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Abstract—We present DeepPicar, a low-cost deep neural net-
work based autonomous car platform. DeepPicar is a small scale
replication of a real self-driving car called DAVE-2 by NVIDIA.
DAVE-2 uses a deep convolutional neural network (CNN), which
takes images from a front-facing camera as input and produces
car steering angles as output. DeepPicar uses the same net-
work architecture—9 layers, 27 million connections and 250K
parameters—and can drive itself in real-time using a web camera
and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we
analyze the Pi 3’s computing capabilities to support end-to-end
deep learning based real-time control of autonomous vehicles.
We also systematically compare other contemporary embedded
computing platforms using the DeepPicar’s CNN-based real-time
control workload.

We find that all tested platforms, including the Pi 3, are
capable of supporting the CNN-based real-time control, from
20 Hz up to 100 Hz, depending on hardware platform. However,
we find that shared resource contention remains an important
issue that must be considered in applying CNN models on shared
memory based embedded computing platforms; we observe up
to 11.6X execution time increase in the CNN based control loop
due to shared resource contention. To protect the CNN workload,
we also evaluate state-of-the-art cache partitioning and memory
bandwidth throttling techniques on the Pi 3. We find that cache
partitioning is ineffective, while memory bandwidth throttling is
an effective solution.

Keywords-Real-time, Autonomous car, Convolutional neural
network, Case study

I. INTRODUCTION

Autonomous cars have been a topic of increasing interest
in recent years as many companies are actively developing
related hardware and software technologies toward fully au-
tonomous driving capability with no human intervention. Deep
neural networks (DNNs) have been successfully applied in
various perception and control tasks in recent years. They
are important workloads for autonomous vehicles as well.
For example, Tesla Model S was known to use a specialized
chip (MobileEye EyeQ), which used a vision-based real-time
obstacle detection system based on a DNN. More recently,
researchers are investigating DNN based end-to-end real-time
control for robotics applications [5], [21]. It is expected that
more DNN based artificial intelligence (AI) workloads may
be used in future autonomous vehicles.

Executing these Al workloads on an embedded computing
platform poses several additional challenges. First, many Al
workloads, especially those in vehicles, are computationally
demanding and have strict real-time requirements. For ex-
ample, computing latency in a vision-based object detection
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task may be directly linked to the safety of the vehicle. This
requires a high computing capacity as well as the means to
guaranteeing the timings. On the other hand, the computing
hardware platform must also satisfy cost, size, weight, and
power constraints, which require a highly efficient computing
platform. These two conflicting requirements complicate the
platform selection process as observed in [25].

To understand what kind of computing hardware is needed
for AI workloads, we need a testbed and realistic workloads.
While using a real car-based testbed would be most ideal, it
is not only highly expensive, but also poses serious safety
concerns that hinder development and exploration. Therefore,
there is a need for safer and less costly testbeds.

In this paper, we present DeepPicar, a low-cost autonomous
car testbed for research. From a hardware perspective, Deep-
Picar is comprised of a Raspberry Pi 3 Model B quad-core
computer, a web camera and a small RC car, all of which
are affordable components (less than $100 in total). The
DeepPicar, however, employs a state-of-the-art Al technology,
namely end-to-end deep learning based real-time control,
which utilizes a deep convolutional neural network (CNN).
The CNN receives an image frame from a single forward
looking camera as input and generates a predicted steering
angle value as output at each control period in real-time. The
CNN has 9 layers, about 27 million connections and 250
thousand parameters (weights). DeepPicar’s CNN architecture
is identical to that of NVIDIA’s real-sized self-driving car,
called DAVE-2 [5], which drove on public roads without
human driver’s intervention while only using the CNN.

Using DeepPicar, we systematically analyze its real-time
capabilities in the context of end-to-end deep-learning based
real-time control, especially on real-time inferencing of the
CNN. We also evaluate other, more powerful, embedded
computing platforms to better understand achievable real-
time performance of DeepPicar’s CNN based control system
and the performance impact of computing hardware archi-
tectures. From the systematic study, we want to answer the
following questions: (1) How well does the CNN based real-
time inferencing task perform on contemporary embedded
multicore computing platforms? (2) How susceptible is the
CNN inferencing task to contention in shared hardware re-
sources (e.g., cache and DRAM) when multiple tasks/models
are consolidated? (3) Are the existing state-of-the-art shared
resource isolation techniques effective in protecting real-time
performance of the CNN inferencing task?
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Our main observations are as follows. First, we find that
real-time processing of the CNN inferencing is feasible on
contemporary embedded computing platforms, even one as
inexpensive as the Raspberry Pi 3. Second, while consolidating
additional CNN models and tasks on a single multicore
platform is feasible, the impact of shared resource contention
can be catastrophic—we observe up to 11.6X slowdown even
when the CNN model was given a dedicated core. Third,
our evaluation of existing cache partitioning and memory
bandwidth throttling techniques [32], [33] shows that cache
partitioning is not effective in protecting the CNN inferencing
task while memory bandwidth throttling is quite effective.

This paper makes the following contributions:

e We present DeepPicar, a low-cost autonomous car
testbed, which employs a state-of-the-art CNN based end-
to-end real-time control !.

« We provide extensive empirical performance evaluation
results of the CNN inferencing workload on a number of
contemporary embedded computing platforms.

o We apply the state-of-the-art shared resource isolation
techniques and evaluate their effectiveness in protecting
the inferencing workload in consolidated settings.

The remainder of the paper is organized as follows. Sec-
tion II provides a background on the application of neural net-
works in autonomous driving. Section III gives an overview of
the DeepPicar testbed. Section IV presents extensive real-time
performance evaluation results we collected on the testbed.
Section V offers a comparison between the Raspberry Pi 3
and other embedded computing platforms. We review related
work in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we provide background on the application
of deep learning in robotics, particularly autonomous vehicles.

A. End-to-End Deep Learning for Autonomous Vehicles

To solve the problem of autonomous driving, a standard
approach has been decomposing the problem into multiple
sub-problems, such as lane marking detection, path planning,
and low-level control, which together form a processing
pipeline [5]. Recently, researchers have begun exploring an-
other approach that dramatically simplifies the standard control
pipeline by applying deep neural networks to directly produce
control outputs from sensor inputs [21]. Figure 1 shows the
differences between the two approaches.

The use of neural networks for end-to-end control of au-
tonomous cars was first demonstrated in the late 1980s [26],
using a small 3-layer fully connected neural network; and sub-
sequently in a DARPA Autonomous Vehicle (DAVE) project
in early 2000s [19], using a 6 layer convolutional neural
network (CNN); and most recently in NVIDIA’s DAVE-2
project [5], using a 9 layer CNN. In all of these projects,
the neural network models take raw image pixels as input

IThe source code, datasets, and build instructions of DeepPicar can be
found at: https://github.com/mbechtel2/DeepPicar-v2
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Fig. 1: Standard robotics control vs. DNN based end-to-end
control. Adopted from [20].

and directly produce steering control commands, bypassing
all intermediary steps and hand-written rules used in the
conventional robotics control approach. NVIDIA’s latest effort
reports that their trained CNN autonomously controls their
modified cars on public roads without human intervention [5].

Using deep neural networks involves two distinct
phases [24]. The first phase is training, during which
the weights of the network are incrementally updated by
backpropagating errors it sees from the training examples.
Once the network is trained—i.e., the weights of the network
minimize errors in the training examples—the next phase
is inferencing, during which unseen data is fed to the
network as input to produce predicted output (e.g., predicted
image classification). In general, the training phase is more
computationally intensive and requires high throughput,
which is generally not available on embedded platforms.
The inferencing phase, on the other hand, is relatively less
computationally intensive and latency becomes as important,
if not moreso, as computational throughput, because many
use cases have strict real-time requirements.

B. Embedded Computing Platforms for Real-Time Inferencing

Real-time embedded systems, such as an autonomous ve-
hicle, present unique challenges for deep learning, as the
computing platforms of such systems must satisfy two often
conflicting goals: (1) The platform must provide enough com-
puting capacity for real-time processing of computationally
expensive Al workloads (deep neural networks); and (2) The
platform must also satisfy various constraints such as cost,
size, weight, and power consumption limits [25].

Accelerating Al workloads, especially inferencing opera-
tions, has received a lot of attention from academia and
industry in recent years as applications of deep learning are
broadening to include areas of real-time embedded systems
such as autonomous vehicles. These efforts include the devel-
opment of various heterogeneous architecture-based system-
on-a-chip (SoCs) that may include multiple cores, GPU, DSP,
FPGA, and neural network optimized ASIC hardware [16].
Consolidating multiple tasks on SoCs with a lot of shared
hardware resources while guaranteeing real-time performance
is also an active research area, which is orthogonal to improv-
ing raw performance. Consolidation is necessary for efficiency,
but unmanaged interference can nullify the benefits of consol-
idation [18].



The primary objectives of this study are (1) to under-
stand the necessary computing performance to realize deep
neural network based robotic systems, (2) to understand the
characteristics of the computing platform to support such
workloads, and (3) to evaluate the significance of contention in
shared hardware resources and existing mitigation techniques
to address the contention problem.

To achieve these goals, we implement a low-cost au-
tonomous car platform as a case-study and systematically
conduct experiments, which we will describe in the subsequent
sections.

III. DEEPPICAR

In this section, we provide an overview of our DeepPicar
platform. In developing DeepPicar, one of our primary goals is
to faithfully replicate NVIDIA’s DAVE-2 system on a smaller
scale using a low cost multicore platform, the Raspberry Pi
3. Because Raspberry Pi 3’s computing performance is much
lower than that of the DRIVE PX [22] platform used in DAVE-
2, we are interested in if, and how, we can process compu-
tationally expensive neural network operations in real-time.
Specifically, inferencing (forward pass processing) operations
must be completed within each control period duration—
e.g., a WCET of 33.3 ms for 30 Hz control frequency—
locally on the Pi 3 platform, although training of the network
(back-propagation for weight updates) can be done offline and
remotely using a desktop computer.

Fig. 2: DeepPicar platform.

Figure 2 shows the DeepPicar, which is comprised of
a set of inexpensive components: a Raspberry Pi 3 Single
Board Computer (SBC), a Pololu DRV8835 motor driver, a
Playstation Eye webcam, a battery, and a 1:24 scale RC car.
Table I shows the estimated cost of the system.

For the neural network architecture, we implement NVIDIA
DAVE-2’s convolutional neural network (CNN) using an open-
source CNN model in [6]. Note, however, that the CNN model
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Item Cost ($)

Raspberry Pi 3 Model B 35
New Bright 1:24 scale RC car 10
Playstation Eye camera 7
Pololu DRV8835 motor hat 8
External battery pack & misc. 10
Total 70

TABLE I: DeepPicar’s bill of materials (BOM)

in [6] is considerably larger than NVIDIA’s CNN model as it
contains an additional fully-connected layer of approximately
1.3M additional parameters. We remove the additional layer
to faithfully recreate NVIDIA’s original CNN model. As in
DAVE-2, the CNN takes a raw color image (200x66 RGB
pixels) as input and produces a single steering angle value
as output. Figure 3 shows the network architecture used in
this paper, which is comprised of 9 layers, 250K parameters,
and about 27 million connections as in NVIDIA DAVE-2’s
architecture.
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Fig. 3: DeepPicar’s neural network architecture: 9 layers (5
convolutional, 4 fully-connected layers), 27 million connec-
tions, 250K parameters. The CNN architecture is identical to
the one used in NVIDIA’s real self-driving car [5].

convolutional layer

input: 200x66 RGB pixels

To collect the training data, a human pilot manually drives
the RC car on tracks we created (Figure 4) to record times-
tamped videos and contol commands. The stored data is
then copied to a desktop computer, which is equipped with
a NVIDIA Titan Xp GPU, where we train the network to
accelerate training speed.

Once the network is trained on the desktop computer, the
trained model is copied back to the Raspberry Pi 3. The
network is then used by the car’s main controlller, which feeds
image frames from the web camera as input to the network
in real-time. At each control period, the network produced
steering angle output is converted into the PWM values of the
car’s steering motor. Figure 5 shows simplified pseudo code of



(b) Track 2.

Fig. 4: Custom tracks used for training/testing

while True:

# 1. read from the forward camera
frame = camera.read()

# 2. convert to 200x66 rgb pixels
frame = preprocess (frame)

# 3. perform inferencing operation
angle = DNN_inferencing (frame)

# 4. motor control

steering_motor_control (angle)
# 5. wait till next period begins
wait_till_next_period()

Fig. 5: Control loop

the controller’s main loop. Among the five steps, the 3rd step,
network inferencing, is the most computationally intensive and
is expected to dominate the execution time.

Note that although the steering angle output of the CNN
(angle) is a continuous real value, the RC car we used only
supports three discrete angles—left (-30°), center (0°), and
right (+30°)—as control inputs. We approximate the network
generated real-valued angle to the closest one of the three
angles. Although this may introduce inaccuracy in control,
the observed control performance of the system is respectable,
likely due to the inherently stochastic nature of CNNs.

Other factors that can potentially affect the prediction ac-
curacy of the CNN, are camera and actuator (motor) control
latencies. The camera latency is defined as the time the camera
sensor observes the scene to the time the computer actually
reads the digitized image data. This time can be noticable de-
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pending on the camera used and the data processing time of the
computing platform. Higher camera latency could negatively
affect control performance, because the CNN would analyze
stale scenes. The actuator (motor) control latency is defined
as the time the control output is sent to the steering motor
to the time the motor actually moves to a desired position,
which also can take considerable time. In our platform, the
combined latency is measured to be around 50 ms, which is
reasonable. If this value is too high, control performance may
suffer. Our initial prototype suffered from this problem as the
observed latency was as high as 300 ms, which negatively
affected control performance. For reference, the latency of
human perception is known to be as fast as 13 ms [30].

Our trained CNN models showed good prediction accuracy,
successfully navigating several different tracks we used for
training. For instance, the DeepPicar could remain on Track
1 (Figure 4a) for over 10 minutes at a moderate speed (50%
throttle), at which point we stopped the experiment, and more
than one minute at a higher speed (75% throttle) 2. Running
at higher speed is inherently more challenging because the
CNN controller has less time to recover from mistakes (bad
predictions). Also, we find that the prediction accuracy is
significantly affected by the quality of training data as well
as various environmental factors such as lighting conditions.
We plan to investigate more systematic ways to improve the
CNN’s prediction accuracies.

We would like to stress, however, that our main focus of this
study is not in improving the network accuracy but in closely
replicating the DAVE-2’s network architecture and studying
its real-time characteristics, which will be presented in the
subsequent section.

IV. EVALUATION

In this section, we experimentally analyze various real-
time aspects of the DeepPicar. This includes (1) measurement
based worst-case execution time (WCET) analysis of deep
learning inferencing, (2) the effect of using multiple cores
in accelerating inferencing, (3) the effect of co-scheduling
multiple deep neural network models, and (4) the effect of
co-scheduling memory bandwidth intensive co-runners, and
(5) the effect of shared L2 cache partitioning and memory
bandwidth throttling for guaranteed real-time performance.

A. Setup

The Raspberry Pi 3 Model B platform used in DeepPicar
equips a Broadcom BCM2837 SoC, which has a quad-core
ARM Cortex-AS53 cluster, running at up to 1.2GHz. Each core
has private 32K I/D caches and all cores share a 512KB L2
cache. The chip also includes Broadcom’s Videocore IV GPU,
although we do not use the GPU in our evaluation, due to the
lack of sofware support 3. For software, we use Ubuntu MATE
16.04 and TensorFlow 1.1. We disable DVFS (dynamic voltage
frequency scaling) and configure the clock speed of each core
statically at the maximum 1.2GHz. We use the SCHED_FIFO

2Self-driving videos: https://photos.app.goo.gl/q40QFieD5il9yXU42
3TensorFlow currently only supports NVIDIA’s GPUs.



real-time scheduler to schedule the CNN control task while
using the CFS when executing memory intensive co-runners.

B. Inference Timing for Real-Time Control

For real-time control of a car (or any robot), the control
loop frequency must be sufficiently high so that the car can
quickly react to the changing environment and its internal
states. In general, control performance improves when the
frequency is higher, though computation time and the type
of particular physical system are factors in determining a
proper control loop frequency. While a standard control system
may be comprised of multiple control loops with differing
control frequencies—e.g., an inner control loop for lower-
level PD control, an outer loop for motion planning, etc.—
DeepPicar’s control loop is a single layer, as shown earlier
in Figure 5, since a single deep neural network replaces the
traditional multi-layer control pipline. (Refer to Figure 1 on
the differences between the standard robotics control vs. end-
to-end deep learning approach). This means that the CNN
inference operation must be completed within the inner-most
control loop update frequency.

To understand achievable control-loop update frequencies,
we experimentally measured the execution times of Deep-
Picar’s CNN inference operations.
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Fig. 6: DeepPicar’s control loop processing times over 1000
input image frames.

Operation Mean Max | 99pct. | Stdev.
Image capture 1.61 1.81 1.75 0.05
Image pre-processing 2.77 2.90 2.87 0.04
CNN inferencing 18.49 | 19.30 18.99 0.20
Total Time 22.86 | 23.74 | 23.38 0.20

TABLE II: Control loop timing breakdown.

Figure 6 shows the measured control loop processing times
of the DeepPicar over 1000 image frames (one per each control
loop). We omit the first frame’s processing time for cache
warmup. Table II shows the time breakdown of each control
loop. Note that all four CPU cores of the Raspberry Pi 3 were

used by the TensorFlow library when performing the CNN
inference operations.

First, as expected, we find that the inference operation
dominates the control loop execution time, accounting for
about 81% of the execution time.

Second, we find that the measured average execution time
of a single control loop is 22.86 ms, or 43.7 Hz and the 99
percentile time is 23.38 ms. This means that the DeepPicar
can operate at up to 40 Hz control frequency in real-time
using only the on-board Raspberry Pi 3 computing platform, as
no remote computing resources were necessary. We consider
these results surprising given the complexity of the deep neural
network, and the fact that the inference operation performed
by TensorFlow only utilizes the CPU cores of the Raspberry
Pi 3. In comparison, NVIDIA’s DAVE-2 system, which has the
exact same neural network architecture, reportedly runs at 30
Hz [5]. Although we believe it was not limited by their com-
puting platform (we will experimentally compare performance
differences among multiple embedded computing platforms,
including NVIDIA’s Jetson TX2, later in Section V), the fact
that a low-cost Raspberry Pi 3 can achieve comparable real-
time control performance is surprising.

Lastly, we find that the control loop execution timing is
highly predictable and shows very little variance over different
input image frames. This is because the amount of computa-
tion needed to perform a CNN inferencing operation is fixed
at the CNN architecture design time and does not change at
runtime over different inputs (i.e., different image frames).
This predictable timing behavior is a highly desirable property
for real-time systems, making CNN inferencing an attractive
real-time workload.

C. Effect of the Core Count to Inference Timing

In this experiment, we investigate the scalability of perform-
ing inference operations of DeepPicar’s neural network with
respect to the number of cores. As noted earlier, the Raspberry
Pi 3 platform has four Cortex-A53 cores and TensorFlow
provides a programmable mechanism to adjust how many
cores are to be used by the library. Leveraging this feature,
we repeat the experiment in the previous subsection but with
varying numbers of CPU cores—from one to four.
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Figure 7 shows the average execution time of the control
loop as we vary the number of cores used by TensorFlow. As
expected, as we assign more cores, the average execution time
decreases—from 46.30 ms on a single core to 22.86 ms on four
cores (over a 100% improvement). However, the improvement
is far from an ideal linear scaling. In particular, from 3 cores
to 4 cores, the improvement is a mere 2.80 ms, or 12%. In
short, we find that the scalability of DeepPicar’s deep neural
network is not ideal.

As noted in [24], CNN inferencing is inherently more
difficult to parallelize than training because the easiest par-
allelization option, batching (i.e., processing multiple images
in parallel), is not available or is limited. Specifically, in
DeepPicar, only one image frame, obtained from the cam-
era, can be processed at a time. Thus, more fine-grained
algorithmic parallelization is needed to improve inference
performance [24], which generally does not scale well.

On the other hand, the limited scalability opens up the
possibility of consolidating multiple different tasks or different
neural network models rather than allocating all cores for a
single neural network model. For example, it is conceivable
to use four cameras and four different neural network models,
each of which is trained separately for a different purpose
and executed on a single dedicated core. Assuming we use
the same network architecture for all models, then one might
expect to achieve up to 20 Hz using one core (given that 1
core can deliver 46 ms average execution time). In the next
experiment, we investigate the feasibility of such a scenario.

D. Effect of Co-scheduling Multiple CNN Models

In this experiment, we launch multiple instances of Deep-
Picar’s CNN model at the same time and measure its impact
on their inference timings. In other words, we are interested in
how shared resource contention affects inference timing. For
this, we create four different neural network models, that have
the same network architecture, and run them simultaneously.
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Fig. 8: Timing impact of co-scheduling multiple CNNs.
INx1C: one CNN model using one core; 4Nx1C: four CNN
models each using one core; 1Nx2C: one CNN model using
two cores; 2Nx2C: two CNN models each using two cores.

Figure 8 shows the results. In the figure, the X-axis
shows the system configuration: #of CNN models x #of CPU

cores/CNN. For example, ‘4Nx1C’ means running four CNN
models each of which is assigned to run on one CPU core,
whereas ‘2Nx2C’ means running two CNN models, each of
which is assigned to run on two CPU cores. The Y-axis
shows the average inference timing. The two bars on the
left show the impact of co-scheduling four CNN models.
Compared to executing a single CNN model on one CPU core
(INx1C), when four CNN models are co-scheduled (4Nx1C),
each model suffers an average inference time increase of
approximately 11 ms, or 24%. On the other hand, when two
CNN models, each using two CPU cores, are co-scheduled
(2Nx2C), the average inference timing is increased by about
4 ms, or 13%, compared to the baseline of running one model
using two CPU cores (INx2C).

These increases in inference times in the co-scheduled sce-
narios are expected because co-scheduled tasks on a multicore
platform interfere with each other due to contention in the
shared hardware resources, such as the shared cache and
DRAM [9], [33].

E. Effect of Co-scheduling Synthetic Memory Intensive Tasks

In this experiment, we investigate the worst-case impact
of shared resource contention on DeepPicar’s CNN inference
timing using a synthetic memory benchmark. Specifically, we
use the Bandwidth benchmark from the IsolBench suite [31],
which sequentially reads or writes a big array; we hence-
forth refer to BwRead as Bandwidth with read accesses and
BwWrite as the one with write accesses. The experiment setup
is as follows: We run a single CNN model on one core, and co-
schedule an increasing number of the Bandwidth benchmark
instances on the other cores. We repeat the experiement first
with BwRead and next with BwWrite.
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Fig. 9: Average processing time vs. the number of memory
intensive co-runners introduced.

Figure 9 shows the results. Note that BwWrite co-runners
cause significantly higher execution time increases—up to
11.6X—on CNN inferencing while BwRead co-runners cause
relatively much smaller time increases. While execution time
increases are expected, the degree to which it is seen in
the worst-case is quite surprising—if the CNN controller was
driving an actual car, it would result in a car crash!



Given the importance of predictable timing for real-time
control, such as our CNN based control task, we wanted
to: (1) understand the main source of the timing and (2)
evaluate existing isolation methods to avoid this kind of timing
interference. Specifically, shared cache space and DRAM
bandwidth are the two most well-known sources of contention
in multicore systems. Thus, in the following sections, we
investigate whether and to what extent they influence the
observed timing interference and the effectiveness of existing
mitigation methods.

F. Effect of Cache Partitioning

Cache partitioning is a well-known technique to improve
isolation in a multicore system by giving a dedicated cache
space to each individaul task or core. In this experiment,
we use PALLOC [32], a page-coloring based kernel-level
memory allocator for Linux. Page coloring is an OS technique
that controls the physical addresses of memory pages. By
allocating pages over non-overlapping cache sets, the OS can
effectively partition the cache. Using PALLOC, we investigate
the effect of cache partitioning on protecting DeepPicar’s CNN
based controller.

31 15 13112 6 0

Page sets

L2 cache-sets

L1D cache-set:

Partition bits

Fig. 10: Physical address mapping of L1/L2 caches of Broad-
com BCM2837 processor in Raspberry Pi 3.

Figure 10 shows the physical address mapping of the
Raspberry Pi 3’s BCM2837 processor, which has 32K private
L1 I&D (4way) caches and a shared 512KB L2 (16 way)
cache. In order to avoid partitioning the private L1 caches, we
use bits 13 and 14 for coloring, which results in 4 usable page
colors.

In the first experiment, we investigate the cache space
sensitivity of the DeepPicar’s CNN-based control loop. Using
PALLOC, we create 4 different cgroups which are configured
to use 4, 3, 2, and 1 colors (100%, 75%, 50% and 25%
of the L2 cache space, respectively). We then execute the
CNN control loop (inference) on one core using a different
cgroup cache partition, one at a time, and measure the average
processing time.

Figure 11 shows the results. As can be seen, the CNN
inference timing hardly changes at all regardless of the size
of the allocated L2 cache space. In other words, we find that
the CNN workload is largely insensitive to L2 cache space.

The next experiment further validates this finding. In this
experiment, we repeat the experiment in Section IV-E—i.e.,
co-scheduling the CNN model and three Bandwidth (BwRead
or BwWrite) instances—but this time we ensure that each task
is given equal amounts of L2 cache space by assigning one
color to each task’s cache partition.

Figure 12 shows the results. Compared to Figure 9 where
no cache partioning is applied, assigning a dedicated L2
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Fig. 12: Average processing time vs. the number of memory
intensive co-runners; Each core (task) is given an equal-sized
dedicated cache partition.

cache parititon to each core does not provide significant
isolation benefits. For BwRead co-runners, cache partitioning
slightly improves isolation, but for BwWrite co-runners, cache
partitioning causes worse worst-case slowdown.

In summary, we find that the CNN inferencing workload is
not sensitive to cache space and that cache partitioning is not
effective in providing timing isolation for our CNN workload.

G. Effect of Memory Bandwidth Throttling

In this subsection, we examine the CNN workload’s mem-
ory bandwidth sensitivity and the effect of memory bandwidth
throttling in providing isolation. For the experiments, we use
MemGuard [33], a Linux kernel module that can limit the
amount of memory bandwidth each core receives. MemGuard
operates periodically, at a 1 ms interval, and uses hardware
performance counters to throttle cores if they exceed their
given bandwidth budgets within each regulation period (i.e., 1
ms), by scheduling high-priority idle kernel threads until the
next period begins.

In the first experiment, we measure the performance of the
CNN model on a single core, first w/o using MemGuard and
then w/ using MemGuard while varying the core’s bandwidth
throttling parameter from 500 MB/s down to 100 MB/s.

Figure 13 shows the results. When the core executing the
CNN model is throttled at 400 MB/s or more, the performance
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of the model is largely the same as the non-throttled case.
However, as we decrease the assigned memory bandwidth
below 300 MB/s, we start to observe noticeable decreases in
the model’s performance. In other words, the CNN model is
sensitive to memory bandwidth and it requires 400 MB/s or
more bandwidth to ensure ideal performance.

In the next experiment, we repeat the experiment in Sec-
tion IV-E—i.e., co-scheduling memory intensive synthetic
tasks—but this time we throttle the cores of the co-runners
using MemGuard and vary their memory bandwidth budgets
to see their impact on the CNN model’s performance.
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Fig. 14: Effect of throttling three memory intensive co-runners.

Figures 14 shows the results. As can clearly be seen in
the figure, limiting the co-runners’s memory bandwidth is
effective in protecting the CNN model’s performance for
BwRead and BwWrite co-runners. The benefits are especially
more pronounced in case of BwWrite co-runners as, when we
throttle them more, the CNN’s performance quickly improves.

In summary, we find that the CNN inferencing workload is
sensitive to memory bandwidth and that memory bandwidth
throttling is effective in improving the performance isolation
of the CNN workload.

V. EMBEDDED COMPUTING PLATFORM COMPARISON

In this section, we compare three computing platforms—
the Raspberry Pi 3, the Intel UP [14] and the NVIDIA Jetson

TX2 [23]—from the point of view of supporting end-to-end
deep learning based autonomous vehicles. Table III shows the
architectural features of the three platforms *.

Our basic approach is to use the same DeepPicar software,
and repeat the experiments in Section IV on each hardware
platform and compare the results. For the Jetson TX2, we
have two different system configurations, which differ in
whether TensorFlow is configured to use its GPU or only the
CPU cores. Thus, a total of four system configurations are
compared.
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Figure 15 shows the average control loop completion timing
of the four system configurations we tested as a function of
the number of CPU cores used. (cf. Figure 7) Both the Intel
UP and Jetson TX2 exhibit better performance than Raspberry
Pi 3. When all four CPU cores are used, the Intel UP is 1.33X
faster than Pi 3, while the TX2 (CPU) and TX2 (GPU) are
2.79X and 4.16X times faster that the Pi 3, respectively. Thus,
they all satisfy 33.3 ms WCET by a clear margin, and, in the
case of the TX2, 50 Hz or even 100 Hz real-time control is
feasible with the help of its GPU. Another observation is that
the CNN task’s performance on TX2 (GPU) does not change
much as we increase the number of cores. This is because
most of the neural network computation is done by the GPU.
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Fig. 16: Timing impact of co-scheduling multiple CNNs on
different embedded multicore platforms.

4The GPU of Intel UP and the two Denver cores in the Tegra TX2 are not
used in evaluation due to TensorFlow issues.



Item Raspberry Pi 3 (B) Intel UP NVIDIA Jetson TX2
BCM2837 X5-78350 (Cherry Trail) Tegra X2
CPU 4x Cortex-A53@1.2GHz/512KB L2 4x Atom@1.92GHz/2MB L2 4x Cortex-A57@2.0GHz/2MB 1.2
2x Denver@2.0GHz/2MB L2 (not used)
GPU VideoCore IV (not used) Intel HD 400 Graphics (not used) Pascal 256 CUDA cores
Memory | 1GB LPDDR2 (Peak BW: 8.5GB/s) | 2GB DDR3L (Peak BW: 12.8GB/s) 8GB LPDDR4 (Peak BW: 59.7GB/s)
Cost $35 $100 $600

TABLE III: Compared embedded computing platforms

Figure 16 shows the results of the multi-model co-
scheduling experiment (cf. Figure 8). Once again, they can
comfortably satisfy 30 Hz real-time performance for all of the
co-scheduled CNN control loops, and in the case of the TX2
(GPU), even 100 Hz real-time control is feasible in all co-
scheduling setups. Given that the GPU must be shared among
the co-scheduled CNN models, the results suggest that the
TX2’s GPU has sufficient capacity to accomodate multiple
instances of the CNN models we tested.
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Fig. 17: Average processing time vs. the number of memory
intensive co-runners.

Figure 17 shows the results of the synthetic memory inten-
sive task co-scheduling experiments (cf. Figure 9). For read co-
runners (BwRead), the performance of all platforms gradually
decreased as additional BwRead instances were introduced: up
to 1.6X for the Pi 3, up to 1.3X for the Intel UP, and up to 1.6X
and 2.2X for the TX2 (CPU) and TX2(GPU), respectively. For
write co-runners (BwWrite), however, we observe generally

more noticieable execution time increases. As we discussed
earlier in Section IV, the Pi 3 suffers up to 11.6X execution
time increase, while the Intel UP and Jetson TX2 suffer less
dramatic but still significant execution time increases.

Another interesting observation is that the TX2 (GPU) also
suffers considerable execution time increase (2.3X) despite the
fact that the co-scheduled synthetic tasks do not utilize the
GPU (i.e., the CNN model has dedicated access to the GPU.)
This is, however, a known characteristic of integrated CPU-
GPU architecture based platforms in which both the CPU and
GPU share the same memory subsystem [3] and therefore can
suffer bandwidth contention as we observe in this case.

In summary, we find that todays embedded computing
platforms, even as inexpensive as a Raspberry Pi 3, are
powerful enough to support CNN based real-time control
applications. Furthermore, availability of CPU cores and a
GPU on these platforms allows consolidating multiple CNN
workloads. However, shared resource contention among these
diverse computing resources remains an important issue that
must be understood and controlled, especially for safety-
critical applications.

VI. RELATED WORK

There are several relatively inexpensive RC-car based au-
tonomous car testbeds. MIT’s RaceCar [28] and UPenn’s
F1/10 [2] are both based on a Traxxas 1/10 scale RC car
and a NVIDIA Jetson multicore computing platform, which
is equipped with many sophisticated sensor packages, such as
a lidar. However, they both cost more than $3,000, requiring
a considerable investment. DonkeyCar [1] is similar to our
DeepPicar as it also uses a Raspberry Pi 3 and a similar CNN
for end-to-end control, although it costs more (about $200).
The main contribution of our paper is in the detailed analysis
of computational aspects of executing a CNN-based real-time
control workload on diverse embedded computing platforms.

In this paper, we have analyzed real-time performance of
a real-world CNN, which was used in NVIDIA’s DAVE-
2 self-driving car [5], on a low-cost Raspberry Pi 3 quad-
core platform and other embedded multicore platforms. It
should be noted, however, that DAVE-2’s CNN is relatively
small compared to recent state-of-the-art CNNs, which are
increasingly larger and deeper. For example, the CNN based
object detector models evaluated in Google’s recent study [11]
have between 3M to 54M parameters, which are much larger
than DAVE-2’s CNN. Using such large CNN models will
be challenging on resource constrainted embedded computing



platforms, especially for real-time applications such as self-
driving cars.

While continuing performance improvements in embedded
computing platforms will certainly make processing these
complex CNNs faster, another actively investigated approach
is to reduce the required computational complexity itself.
Many recent advances in network compression have shown
promising results in reducing such computational costs during
the feedforward process. The fundamental assumption in those
techniques is that the CNNs are redundant in their structure
and representation. For example, network pruning can thin out
the network and provides a more condensed topology [10].

Another common compression method is to reduce the
quantization level of the network parameters, so that arithmetic
defined with floating-point operations are replaced with low-
bit fixed-point counterparts. To this end, single bit quantization
of the network parameters or ternary quantization have been
recently proposed [4], [8], [12], [13], [17], [27], [29]. In
those networks, the inner product between the originally real-
valued parameter vectors is defined with XNOR followed
by bit counting, so that the network can greatly minimize
the computational cost in the hardware implementations. This
drastic quantization can produce some additional performance
loss, but those new binarized or ternarized systems provide a
simple quantization noise injection mechanism during training
so that the additional error is minimized to an acceptable level.

The XNOR operation and bit counting have been known
to be efficient in hardware implementations. In [27], it was
shown that the binarized convolution could substitute the
expensive convolutional feedforward operations in a regular
CNN, by using only about 1.5% of the memory space, while
providing 20 to 60 times faster feedforward. Binary weights
were also able to provide 7 times faster feedforward than a
floating-point network for the hand written digit recognition
task as well as 23 times faster matrix multiplication tasks
on a GPU [12]. Moreover, FPGA implementations showed
that the XNOR operation is 200 times cheaper than floating-
point multiplications with single precision [4], [8]. XNOR-
POP is another hardware implementation that reduced the
energy consumption of a CNN by 98.7% [15].

These research efforts are expected to make complex CNNs
accessible for a wider range of real-time embedded systems.
We plan to investigate the feasibility of these approaches in the
context of DeepPicar so that we can use even more resource
constrained micro-controller class computing platforms in
place of the current Raspberry Pi 3.

VII. CONCLUSION

We presented DeepPicar, a low cost autonomous car plat-
form that is inexpensive to build, but is based on state-of-
the-art Al technology: End-to-end deep learning based real-
time control. Specifically, DeepPicar uses a deep convolutional
neural network to predict steering angles of the car directly
from camera input data in real-time. Importantly, DeepPicar’s
neural network architecture is identical to that of NVIDIA’s
real self-driving car DAVE-2.
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Despite the complexity of the neural network, DeepPicar
uses a low-cost embedded quad-core computer, the Rasp-
berry Pi 3, as its sole computing resource. We systematically
analyzed the platform’s real-time capability in supporting
the CNN-based real-time control task. We also evaluated
other, more powerful, embedded computing platforms to better
understand achievable real-time performance of DeepPicar’s
CNN based control system and the impact of computing
hardware architectures. We find all tested embedded platforms,
including the Pi 3, are capable of supporting the CNN based
real-time control, from 20 Hz up to 100 Hz, depending
on the platform. Futhermore, all platforms were capable of
consolidating multiple CNN models and/or tasks.

However, we also find that shared resource contention
remains an important issue that must be considered to ensure
desired real-time performance on these shared memory based
embedded computing platforms. Toward this end, we evaluated
the impact of shared resource contention to the CNN work-
load in diverse consolidated workload setups, and evaluated
the effectivness of state-of-the-art shared resource isolation
mechanisms in protecting performance of the CNN based real-
time control workload.

As future work, we plan to investigate ways to reduce
computational and memory overhead of CNN inferencing and
to evaluate the effectiveness of FPGA and other specialized
accelerators.
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APPENDIX
A. DNN Training and Testing

We have trained and tested the deep neural network with
several different track conditions, different combinations of
input data, and different hyper parameters. In the following
paragraphs, we describe details on two of the training methods
that performed reasonably well.
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In the first method, we trained the neural network model
across a set of 30 completed runs on the track seen in Figure 4b
by a human pilot. Half of the runs saw the car driving one
way along the track, while the remaining half were of the
car driving in the opposite direction on the track. In total,
we collected 2,556 frames for training and 2,609 frames for
validation. The weights of the network are initialized using the
Xavier initializer [7], which is known to perform better than
a random weight assignment. In each training step, we use a
batch size of 100 frames, which are randomly selected among
all the collected training images, to optimize the network. We
repeat this across 2,000 training steps.

In the second method, we use the same data and parameters
as above except that now images are labeled as ‘curved’ and
‘straight’ and we pick an equal number of images from each
category at each training step to update the model. In other
words, we try to remove bias in selecting images. We find that
the car performed better in practice by applying this approach
as the car displayed a greater ability to stay in the center of
the track (on the white tape). However, we find that there
is a discrepency between the training loss and the validation
loss, indicating that the model may suffer from an overfitting
problem, despite its better real-world performance.

B. System-level Factors Affecting Real-Time Performance

In using the Raspberry Pi 3 platform, there are a few system-
level factors, namely power supply and temperature, that need
to be considered to achieve consistent performance.

In all of our experiments on the Raspberry Pi 3, the CPU is
configured at the maximum clock speed of 1.2 GHz. However,
without care, the CPU can operate at a lower frequency
involuntarily. An important factor is CPU thermal throttling,
which can affect CPU clock speed if the CPU temperature
is too high (Pi 3’s firmware is configured to throttle at 85
deg. C). DNN inferencing is computationally intensive, thus
the temperature of the CPU could rise quickly. This can
be especially problematic in situations where multiple DNN
models run simultaneously on the Pi 3. If the temperature
reaches the threshold, the Pi 3’s thermal throttling kicks in
and decreases the clock speed down to 600MHz— half of the
maximum 1.2GHz—so that the CPU’s temperature stays at
a safe level. We found that without proper cooling solutions
(heatsink or fan), prolonged use of the system would result in
CPU frequency decrease that may affect evaluation.

Another factor to consider is power supply. The Pi 3
frequency throttling also kicks in when the power source
can not provide 2A current. In experiments conducted with
a power supply that only provided 1 Amp, the Pi was unable
to sustain a 1.2 GHz clock speed. As a result, it is necessary,
or at least highly recommended, that the power supply used for
the Raspberry Pi 3 be capable of outputting 2 Amps, otherwise
optimal performance isn’t guaranteed.

Our initial experiment results suffered from these issues, af-
ter which we always carefully monitored the current operating
frequencies of the CPU cores during the experiments to ensure
the correctness and repeatability of the results.



