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Abstract

About a century ago, Jeans (1919) discovered that if binary stars reach a state approximating energy equipartition,
for example, through many dynamical encounters that exchange energy, their eccentricity distribution can be
described by =dN de e2 . This is referred to as the thermal eccentricity distribution, and has been widely used for
initial conditions in theoretical investigations of binary stars. However, observations suggest that the eccentricity
distributions of most observed binaries, and particularly those with masses 5Me, are flatter than thermal and
follow more closely to a uniform distribution. Nonetheless, it is often argued that dynamical interactions in a star
cluster would quickly thermalize the binaries, which could justify imposing a thermal eccentricity distribution at
birth for all binaries. In this paper, we investigate the validity of this assumption. We develop our own rapid semi-
analytic model for binary evolution in star clusters, and also compare it with detailed N-body and Monte Carlo star
cluster models. We show that, for nearly all binaries, dynamical encounters fail to convert an initially uniform
eccentricity distribution to thermal within a star cluster’s lifetime. Thus, if a thermal eccentricity distribution is
observed, it is likely imprinted upon formation rather than through subsequent long-term dynamical processing.
Theoretical investigations that initialize all binaries with a thermal distribution will make incorrect predictions for
the evolution of the binary population. Such models may overpredict the merger rate for binaries with modest
orbital separations by a factor of about two.

Key words: binaries: general – globular clusters: general – methods: numerical – open clusters and associations:
general – stars: black holes – stars: kinematics and dynamics

1. Introduction

If a population of binaries undergoes enough dynamical
encounters that exchange energy, one may expect the
population to reach a state approximating energy equipartition,
and the distribution of energies to follow a Boltzmann
distribution. This “thermalized” population of binaries was
first investigated by Jeans (1919), who derived the resulting
distribution of binary orbital eccentricities (and periods) for
such a population in statistical equilibrium. The result, reached
also by Ambartsumian (1937), Heggie (1975), and Kroupa
(2008), is that the eccentricities should relax to the distribution
function:

=( ) ( )f e ede2 . 1

All values of e2 would be equally likely. In other words, the
resulting distribution has many more high-eccentricity binaries
than low-eccentricity binaries (see, e.g., Figures 2 and 3). This
distribution is known as the thermal eccentricity distribution.

Such dynamical encounters occur far more frequently in star
clusters than in the field. Therefore, one might expect that star
clusters would be the best place to look for the thermal
eccentricity distribution. Furthermore, observations suggest
that most stars with masses M0.5 were born in clusters (e.g.,
Lada & Lada 2003), many of which quickly dissolve to
populate the galactic field. Therefore even binaries that are
currently in the field may have undergone sufficient encounters
in their birth environments to convert any primordial
eccentricity distribution to thermal.

This line of reasoning, and the elegant formula, has elevated
the thermal eccentricity distribution to be the distribution of
choice for initial conditions in the majority of published star
cluster models, population synthesis studies, and analytic
investigations of binaries in both the field and in star clusters.
Ever since Jeans (1919), astronomers have searched

observationally for this thermal distribution in various popula-
tions of binaries. However, in nearly all cases (including the
study that Jeans 1919 compared against) the binaries are not
observed to have a thermal distribution. To provide some
recent catalogs, we direct the reader to the review article by
Duchêne & Kraus (2013) and to Moe & Di Stefano (2017), and
references therein.
In summary, current observed samples of binaries with

primary stars between ∼0.8Me and ∼5Me have eccentricity
distributions that are flatter than a thermal distribution. For
background, the seminal (Duquennoy & Mayor 1991, DM91)
study divided their sample of solar-type field binaries at an
orbital period of 1000 days, finding a bell-shaped distribution
for the short-period sample, and, after a significant incomplete-
ness correction, an indication of a thermal distribution for the
long-period sample. More recently, the DM91 study has been
superseded by Raghavan et al. (2010) and Moe & Di
Stefano 2017. The Raghavan et al. (2010) study gathered a
complete volume-limited sample of solar-type stars. Using the
then newly available Hipparcos data, they found that the
DM91 sample was contaminated by parallax errors; specifi-
cally, that 44% of the DM91 sample actually lay outside the
DM91 selection criteria, 38% of the stars that meet their criteria

The Astrophysical Journal, 872:165 (14pp), 2019 February 20 https://doi.org/10.3847/1538-4357/ab0214
© 2019. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-3881-9332
https://orcid.org/0000-0002-3881-9332
https://orcid.org/0000-0002-3881-9332
https://orcid.org/0000-0002-4086-3180
https://orcid.org/0000-0002-4086-3180
https://orcid.org/0000-0002-4086-3180
https://orcid.org/0000-0002-7132-418X
https://orcid.org/0000-0002-7132-418X
https://orcid.org/0000-0002-7132-418X
mailto:a-geller@northwestern.edu
https://doi.org/10.3847/1538-4357/ab0214
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab0214&domain=pdf&date_stamp=2019-02-20
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab0214&domain=pdf&date_stamp=2019-02-20


with current observations were not included in the DM91
sample, and several stars were erroneously included in the
DM91 sample due to incorrect spectral-type assignments in
Hipparcos. In short, the Raghavan et al. (2010) study clarified
and improved the completeness of the solar-type binary sample
in the solar neighborhood. Their analysis of the eccentricity
distribution shows a uniform distribution for all binaries with
periods longer than the circularization period, with no
significant difference when cutting at an orbital period of
1000 days. Moe & Di Stefano (2017) confirm this result in a
very careful and thorough analysis, and find that for late-type
binaries (even those with orbital periods 3<log P<5), the
eccentricity distribution is discrepant with, and flatter than, a
thermal eccentricity distribution. Studies of solar-type binaries
in open clusters come to a similar conclusion, and do not
observe a thermal eccentricity distribution, regardless of orbital
period, out to the completeness limits (e.g., Geller & Mathieu
2012; Geller et al. 2013). The conclusion is that late-type
binaries are observed to follow more closely to a uniform
distribution, for binaries with periods beyond the reach of tides.

Furthermore, the review by Duchêne & Kraus (2013)
concludes that for all the samples investigated (of all spectral
types, and observational methods), the eccentricity distribu-
tions are all inconsistent with thermal. The Moe & Di Stefano
(2017) study supports this finding for all but the visual binaries
with O5-B5 primary stars and periods between < P3.6 log
(days)<4.6 (10–100 yr), from the Malkov et al. (2012)
catalog. Moe & Di Stefano (2017) find this sample to have an
eccentricity distribution that is consistent with thermal.
Conversely, Duchêne & Kraus (2013) investigate spectroscopic
binaries in the SB9 catalog and the catalogs of Abt (2005) and
Sana et al. (2012), and find the OB stars with < P2 log
(days)<4 have an eccentricity distribution inconsistent with
thermal (and closer to uniform), though they note that the
catalogs are likely incomplete (and likely biased toward low
eccentricities; Geller & Mathieu 2012). Moe & Di Stefano
(2017) also confirm a flatter-than-thermal eccentricity distribu-
tion for shorter-period (P=10–500 days) early-type spectro-
scopic binaries, after correcting for selection effects.

Keeping the various observational biases and incompleteness
in mind, the general conclusion is that most observed binary
samples have eccentricity distributions that are flatter than
thermal, and more closely consistent with a uniform
distribution.

Nevertheless, in many dynamical star cluster models, the
thermal eccentricity distribution is imposed on the primordial
population. Some authors assume that encounters will
thermalize the binary population so quickly that any adjustment
time could be neglected. We test this hypothesis in this paper.
Other authors assume that the thermal eccentricity distribution
is imposed by the binary-formation process. Some go further to
apply a numerical “eigenevolution” prescription (Kroupa 1995;
Belloni et al. 2017) prior to N-body or population synthesis
modeling, which will flatten a thermal eccentricity distribution
for binaries with shorter periods, and more closely approx-
imates the results from DM91. Cluster dynamical processes
that then act on this “eigenevolved” population of binaries
may change the eccentricity distribution again into what is
ultimately observed.

Eccentricity can be excited dynamically through close strong
encounters or long-range flybys. One strong encounter can
dramatically change the eccentricity, while flybys contribute in

a more cumulative long-term manner. For strong encounters,
exchanges and dynamical captures may be an efficient method
to induce thermal eccentricities. For example, Kouwenhoven
et al. (2010) and Perets & Kouwenhoven (2012) show that
wide dynamically captured binary stars and star-planet systems
(respectively), formed within N-body star cluster simulations,
have a thermal eccentricity distribution. Fregeau et al. (2004)
show that binary-single scattering experiments that result in a
binary containing a merger product may exhibit a thermal (or
similar to thermal) eccentricity distribution. The common
thread in these particular references is that binaries formed
through dynamical exchanges or captures tend to have
thermalized eccentricities.
All else being equal, binaries in wider orbits experience

more encounters, and therefore, assuming encounters lead to
thermal eccentricities, wide binaries may be the easiest to
thermalize. However, within a star cluster, the widest binaries
are “soft”; the binding energy of a soft binary is less than the
typical kinetic energy of a star moving at the velocity
dispersion of the cluster. Therefore, soft binaries are often
disrupted during encounters. For wide binaries, the thermaliza-
tion of the eccentricity distribution is a race between
eccentricity excitation and disruption through encounters.
In this paper, we model these processes, searching for the

emergence of a thermal eccentricity distribution. We will show
that if the initial eccentricity distribution is far from thermal,
this hypothesis is incorrect. Kroupa (1995) and Kroupa &
Burkert (2001) also challenged this hypothesis, and showed
that if all binaries are born with the same eccentricity, their set
of N-body star cluster models did not thermalize the binaries.
We build upon these results using a different method and a
more empirically motivated initial eccentricity distribution.
The outline of this paper is as follows. In Section 2, we

describe our semi-analytic model for evolving binaries within a
cluster environment. In Section 3, we compare and validate this
semi-analytic model with more detailed N-body and Monte
Carlo models, and also investigate the solar-type main-
sequence (MS) binaries in these detailed models for a thermal
eccentricity distribution. In Section 4, we explore a grid of
semi-analytic models in search of the parameter space that
could produce a thermal eccentricity distribution in star
clusters. Then in Section 5, we shift focus toward remnant
binaries; this population may be the best place to look for a
thermal eccentricity distribution, as a result of its more active
history. In Section 6, we investigate the impact of the initial
eccentricity distribution on the binary merger rate. Finally, in
Sections 7and 8, we discuss these results and provide our
conclusions.

2. Semi-analytic Model for Binary Evolution

There are three primary effects that work together to change
a given binary star’s eccentricity and semimajor axis over time:
strong encounters, flyby encounters, and the internal evolution
of the binary. Here we will define strong encounters as those in
which an incoming star (or binary) has a pericenter distance
that is less than or equal to the semimajor axis of the binary.
Complementarily, we define flybys as those in which an
incoming star (or binary) has a pericenter distance beyond the
binary’s semimajor axis. The internal evolution of the binary
can include changes based on stellar evolution, mass transfer,
tides and magnetic braking, etc. In our model, we include the
effects of tides and magnetic braking, but choose to exclude
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other effects such as stellar evolution and mass transfer (though
we remove binaries that cross the Roche radius; see
Section 2.3).

The encounter parameters depend on the time evolution of
the cluster. Specifically, we require the time-varying number of
stars, total cluster mass, mean stellar mass, half-mass–radius,
core radius, central density, central velocity dispersion, escape
velocity, and binary fraction. These can be derived from, for
example, a detailed N-body model, or a more rapid analytic
model like EMACSS (Alexander & Gieles 2012; Alexander
et al. 2014; Gieles et al. 2014).

Once the cluster parameters are known, our method
(described below) can enable rapid calculations of the time-
varying distributions in binary semimajor axes and eccentri-
cities. The main bottleneck is integration of the differential
equations related to tides, magnetic braking, and flybys.
Nonetheless, this method is “embarrassingly parallel”; each
binary can be evolved on its own and in parallel with all others,
in a similar manner as done for population synthesis models.
This offers a significant speed-up when compared with detailed
N-body and Monte Carlo cluster models (with remarkably
similar results; see Figures 2 and 3).

Previous authors have developed other analytic models for
the dynamical evolution of a binary population. Notably,
Marks et al. (2011) constructed a numerical transfer function,
based on the first 5 Myr of N-body evolution to approximate
the dynamical evolution of binaries. Marks & Kroupa (2011)
applied this model to dissolving clusters to reproduce the field
population (focusing on DM91 observations). Also Giersz et al.
(2016) showed close agreement between the Marks et al.
(2011) method and MOnte Carlo Cluster simulAtor (MOCCA)
models in the first 5 Gyr. Sollima (2008) also developed an
analytic prescription for dynamical processing of binaries in
globular clusters, though did not include changes to eccen-
tricity. Our model focuses specifically on the evolution of the
eccentricity and semimajor axis (and period) distributions, and
is designed to test the hypothesis that encounters can quickly
thermalize a population of binaries. We explain our method in
detail below.

2.1. Strong Encounters

We use the binary-single and binary-binary encounter
timescales from Leigh & Sills (2011) to estimate the time
until an incoming single or binary star will pass within the
semimajor axis of the binary of interest. For the encounter
parameters (e.g., density, velocity dispersion, etc.), we take the
values within the cluster core. If the timescale for such an
encounter is less than the cluster age, we assume that a strong
encounter occurs for that binary. Traditionally, these strong
encounters are evolved using direct N-body scattering codes,
such as FEWBODY (Fregeau et al. 2004). Such codes can be
very efficient, but often this is a relatively time-consuming
calculation. There is a long history of methods and models to
speed up such calculations, going back at least ∼30 yr to the
classic Fokker–Plank paper by Gao et al. (1991). (We will not
attempt to summarize this body of work here.) Recently,
Valtonen & Karttunen (2006) and Leigh et al. (2016, 2018)
developed an analytic approximation to the statistical distribu-
tion of the outcomes from stellar encounters. We follow the
same procedure as Leigh et al. (2018), which incorporates a
Monte Carlo sampling of the encounter parameter space to

estimate the final semimajor axis and velocity of the binary,
given randomly chosen initial encounter parameters.
Specifically, our procedure is as follows. We first select a

three-dimensional velocity for the binary of interest and the
incoming object (either single or binary, based on the encounter
time). We draw these velocities from a lowered-Maxwellian
(King 1965), which depends on the time-varying properties of
the cluster model (see above), and the mass of the incoming
object. We then project the velocities of the binary of interest
and the incoming object to determine the relative velocity.
For the mass of an incoming single star, we take the time

average of the cluster’s mean stellar mass, weighted by the
number of stars in the cluster, over the time spanning from
the previous encounter (or the start of the model) up until the
current encounter time. We weight by the (time-varying)
number of stars in an attempt to capture the most likely
incoming star; in practice this does not dramatically change the
mass we derive, mostly because the mean stellar mass is
relatively constant over the course of the cluster evolution (at
∼0.3Me−0.6Me). If the timescales instead predict a binary-
binary encounter, we multiply this mass by (1+q), where q is
a mass ratio drawn randomly from a uniform distribution. Note
that this does not account for mass segregation (which may
cause the mean mass of incoming objects in the core to be
higher than that averaged over the entire cluster). Accounting
for this level of detail is beyond the scope of our model, and as
we show below, even with these simple assumptions, our
model agrees closely with more sophisticated simulations.
Given the parameters of the target binary, incoming star or

binary, the incoming velocity, and an assumed pericenter
distance equal to the current binary semimajor axis, we follow
the method of Leigh et al. (2018) and Valtonen & Karttunen
(2006) to draw a random final velocity for the incoming object.
This final velocity depends on the binary’s energy, angular
momentum, semimajor axis, and eccentricity (prior to the
encounter), and the masses of all objects. Assuming energy is
conserved, and given this final velocity of the incoming object,
we can calculate the binary’s final energy and therefore its final
semimajor axis.
For the final eccentricity, we simply assume that resonant

encounters will result in a random draw from the thermal
distribution, and nonresonant encounters will not change the
eccentricity. This assumption for resonant encounters stems
from the numerical results, discussed in Section 1, that
dynamically formed binaries show a thermal eccentricity
distribution. During resonant encounters, there are often
exchanges, and the final binary will likely have similar
properties to a dynamically formed binary. (Our simplified
treatment does not account specifically for exchanges.) We
estimate that an encounter may be resonant if the relative
velocity, between the binary of interest and the incoming
object, is less than the critical velocity, as defined in Fregeau
et al. (2004), Equation (1). We randomly select half such
encounters to result in a thermal eccentricity; the remaining half
do not alter the eccentricity. This is, of course, an over-
simplification, but we will show that this procedure qualita-
tively reproduces the results of detailed N-body cluster models
in Section 3.
Encounters with a relative velocity larger than the critical

velocity are not expected to be resonant. Indeed, most such
encounters disrupt the binary (e.g., Fregeau et al. 2004). For the
fraction of these encounters that do not disrupt the binary, we
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choose not to modify the eccentricity. In reality, these
encounters likely do change the eccentricity, but there is no
simple model to describe the resulting eccentricity change.
Nonetheless, most such surviving binaries become wider, and
therefore more susceptible to disruption from the next
encounter.

This method is appropriate for evolving a distribution of
binaries, though it is not expected to exactly reproduce the
outcomes of detailed N-body calculations on a per-binary basis.

2.2. Flyby Encounters

Between the individual strong encounters, we assume that
many flybys are ongoing. For flybys, we use the results from
Heggie & Rasio (1996), who calculate analytic cross sections
(Σ) for a given change in eccentricity resulting from the
combined effects of weak perturbations to a given binary by
other objects at pericenter distances beyond the binary’s
semimajor axis. These cross sections depend on the component
masses, the semimajor axis and eccentricity of the binary, the
typical mass of objects in the cluster, and the velocity at
infinity. We assume the typical mass of an object in the cluster
is equal to the cluster’s (time-varying) mean stellar mass, as
described above. We assume the velocity at infinity, v, to be
equal to the time average of the central velocity dispersion of
the cluster, weighted by the (time-varying) number of stars (in a
similar manner as for the mean stellar mass). We estimate the
central density, n, in the same manner as v. We then use a
simple encounter rate estimate, Γ=nΣv, along with the
duration of time between encounters (or time until the first
encounter, or until the desired end time, if appropriate), to solve
for the expected change in eccentricity for a given binary.

We begin with all nonzero eccentricities, and therefore begin
using the cross section from Equation (19) in Heggie & Rasio
(1996). For a nonzero initial eccentricity, there is an equal
probability that the change in eccentricity resulting from a flyby
will be positive or negative. To determine the sign of this
change in eccentricity, we simply draw a random number from
a uniform distribution, and assign a negative change in
eccentricity if the random draw is >0.5. If the evolution of a
given binary produces a circular orbit, we then switch to
Equation (25) in Heggie & Rasio (1996), with the appropriate
time duration remaining in the encounter window. (For
simplicity here, we only study binaries with equal masses in
the semi-analytic model, and therefore only the exponential
regime in Heggie & Rasio 1996 can produce a nonzero change
in eccentricity for a circular binary.) For an initially circular
binary, the change in eccentricity resulting from encounters can
only be positive. Rasio & Heggie 1995 show that this regime
can be very important for compact-object binaries.

Unlike the strong encounters, we assume that this change in
eccentricity occurs smoothly over the full time duration
between strong encounters. We therefore divide the expected
change in eccentricity resulting from these calculations by the
encounter duration to estimate an ė from flybys, which we use
along with the ė from tides (see below) to integrate the total
change in eccentricity between encounters.

2.3. Internal Evolution: Tides and Magnetic Braking

We integrate the differential equations from the Hut (1981)
weak friction tide model coupled to the differential equations
from Hurley et al. (2002) for magnetic braking, and the ė from

flybys (Section 2.2) to estimate the changes in eccentricity,
semimajor axis, and spin between encounters. We follow a
similar method to Hurley et al. (2002) to calculate the
parameters for the Hut (1981) equations. However, because
we are not including stellar evolution, we make some
additional order-unity simplifications (which we can consider
as contributing to the overall uncertainty in the strength of tides
from this model on stars with convective envelopes); namely,
we set the envelope mass and radius equal to the stellar mass
and radius, respectively; the initial stellar spins to p p2 0 (where
p0 is the initial binary orbital period); and the radius of gyration
to that of a solid sphere (rg=2/5). We also allow for a
multiplicative factor that can be applied to the ȧ and ė
differential equations for tides; as suggested by, e.g.,
Belczynski et al. (2008) and Geller et al. (2013), this factor
may be as high as 50–100 in order to match observed solar-
type binary systems. By default, and for simplicity in the
majority of the paper (unless otherwise noted), we set this value
to unity.
In principle, we could also include the various changes to the

binary orbital parameters, stellar spins, and stellar masses,
resulting from stellar evolution by making use of a rapid binary
evolution code, such as Binary Star Evolution (BSE) (Hurley
et al. 2002). That is beyond the scope of this work.
Furthermore, for the majority of this paper, we will focus on
binaries with component masses of 1Me, which (for solar
metallicity) will remain on the MS for 11 Gyr.

2.4. Collisions, Coalescence, and Disruptions

Changes to the binary orbital elements resulting from strong
encounters, flybys, and tides (as described above) can eliminate
a binary from the population by direct collisions (due to high
eccentricity), coalescence, and disruptions. In our model, this
can happen in a variety of ways.
Flybys can cause the eccentricity to increase enough that the

two stars in the binary physically collide or orbit inside the
respective Roche radius (rL, defined here in the same units as
the semimajor axis; Eggleton 1983).
The semimajor axis, a, of a binary can be reduced both by

strong encounters and through tides with magnetic braking. We
assume the components of the binary coalesce (merge) if

- <( )a e r1 L, and that the components would collide if

*- <( )a e r1 , (where r* is the star’s radius).
The semimajor axis of a binary can be increased by strong

encounters. This is particularly relevant for soft binaries, as
described in Section 1. Soft binaries have low binding energies
relative to the typical kinetic energies of the cluster stars.
Therefore, the typical outcome for an encounter involving a
soft binary is for the incoming star to donate energy to the
binary, widening the binary’s orbit. If the incoming star donates
enough energy, it will disrupt the binary. Within our strong
encounter approximation, we assume that a binary is disrupted
if the final binary energy is positive. (In principle, tides can also
increase the semimajor axis with appropriate spins, but in
practice this is not relevant in our model.)

2.5. Outcomes for Individual Binaries

As a demonstration of the full semi-analytic model described
above, we run 100 draws for binaries with three different initial
semimajor axes, of 1, 5, and 10 au respectively, all with an
initial eccentricity of 0.5 and with component masses of
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= = m m M11 2 , and show the results in Figure 1. We evolve
these binaries within a cluster with initially 105 stars. For the
strong encounter rates, we assume a binary fraction of 50%.

For reference, we can estimate the hard-soft boundary, ahs,
of a cluster using the virial theorem,

s
= ( )a
Gm m

m2
, 2hs

1 2

3 0
2

where m3 is the mass of the incoming object (either a single star
or the combined mass of a binary; a typical mass for an evolved
star cluster is ~ M0.5 ), and σ0 is the initial (three-
dimensional) central velocity dispersion. Our use of the initial
velocity dispersion is supported by detailed N-body models that
show that the hard-soft boundary is imposed early on (Geller
et al. 2013, and see Section 3 in this paper). A cluster of this
size has a hard-soft boundary at ∼10 au, and is predicted by
EMACSS to dissolve at slightly beyond 8 Gyr.

The strong encounter times here are identical for all binaries
of a given semimajor axis, but the parameters of each encounter
are chosen randomly (from the appropriate distributions, as
described in Section 2.1). By running many realizations of
these binaries, we can study the distribution of final semimajor
axes and eccentricities, shown in the horizontal histograms on
the right side of the figure.

For tighter binaries (e.g., the 1 au binaries here), encounters
are too infrequent to significantly change the binary orbital
parameters. As the semimajor axis approaches the hard-soft
boundary, encounters will often change the binary orbital
parameters. For the wider binaries, Figure 1 shows that the
eccentricity tends to smoothly increase or decrease due to

flybys and tides, with the occasional jump in semimajor axis,
and possibly also eccentricity (depending on the relative
velocity of the stars), at the times of strong encounters.
The 5 au binaries in this cluster are hard binaries and, as

expected, encounters tend to decrease the semimajor axes.
Conversely, the 10 au binaries here are nearly soft and, also as
expected, the encounters tend to increase the semimajor axes.
For both the 5 and 10 au binaries, encounters spread out the
eccentricity distribution. Many of the wider binaries are also
removed from the population through collisions, coalescence,
and disruptions, as described in Section 2.4.
Though we focus this paper on the distributions of binary

orbital parameters, we remark here on an interesting and
relatively common outcome of the interplay between flybys and
tides. Flybys can gradually increase a binary’s eccentricity. The
“spikes” seen in Figure 1, when a binary changes from an
increasingly high eccentricity to a decreasing eccentricity, are
times when tides begin to dominate over flybys. Wide binaries
in particular may be driven quickly to very high eccentricity,
and therefore very small pericenter distance, by flybys. As the
pericenter distance decreases, tides become more important,
and when combined with magnetic braking, can drive the
binary to coalescence. This is clearly very relevant for the
initially 10 au binaries shown in Figure 1. In general, wide
binaries may be particularly susceptible to high-eccentricity-
driven mergers (or collisions) due to eccentricity pumping from
flybys in star clusters, which may lead to the production of
exotic stars like blue stragglers and sub-subgiants (Leonard
1989; Leigh & Sills 2011; Giersz et al. 2013; Kaib & Raymond
2014; Geller et al. 2017a, 2017b; Leiner et al. 2017).

3. Validation by Comparisons to N-body and Monte Carlo
Star Cluster Models

In the following, we test our semi-analytic model by
comparing it with more detailed star cluster simulations. In
Section 3.1, we compare against an N-body open cluster model
from the literature created using the nbody6 code. In
Section 3.2, we compare against a Monte Carlo globular
cluster model created using the MOCCA code.
For both comparisons, we use the time-varying cluster

parameters directly from the N-body and Monte Carlo models,
respectively, as input to our semi-analytic models to, e.g.,
define the encounter timescales. As we show below, our semi-
analytic model does a remarkable job of reproducing the
dynamical evolution of binaries in more detailed models. These
comparisons show that we can indeed use this simpler (and
faster) approach to make confident statements about the
dynamical generation of the thermal eccentricity distribution
in star clusters.

3.1. NGC 188 N-body Model

Geller et al. (2013) produced a detailed N-body model of the
old (7 Gyr) open star cluster NGC 188, using nbody6
(Aarseth 2003). The initial conditions for the model were based
on empirical data for the cluster, and particularly for the binary
population. The N-body model was initialized with 39,000
stars, a half-mass–radius of 4.6 pc, and a galactocentric radius
of 8.5 kpc. (We refer the reader to Geller et al. 2013 for details
on other initial conditions and parameters of their model.) The
NGC 188 N-body model matches the observed solar-type
binaries in the real cluster quite well, for binaries with periods

Figure 1. Multiple realizations of the time evolution of three binaries in our
semi-analytic model. We place these binaries in a cluster initialized with 105

stars, a half-mass–radius of 2 pc, a 50% binary fraction, and a galactocentric
radius of 8.5 kpc, and evolved using EMACSS. We run 100 realizations each for
binaries with initial semimajor axes of 1 au (black), 5 au (orange), and 10 au
(blue). On the left, we plot the eccentricity (top) and semimajor axis (bottom)
over time, until the cluster dissolves. The horizontal dotted line in the bottom
panel shows a semimajor axis of 1 Re. On the right, we plot histograms of the
final eccentricity (top) and semimajor axis (bottom) distributions, for binaries
that still remain at the cluster dissolution time.
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3000 days (the completeness limit of the Geller & Mathieu
2012 survey).

We use the cluster structure, velocity, and mass parameters
from the NGC 188 N-body model as input to our semi-analytic
model, and show the results in Figure 2. For the semi-analytic
model, we create 105 binaries, with = = m m M11 2 , and
orbital periods and eccentricities drawn from the same
distributions functions as used for the N-body model. We also
increase the tidal circularization rate (specifically, the differ-
ential equations for ȧ and ė) by a factor of 50 (Belczynski et al.
2008; Geller et al. 2013), to approximate the similar increase
imposed in the N-body model. For the N-body model, we
combine all 20 unique simulations in the NGC 188 model, and
select only binaries where the combined mass of the two
components is>= M1.5 , and both are MS stars. (The cluster
turnoff at the age of NGC 188, and at the cluster’s roughly
solar metallicity, is ∼1.1Me.) This mass limit is meant to
include binaries with similar masses, and therefore similar
dynamical histories, to the equal-mass = = m m M11 2
binaries in our semi-analytic model, while also allowing for
a large enough sample size. We exclude binaries from the
N-body model that were dynamically formed (through
exchanges, three-body formation, etc.), by only including
binaries that were paired at the start of the simulation.

On the left-hand side of Figure 2, we plot the distributions in
eccentricity and period for the N-body model, in red, and our
semi-analytic model in black and white. The final distributions
are shown in solid lines (while the initial conditions are shown
in dashed lines). The agreement between the N-body and semi-
analytic models is encouraging. In particular we note the

truncation of the binary period distribution at the hard-soft
boundary. Note that neither the N-body nor the semi-analytic
model converts the initially Gaussian eccentricity distribution
to thermal. Indeed, the overall eccentricity distribution hardly
changes throughout the entire cluster lifetime.
On the right-hand side of Figure 2, we show cumulative

eccentricity distributions in bins of final orbital period (in the
log). Here we see that the eccentricity distributions trend
toward thermal for the wider binaries. (And also that the short-
period binaries become more circular, due to tides). However,
even the widest binaries do not achieve a thermal distribution.

3.2. MOCCA Globular Cluster Model

Next we compare our semi-analytic model with a MOCCA
Monte Carlo globular cluster model (Giersz et al. 2013, 2015;
Hypki & Giersz 2013; Askar et al. 2017). This MOCCA model
was initialized with 1.2×106 total objects,7 (9.13×105Me),
a half-mass–radius of 1.2 pc, and a 30% binary fraction.
Masses of single stars and the primary stars of binaries are
drawn from a Kroupa (2001) initial mass function (IMF) in the
range of 0.08–150Me. The binaries were initialized with a log-
uniform initial semimajor axis distribution (up to 200 au and
such that the initial pericenter distance is more than 4 times the
radius of a 0.08 Me star) and a uniform initial eccentricity
distribution (see also Figure 3). The secondary masses in
binaries are chosen from a uniform mass-ratio distribution,
such that the IMF is preserved (Oh & Kroupa 2016). Internal

Figure 2. Comparison of the solar-type binaries in the NGC 188 N-body model (Geller et al. 2013) with our semi-analytic model with similar initial conditions. For
the semi-analytic model, we show results from 105 randomly sampled binaries, while for the N-body model, we show all solar-type binaries in all 20 cluster
realizations. On the left, we show the distributions in eccentricity and period, where the N-body model is in red and the semi-analytic model is in black and white. The
contour plot shows a kernel density estimation of the “ - ( )e Plog ” distribution. The histogram on the top shows the probability density distribution for period, P,
while the histogram on the right shows the probability density distribution for eccentricity, e. In both histogram panels, the initial values are shown in dashed lines, and
the final values are shown in solid lines. In the period histogram panel, we show the estimated hard-soft boundary with the vertical dotted line, for reference. In the
eccentricity histogram panel, we show the thermal distribution in the dotted black line, for reference. On the right side of the figure, we show cumulative distributions
of eccentricity for the N-body model (top) and semi-analytic model (bottom). The colored lines show the eccentricity distribution binned in periods, where the color
shows the minimum period, and each bin is 1 decade in size. The hard-soft boundary is at ~P 105.2 days; the last bin in our plots extends from ~P 104.2 days out to
the hard-soft boundary. In both panels on the right, we show the initial eccentricity distribution in the black dashed line and the thermal distribution (for reference) in
the black dotted line.

7 One object is either a single star or a binary.
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binary evolution uses an upgraded version of BSE (Hurley
et al. 2002; Belloni et al. 2018; Giacobbo et al. 2018). The
cluster was evolved in a standard tidal field for the solar
neighborhood for 12 Gyr. The global properties of this model
at 12 Gyr (total mass of ∼4×105Me and half-light radius of
∼3 pc) are broadly representative of the global properties of
relatively massive globular clusters in the Milky Way
(Harris 2010).
We use the cluster structure, velocity, and mass parameters

from the MOCCA model as input into our semi-analytic model
and show the results in Figure 3, in the same format as for the
NGC 188 N-body model in Figure 2. Again, for simplicity in
the semi-analytic model, and for more easy comparison with
Figure 4, we include only equal-mass binaries with both
components at 1Me. (We do not increase the tidal circulariza-
tion rate, as we did in the comparison with the NGC 188
N-body model.) From the MOCCA model, we include binaries
with two MS stars that have a combined mass between 1Me
and 2Me, and again we only include binaries that were paired
in the initial population (to exclude dynamically formed
binaries) for Figure 3. The turnoff in the MOCCA model at
12 Gyr (and at Z=0.001) is ~ M0.85 ; therefore, the most
massive MS binaries in the MOCCA model at 12 Gyr are still
slightly less massive than those in our semi-analytic model.
This will introduce some inconsistencies between the encounter
times in the MOCCA and semi-analytic models. Nonetheless, as
is clear from Figure 3, the agreement between these models is
very close.

As in the comparison with the NGC 188 N-body model, our
semi-analytic approach reproduces the shape of the final period
distribution remarkably well (and note that the N-body and
MOCCA models began with different initial period distribu-
tions). The disruption of binaries, and the definition of the hard-
soft boundary, is captured faithfully in the semi-analytic model.
The overall eccentricity distributions are also very close.

There is a slight excess of circular binaries in the semi-
analytic model; this is primarily due to tides, which are

apparently more efficient in our model than in the MOCCA
model (perhaps due, at least in part, to the simplifying
assumptions we have made for the stellar structure in the
semi-analytic model). Here, we are more concerned with the
long-period binaries, beyond the reach of tides.
The overall result from this comparison (and the comparison

to the NGC 188 N-body model) is that dynamical evolution in
the star cluster will not convert a uniform (or Gaussian, as in
the NGC 188 model) eccentricity distribution into a thermal
distribution within the cluster lifetime.

4. Parameter-space Search for Thermalization

In the previous sections, we describe our semi-analytic
model and validate the results by detailed comparisons against
N-body and Monte Carlo cluster models. Here, to efficiently
cover a larger parameter space in cluster initial conditions, we
switch to the EMACSS code (Alexander & Gieles 2012;
Alexander et al. 2014; Gieles et al. 2014). EMACSS can rapidly
evolve a cluster, given an initial number of stars, half-mass–
radius, and galactocentric distance, and provides an estimate
for the time evolution of the number of stars, total stellar mass,
and half-mass–radius (among other parameters).
We estimate additional cluster parameters based on a

Plummer model (Plummer 1911). We also use the output from
EMACSS with the results from Webb & Leigh (2015) to
estimate an appropriate dynamically modified mass function at
each EMACSS output time, which then provides an estimate of
the mean stellar mass in the cluster. Finally we estimate the
(assumed constant) binary fraction, starting by first taking a
50% total binary fraction, as appropriate for field solar-type
binaries (Raghavan et al. 2010), then truncating the period
distribution at the hard-soft boundary (Equation (2)), which
thereby defines a new binary fraction dependent on the central
cluster velocity dispersion (in a similar manner as in Geller &
Leigh 2015). These values allow us to calculate the encounter
timescales needed for our semi-analytic model. (Note, we

Figure 3. Comparison of the solar-type binaries in a MOCCA Monte Carlo globular cluster model with our semi-analytic model with similar initial conditions. The
format of this figure is the same as for Figure 2.
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verified this EMACSS-based approach by comparing it with the
MOCCA and N-body models from Section 3, using the same
initial conditions. The resulting models are nearly identical to
those shown in Figures 2 and 3.)

We construct a grid of semi-analytic models covering a
range in initial number of stars, half-mass–radius (and therefore
density), and binary component masses. We show results from
this grid in Figure 4. In the top panel, we show clusters of a
range in initial number of stars, all with an initial half-mass–
radius (rhm,0) of 2 pc, and at a galactocentric radius (rg) of
8.5 kpc. In the middle panel, we show a cluster with initially
105 stars, =r 8.5g kpc, and with a range in densities (and
velocity dispersions). In the top two panels, we only consider
binaries with component masses each equal to M1 . In the

bottom panel, we again show a cluster with initially 105 stars,
=r 8.5g kpc, and =r 2hm,0 pc, but we consider different

component masses for the binary of interest. All cluster models
are run using EMACSS and are evolved until either the cluster
dissolves or for a Hubble time. (A cluster born with 105 stars,

=r 2hm,0 pc, and =r 8.5g kpc will not dissolve in a Hubble
time, which is responsible for the upturn in the solid and
dashed lines in the top panel toward larger Nstars,0.) We
initialize the binaries in each cluster with a log-normal period
distribution, and a uniform eccentricity distribution (as in
Raghavan et al. 2010).
The results of this parameter-space search are shown in

Figure 4. On the left, the colored regions show the respective
exponents, η, resulting from power-law fits ( µ hp ee ) to the

Figure 4. Parameter-space search for the thermalization of the eccentricity distribution within a star cluster, exploring the initial number of cluster stars (top), initial
cluster density (middle), and initial binary component masses (bottom), using our semi-analytic model. In the left two panels, the colored regions indicate the power-
law exponent, η, from a fit of µ hp ee to the eccentricity distribution, in bins of semimajor axis. For reference, our initial uniform distribution has η=0, while a
thermal eccentricity distribution has η=1. The left-most panel shows results including both strong encounters and flybys. The middle panel excludes flybys. On the
right, the colored regions indicate the average number of strong encounters (Nenc) in each bin, from models that include both strong encounters and flybys. Each point
is located at the minimum semimajor axis in the bin, and each bin extends for one decade in semimajor axis (analogous to Figures 2 and 3). In the bottom panel, we
exclude the effects of tides and magnetic braking, because our formalism is only appropriate for solar-type stars. In all panels, an estimate of the hard-soft boundary is
shown in the dotted line; the semimajor axis beyond which we expect to have at least one strong encounter is shown in the solid line; and the semimajor axis beyond
which flybys could induce a mean change in eccentricity of 1/6 is shown in the dashed line. (We provide a conversion from semimajor axis to period on the top x-axis,
assuming = = m m M1 ;1 2 this conversion is not appropriate for the bottom panel.) In our models, the tight binaries can trend toward h < 0 due mainly to tidal
circularization, while for wide binaries (including those at higher masses in the bottom panels), eccentricity distributions with η<0 result primarily from the removal
of high-eccentricity binaries due to collisions/mergers.
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eccentricity distribution in bins of the semimajor axis. For
reference, a thermal eccentricity distribution has η=1, and a
uniform distribution has η=0. As is clear from the figure,
when we include both strong encounters and flybys (left-most
panel) no model in our grid converts a uniform eccentricity
distribution to thermal. For some cluster and binary parameters,
the power-law exponent to the eccentricity distribution
becomes larger than for a uniform distribution, but never
reaches η=1. Interestingly, if we exclude flybys, there are a
few regions of parameter space that do reach thermal (due to
our assumption of imposing thermal eccentricities after
sufficient strong encounters; see Section 2.1). We return to
this in Section 7 below.

As an additional check, we can also use our semi-analytic
approach to estimate timescales to convert a uniform
eccentricity distribution into a thermal eccentricity distribution.
The mean eccentricity in a thermal distribution is 2/3, while for
a uniform distribution the mean eccentricity is 1/2. Therefore,
the mean change in eccentricity required to convert the uniform
to thermal distribution is 1/6. We can estimate the timescale for
producing this change in eccentricity from flybys alone using
the Heggie & Rasio (1996) cross section, averaged over a
uniform distribution in initial eccentricity, along with our
Γ=nΣv approximation. Because positive and negative
changes to eccentricity are equally likely, here we simply
double the time required to increase the eccentricity by 1/6.
We then solve for the semimajor axis, beyond which
encounters are frequent enough to increase the eccentricity by
1/6 within a given timescale. In Figure 4, we set this timescale
to the dissolution time of the cluster (as predicted by EMACCS,
and defined at the time when there are fewer than 100 stars in
the cluster), or a Hubble time if that is shorter, and show the
result of this calculation with the dashed lines.

With the solid lines in Figure 4, we show the semimajor axis
beyond which we expect to have at least one strong encounter
(where the incoming star has a pericenter passage within the
binary semimajor axis). For our purposes here, we will simply
assume that half of the strong encounters (regardless of whether
they are expected to be resonant) result in a thermal
eccentricity. Finally, the dotted lines in Figure 4 show an
estimate of the semimajor axis at the hard-soft boundary
(Equation (2)).

For all other cluster parameters used in these timescale
estimates, we take the time average, weighted by the (time-
varying) number of stars from our EMACSS plus Plummer
(1911) approximation, described above. We weight by the
number of stars in an attempt to best approximate the cluster
parameters when most encounters will take place, and therefore
when the majority of the changes to the eccentricity distribution
will occur.

These timescale estimates suggest that a cluster could indeed
thermalize a population of binaries (albeit a small population),
near to the hard-soft boundary. Models including only strong
encounters (middle panel in Figure 4) indeed trend toward
thermal in this region of parameter space. However, the more
detailed semi-analytic calculations, including both strong
encounters and flybys, refute this. For these models, near the
hard-soft boundary we see a turnover in the power-law
exponent extending to η<0. This is because higher-
eccentricity binaries are preferentially depleted, especially at
wider semimajor axes. Take for example flybys involving a
binary with an initial eccentricity of 0.5. If the eccentricity is

increased by 0.5, the binary components collide. However, if
the eccentricity is decreased by the same amount (as is also
possible through flybys), the binary will circularize, and then
enter the (less efficient) flyby regime starting from zero
eccentricity. This preferentially removes wide high-eccentricity
binaries from the population. Also recall that this region near
the hard-soft boundary is expected to be severely depleted of
binaries by strong encounters (e.g., see Figures 2 and 3).
On the right side of Figure 4, the color scale denotes the

mean number of strong encounters (Nenc) within each bin in
semimajor axis, for models that include both strong encounters
and flybys. (The numbers are nearly identical for models that
exclude flybys.) For much of the parameter space, Nenc<1.
For binaries with semimajor axes near the dashed lines in the
figure, Nenc∼1 (as expected). For wider binaries, and
particularly those with massive components, the number of
encounters can reach of order 10. If flybys are ignored, these
binaries achieve a thermal eccentricity distribution. However,
the contribution from flybys, which also increases toward wider
and higher-mass systems, is sufficient to remove many of the
high-eccentricity binaries from the distribution (through
collisions and mergers).

5. Comparing With Remnant Binaries in a Cluster Monte
Carlo (CMC) Globular Cluster Model

Above, we show that it is difficult, if not impossible, to
convert a uniform eccentricity distribution to thermal for MS
binaries in the lifetime of a cluster through dynamics. Here we
also compare with remnant binaries using a CMC globular
cluster model from the Northwestern group (Joshi et al. 2000,
2001; Fregeau et al. 2003; Fregeau & Rasio 2007; Chatterjee
et al. 2010, 2013; Pattabiraman et al. 2013; Rodriguez et al.
2018). This cluster was initialized with 8×105 total objects
(4.85×105Me), a half-mass–radius of 0.81 pc, and a binary
fraction of 5%. Masses of single stars and the primary stars of
binaries are drawn from a Kroupa (2001) initial mass function
in the range of 0.08–150Me. For a given binary, the secondary
mass is assigned by drawing from a uniform distribution in
mass ratio. Binary orbital periods are drawn from a log-uniform
distribution, with cutoffs at five times the distance to physical
contact of the components and the hard-soft boundary. Binary
eccentricities are drawn from a uniform distribution (between
zero and 1). We evolve the cluster well past a Hubble time to
see if the binaries will eventually thermalize. In Figure 5, we
show both the solar-type MS and black hole (BH) binary
eccentricity distributions at different snapshot times from the
model.
In the top panel, we show only MS binaries that were paired

primordially, excluding binaries formed dynamically (as we
also do for Figures 2 and 3). In the second panel from the top,
we include all MS-MS binaries (within our mass and period
range, as defined in the Figure 5 caption). In the third panel
from the top, we include only the MS-MS binaries (within our
mass and period range) that have at least one component that
went through a dynamical encounter that was strong enough to
be sent through the direct N-body integrator, FEWBODY (see
references above for the criteria to initiate a direct N-body
calculation of an encounter in CMC).
In all the top three panels, we see that the eccentricity

distribution trends further toward thermal as time progresses.
Comparing the top two panels shows that the dynamically
formed binaries are generally formed at higher eccentricities

9

The Astrophysical Journal, 872:165 (14pp), 2019 February 20 Geller et al.



than those in the primordial population (at any given time).
Likewise, those that went through a FEWBODY encounter in
CMC have eccentricity distributions shifted to higher values

than for the primordial population. Indeed, as we discussed in
Section 1, dynamically formed binaries are expected to form
with thermalized eccentricities. However, even after 36 Gyr of
dynamical evolution, the solar-type MS binaries do not reach a
thermal eccentricity distribution.
In the bottom panel of Figure 5, we show binaries containing

at least one BH. For compact-object formation, CMC uses a
modified prescription from that implemented in SSE (Hurley
et al. 2000) and BSE (Hurley et al. 2002) by using the results of
Fryer & Kalogera (2001) and Belczynski et al. (2002). Natal
kicks for core-collapse neutron stars are drawn from a
Maxwellian with dispersion width s = -265 km s 1 (Hobbs
et al. 2005). BHs are assumed to form with significant fallback,
and BH natal kicks are calculated by sampling from the same
kick distribution as used for neutron stars, but reduced in
magnitude according to the fractional mass of fallback material
(see Morscher et al. 2015 for more details).
For the sample shown in Figure 5, we attempt to exclude any

BH binary whose current eccentricity was significantly altered
by mass transfer or tides. Specifically, we exclude any binaries
that have eccentricities of uniquely zero (because this results
from BSE for binaries undergoing mass transfer), BH-MS
binaries with periods �15 days (roughly the tidal circulariza-
tion period for old stellar populations; Meibom &
Mathieu 2005), and all BH-giant binaries. Most of the BH
binaries form early, and are ejected quickly from the cluster.
The one early time step shown in Figure 5 is the only time step
that contains sufficient BH binaries for which to construct an
eccentricity distribution. A Kolmogorov–Smirnov test shows
that we cannot distinguish the eccentricity distribution for these
BH binaries from a thermal eccentricity distribution.
About two thirds of the BH binaries in Figure 5 contain one

BH and one non-BH (i.e., an MS star or other remnant). The
remainder are BH-BH binaries. A primary method for forming
BH-BH binaries in the CMC models (and in the MOCCA
models) is through “three-body binary formation” (Morscher
et al. 2015). In these models, an analytic approximation is made
to account for encounters involving three initially single stars
that experience a close encounter resulting in one bound binary.
In CMC models, this mechanism is only applied to remnants.
The resulting binary is assumed to have an eccentricity drawn
from a thermal distribution. About half of the BH binaries
(regardless of the stellar type of the partner) in the time step
shown in the bottom panel of Figure 5 formed through the
three-body binary mechanism and retain the same partner.
About 10% retained the primordial partner. The remaining
∼40% formed through dynamical exchanges.
To investigate further for the thermal eccentricity distribu-

tion, we take all the eccentricities resulting from FEWBODY
encounters in CMC, over the entire duration of the simulation
(∼40 Gyr), shown in Figure 6. In this figure, we divide the
sample into MS-MS binaries, and remnant-remnant binaries.
(Remnants include white dwarfs, neutron stars, and BHs.) If an
individual binary undergoes multiple encounters, each resulting
eccentricity is included in the figure. Here again we see that the
eccentricities of MS binaries, even those that have just
undergone an encounter strong enough to require FEWBODY,
do not obtain a thermal distribution.
However, the remnant binaries that go through encounters do

come out with a thermal eccentricity distribution. >99% of the
remnant binary encounter products shown here were formed
dynamically. About one-quarter were initially bound through

Figure 5. Comparison of eccentricity distributions for the solar-type main-
sequence binaries (top three panels) and binaries containing at least one black
hole (BH; bottom panel) in a CMC globular cluster model. The colored lines
show the distributions at different times in the simulation, as indicated by the
color bar on the right. The black dashed line shows the initial distribution (over
all masses), and the dotted black line shows a thermal eccentricity distribution,
for reference. For the MS binaries, we include only those with periods >50
days; the hard-soft boundary is at ∼100 days. Also for the MS binaries, we
limit the mass range to < + < M m m M1 21 2 , while the MS turnoff mass,

 M M1TO , and otherwise < + <M m m M2TO 1 2 TO. In the top panel, we
exclude dynamically formed binaries (as in Figures 2 and 3). The second panel
from the top includes all MS binaries within the defined mass and period range.
The third panel from the top includes all MS binaries within the defined mass
and period range, with at least one component that went through a dynamical
encounter using FEWBODY. In the bottom panel, showing binaries containing at
least one BH, we attempt to remove any that may have had their current
eccentricity influenced by tides and/or mass transfer. (See the main text for
details on the selection.)
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the three-body binary mechanism (which assumes a thermal
eccentricity); those born through the three-body binary
mechanism underwent, on average, ∼6 encounters after
formation and throughout the remainder of the simulation,
which may be sufficient to erase the initial thermal assumption.
The roughly three-quarters remaining were formed by
dynamical exchanges. We return to this in Section 7.

We also investigated a similar CMC model, but with the
modification that BH kicks were drawn from the same
Maxwellian as for neutron stars, with a dispersion of
s = -265 km s 1. In this model, nearly all BHs are ejected
quickly, and the cluster undergoes core collapse much earlier in
time, which creates a smaller core radius and presumably more
frequent encounters for the MS stars. However, even in this
model, the MS binaries’ eccentricity distribution (for stars in
our selected mass range) does not reach thermal, even after
30 Gyr. Most of the MS stars in this mass range spend the
majority of their lives outside the cluster core, where the
densities are similar between models with and without
many BHs.

6. Merger Rates

The assumption of thermalization dramatically overpopu-
lates the high-eccentricity end of the binary distribution relative
to a uniform distribution, and the consequences of choosing the
wrong eccentricity distribution are not negligible. Take, for
example, the merger rate of solar-type binaries due to slow
angular momentum loss from tides coupled to magnetic
braking. We can use our model, and exclude encounters, to
estimate the fraction of binaries with = = m m M11 2 and a
range in initial orbital separations that would merge in a Hubble
time. In the top panel of Figure 7, we show the ratio of the
number of such mergers when we draw eccentricities from the
thermal distribution (Nt) over the number when eccentricities
are drawn from a uniform distribution (Nu). At very small
initial semimajor axes, nearly all binaries are expected to merge
in a Hubble time, but toward wider binaries, only the most
initially eccentric binaries, with the smaller pericenter dis-
tances, can merge. At these modest initial orbital separations, a

population of binaries with eccentricities drawn from a thermal
distribution has twice the merger rate compared to a population
with eccentricities drawn from a uniform distribution.
Next we perform a similar investigation for BH-BH binaries

merging due to gravitational wave radiation. Though we have
found that BH-BH binaries formed dynamically in clusters are
likely to have a thermal eccentricity distribution (due to their
dynamical formation pathway), it is not immediately clear what
is the expected eccentricity distribution for BH-BH binaries
that form directly from primordial binaries in the field, or in star
clusters. Perhaps it is closer to a uniform distribution. In the
bottom panel of Figure 7, we use the Peters (1964) formulae to
compare the merger rate for BH-BH binaries with initial
eccentricities drawn from either a thermal or uniform distribu-
tion, over a range in initial semimajor axis. We show equal-mass
BH-BH binaries, with masses of 10, 20, and 30 Me. Again, for

Figure 6. Comparison of eccentricity distributions for the MS-MS and
remnant-remnant binaries directly after dynamical encounters evolved using
FEWBODY within CMC. We do not limit by mass, orbital period, or
eccentricity, as we did in Figure 5. Remnants include white dwarfs, neutron
stars, and BHs. We show all products of encounters that meet these criteria over
the entire duration of the simulation.

Figure 7. Ratio of the number of binaries that will merge when the
eccentricities are drawn from a thermal distribution (Nt) over the number when
eccentricities are drawn from a uniform (flat) distribution (Nu), plotted as a
function of initial orbital separation. In the top panel, we show the mergers
(coalescence) of MS-MS binaries resulting from tides and magnetic braking.
Specifically, each binary has component masses both equal to 1 Me, and are
evolved with the tides and magnetic braking procedure described in Section 2.3
(and without encounters). In the bottom panel, we show mergers of BH-BH
binaries from gravitational waves, picking binaries with both BH components
at initially 10, 20, or 30 Me, respectively. In both plots, the ratio at wider
separations reaches a factor of roughly two.
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the tightest binaries, all are expected to merge in a Hubble time.
However, toward wider binaries, the merger rate for BH-BH
binaries with eccentricities drawn from a thermal distribution is
twice the rate of BH-BH binaries with eccentricities drawn from
a uniform distribution.

The conclusion from this investigation is that choosing an
initially thermal eccentricity distribution instead of a uniform
distribution boosts the merger rate by a factor of about two, at
modest orbital separations, for both MS-MS and BH-BH
binaries.

7. Discussion

Although a thermal eccentricity distribution may be the
expected equilibrium outcome for a population of binaries that
has undergone many energy-exchanging interactions, in real
star clusters it is nearly impossible to reach this state. Naively,
and based on encounter-time arguments alone, one might
expect that the most likely binaries that could become
thermalized are those with the most massive binary component
masses, in wide orbits, and within the oldest, densest, and most
massive clusters. However, these assumptions break down.
While it is true that wider binaries experience more frequent
encounters, and therefore their eccentricity distribution is
modified most rapidly, the widest binaries are soft, and soft
binaries are easily disrupted. Encounters are most frequent in
the most massive and dense clusters. However, the denser and
more massive the cluster, the tighter the hard-soft boundary
becomes. Encounters occur more frequently for the most
massive binaries. However, the oldest clusters (where sufficient
time has past for many encounters to occur) do not have
massive MS binaries (due to stellar evolution), and therefore
this regime is not easily observable.

Figure 4 shows this tension graphically. Under optimistic
assumptions, simple timescale estimates (e.g., the lines in
Figure 4) suggest that only binaries with periods ranging from
the hard-soft boundary down to about one decade shorter, in
typical clusters, could achieve a thermal distribution within a
cluster’s lifetime (if born with a uniform eccentricity distribu-
tion). The result is the same when considering strong
encounters and/or flybys. However, as is clear from
Figures 2and 3, this period range just below the hard-soft
boundary is expected to be significantly depleted of binaries,
due to encounters that lead to disruptions, collisions, or
mergers, and the remaining binaries are not thermalized.
Indeed, our grid of semi-analytic models shows that this region
near the hard-soft boundary is difficult to thermalize, due to the
preferential removal of wide high-eccentricity binaries from the
distribution by flybys. Furthermore, even within a model that
evolves for many Hubble times, an initially uniform eccen-
tricity distribution is not converted to thermal (Figure 5).

Thus the conclusion is that, for MS binaries, it is very
difficult, and perhaps impossible, to convert a uniform
eccentricity distribution to a thermal distribution through
encounters. This finding is consistent with the observations
showing that solar-type binaries have a uniform (not thermal)
eccentricity distribution (Geller & Mathieu 2012; Geller et al.
2013; Duchêne & Kraus 2013; Moe & Di Stefano 2017).
Indeed, for the majority of the solar-type binaries in our
models, the birth eccentricity distribution is maintained
throughout the cluster lifetime.

In contrast, the eccentricity distribution for binaries contain-
ing BHs in the CMC model we investigated (Section 5) is

consistent with thermal. A similar result was also found by
Tanikawa (2013) in their N-body models. The high-mass
regime investigated in Figure 4 is somewhat analogous to BHs
in globular clusters. However, these models are evolved for the
full cluster lifetime, while many high-mass objects are not
retained in the cluster nearly this long, either due to rapid stellar
evolution or dynamical ejections from encounters with other
massive objects (neither of which are included in our semi-
analytic models). For instance, in the CMC model (Figure 5),
only the first snapshot contains sufficient BHs to construct an
eccentricity distribution. This regime in parameter space may
therefore be difficult to observe. Furthermore, given sufficient
time, flybys can remove the high-eccentricity binaries from the
distribution, which may produce gravitational wave sources
from high-eccentricity mergers or collisions of BHs, but will
erase the thermal eccentricity distribution (e.g., compare the
bottom-left and bottom-middle panels in Figure 4).
The post-encounter eccentricity distribution for binaries

containing white dwarfs, neutron stars, and/or BHs in the
CMC model is thermal (while a similar analysis of the post-
encounter MS-MS binaries is inconsistent with thermal).
Nearly all of these remnant binaries formed dynamically
(through exchanges, three-body encounters, etc.), in a similar
manner to the MS binaries in the models from Fregeau et al.
(2004) and Kouwenhoven et al. (2010), which also showed
thermal eccentricity distributions. For dynamically formed
binaries, a thermal eccentricity distribution appears to be an
appropriate choice (though this has not been verified
observationally). However, we note that the CMC models do
not explicitly account for eccentricity changes due to long-
range flybys in the manner that we use in our semi-analytic
model. These flybys may be important for high-mass objects
that reside for Gyrs in dense regions of a cluster, and are
worthy of further investigation.
It is also not immediately clear what is the expected

eccentricity distribution for BH-BH binaries that form directly
from primordial binaries in the field, or in star clusters.
Furthermore, BH-BH binaries that form through the three-body
mechanism in Monte Carlo star cluster models are assumed to
be born thermalized; this assumption requires further
verification.
One consequence for choosing a thermal eccentricity

distribution, when a uniform eccentricity distribution is more
appropriate, is to artificially boost the merger rate (for both MS-
MS and BH-BH binaries) by roughly a factor of two
(Section 6). This is most relevant for binaries at modest orbital
separations. Very tight binaries are expected to merge
regardless of the eccentricity. However, wider binaries may
only merge if they are highly eccentric, and therefore have a
small pericenter distance.
Triples can also affect the eccentricities of binaries caught,

even briefly, in a secular resonance (Fabrycky & Tremaine 2007;
Naoz & Fabrycky 2014), and in principle similar “Kozai–Lidov
type” secular effects could be produced with a binary coupled to
a central intermediate mass black hole (IMBH), or perhaps
simply to the rest of the cluster. Though not included here, the
full evolution of the binary eccentricity distribution should
account for triples and related secular effects.
Finally, our model highlights an additional path for stellar

mergers, through wide binaries driven to high eccentricity by
flybys that either results in a physical collision, or a
coalescence through tides and magnetic braking (Figure 1).
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This mechanism is similar to that discussed by Kaib &
Raymond (2014) for field binaries, and may contribute to the
population of exotic stars such as blue stragglers and sub-
subgiants in star clusters (Leonard 1989; Leigh & Sills 2011;
Giersz et al. 2013; Geller et al. 2017a, 2017b; Leiner et al.
2017). We save a more in-depth investigation into the rate of
such mergers for a separate paper.

8. Conclusions

In this paper, we develop and utilize a semi-analytic model
for the dynamical evolution of binaries in star clusters. The
model can be considered a population synthesis approach for
cluster dynamics, in the sense that each binary is evolved in
parallel, and results can be obtained significantly more rapidly
than for more detailed N-body or Monte Carlo star cluster
models. We use this semi-analytic model to investigate changes
to the semimajor axis and eccentricity distributions for binaries
evolved within the dynamical environment of a star cluster, to
test if a thermal eccentricity distribution will emerge within a
cluster due to dynamical encounters.

The thermal eccentricity distribution is predicted by theory
for a population of binaries that has achieved energy
equipartition, with energies following a Boltzmann distribu-
tion. It has an elegant form, is easy to implement in numerical
codes, and is therefore extremely popular in theoretical
investigations of populations of binaries.

However, nearly all observed binary populations show
eccentricity distributions that are flatter than thermal and more
closely consistent with a uniform distribution (Raghavan et al.
2010; Duchêne & Kraus 2013; Moe & Di Stefano 2017). Still,
most empirical determinations of binary eccentricity are limited
to the shortest-period binaries. Our analysis of solar-type
binaries with both our semi-analytic model and more
sophisticated N-body and Monte Carlo star cluster simulations,
shows that it is difficult, if not impossible, for cluster dynamics
to convert a uniform eccentricity distribution to a thermal
distribution within a star cluster, even for the widest binaries.
For most solar-type MS cluster binaries, the eccentricity
distribution is maintained, with only minimal perturbations,
throughout the cluster lifetime.

Moe & Di Stefano (2017) argue that for wide visual O5-B5
binaries, the eccentricity distribution is consistent with thermal.
These wide binaries may be analogous to the captured binaries
from the Kouwenhoven et al. (2010) N-body simulations. If
not, they likely formed with a thermal distribution at birth
(simply because the timescales for encounters to thermalize the
eccentricities is long compared with the ages of high-mass
stars).

Indeed, our models suggest that if a solar-type MS binary
population is observed to have a thermal eccentricity distribu-
tion, this was likely imprinted upon birth, or perhaps shortly
thereafter, during some highly dynamic epoch in the cluster
formation process (which is not included in our models).

The populations of binaries in numerical models that achieve
a thermal distribution (without imposing the thermal distribution
at birth) all formed dynamically. We see this in the BH and
remnant binaries from the CMC model studied here (Figures 5
and 6), and in the literature (Fregeau et al. 2004; Kouwenhoven
et al. 2010; Perets & Kouwenhoven 2012). Indeed, binaries that
form through dynamical exchanges may be the best case in
which one can justifiably assume an initially thermal eccen-
tricity distribution. Those that form through the three-body

binary formation mechanism in the Monte Carlo model are
typically assumed to have thermal eccentricities (e.g., Morscher
et al. 2015). Detailed scattering simulations of this mechanism
are desirable to verify this assumption.
Theoretical investigations that choose to initialize all binaries

with a thermal distribution will make incorrect predictions for
the evolution of the binary population. For example, the stellar
merger rate may be overpredicted by a factor of about two (see
Section 6) if an initially thermal eccentricity distribution is
chosen when a uniform distribution is more appropriate.
In closing, we suggest careful consideration when choosing

an initial distribution of eccentricities for binaries in star cluster
simulations and population synthesis models. Though the
thermal eccentricity distribution is a popular choice, and often
the default, in most cases it may not be appropriate, and if so
can lead to incorrect results.
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