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Abstract— As robots become more ubiquitous it is important
to understand how different groups of people respond to
possible ways of interacting with the robot. In this study, we
focused on gender differences while users were tele-operating a
humanoid robot that was physically co-located with them. We
investigated three factors during the human-robot interaction
(1) information processing strategy (2) self-efficacy and (3)
tinkering or exploratory behavior. Experimental result show
that the information on how to use the robot was processed
comprehensively by the female participants whereas males
processed them selectively (p < 0.001). Males were more
confident when using the robot than females (p = 0.0002).
Males tinkered more with the robot than females (p = 0.0021).
Tinkering might have resulted in greater task success and lower
task completion time for males. Similar to existing work on
software interface usability, our results show the importance of
accounting for gender differences when developing interfaces
for interacting with robots.

I. INTRODUCTION

As robot capabilities grow, we will increasingly see them
applied to a wider range of applications such as surgery,
health care, engineering education, helping elderly senior
citizens for self-care, socialization, child care as robotic
assistant, and as companions. Unlike traditional software
interfaces, robotic interfaces have an in-person, physical
context to them — the robot may be in the room with
the user, be physically interacting with the environment, or
be directly interacting with the user. An open question is:
will we see the same gender and age-related differences in
robotic interfaces that we see in traditional software ones,
or does the physical nature of the interaction mitigate these
differences? In this paper we show that — for a simple tele-
operation manipulation task where the user and the robot are
in the same room — we do see the same sorts of interaction
differences for gender.

Previously, gender differences have been studied in social
psychology, communication, education, creativity, human-
computer interaction (HCI), web psychology and much more
[1], [4], [6], [20], [29]. Gender differences have also received
increased attention in human robot interaction (HRI). Previ-
ous gender related studies in HRI have focused on questions
such as: how a robot should approach a person sitting on
a chair (front, left or right) [10], the influence of a robot’s
voice (voice’s fundamental frequency) [30], the robot’s facial
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features (head dimensions, chin length) [30], the robot’s
gender (male and female) [36] and how all these play out for
male and female interactees. Existing research also confirms
that there exists significant gender differences in the robot’s
perceived social presence, social facilitation, disclosure, and
persuasiveness [34], [36]. Additional researchers studied how
a robot can persuade different individuals to disclose their
private information [31], how different individuals perform
in given task (arithmetic) at the presence of a robot [34],
and how receptive people were to the robot suggestions [30],
[36]. These research findings have focused primarily on the
robot’s role as a social agent, and how a robot is perceived
in different social situations from a gender perspective.

In this paper we take a step back from the social aspect
of robotics and focus on interacting with the robot as a
physically embodied computer, and examine tele-operation
as a user-interface task (see Figure 1). Research has shown
that for standard software interfaces the gender lens mat-
ters [6], [14], and, moreover, that it is possible to evaluate
and redesign an interface to make it more inclusive. Our
goal is to determine if the same gender-based differences
exist when the user-interaction component has an embodied
element (the robot). If so, then the same approaches used
when analyzing software interfaces can be employed in order
to improve robotic tele-operation interfaces.

Pulling from existing research, we examined three factors
that influence how a user will respond to an interface: i)
information processing strategy; ii) self-efficacy; and iii)
tinkering. These factors have been shown to correlate both
with gender and with user’s problem solving ability [6], [14].
For the task, we asked users to tele-operate a humanoid robot
in order to grasp and manipulate several household objects.
For all of the users, this was the first time they had tele-
operated this robot. We evaluate the user’s task performance
and the three factors above through a mix of observations
and surveys. We now briefly outline the three factors in more
detail; for all factors, these are aggregate behaviors.

Information processing style: According to the selectiv-
ity hypothesis males and females use different information
processing strategies [7]. In general, males tend to attend to a
task using discrete segments of configuration, while females
are more inclined to pay attention to the configuration as
a whole. Similarly, males tend to engage in selective- or
heuristic-based processing, making use of single cues that are
highly available and most noticeable in the current context in
order to make a single inference. In contrast, females tend to
gather all of the available cues first, then use the collective as
the basis of judgment for information processing [12], [13],



Fig. 1. Personal robot (PR2) used in the study (left). Objects (top-right), reference point (right-bottom-left) and joysticks (right-bottom-right) used in the
study.

[18], [26].
Self-efficacy: Social cognitive theory [2] suggests that

self-efficacy (an individual’s personal judgment about their
own capabilities) plays a crucial role in the choices that
they make, the amount of effort they put in, and task
retention when faced with adversity. Researchers report that
males tended to have more self-efficacy, less math anxiety,
and a higher performance score compared to females for
mathematical problem solving [25], [28].

Tinkering: Cognitive playfulness — or tinkering —
has been demonstrated to positively impact test performance
in a field study of full time employees [23]. Students
also benefit in their scientific understanding as they
tinker or play with tools [16], [21]. The education literature
shows that males are more likely to tinker than females [38].

In this study, we are taking our first step towards
understanding gender differences in robot tele-operation
(manipulating a robot from a distance) by investigating
these three factors. We already know robots are perceived
differently by males and females when the robots are
presented as social agents. This work studies gender
differences in information processing style, self-efficacy
and tinkering in the context of controlling a robot. Robots
may all, eventually, be fully autonomous, but in the
meanwhile direct (or assisted) control of the robot plays a
very important role in deploying robots in the real world.
Improving the accessibility of these interfaces may help to
increase the diversity of the predicted burgeoning robotic
work-force.

Specifically, our research questions are:
• RQ1: Are there any differences in the information

processing style across gender when learning to tele-

operate a robot?
• RQ2: Are there any gender differences in self-efficacy

that impact the efficient use of the robot?
• RQ3: Are there any gender differences related to tin-

kering that impact efficient use of the robot?

II. RELATED WORK

In this section we review related work on gender and
robots as well as gender and interface development.

A. Gender and its influence in Human Robot Interaction

Research has shown that a robot’s appearance (gender,
voice, facial features) has a significant influence on how
recommendations provided by the robot were received, and
these influences varied by gender of the person interacting
with the robot [31], [27]. A robotic tutor similarly influences
task performance (easy and hard math) [34]. The study
reported that males tend to think of robots as more human
like whereas females think of robots as more machine like.
As a result, males reported feeling socially facilitated by the
robot while performing arithmetic tasks.

Furthermore, research shows that by changing the robot’s
persona we can gather different level of information, for
example a study reported that males expressed more in-
formation to the female robot and females expressed more
information to the male robot. In another research, males
and females participants reported that they find opposite-
sex robot to be more trustworthy and engaging. Researchers
also found gender differences in the negative attitude toward
robots [27], [31], [34], [36]. All these findings are interesting
from the perspective of the latest voice enabled technologies
such as Amazon’s Alexa, Google’s Assistant etc. These
bots are female voice enabled (Siri for iPhone, Microsoft’s
Cortana) as the basis of conveying information. Furthermore,



previous research confirms that using only vocal cues within
a machine is enough to bring sex based stereotype responses
even though the environment and circumstances in which the
robot operates could be different [8], [35]. When robots are
given some human-like attributes, people can easily relate
to them. Even though we consider robots/bots as machines
we still tend to use he/she when addressing them. Therefore,
we should consider gender (both of the robot and the user)
when designing interfaces in order to balance these effects.

III. RESEARCH METHODOLOGY

Our study was a between-group (male and female) study.
Our experiment design included both qualitative and quan-
titative data capture and analysis. The study was conducted
in three phases: A pre-task phase (survey), the actual task
session where the user tele-operated the robot (video-taped),
and a post-task session (survey) where users were asked to
reflect on the task.

A. Experimental Setup

The study took place in a research lab setting. During the
experiment the lab was quiet, and only the researcher and
the participant were present in the experimental area where
the robot was. The participant was placed about four feet
in front of the robot (facing it) so that the robot could not
accidentally hit them. The object for the task was placed by
the experimenter on a chair directly in front of the robot.
Participants were asked to tele-operate the robot with two
joysticks, one for each robot arm. They operated the robot
while facing it, requiring mirrored hand movements. I.e.,
the robot’s left hand was controlled by the participant’s left
hand, but from the participant’s point of view the left hand
was on the right side in their field of view (see Figure 1).
While mirroring probably caused additional cognitive load,
this did enable the participants to see both the robot and the
manipulation space at the same time.

During the task participants were asked to think-
aloud [15]. The average time to complete the entire study
was less than an hour.

1) PR2 Robot: We used a Personal Robot (PR2) from
Willow Garage in our experiment (shown in Figure 1). The
PR2 is a humanoid robot (mobile and with two arms) that
was developed in part for human-robot interaction studies.

2) Participants: Participants were recruited via fliers
placed on and around campus. We did not restrict our study
participation by age group or gender, however, only students
responded to the flier. Communication and scheduling for the
study was done through email. Participants were given $15
to complete the study. Overall 12 participants (6 males and 6
females) took part in the study. An additional 5 participants
were used in a pilot study; their data is not included in this
paper.

3) Objects and Task Description: Participants were asked
to use a joy-stick to tele-operate the PR2 robot in order to
manipulate the four objects shown in Figure 1 (bowl, rose,
glass, and scarf).

Object Task Directive
Bowl Pick it up and put it down Glass/fragile
Rose Pick it up by touching stem Real flower
Glass Have the robot drink from it Glass/fragile
Scarf Fold it Favorite

TABLE I
OBJECT AND TASK DESCRIPTIONS.

A pilot study was used to narrow an initial six objects and
tasks down to four. The criteria was that the tasks had to be
difficult, but doable. The objects themselves were chosen to
have a mix of material properties (soft versus hard, fragile
versus robust, compliant versus rigid). Although we could
not use actual glass/water for the task, we compensated for
this by explicitly adding a directive to the task (3rd column
in Table I) such as the bowl is fragile, don’t drop or crush
it, and don’t spill the water.

B. Study Procedure

1) Pre-task session
a) Participant enters the study room and the re-

searcher introduces them to the robot.
b) Consent process.
c) The participant fills out the pre-task question-

naire.
2) Task session

a) Researcher provides tutorial handout for control-
ling the robot.

b) Researcher gives the participant the joystick con-
trollers. The participant was free to “play” with
the controllers and ask questions about their use
until comfortable.

c) Researcher places the first object on the chair in
front of the robot.

d) Researcher explains the task and directives.
e) The participant attempts the task.
f) Repeat c-d until all four tasks are attempted.

3) Post-task session: Participant fills out post-task ques-
tionnaire.

IV. DATA ANALYSIS AND CODING

In this section we provide details on the data collected in
each phase and how it was analyzed or coded.

A. Pre-task Session Data

There were three pre-task questionnaires, one for each of
the factors. In addition to this, we collected basic demo-
graphic data (age, gender, experience with video games, field
of study). For gender, the field was left blank; for our group,
all participants self-identified as male or female.

1) Self-efficacy questionnaire (SE): We used the standard
self-efficacy test questionnaire proposed by Compeau and
Higgins [9] with slight modifications to the wording to make
it applicable to the robot tele-operation task. We used the
same 10 point Likert-scale (1 indicates “Not at all confident”,



Fig. 2. Examples of task success, from left to right. Putting the bowl down, drinking from a glass, passing a rose, folding a scarf.

Fig. 3. Tinkering while grasping the wine glass (object-stem-left,
object-rim-left), scarf (gripper-both, gripper-horizontal-left), rose (gripper-
horizontal-left, gripper-vertical-left).

Code Query type
Strategy Preferred process to do something
Feature Particular feature functionality, eg. buttons
Functionality Robot arm/wrist/body function

TABLE II
CODING STRATEGY FOR INFORMATION NEED OPEN-ENDED QUESTION

(INO).

5 indicates “Moderately confident”, and 10 indicates “Totally
confident”). There were a total of 10 questions

Responses were summed to give a single self-efficacy
score between 0 and 100 for each participant.

2) Information-need open-ended question (INO): We
asked the following open-ended question: “Imagine that you
are asked to move a delicate expensive flower vase on the
table using the PR2 robot. What information do you need to
complete the task using robot?.”

We categorized information-need by: i) strategy, ii) feature
and iii) functionality, based on [19]. We coded responses
using the criteria given in Table II, and counted both the
number in each category and the number of categories that
were seen.

3) Tinkering open-ended question (TinO): We asked par-
ticipants the following open-ended question: ”How often do
you play with a new hardware device? Why? Why not?”

Responses were qualitatively coded as playful/not playful
using two rules: 1) playful: when a response contains key-

words such as “fun”,“play”,“enjoy”, “tinker”, “love trying”
etc. 2) not-playful: when a response demonstrates a negative
approach about playfulness towards a new device (eg. “not
much”, “not often”).

B. Task Session Data
We collected three measurements from the task session:

A task score (how well they completed the task), time to
complete the task, and a tinkering score (coded based on the
video data).

1) Task score (TS): We qualitatively coded the task score
from the video data. The Task Score was 100 for successfully
completing a task, 80 for completing the task but with a fault
such as breaking the flower stem or tipping the bowl over,
20 for attempting a task but not completing it, and 0 if they
were unable to pick up the object (see Figure 2).

2) Task Completion Time (TT): Total task completion time
(in minutes) was computed from the video data, starting
when the participant first moved the joy stick. Completion
time was determined by when the participants said they were
done.

3) Tinkering count from video (TinVID): We used the
video data to count the number of times a participant
showed evidence of tinkering or playful experimentation.
More specifically, we counted the number of times a par-
ticipant tried a different approach, defined as follows: i)
Switching from left to right hand or from one hand to both
(and vice-versa) ii) Approaching the object from a different
direction, top, bottom, or side iii) Changing the orientation of
the gripper by rotating it at the wrist, and iv) picking up the
object from a different point (eg top of stem versus bottom).
Several playful experimentations are shown in Figure 3.

C. Post-task Session Data
1) Information processing questionnaire (IPQ): We used

a standard information processing questionnaire from the
literature [37]. It consists of ten 7-point likert scale questions.
The first 5 questions test for comprehensive information
processing style and the remaining test for systematic infor-
mation processing. We modified the questionnaire slightly so
the questions fit the robot interaction task.

The comprehensive score was calculated by summing up
the score for the first 5 questions, the selective score from
the sum of the last 5 questions (max 35 in each case).



V. RESULTS

A. Demographics

Of our twelve participants, half self-identified as female,
half as males. Participant ages averaged 20.5 years old, with a
minimum of 18 and a maximum of 24. The male participants
were slightly younger than the female (19.5 years versus
21.5).

Statistical analysis of our background data on video
gaming experience showed significant gender differences,
with males averaging 9.5 years of experience, and females
reporting 0-10 years (average 2.1) (Mann-Whitney W = 3,
p = 0.0185).

We qualitatively coded field of study as follows: Liberal
Arts = 1, Engineering = 2. Statistical analysis revealed that
there was no significant gender differences related to field of
study (Mann-Whitney W = 9, p = 0.0705).

B. Statistical tests and validity

In all of our ANOVA analysis, we used gender as the
factor. We rank transformed our data before applying the
ANOVA. We also used Fisher’s exact test for small-category
data. For research questions 2 and 3 we also looked at the
effect of video game experience on the results, using an
ANCOVA with video game experience as the covariate and
gender as the factor.

For research questions 1 and 3 we use two data sources;
this helps mitigate the fact that those results use qualitative
data that was coded by a single experimenter [17], [22], [24],
[33].

C. RQ1: Information processing style

We use two sources of information to answer the infor-
mation processing research question; the open-ended pre-test
question (INO) and the post-test information processing style
questionnaire (IPQ). Similar to previous studies, we find that
females tend to ask more questions, more types of questions,
and employ a comprehensive information processing style.
All individual responses are shown in Figure 4, with aggre-
gate numbers in Table III.

1) INO question response analysis: We split the analysis
into two pieces: Types of questions asked (by category) and
total number of questions asked. Refer to Table II for a
definition of the three categories. Table III summarizes the
number of participants who asked each type of question, split
by gender. Example quotes:

• Strategy: 83% of all participants asked at least one
strategy question.

“How do I turn it on? How do I control it?” - P02
“How do I move the arm? How do I open and close
the gripper? How do I rotate the gripper?” - P06

• Feature: 50% of all participants asked for feature-related
information.

“What keys do I use? Which button does each
task?” - P11
“What does it use to grab stuff?” - P05

Gen Strat Feat Func Comp Sel
M 4/6 1/6 2/6 61/210 125/210
F 6/6 5/6 6/6 111/210 128/210
Total 10/12 6/12 8/12 172/420 253/420

TABLE III
LEFT (INO): HOW MANY PEOPLE ASKED AT LEAST ONE QUESTION IN

EACH CATEGORY (STRATEGY, FEATURE, FUNCTIONALITY). RIGHT

(IPQ): COMPREHENSIVE AND SELECTIVE SCORES, SUMMED FOR ALL

PARTICIPANTS. RESULTS REPORTED BY GENDER.
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Fig. 4. Left: Number of types of questions asked, by gender (out of 3).
Right: Total number of questions asked, by gender (INO).

• Functionality: 67% of all participants asked at least one
function-related question.

“How fast does it rotate?” - P01
“How sensitive are the controls?” - P11

A one-way ANOVA of the INO data in Table III
(F (1, 10) = 32.472, p = 0.0002) revealed significant gender
difference in the number of categories of question asked.

We also compared the total number of questions asked
(Figure 4). Again, the ANOVA revealed a significant gender
difference in the total number of questions asked (F (1, 10) =
10.796, p = 0.008).

2) IPQ response analysis: We summed up the total num-
ber of questions asked by gender (Table III). These numbers
are also statistically significant (Fisher exact test p < 0.001).

3) Summary: Our findings are in-line with existing work
that shows that females tend to use a more comprehensive
processing style, with more information-gathering up-front,
while males tend to use a selective processing style with
fewer questions [7].

D. RQ2: Self-efficacy and Task Completion

Figure 5 shows all self-efficacy scores from our SE ques-
tionnaire, with female participants having a lower SE score
than male ones (Table IV). A one-way ANOVA (F (1, 10) =
31.304, p = 0.0002) revealed significant gender differences,
congruent with previous studies in various computational
problem solving settings such as math and debugging [3],
[28].

We have two quantitative measures of the participant’s
ability to complete the task, Task Time (TT) and Task Score
(TS), summarized in Table IV. Both showed statistically
significant differences, with males performing the task both
better and faster (TS - ANOVA F (1, 10) = 11.538, p =
0.0068072), (TT - F (1, 10) = 5.16, p− value = 0.049).
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Fig. 5. Self-efficacy scores (SE) by gender.

Gender SE score Task score Time Tinker
F 61.67 228.3 21.56 4.8
M 76.0 350 12.45 7.7

TABLE IV
SELF-EFFICACY SCORE (SE) (OUT OF 100), TOTAL TASK SCORE (TS)

(OUT OF 400), TASK TIME (TT) IN MINUTES, AND NUMBER OF

OBSERVED TINKERING EVENTS. NUMBERS REPRESENT AVERAGES BY

GENDER.

1) Video-game experience and Self-efficacy: An obvious
question to ask is if previous video game experience is the
underlying factor in these results, rather than gender. For
this analysis we turned to an ANCOVA with gender as
the categorical variable, and video game experience as the
predictor.

Our results show that video game experience has signif-
icant effect (p = 0.0226) on self-efficacy. This finding is
similar to previous research of performance in debugging
and introductory computer courses, which showed increases
in experience may increase self-efficacy for females [3], [32].

Video gaming experience also showed significant effect
(F (1, 10) = 6.61, p = 0.030) on task time with gender as the
factor. This can be explained by the fact that the users who
played video games are probably more comfortable using
joysticks, and therefore completed the task faster. This fact
was also mentioned by several users while performing the
task.

Interestingly, there was no correlation between self-
efficacy and task score (p = 0.13), and no correlation
between video game experience and task score (p = 0.09).
A summary of the correlations is given in Table V.

E. RQ3: Tinkering

We analyze tinkering through the open-ended tinkering
question (TinO) and coding of the video (TinVid). Both

Factor Task score Total time VG Exp.
Tinkering 0.006* 0.003* 0.006*
Self-efficacy 0.27 0.27 0.04*

TABLE V
p-VALUE OF SPEARMAN’S CORRELATION COEFFICIENT TEST OF

SELF-EFFICACY AND TINKERING W.R.T. TASK SCORE, TASK TIME AND

VIDEO GAMING EXPERIENCE. HERE * INDICATES SIGNIFICANT

CORRELATION.
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Fig. 6. Total task score and task completion time versus tinkering.

show significant gender differences, with males tinkering
more than females. Again, these findings are congruent with
existing work on problem-solving.

1) TinO response analysis: Example quotes of play-
ful/tinkering versus not when using a new device:

• playful:
“I buy new hardware to program (Ardunio) about
once every month or two. A new phone 3-4 years.
Love buying VR, tablets, smart watches.” - P08

• not-playful:
“I don’t play with new hardware device, I am a
people’s person.” - P07

Fisher exact test on our coded data revealed significant
(p = 0.0021) gender differences when asked about playing
with new devices.

2) TinVid data analysis: Average tinkering events (as
counted in the video) are summarized in Table IV. Differ-
ences are significant (F (1, 10) = 13.158, p = 0.004), with
males trying over half again as many approaches as females.

3) Video game experience and Tinkering: As before, an
ANCOVA with tinkering as the dependent variable, gender
as the independent variable, and video gaming experience as
the covariate reveals a significant (p <2e-16 ***) effect.

Unlike self-efficacy, there is a positive correlation
(0.7319251) between tinkering and task score (non-
parametric Spearman’s rho test, S = 76.669 and p =
0.006807). Figure 6 shows a linear model fit to the data.

Willingness to abandon a strategy and try another probably
accounts for this correlation. In the video, participants who
tried multiple approaches in quick succession were more
likely to find a strategy that was successful than those who
only tried one or two.

There was also a significant negative correlation
(−0.7724873) between tinkering and task time (non-
parametric Spearman’s rho test S = 506.93, p = 0.0032,
with 95% confidence interval). Figure 6 shows a linear model
fit to the data.

Interestingly, task time goes down as tinkering increases,
indicating that tinkerers tended to switch more quickly to
another approach than non-tinkerers.

As in self-efficacy, there was a strong positive correlation
(0.7345532) between video game experience and tinkering
(S = 75.918 and p = 0.0065).



VI. DISCUSSION

Tele-operating a robot fundamentally involves two skill
sets; controlling the gripper via the joy sticks and understand-
ing how to grab and manipulate the object with the gripper
(what grips will work, when it will slip out, where to grab
the object to obtain the best grasp, etc.). We hypothesize
that video game experience helps with the former, leading
to faster completion times. Manipulation with a gripper,
however, was a relatively novel task for all participants, and
here the key to success was simply trying several different
approaches in rapid succession.

Our findings for gender-bias in information processing,
self-efficacy, and tinkering were in line with existing stud-
ies, indicating that problem-solving in the physical domain
with a physical tele-op interface shares many of the same
underlying factors. This implies that existing approaches for
reducing bias in software interfaces (supporting a compre-
hensive information processing style, encouraging tinkering)
are probably applicable to the tele-op domain as well and
requires further research in varied settings. We request the
research community to further investigate in this direction.

VII. THREATS AND LIMITATIONS

Although we attempted to recruit from a broader de-
mographic, our participants ended up being students, with
the attendant biases associated with that group. Our study
population was also small.

We have identified two possible confounds that may
explain differences in task performance; the first is video
game experience, the second is a known gender difference
in spatial or mental rotation. It is possible that task score
was partially influenced by the need to mentally mirror the
actions of the robot.

In the following subsections, we will discuss internal,
external, and conclusion threats to our study.

a) External Validity: External validity refers to the fact
that whether findings from our experiment is generalizable
or not [5], [11], [33], [39]. To avoid demographic bias we
made our study open to all. But eventually only students
reached out and showed interest to participate in our study.
Thus, our result may not be generalizable across different
demographics (age, education etc.) due to small sample size.

b) Internal Validity: It refers to the risks that may
hinder the causal relationship between dependent and inde-
pendent variables [5], [11], [33], [39]. In our study, males and
females had significantly different video gaming experience.
We used video gaming experience as covariates in all of our
ANCOVA analysis to understand its possible influence. We
cross validated our results using methodological triangula-
tion.

c) Statistical Conclusion Validity: Conclusion validity
refers to the threat associated with the incorrect assumptions
made before we statistically test a relationship between two
variables [5], [11], [33], [39]. We rank transformed our data
before applying ANOVA. We validated each relationship
with non-parametric tests and methodological triangulation.

Moreover, we used covariates in all our ANCOVA. All these
certainly validates our research findings.

VIII. CONCLUSION

In this study, we compared information processing style,
self-efficacy and tinkering, and how they influence task suc-
cess and task completion time when tele-operating a robot.
Our results show that existing identified gender differences
in these factors also exist in the tele-operation realm, with
similar effects on task. In future, we would like to extend
our study by incorporating more complex tasks with wide
range of population. Furthermore, robots gender and how
it influence males and females task behavior would be
interesting to research as well.

IX. ACKNOWLEDGMENTS

We would like to thank all of our participants for their
time and support.

REFERENCES

[1] John Baer and James C Kaufman. 2008. Gender differences in
creativity. The Journal of Creative Behavior 42, 2 (2008), 75–105.

[2] Albert Bandura. 1989. Human agency in social cognitive theory.
American psychologist 44, 9 (1989), 1175.

[3] Laura Beckwith, Margaret Burnett, Susan Wiedenbeck, Curtis Cook,
Shraddha Sorte, and Michelle Hastings. 2005. Effectiveness of end-
user debugging software features: Are there gender issues?. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 869–878.

[4] Susan Bergin and Ronan Reilly. 2005. The influence of motivation
and comfort-level on learning to program. In Proceedings of the PPIG,
Vol. 17. Citeseer, 293–304.

[5] Marilynn B Brewer, H Reis, and C Judd. 2000. Research design
and issues of validity. Handbook of research methods in social and
personality psychology (2000), 3–16.

[6] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016.
Finding gender-inclusiveness software issues with GenderMag: a field
investigation. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, 2586–2598.

[7] Patricia Cafferata and Alice M Tybout. 1989. Gender Differences
in Information Processing: A Selectivity Interpretation, Cognitive and
Affective Responses to Advertising. (1989).

[8] C CDATA-Nass, Youngme Moon, and Nancy Green. 1997. Are
computers gender-neutral? Gender stereotypic responses to computers.
Journal of Applied Social Psychology 27, 10 (1997), 864–876.

[9] Deborah R Compeau and Christopher A Higgins. 1995. Computer
self-efficacy: Development of a measure and initial test. MIS quarterly
(1995), 189–211.

[10] Kerstin Dautenhahn, Michael Walters, Sarah Woods, Kheng Lee Koay,
Chrystopher L Nehaniv, A Sisbot, Rachid Alami, and Thierry Siméon.
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