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Renewed interest in the homogeneous electron gas (HEG) has been stimulated by recent accurate simulations
of it over a wide range of densities and temperatures. Those data, combined with known theoretical limits, have
led to analytical representations of the free energy. Such a representation is, at least in principle, the complete
HEG equation of state. The initial objective here is to establish that the two best representations [“corrKSDT,”
Phys. Rev. Lett. 112, 076403 (2014), Phys. Rev. Lett. 120, 076401 (2018), and “GDB” Phys. Rev. Lett. 119,
135001 (2017)] of the simulation data and constraints are effectively the same in both functional form and
accuracy of representation. The second objective is to disclose and delineate a significant difficulty. Despite their
expected accuracy for the free energy, the underlying functional form is not adequate for derived thermodynamic
properties. As an example, the specific heats obtained from the representations exhibit anomalies suggesting
the need first for additional simulation data in critical regimes, then for refined fitting functions. The existing
representations are, however, almost certainly adequate for applications based on the free energy alone (e.g.,
density-functional theory for warm dense matter). The third objective is to show that, despite their inability to
provide a complete thermodynamic description of the HEG, the best analytical representations do provide a fully

adequate exchange-correlation local density approximation for free-energy density-functional calculations.
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I. INTRODUCTION

The homogeneous electron gas (HEG) is a well-studied
system at zero temperature as a model for electrons in solids,
and as a model for fully ionized plasmas at temperatures 7'
well above the Fermi temperature 7p. At intermediate temper-
atures and densities, for a long while far less information was
available from either theory or simulation, in large part due to
lack of motivation. That has changed recently with growing
experimental access to observations on states of matter in
this domain. Such access is driving growth in the fields of
warm dense matter (WDM) and high energy density physics
(HEDP). Accordingly, the first quantum Monte Carlo (QMC)
simulations for the HEG in this domain were reported only
six years ago [1]. Subsequently Dornheim et al. [2] produced
improved QMC results for temperatures 0.5 <t =T /Tr < 8
over a wide density range (Wigner—Seitz radii 0.1 < ry < 10).
They also developed and used significantly improved finite-
size corrections. Those data currently seem to be the most
accurate finite-7 HEG results available.

For practical purposes a representation interpolating such
QMC data and extrapolating it via known theoretical limits
is needed. The target is an equation of state for the complete
thermodynamics of the HEG, provided by the free energy as
a function of r; and ¢. A rather complete review of the recent
simulations and their representations is given in Ref. [3]. As
noted there, the program for constructing the free energy
from theoretical limits and simulation data originally was
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presented and used in Ref. [4]. That reference presented a
representation, “KSDT,” based on the original data of Ref. [1]
and the 7 = 0 data of Ref. [5]. Subsequently Groth er al.
[6] used the KSDT approach and protocol to reparametrize
the exchange-correlation (XC) contribution to the free energy
against the finite-size-corrected QMC results of Ref. [2] along
with the Singwi—Tosi—Land-Sjolander (STLS) approximation
[7] for low-t (t < 0.5) behavior and for connection with the
T = 0 data of Ref. [5]. The resulting representation is denoted
“GDB” (as in Ref. [3]). Essentially simultaneously, a small
error in the use of zero-temperature data for KSDT was
detected and repaired to yield the corrected KSDT represen-
tation “corrKSDT” (see Supplemental Material for Ref. [8]).

That is the context. The objectives here are threefold. First
is to show that the representations, corrKSDT and GDB, give
essentially indistinguishable free energies over the entire 7, ¢
plane of interest. That statement is only very slightly modified
for KSDT compared with GDB. An even stronger equivalence
of corrKSDT and GDB is observed for the XC contribution
alone to the free energy.

The second objective is to point out that those two in-
terchangeable representations do not seem to give accurate
descriptions of derived HEG thermodynamic properties and
to discuss the implications. Specifically, the T dependence re-
flected in the specific heat exhibits anomalies. Other possible
peculiarities are associated with the extreme low-7 specific
heat (an effective-mass enhancement) and odd oscillations in
the difference between fully polarized and unpolarized ex-
change free energies. We conclude that the present representa-
tions are incomplete for a full understanding and prediction of
HEG thermodynamics. Consideration of the KSDT protocol

©2019 American Physical Society
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FIG. 1. The lower bound of relative magnitude of fy. with re-
spect to the total free-energy per particle, fi, for the HEG calculated
as logo (| fac(rs, DI/ fs(rs, )] + | fxe(rs, £)]]). The denominator is
defined as the sum of absolute values of two free-energy components
to avoid meaningless values at conditions for which cancellation
between f; and fix. occurs. Validity domains for PIMC, PB-PIMC,
and DMQMC are in the directions away from the three curves
indicated by the arrows. See text for notation.

that the representations share leads to some specific conclu-
sions. Without additional, very accurate QMC data (and/or
new formal constraints) for ¢ < 0.5 and small r¢ as well as
dense sampling of the large-r; (s > 8) region, a parametriza-
tion that gives accurate HEG temperature derivatives over a
larger ry, t domain seems unachievable.

Figure 1 illustrates the point. It shows the ratio of the XC
free energy per particle, fyc, to the upper bound of the total
free energy per particle, | fs(rs, )| + | fxc (75, t)|, Where f is the
noninteracting free energy per particle as a function of ry and
t. Superimposed are three curves that delineate the parameter
combinations (from Ref. [9]: the PIMC and PB-PIMC curves
are extrapolated to the large-rs values and the DMQMC curve
is extrapolated to the high-T" and low-T limits) for which
three methods, standard path integral Monte-Carlo (PIMC),
permutation-blocking PIMC (PB-PIMC) [10] and density-
matrix QMC (DMQMC) [11], can be used to obtain accurate
finite-T reference data for the HEG. The arrows with each
curve point to the valid region. Evidently, the domain in which
none of the accurate methods is applicable coincides with
much of the region in which the XC free energy per particle
has the same order of magnitude as the upper bound of the
total free-energy per particle.

The third objective is to demonstrate that, despite those
notable limitations of the current best representations of the
HEG XC free energy, the most important application of those
representations is unscathed. Specifically, those representa-
tions provide a thoroughly adequate local density approxi-
mation (LDA) to the XC free energy for density-functional
theory (DFT) for calculation of properties for real systems

of electrons and ions under the extreme conditions of WDM.
We confirm that, for use as the LDA, corrKSDT and GDB
are interchangeable and KSDT itself is essentially as good.
Not only is this important in its own right, it is also critical
for more sophisticated XC free-energy approximations based
on exact limits and constraints. They must have the HEG as
a limit. An example is the first finite-7" generalized gradient
approximation (GGA) XC free-energy functional [8]. It uses
corrKSDT as its LDA ingredient, hence its HEG limit.

II. EQUIVALENCE OF REPRESENTATIONS

There are many representations for the HEG free energy
based on approximate theories and various simulations (see
Ref. [3] for a thorough description). Here and below, attention
is primarily on corrKSDT and GDB as the most controlled
and accurate incorporation of the latest QMC and theoretical
constraints. KSDT enters because, as mentioned already and
discussed where germane below, it differs only slightly from
corrKSDT.

The universal part (i.e., that which is independent of
any external potential) of the free energy per particle of
a many-electron system conventionally is decomposed as a
contribution from the noninteracting system, f;, the Hartree
contribution, fy, and that from XC, fi.:

f=rf+fut fr ey

For the HEG, f; is a function of ry and ¢ which is known
exactly and fig = 0 because of the neutralizing background.
Thus the difficult many-body challenge is determination of
fxc- Note that only the total free energy matters for observable
physical quantities.

In this section, it is shown that the corrKSDT, KSDT, and
GDB representations are all equivalent with respect to the total
free energy f(rs, t) per particle. The stronger requirement of
equivalence for fx.(7s, t) also holds for corrKSDT and GDB.
The former equivalence is important for DFT applications to,
e.g., WDM; see below. The latter is of more consequence
for understanding the origin of many-body XC effects in the
HEG. Those are discussed in the next section.

Consider first the accuracy of KSDT as a representation
of the best QMC data from Ref. [2]. Figure 2 shows the
comparison of f(rs,t) as a function of ¢ for several values
of r;. The agreement clearly is excellent. Quantitatively, the
relative differences

fi QMC
AftOI o |ft0§ - f;at |
|ftol | Iflot |

fort =2, 4, and 8 are 0.22% or below. For t = 1 the max-
imum relative difference is 0.35%. For t = 0.5 the relative
difference has similar values for all rg except ry = 0.5, 0.4 and
0.3. At those values there is a cancellation between the f; and
fxc terms, the denominator in Eq. (2) thus becomes small, and
the relative difference increases to 0.87%, 1.14%, and 6.89%,
respectively.

What is not evident from Fig. 2 is the fact that | f;(rg, )| >
| fxe(7s, t)| for the domain of high density, g < 1, and com-
paratively high temperature, t > 2. Regarding that regime,
Ref. [12] compared various parametrizations of fy. alone
against the QMC data and remarked about supposedly

@
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FIG. 2. Comparison between the total free energy per particle
from the KSDT parametrization and data from Ref. [2] for the
unpolarized HEG at ry = 4, 2, 1, 0.5 (calculated by using data from
the last column in Table II in the Supplemental Material), and at
rs = 0.25 data from the GDB fit [6].

significant errors in Afx./fxc at rs=1, t =8 and ry =
0.1, = 4. But the relevant point is that the relative fotal
free-energy error A fio/|fot| at those points is 0.017% and
0.0045%, respectively. See the Supplemental Material of
Ref. [8] for detail. Figure 1 shows that, in this high-density
regime and especially if temperature is high, the XC term
is a few orders of magnitude smaller as compared with the
upper bound of the total free energy, therefore the exchange-
correlation does not play any role.

Since the HEG per se is the system of interest, one must
compare corrKSDT and GDB for fi. alone (recall that the
noninteracting contribution is known exactly in this case).
A successful representation requires two ingredients, QMC
data accurate over the (rg,t) plane and an analytical fitting
procedure constrained by existing theories, thermodynamic
consistency, and exact limits. References [5] and [2] provided
accurate QMC data for the HEG over a wide density range
att =0 and 0.5 < r < 8, respectively. The required sophis-
ticated fitting procedure was developed in Ref. [4]. The two
most accurate fits to the HEG XC free energy, corrKSDT [8],
and GDB [6], both use that analytical fitting procedure and
QMC data sets.

In the case of GDB, the lack of low-t QMC data (r < 0.5)
was addressed by approximate theoretical STLS results [7].
For the same purpose, in the present work we used the original
KSDT fit to generate data for t < 0.5 (those data are accurate
for this temperature range as confirmed in Refs. [2] and [13])
to complement the QMC data (at ¢t > 0.5) for the corrKSDT
parametrization.

As an aside, the reasons for KSDT accuracy in that
regime deserve comment. The key point is that the KSDT
representation is not simply a fit to the Ref. [1] QMC data.
Rather, the KSDT parametrization also was constrained by
existing theories, thermodynamic consistency, and exact lim-
its. Deficiencies in the QMC data or finite-size corrections
therefore did not necessarily propagate directly to KSDT. This
is confirmed by a result from Ref. [13]. Those authors showed
that the Brown er al. QMC data [1] are somewhat inaccurate
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FIG. 3. Comparison between fx. values from the corrKSDT and
GDB parametrizations and QMC data from Ref. [13] for the unpolar-
ized HEG at ry = 0.25, 0.5, 1, 2 and 4. The ground-state limit (r = 0,
Ref. [5]) QMC values also are shown.

atry = 1.0, 0.1, and 0.25. To the resolution shown in Fig. 5 of
Ref. [13], the KSDT parametrization does not reproduce the
incorrect Brown et al. data for r; = 1.0 but instead matches
the subsequent data of Ref. [13] almost perfectly. This is a
consequence of the KSDT construction, as confirmed by the
fact that the same figure in Ref. [13] shows that KSDT results
lie very close to the second-order analytical results known as
the “e*” approximation [14].

The outcome is that, despite some differences in low-¢
treatment, the two fits, corrKSDT and GDB, become prac-
tically identical. The mean absolute relative deviation for
fxc calculated over the 72 (rg,t)-data points used for the
corrKSDT representation is only 0.1%. The maximum relative
deviation is 0.3% (see details in Supplemental Material of
Ref. [8]). Figure 3 demonstrates that the two fits match the
available QMC data indistinguishably for # > 0.5 and are in
virtually perfect agreement for < 0.5.

III. THERMODYNAMIC DERIVATIVES

A. Unpolarized homogeneous electron gas

The total free energy is the state function whose derivatives
with respect to density and temperature provide other thermo-
dynamic quantities of interest. Consider first the entropy per
particle, o (rs, t):

1 9f(rs, 1)
Tk ot rs.

Burke et al. [15] found that the KSDT representation for
f(rs, t)leads to a HEG total entropy per particle that goes neg-
ative over a remote region of state space, roughly ry > 10 and
t < 0.1. Immediately, the negligible impact of that anomaly
for WDM calculations was confirmed [16], although it is a
flaw in the KSDT representation. As part of the corrKSDT
reparametrization (to correct the 7 = 0 data error in KSDT),
entropy positivity was enforced up through rg = 75. This
is between the first HEG phase transition (polarized liquid)
and Wigner crystallization [17]. The rationale is that those
phase boundaries should delineate the limiting range of the fit

o(rs,t) = —

3
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FIG. 4. Electron specific heat ¢y for the noninteracting and interacting HEG calculated with (a) GDB and (b) corrKSDT parametrizations.

(see further discussion below). The perhaps expectable result
(given the equivalence of the two parametrizations) is that
negative entropies still are obtained by using the corrKSDT
and GDB representations, but the onset of negative entropy is
at very high r; values (near 80 and higher). In summary, there
is no fundamental concern about these representations for the
entropy per particle so long as HEG phase transitions are not
an issue.
Next, consider the electron specific heat, cy (s, t):

t 3%f(rs, 1)
~E

1 de(rs, t)
T o

CV(rsa t) =

s

. @

s

It is well known that small errors in a fitted function may pro-
duce large errors in high-order derivatives. The specific heat
thus is a challenging property because of its dependence upon
the second temperature derivative of f(rs, ¢) or upon the first
derivative of the internal energy (7, t) = T5(rs, 1) + exc (s, 1)
represented as a sum of the noninteracting kinetic and XC
internal energy terms. Figure 4 shows cy calculated for the
noninteracting and interacting HEG from the corrKSDT and
GDB representations. As anticipated, the specific heat curves
from the two parametrizations are practically identical, a
consequence of the small procedural differences of parameter
fitting in the two. However, in both cases an unexpected
oscillatory behavior for ¢ between 0.1 and 1 for rg > 10 is
seen, increasing in amplitude with increasing r;. Although
that oscillatory behavior might be an indication of some kind
of critical point, it is far more plausible that it is an artifact
introduced by the QMC data of Ref. [2] and the way that
corrKSDT and GDB represent those data.

Pursuing that point, further analysis shows that the rep-
resentations for the X and C contributions to the internal
energy, & and &, have opposite slopes for # between 0.1 and

4 and both slopes change sign at ~ 0.2 [see rs = 10 curve in
Fig. 5(a)]. A small dip on the &, curve and a bump on the &,
curve produce oscillations in the dey/dt and de./dt deriva-
tives. For cy the oscillations are amplified by a 1/ prefactor
which is large for large r¢. The two lower panels in Fig. 5 show
the X and C contributions to the internal energy derivative.
Observe that there are significant cancellations between those
contributions. The cancellation is almost total for r, > 10.
That leads to a drastic decrease of accuracy for cy. A small
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FIG. 5. Upper panels: (a) &y, &x and &, energy per particle as
a function of temperature for r; = 10 and (b) dey./dt derivative.
Lower panels: (c) dey/dt and (d) de./dt derivatives. All quantities
calculated with GDB; corrKSDT gives virtually identical results.
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relative error in the de./dt derivative may, after cancellation
between the large-magnitude X and C contributions followed
by multiplication by the large prefactor 1/7T, yield a large
error in cy. Denser QMC sampling in 7 at large r; and low ¢
should improve the fit accuracy (there is nothing else available
to constrain or shape the fit for 7, > 10) and reduce errors in
temperature derivatives.

Whether the cancellation-induced oscillations in ¢y would
occur in LDA calculations on realistic physical systems is an
open question that at this point is obscured by computational
technique. In the usual technique, cy is obtained from differ-
entiating a convenient analytical representation of the total
internal energy. That analytical expression is fit to internal
energy calculations at various T for a fixed volume V. The
approach is motivated by the fact that separate analytical
temperature derivatives of the exchange and correlation free
energies are not implemented in any code of which we are
aware. In ordinary calculations there simply is no interest in
those individual contributions. Expenditure of effort on such
implementation therefore is unlikely to be a priority until an
explicit focus of research is to resolve the peculiar cy behavior
that we have identified here in the HEG. That is substantially
beyond the scope of the present work.

One aspect of the foregoing analysis deserves mention;
namely, the partitioning into X and C contributions. For fy, =
fx + fe, we have

n

— ! I Zdn=A
D) = =5 /_ [l dn = A0e.

Je(rs, 1) = fre(rs, 1) — fx(rs, 1). )

Here n := B, B := (kgT)~!, I, is the Fermi—Dirac integral,
w is the chemical potential defined by the average density n,
ex = —3(2)!3n!/3 is the zero-T LDA X energy per particle,
and Ay is given by the very accurate analytical fit given by
Eq. (39) in Ref. [18]. Internal XC, X, and C energy contri-
butions are calculated with use of Eq. (5) and the standard
thermodynamic relation

ot T (6)

EX/C(rsv t) = fx/c(rs’ t)—t

The point of the preceding summary is that the XC de-
composition used here is not the same as the implicit de-
composition used to construct corrKSDT, KSDT, and GDB.
In them, the first function in the numerator of the KSDT
Padé approximant [called a(z), Eq. (10) in Ref. [4]] in
is, in fact, the Perrot—-Dharma-wardana approximation for fx
[19,20]. Crucially, however, we never use that a(r) to extract
fx- Rather, a(r) appears in KSDT (hence also in corrKSDT
and GDB) only as a reasonably good fy approximation which
then is corrected by the other functions and fitting parameters
in the remainder of the KSDT form for the combined X and C
representation fx.. As a result, only in the high-density (low-
rs) limit does fx. — fx &~ a(t), which is the Perrot—-Dharma-
wardana exchange.

In constructing the KSDT representation, four formally
equivalent thermodynamic routes (Maxwell relations) were
tested, after which the so-called route A was selected; see
Ref. [4] for details. corrKSDT in contrast used route B which
is based on use of the QMC potential-energy data only. GDB

-==--KSDT .= = GDB
corrKSDT .=..= STLS
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FIG. 6. Effective-mass enhancement calculated from the KSDT,
corrKSDT, GDB, and STLS (taken from Ref. [22]) parametrizations
att = 0.001. Overview left, expanded view right.

also had to use route B (see Ref. [3], section 8.2.5). As
already noted, the two yield very similar HEG cy behavior.
We suspect that the use of routes C or D might give different
cy results for large r¢ than the values obtained from using
route A or B. We do not, however, have all the QMC data
(and finite-size corrections) required to use routes C and D to
obtain alternative parametrizations to corrKSDT and test this
speculation.

The limiting behavior of the electron specific heat at low T
defines the Fermi-liquid effective mass m*:

™ fim Y1), )

m >0 cy(t)
where cv s(t) is the noninteracting system specific heat. For
corrKSDT, KSDT, and hence for GDB, the small-¢ series
expansion of the XC internal energy &y, by construction
has quadratic and higher-order terms but no linear-# term.
Therefore the specific heat exhibits physically correct linear
low-t behavior [21], cy ~ t.

On fundamental grounds, both cy(rs,t) and cy (¢) are
linear in ¢ for small ¢, so the effective mass should approach a
limit dependent only on ry. The functional representations of
corrKSDT and GDB therefore preserve this behavior, despite
the fact that they are not based on any data below r < 0.0625.

A recently discovered oddity [22] is that m*/m obtained
from the KSDT representation has a larger amplitude variation
on 0 < rg < 1 than generally has been expected [23]. Prior
calculations have that amplitude range as roughly 0.95 <
m*/m < 1 whereas KSDT gives about 0.98 < m*/m < 1.2.
The prior calculations involve assumptions and techniques
the consequences of which are difficult to assess. Hence it
is not clear that the KSDT result is wrong, only that it is
unexpected. Since no QMC data were or are available for t <
0.0625 and ry < 1, KSDT was forced to be an extrapolation
to the T = 0 data of Ref. [5] as well as an extrapolation
from ry = 1 downward. The more recent QMC data [2] do
not resolve that issue, as they are limited to ¢ > 0.5. The
unusual enhancement, m*/m, occurs as well for the improved
representations corrKSDT and GDB, as shown in Fig. 6.

B. Spin-polarization anomaly

All of the discussion above refers to the unpolarized HEG.
More generally, however, the representations depend on the
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FIG. 7. |A fuc.poi| Eq. (8) from GDB.

degree of polarization. The difference in fully spin-polarized
and -unpolarized XC free energies,

Afxc,pnl(rm t) = fxc;{:O(rs» t) - fxc,{:l(rm t)a (8)

is related to the spin stiffness. At 7 =0 it is defined as
0%€xe/0C? =0 [24,25]. Values of |A fxcpoll calculated from
GDB are plotted in Fig. 7 as a function of #. One sees that the
high-temperature behavior is very different for ry = 1,2 and
rs > 5 (remark: data between r¢ = 2 and 5 were not checked):
A fye,pot for rg = 1,2 is positive for all values of ¢, but this
difference develops a sign change at larger ry values. For
example, A fxc pol becomes negative at 1 ~ 70 and ¢ ~ 20 for
rs = 5 and 10, respectively. The equivalence of corrKSDT and
GDB representations once again is relevant. Recall that the
parametrization of corrKSDT was constrained explicitly to
avoid negative entropies through the HEG zero-temperature
spin-polarization transition r; & 70 (Ref. [17]) but below the
Wigner crystal transition. The rationale for the latter choice
is that extrapolation by a continuous function in ry across
a symmetry-breaking phase transition is indefensible. The
former choice is rationalized by the notion that the zero-
temperature spin polarization ry is far above the largest value
for which finite-7T QMC data are available, so the zero-T
polarization r, is best used to provide a limit on the range
of constraint enforcement (e.g., entropy positivity) and not
as a constraint in and of itself. This logic applies for GDB
as well. Therefore, it is questionable as to whether the GDB
sign changes A fycpot are meaningful. Also, perceptible os-
cillations develop for large ry that do not seem physical [26].
While the oscillations are large percentage-wise, they are with
respect to a very small magnitude. Absent any knowledge of
error bars on A fi¢ pol therefore, the oscillations seem largely
immaterial: it makes little difference whether the value at r, =
50 is 0.0002 or 0.0003. Note again that r; = 50 is outside the
range of state conditions for which there was parametrization
data.

The consistent theme thus uncovered is that a parametriza-
tion for fx. which provides accurate high-order temperature
derivatives will require very accurate QMC data for r < 0.5
and appropriate sampling of the large-r, region.

IV. DATA ACCURACY VERSUS FITTING ACCURACY

In the main, the accuracy of an f;. fit relies on the ac-
curacy of the reference QMC data and the extent to which
exact constraints, limits, and thermodynamic consistency are
implemented in the underlying fitting procedure. The other
accuracy issue to be taken into account is error introduced
by the fitting procedure itself. Procedures used in Ref. [2]
provide a way to assess that. Those authors used one of the
thermodynamic routes defined in Ref. [4] to obtain fxﬁcl from
their accurate reference QMC potential-energy data VMC
(combined with the STLS data at t < 0.5): VMC . ffit o
estimate the accuracy of that fit, we used a thermodynamic
consistency test from Ref. [4]; namely, regeneration of the
potential energy from the fitted XC free energy: fit — Vit
Comparison between the original QMC values VMC and data

obtained from the fit, V1it, gives an error estimate for xﬁc‘, as

Aflt~ AV = (VMC _ ity ©)

We obtain AV = —0.0011 Hartree for t = 0.5 and r, = 4,
and relative errors, Afit/| it} = 0.7%, AV/|[VMC| = 0.8%.
Both are significantly larger than the relative error of 0.1% for
the QMC V data reported in Ref. [2].

We note that Ref. [2] did something different from the
KSDT protocols that were used to determine GDB. In-
stead, they used a set of fixed-temperature fits of smooth
rs-dependent functions, not a fit of a two-variable function
to the entire set of accurate QMC data. Error control in
such fixed-¢ fits is easier than for the two variables because
the rs- dependence of fi. at fixed ¢ is rather featureless
compared with its  dependence at fixed rs. A challenge to full
two-variable parametrization therefore is to avoid introducing
much larger fitting errors than those in the underlying QMC
data when a full rg, ¢ representation is built.

V. EXCHANGE-CORRELATION APPROXIMATIONS

In the context of free-energy DFT, inhomogeneous systems
and not the HEG per se are the focus. What then is critical
is whether the analytical representation errors for corrKSDT
and GDB are acceptable, on the energy scale of their intended
application, for using those representations as the LDA for
DFT.

There are two types of applications. One is as the fi.
approximation itself. The other is as a key ingredient in
more sophisticated XC approximations. Long experience with
applications of ground-state DFT confirms that such more
advanced XC approximations (than the LDA) are required
to get the physics of many systems right. The first step of
refinement beyond the LDA is to incorporate density-gradient
dependence in the form of GGAs [27]. They utilize a gradient-
driven local modulation of the LDA, so a very-high-quality
LDA is an essential ingredient. A highly pertinent example is
our recently presented KDT16 XC free-energy approximation
for finite 7' [8]. The first nonempirical GGA fi., it has the
corrKSDT representation as a key ingredient.

Systematic address of the issue of the legitimacy of an fx.
HEG representation as an LDA is helped by delineation of
the WDM regime. (By construction, the 7 = 0 behavior of
corrKSDT, KSDT, and GDB is guaranteed to be the correct
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LDA.) The low-density end of the WDM density regime,
hence the largest relevant r¢ value, is arguably about 10. H;
for example, at bulk density, py = 0.005 g/cm’ is about a
factor of 17 below the liquid H density, yet has ry = 8.1.
Similarly r; = 7.8 for aluminum at pa; = 0.05 g/cm?. That
is a factor of 50 smaller than ambient bulk solid Al den-
sity. Conversely, even rather modest r; values correspond to
extraordinarily highly compressed systems. As an example
rs = 0.25 corresponds to roughly 2000-fold compressed hy-
drogen (py = 180 g/cm3). For 0.25 < r, < 10 the relevant
reduced temperature range, 0.5eV < kT < 10 eV is roughly
0 <t < 20. Figure 1 shows that a significant part of these
physically relevant ranges (rs 2 4, t < 0.5) belongs to the
critical density-temperature region wherein no accurate ref-
erence QMC data for the HEG are available to date.

The pertinent point is that those ranges are either within the
ranges discussed already with respect to HEG representation
fidelity or are verging on high-r limits. Thus A fio/|fiotls
Eq. (2), for corrKSDT never exceeds about 0.02% for the
HEG and the most conservative estimate of error [8] is 0.3%
up to t = 10. Matters improve as ¢ grows beyond that. This
focus on fiy errors is critical, because focus on fy. errors can
be quite misleading. The decomposition, Eq. (1), is important
primarily to isolate the quantity for which approximation is
required and as a route to computational feasibility (e.g., the
Kohn—Sham procedure). That decomposition is unimportant
for many physical quantities of interest (e.g., pressure).

To be specific, in the WDM regime, DFT calculations of
quantities for which the effects of explicit T dependence in
the XC free energy are significant include the equation of state
(EOS), thermal properties, and optical and direct current (dc)
conductivity [16]. The first two of those exemplify quantities
for which the decomposition is only an instrumentality, a
route to the dependence upon fio. The third type of quantity
(transport coefficients), at least as calculated in the Kubo—
Greenwood approximation [28], does depend on the details
of the decomposition (2) through sums of quantities (e.g.,
matrix elements) dependent upon the Kohn—Sham orbitals and
eigenvalues. The values of such sums, however, depend only
weakly upon small detailed differences in LDA versions.

As an aside, Ref. [12] includes speculation as to pos-
sible inaccuracy in the KSDT spin interpolation function.
The question is whether this matters for DFT application.
That seems doubtful. KSDT spin-interpolation faithfully re-
covers the Spink et al. [5] ground-state partially polarized
QMC results. There seems little reason, therefore, to expect
meaningful improvement from matching to partially polarized
finite-7 QMC results, although it would be interesting to have
them if only for confirmation.

The foregoing facts and reasoning confirm that all three
HEG representations for f(rs, t), corrKSDT, KSDT, and GDB
are essentially equivalent as satisfactory fy. LDAs.

VI. SUMMARY

Three objectives have been achieved. The first is based on
recent simulation studies of the free energy for the HEG in
a domain of the (7, ¢) plane not previously explored. The
data combined with thermodynamic consistency and known
theoretical limits led to three global representations of the free

energy, corrKSDT, its direct antecedent KSDT, and GDB. In
Sec. II the equivalence of these for reproducing the simulation
data for f(rs,t) was demonstrated. Furthermore, the equiva-
lence of corrKSDT and GDB for the XC component alone
was illustrated, although the original KSDT representation has
some small, inconsequential errors for fi (75, t) [2].

The second objective was to draw attention to the fact that,
in spite of these very accurate representations for f(rs,1),
derived thermodynamic properties obtained by temperature
derivatives exhibit suspicious anomalies. Those occur outside
the domain for which simulation data are available and are
properties of the extrapolation or interpolation provided by
the fitting procedure. This was discussed in Sec. III where
it was noted that the entropy per particle (first-order tem-
perature derivative) can become negative for large r; and
small 7. For the corrKSDT and GDB representations, this
corresponds to state conditions beyond the expected spin-
polarization transition and therefore outside the domain of
their intended application. A second, more serious anomaly
occurs for the specific heat (second derivative with respect
to 7). In that case, all three representations predict unusual
oscillatory behavior for ¢ between 0.1 and 1 and r; > 10.
Without any theoretical or simulation guidance, this must
be seen as a possible flaw in the representation function. A
related question is the enhanced Fermi liquid relative effective
mass (defined as the ratio of the interacting and noninteracting
specific heat at T = 0). Calculations based on the three repre-
sentations and the STLS theoretical model are shown in Fig. 6.
Those results differ from expectations from approximate (un-
controlled) Fermi-liquid theories. In the present context it
must be considered that this difference may be due to the
form of the fitting function. Finally, Sec. IIIB considered
the polarization dependence of the exchange free energy;
specifically, the difference between the unpolarized and po-
larized results A fye,po1(7s, ) := fxeir=0(rs, 1) — fre,e=1(Fs, 1).
The results calculated from the GDB representation are shown
in Fig. 7. The oscillations at low ¢ increasing in amplitude with
increasing rs are unexplained and potentially unphysical.

The third objective was to verify the use of the three
representations as essential interchangeable for use as LDA
functionals in free energy DFT calculations and in more re-
fined fy. approximations. It is helpful to note the parallel with
most T = 0 DFT calculations. They are based in a similar
way on ground-state HEG simulations. Generalized gradient
approximations, for example, have the LDA (hence the HEG)
as a limiting case. Therefore, the extensions discussed here
to the entire (rs,t) plane constitute an essential prerequisite
for addressing WDM in an accurate, practical fashion. A
first example of a nonempirical semilocal free-energy density
functional for matter under extreme conditions, built on the
LDA representations here was noted [8].

As for the advocacy for a more accurate fit to fy. in
Refs. [2] and [6], the arguments given here suggest those
calls to have been ill-timed. The demonstrated indistinguisha-
bility of corrKSDT and GDB stands as confirmation. Going
forward, there is an essential prerequisite to achieving a
representation that represents HEG thermodynamics substan-
tially better. That prerequisite is new adequately accurate
and densely spaced QMC data to resolve the anomalies
that we have discussed. Without such data, an allegedly
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better fit would be premature, if not outright misleading.
While the anomalies we have highlighted are of no direct
importance for DFT calculations of WDM, they are important
signatures of physical effects that must be addressed for a
better understanding of the HEG. A very high quality rep-
resentation of the HEG free energy would provide an unas-
sailable benchmark against which to test ingenious but un-
controlled many-body approximation methods and simulation
methods.
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