

1

2:

3
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:

19

20:
21:
22:
23:
24:
25:
26:
27:

28

. procedure PUREVAR(S, §)
7+ 0.
for all i € [p| do
T {1 e [p)\ {i} : maxjep iy [Si] < [Sal + 26}
Pure(i) < True.
for all j € 1) do
if ||§w| — MaXpep)\ {5} \flij > 20 then
Pure(i) + False,
break
end if
end for
if Pure(i) then
IO« Ty {3}
7 + MERGE(IY, T)
end if
end for
return Z and K as the number of sets in Z.

end procedure

. function MERGE(I®), T)
for all G € T do
if GNIY £ then
G+ GNIW
return 7
end if
end for
1M e
return 7

: end function

> 7 is a collection of sets

> Replace G € Z by GN 1)

>add T® in 7
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Algorithm 2 The LOVE procedure for overlapping clustering.
Require: S from LLD. data (XM .., X)) the tuning parameters &, A and .

1: Apply Algorithm 1 to obtain the number of clusters K , the estimated set of pure variables T and its
partition of 7.

2: Estimate A; by A\f from (8).

Estimate C~! by Q from (14) and /3’ for each j € J.

Estimate Ay by Ej from (16). Combine EIA with gj to obtain A.

5: Estimate overlapping groups G= {@1, ceey @K} from (18) by using A.
6: Output A and G.
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