
DeepPicar: A Low-cost Deep Neural Network-based
Autonomous Car

Michael G. Bechtel†, Elise McEllhiney†, Minje Kim�, Heechul Yun†
† University of Kansas, USA. {mbechtel, elisemmc, heechul.yun}@ku.edu

� Indiana University, USA. minje@indiana.edu

Abstract—We present DeepPicar, a low-cost deep neural net-
work based autonomous car platform. DeepPicar is a small scale
replication of a real self-driving car called DAVE-2 by NVIDIA.
DAVE-2 uses a deep convolutional neural network (CNN), which
takes images from a front-facing camera as input and produces
car steering angles as output. DeepPicar uses the same net-
work architecture—9 layers, 27 million connections and 250K
parameters—and can drive itself in real-time using a web camera
and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we
analyze the Pi 3’s computing capabilities to support end-to-end
deep learning based real-time control of autonomous vehicles.
We also systematically compare other contemporary embedded
computing platforms using the DeepPicar’s CNN-based real-time
control workload.

We find that all tested platforms, including the Pi 3, are
capable of supporting the CNN-based real-time control, from
20 Hz up to 100 Hz, depending on hardware platform. However,
we find that shared resource contention remains an important
issue that must be considered in applying CNN models on shared
memory based embedded computing platforms; we observe up
to 11.6X execution time increase in the CNN based control loop
due to shared resource contention. To protect the CNN workload,
we also evaluate state-of-the-art cache partitioning and memory
bandwidth throttling techniques on the Pi 3. We find that cache
partitioning is ineffective, while memory bandwidth throttling is
an effective solution.

Keywords-Real-time, Autonomous car, Convolutional neural
network, Case study

I. INTRODUCTION

Autonomous cars have been a topic of increasing interest

in recent years as many companies are actively developing

related hardware and software technologies toward fully au-

tonomous driving capability with no human intervention. Deep

neural networks (DNNs) have been successfully applied in

various perception and control tasks in recent years. They

are important workloads for autonomous vehicles as well.

For example, Tesla Model S was known to use a specialized

chip (MobileEye EyeQ), which used a vision-based real-time

obstacle detection system based on a DNN. More recently,

researchers are investigating DNN based end-to-end real-time

control for robotics applications [5], [21]. It is expected that

more DNN based artificial intelligence (AI) workloads may

be used in future autonomous vehicles.

Executing these AI workloads on an embedded computing

platform poses several additional challenges. First, many AI

workloads, especially those in vehicles, are computationally

demanding and have strict real-time requirements. For ex-

ample, computing latency in a vision-based object detection

task may be directly linked to the safety of the vehicle. This

requires a high computing capacity as well as the means to

guaranteeing the timings. On the other hand, the computing

hardware platform must also satisfy cost, size, weight, and

power constraints, which require a highly efficient computing

platform. These two conflicting requirements complicate the

platform selection process as observed in [25].

To understand what kind of computing hardware is needed

for AI workloads, we need a testbed and realistic workloads.

While using a real car-based testbed would be most ideal, it

is not only highly expensive, but also poses serious safety

concerns that hinder development and exploration. Therefore,

there is a need for safer and less costly testbeds.

In this paper, we present DeepPicar, a low-cost autonomous

car testbed for research. From a hardware perspective, Deep-

Picar is comprised of a Raspberry Pi 3 Model B quad-core

computer, a web camera and a small RC car, all of which

are affordable components (less than $100 in total). The

DeepPicar, however, employs a state-of-the-art AI technology,

namely end-to-end deep learning based real-time control,

which utilizes a deep convolutional neural network (CNN).

The CNN receives an image frame from a single forward

looking camera as input and generates a predicted steering

angle value as output at each control period in real-time. The

CNN has 9 layers, about 27 million connections and 250

thousand parameters (weights). DeepPicar’s CNN architecture

is identical to that of NVIDIA’s real-sized self-driving car,

called DAVE-2 [5], which drove on public roads without

human driver’s intervention while only using the CNN.

Using DeepPicar, we systematically analyze its real-time

capabilities in the context of end-to-end deep-learning based

real-time control, especially on real-time inferencing of the

CNN. We also evaluate other, more powerful, embedded

computing platforms to better understand achievable real-

time performance of DeepPicar’s CNN based control system

and the performance impact of computing hardware archi-

tectures. From the systematic study, we want to answer the

following questions: (1) How well does the CNN based real-

time inferencing task perform on contemporary embedded

multicore computing platforms? (2) How susceptible is the

CNN inferencing task to contention in shared hardware re-

sources (e.g., cache and DRAM) when multiple tasks/models

are consolidated? (3) Are the existing state-of-the-art shared

resource isolation techniques effective in protecting real-time

performance of the CNN inferencing task?
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Our main observations are as follows. First, we find that

real-time processing of the CNN inferencing is feasible on

contemporary embedded computing platforms, even one as

inexpensive as the Raspberry Pi 3. Second, while consolidating

additional CNN models and tasks on a single multicore

platform is feasible, the impact of shared resource contention

can be catastrophic—we observe up to 11.6X slowdown even

when the CNN model was given a dedicated core. Third,

our evaluation of existing cache partitioning and memory

bandwidth throttling techniques [32], [33] shows that cache

partitioning is not effective in protecting the CNN inferencing

task while memory bandwidth throttling is quite effective.

This paper makes the following contributions:

• We present DeepPicar, a low-cost autonomous car

testbed, which employs a state-of-the-art CNN based end-

to-end real-time control 1.

• We provide extensive empirical performance evaluation

results of the CNN inferencing workload on a number of

contemporary embedded computing platforms.

• We apply the state-of-the-art shared resource isolation

techniques and evaluate their effectiveness in protecting

the inferencing workload in consolidated settings.

The remainder of the paper is organized as follows. Sec-

tion II provides a background on the application of neural net-

works in autonomous driving. Section III gives an overview of

the DeepPicar testbed. Section IV presents extensive real-time

performance evaluation results we collected on the testbed.

Section V offers a comparison between the Raspberry Pi 3

and other embedded computing platforms. We review related

work in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we provide background on the application

of deep learning in robotics, particularly autonomous vehicles.

A. End-to-End Deep Learning for Autonomous Vehicles

To solve the problem of autonomous driving, a standard

approach has been decomposing the problem into multiple

sub-problems, such as lane marking detection, path planning,

and low-level control, which together form a processing

pipeline [5]. Recently, researchers have begun exploring an-

other approach that dramatically simplifies the standard control

pipeline by applying deep neural networks to directly produce

control outputs from sensor inputs [21]. Figure 1 shows the

differences between the two approaches.

The use of neural networks for end-to-end control of au-

tonomous cars was first demonstrated in the late 1980s [26],

using a small 3-layer fully connected neural network; and sub-

sequently in a DARPA Autonomous Vehicle (DAVE) project

in early 2000s [19], using a 6 layer convolutional neural

network (CNN); and most recently in NVIDIA’s DAVE-2

project [5], using a 9 layer CNN. In all of these projects,

the neural network models take raw image pixels as input

1The source code, datasets, and build instructions of DeepPicar can be
found at: https://github.com/mbechtel2/DeepPicar-v2
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Fig. 1: Standard robotics control vs. DNN based end-to-end

control. Adopted from [20].

and directly produce steering control commands, bypassing

all intermediary steps and hand-written rules used in the

conventional robotics control approach. NVIDIA’s latest effort

reports that their trained CNN autonomously controls their

modified cars on public roads without human intervention [5].

Using deep neural networks involves two distinct

phases [24]. The first phase is training, during which

the weights of the network are incrementally updated by

backpropagating errors it sees from the training examples.

Once the network is trained—i.e., the weights of the network

minimize errors in the training examples—the next phase

is inferencing, during which unseen data is fed to the

network as input to produce predicted output (e.g., predicted

image classification). In general, the training phase is more

computationally intensive and requires high throughput,

which is generally not available on embedded platforms.

The inferencing phase, on the other hand, is relatively less

computationally intensive and latency becomes as important,

if not moreso, as computational throughput, because many

use cases have strict real-time requirements.

B. Embedded Computing Platforms for Real-Time Inferencing

Real-time embedded systems, such as an autonomous ve-

hicle, present unique challenges for deep learning, as the

computing platforms of such systems must satisfy two often

conflicting goals: (1) The platform must provide enough com-

puting capacity for real-time processing of computationally

expensive AI workloads (deep neural networks); and (2) The

platform must also satisfy various constraints such as cost,

size, weight, and power consumption limits [25].

Accelerating AI workloads, especially inferencing opera-

tions, has received a lot of attention from academia and

industry in recent years as applications of deep learning are

broadening to include areas of real-time embedded systems

such as autonomous vehicles. These efforts include the devel-

opment of various heterogeneous architecture-based system-

on-a-chip (SoCs) that may include multiple cores, GPU, DSP,

FPGA, and neural network optimized ASIC hardware [16].

Consolidating multiple tasks on SoCs with a lot of shared

hardware resources while guaranteeing real-time performance

is also an active research area, which is orthogonal to improv-

ing raw performance. Consolidation is necessary for efficiency,

but unmanaged interference can nullify the benefits of consol-

idation [18].
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The primary objectives of this study are (1) to under-

stand the necessary computing performance to realize deep

neural network based robotic systems, (2) to understand the

characteristics of the computing platform to support such

workloads, and (3) to evaluate the significance of contention in

shared hardware resources and existing mitigation techniques

to address the contention problem.
To achieve these goals, we implement a low-cost au-

tonomous car platform as a case-study and systematically

conduct experiments, which we will describe in the subsequent

sections.

III. DEEPPICAR

In this section, we provide an overview of our DeepPicar

platform. In developing DeepPicar, one of our primary goals is

to faithfully replicate NVIDIA’s DAVE-2 system on a smaller

scale using a low cost multicore platform, the Raspberry Pi

3. Because Raspberry Pi 3’s computing performance is much

lower than that of the DRIVE PX [22] platform used in DAVE-

2, we are interested in if, and how, we can process compu-

tationally expensive neural network operations in real-time.

Specifically, inferencing (forward pass processing) operations

must be completed within each control period duration—

e.g., a WCET of 33.3 ms for 30 Hz control frequency—

locally on the Pi 3 platform, although training of the network

(back-propagation for weight updates) can be done offline and

remotely using a desktop computer.

Fig. 2: DeepPicar platform.

Figure 2 shows the DeepPicar, which is comprised of

a set of inexpensive components: a Raspberry Pi 3 Single

Board Computer (SBC), a Pololu DRV8835 motor driver, a

Playstation Eye webcam, a battery, and a 1:24 scale RC car.

Table I shows the estimated cost of the system.
For the neural network architecture, we implement NVIDIA

DAVE-2’s convolutional neural network (CNN) using an open-

source CNN model in [6]. Note, however, that the CNN model

Item Cost ($)
Raspberry Pi 3 Model B 35

New Bright 1:24 scale RC car 10
Playstation Eye camera 7

Pololu DRV8835 motor hat 8
External battery pack & misc. 10

Total 70

TABLE I: DeepPicar’s bill of materials (BOM)

in [6] is considerably larger than NVIDIA’s CNN model as it

contains an additional fully-connected layer of approximately

1.3M additional parameters. We remove the additional layer

to faithfully recreate NVIDIA’s original CNN model. As in

DAVE-2, the CNN takes a raw color image (200x66 RGB

pixels) as input and produces a single steering angle value

as output. Figure 3 shows the network architecture used in

this paper, which is comprised of 9 layers, 250K parameters,

and about 27 million connections as in NVIDIA DAVE-2’s

architecture.

10 neurons
50 neurons

100 neurons
1152 neurons

conv1: 24@31x98
convolutional layer

conv2: 36@14x47
convolutional layer

conv3: 48@5x22
convolutional layer

conv4: 64@3x20
convolutional layer

conv5: 64@1x18
convolutional layer

input: 200x66 RGB pixels

fc4: fully-connected layer
fc3: fully-connected layer
fc2: fully-connected layer
fc1: fully-connected layer

output: steering angle

5x5 kernel

5x5 kernel

5x5 kernel

3x3 kernel

3x3 kernel

Fig. 3: DeepPicar’s neural network architecture: 9 layers (5

convolutional, 4 fully-connected layers), 27 million connec-

tions, 250K parameters. The CNN architecture is identical to

the one used in NVIDIA’s real self-driving car [5].

To collect the training data, a human pilot manually drives

the RC car on tracks we created (Figure 4) to record times-

tamped videos and contol commands. The stored data is

then copied to a desktop computer, which is equipped with

a NVIDIA Titan Xp GPU, where we train the network to

accelerate training speed.

Once the network is trained on the desktop computer, the

trained model is copied back to the Raspberry Pi 3. The

network is then used by the car’s main controlller, which feeds

image frames from the web camera as input to the network

in real-time. At each control period, the network produced

steering angle output is converted into the PWM values of the

car’s steering motor. Figure 5 shows simplified pseudo code of
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(a) Track 1.

(b) Track 2.

Fig. 4: Custom tracks used for training/testing

while True:
# 1. read from the forward camera
frame = camera.read()
# 2. convert to 200x66 rgb pixels
frame = preprocess(frame)
# 3. perform inferencing operation
angle = DNN_inferencing(frame)
# 4. motor control
steering_motor_control(angle)
# 5. wait till next period begins
wait_till_next_period()

Fig. 5: Control loop

the controller’s main loop. Among the five steps, the 3rd step,

network inferencing, is the most computationally intensive and

is expected to dominate the execution time.

Note that although the steering angle output of the CNN

(angle) is a continuous real value, the RC car we used only

supports three discrete angles—left (-30◦), center (0◦), and

right (+30◦)—as control inputs. We approximate the network

generated real-valued angle to the closest one of the three

angles. Although this may introduce inaccuracy in control,

the observed control performance of the system is respectable,

likely due to the inherently stochastic nature of CNNs.

Other factors that can potentially affect the prediction ac-

curacy of the CNN, are camera and actuator (motor) control

latencies. The camera latency is defined as the time the camera

sensor observes the scene to the time the computer actually

reads the digitized image data. This time can be noticable de-

pending on the camera used and the data processing time of the

computing platform. Higher camera latency could negatively

affect control performance, because the CNN would analyze

stale scenes. The actuator (motor) control latency is defined

as the time the control output is sent to the steering motor

to the time the motor actually moves to a desired position,

which also can take considerable time. In our platform, the

combined latency is measured to be around 50 ms, which is

reasonable. If this value is too high, control performance may

suffer. Our initial prototype suffered from this problem as the

observed latency was as high as 300 ms, which negatively

affected control performance. For reference, the latency of

human perception is known to be as fast as 13 ms [30].

Our trained CNN models showed good prediction accuracy,

successfully navigating several different tracks we used for

training. For instance, the DeepPicar could remain on Track

1 (Figure 4a) for over 10 minutes at a moderate speed (50%

throttle), at which point we stopped the experiment, and more

than one minute at a higher speed (75% throttle) 2. Running

at higher speed is inherently more challenging because the

CNN controller has less time to recover from mistakes (bad

predictions). Also, we find that the prediction accuracy is

significantly affected by the quality of training data as well

as various environmental factors such as lighting conditions.

We plan to investigate more systematic ways to improve the

CNN’s prediction accuracies.

We would like to stress, however, that our main focus of this

study is not in improving the network accuracy but in closely

replicating the DAVE-2’s network architecture and studying

its real-time characteristics, which will be presented in the

subsequent section.

IV. EVALUATION

In this section, we experimentally analyze various real-

time aspects of the DeepPicar. This includes (1) measurement

based worst-case execution time (WCET) analysis of deep

learning inferencing, (2) the effect of using multiple cores

in accelerating inferencing, (3) the effect of co-scheduling

multiple deep neural network models, and (4) the effect of

co-scheduling memory bandwidth intensive co-runners, and

(5) the effect of shared L2 cache partitioning and memory

bandwidth throttling for guaranteed real-time performance.

A. Setup

The Raspberry Pi 3 Model B platform used in DeepPicar

equips a Broadcom BCM2837 SoC, which has a quad-core

ARM Cortex-A53 cluster, running at up to 1.2GHz. Each core

has private 32K I/D caches and all cores share a 512KB L2

cache. The chip also includes Broadcom’s Videocore IV GPU,

although we do not use the GPU in our evaluation, due to the

lack of sofware support 3. For software, we use Ubuntu MATE

16.04 and TensorFlow 1.1. We disable DVFS (dynamic voltage

frequency scaling) and configure the clock speed of each core

statically at the maximum 1.2GHz. We use the SCHED FIFO

2Self-driving videos: https://photos.app.goo.gl/q40QFieD5iI9yXU42
3TensorFlow currently only supports NVIDIA’s GPUs.
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real-time scheduler to schedule the CNN control task while

using the CFS when executing memory intensive co-runners.

B. Inference Timing for Real-Time Control

For real-time control of a car (or any robot), the control

loop frequency must be sufficiently high so that the car can

quickly react to the changing environment and its internal

states. In general, control performance improves when the

frequency is higher, though computation time and the type

of particular physical system are factors in determining a

proper control loop frequency. While a standard control system

may be comprised of multiple control loops with differing

control frequencies—e.g., an inner control loop for lower-

level PD control, an outer loop for motion planning, etc.—

DeepPicar’s control loop is a single layer, as shown earlier

in Figure 5, since a single deep neural network replaces the

traditional multi-layer control pipline. (Refer to Figure 1 on

the differences between the standard robotics control vs. end-

to-end deep learning approach). This means that the CNN

inference operation must be completed within the inner-most

control loop update frequency.

To understand achievable control-loop update frequencies,

we experimentally measured the execution times of Deep-

Picar’s CNN inference operations.

Fig. 6: DeepPicar’s control loop processing times over 1000

input image frames.

Operation Mean Max 99pct. Stdev.
Image capture 1.61 1.81 1.75 0.05

Image pre-processing 2.77 2.90 2.87 0.04
CNN inferencing 18.49 19.30 18.99 0.20

Total Time 22.86 23.74 23.38 0.20

TABLE II: Control loop timing breakdown.

Figure 6 shows the measured control loop processing times

of the DeepPicar over 1000 image frames (one per each control

loop). We omit the first frame’s processing time for cache

warmup. Table II shows the time breakdown of each control

loop. Note that all four CPU cores of the Raspberry Pi 3 were

used by the TensorFlow library when performing the CNN

inference operations.

First, as expected, we find that the inference operation

dominates the control loop execution time, accounting for

about 81% of the execution time.

Second, we find that the measured average execution time

of a single control loop is 22.86 ms, or 43.7 Hz and the 99

percentile time is 23.38 ms. This means that the DeepPicar

can operate at up to 40 Hz control frequency in real-time

using only the on-board Raspberry Pi 3 computing platform, as

no remote computing resources were necessary. We consider

these results surprising given the complexity of the deep neural

network, and the fact that the inference operation performed

by TensorFlow only utilizes the CPU cores of the Raspberry

Pi 3. In comparison, NVIDIA’s DAVE-2 system, which has the

exact same neural network architecture, reportedly runs at 30

Hz [5]. Although we believe it was not limited by their com-

puting platform (we will experimentally compare performance

differences among multiple embedded computing platforms,

including NVIDIA’s Jetson TX2, later in Section V), the fact

that a low-cost Raspberry Pi 3 can achieve comparable real-

time control performance is surprising.

Lastly, we find that the control loop execution timing is

highly predictable and shows very little variance over different

input image frames. This is because the amount of computa-

tion needed to perform a CNN inferencing operation is fixed

at the CNN architecture design time and does not change at

runtime over different inputs (i.e., different image frames).

This predictable timing behavior is a highly desirable property

for real-time systems, making CNN inferencing an attractive

real-time workload.

C. Effect of the Core Count to Inference Timing

In this experiment, we investigate the scalability of perform-

ing inference operations of DeepPicar’s neural network with

respect to the number of cores. As noted earlier, the Raspberry

Pi 3 platform has four Cortex-A53 cores and TensorFlow

provides a programmable mechanism to adjust how many

cores are to be used by the library. Leveraging this feature,

we repeat the experiment in the previous subsection but with

varying numbers of CPU cores—from one to four.
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Fig. 7: Average control loop execution time vs. #of CPU cores.
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Figure 7 shows the average execution time of the control

loop as we vary the number of cores used by TensorFlow. As

expected, as we assign more cores, the average execution time

decreases—from 46.30 ms on a single core to 22.86 ms on four

cores (over a 100% improvement). However, the improvement

is far from an ideal linear scaling. In particular, from 3 cores

to 4 cores, the improvement is a mere 2.80 ms, or 12%. In

short, we find that the scalability of DeepPicar’s deep neural

network is not ideal.

As noted in [24], CNN inferencing is inherently more

difficult to parallelize than training because the easiest par-

allelization option, batching (i.e., processing multiple images

in parallel), is not available or is limited. Specifically, in

DeepPicar, only one image frame, obtained from the cam-

era, can be processed at a time. Thus, more fine-grained

algorithmic parallelization is needed to improve inference

performance [24], which generally does not scale well.

On the other hand, the limited scalability opens up the

possibility of consolidating multiple different tasks or different

neural network models rather than allocating all cores for a

single neural network model. For example, it is conceivable

to use four cameras and four different neural network models,

each of which is trained separately for a different purpose

and executed on a single dedicated core. Assuming we use

the same network architecture for all models, then one might

expect to achieve up to 20 Hz using one core (given that 1

core can deliver 46 ms average execution time). In the next

experiment, we investigate the feasibility of such a scenario.

D. Effect of Co-scheduling Multiple CNN Models

In this experiment, we launch multiple instances of Deep-

Picar’s CNN model at the same time and measure its impact

on their inference timings. In other words, we are interested in

how shared resource contention affects inference timing. For

this, we create four different neural network models, that have

the same network architecture, and run them simultaneously.
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Fig. 8: Timing impact of co-scheduling multiple CNNs.

1Nx1C: one CNN model using one core; 4Nx1C: four CNN

models each using one core; 1Nx2C: one CNN model using

two cores; 2Nx2C: two CNN models each using two cores.

Figure 8 shows the results. In the figure, the X-axis

shows the system configuration: #of CNN models x #of CPU

cores/CNN. For example, ‘4Nx1C’ means running four CNN

models each of which is assigned to run on one CPU core,

whereas ‘2Nx2C’ means running two CNN models, each of

which is assigned to run on two CPU cores. The Y-axis

shows the average inference timing. The two bars on the

left show the impact of co-scheduling four CNN models.

Compared to executing a single CNN model on one CPU core

(1Nx1C), when four CNN models are co-scheduled (4Nx1C),

each model suffers an average inference time increase of

approximately 11 ms, or 24%. On the other hand, when two

CNN models, each using two CPU cores, are co-scheduled

(2Nx2C), the average inference timing is increased by about

4 ms, or 13%, compared to the baseline of running one model

using two CPU cores (1Nx2C).

These increases in inference times in the co-scheduled sce-

narios are expected because co-scheduled tasks on a multicore

platform interfere with each other due to contention in the

shared hardware resources, such as the shared cache and

DRAM [9], [33].

E. Effect of Co-scheduling Synthetic Memory Intensive Tasks

In this experiment, we investigate the worst-case impact

of shared resource contention on DeepPicar’s CNN inference

timing using a synthetic memory benchmark. Specifically, we

use the Bandwidth benchmark from the IsolBench suite [31],

which sequentially reads or writes a big array; we hence-

forth refer to BwRead as Bandwidth with read accesses and

BwWrite as the one with write accesses. The experiment setup

is as follows: We run a single CNN model on one core, and co-

schedule an increasing number of the Bandwidth benchmark

instances on the other cores. We repeat the experiement first

with BwRead and next with BwWrite.
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Figure 9 shows the results. Note that BwWrite co-runners

cause significantly higher execution time increases—up to

11.6X—on CNN inferencing while BwRead co-runners cause

relatively much smaller time increases. While execution time

increases are expected, the degree to which it is seen in

the worst-case is quite surprising—if the CNN controller was
driving an actual car, it would result in a car crash!

16



Given the importance of predictable timing for real-time

control, such as our CNN based control task, we wanted

to: (1) understand the main source of the timing and (2)

evaluate existing isolation methods to avoid this kind of timing

interference. Specifically, shared cache space and DRAM

bandwidth are the two most well-known sources of contention

in multicore systems. Thus, in the following sections, we

investigate whether and to what extent they influence the

observed timing interference and the effectiveness of existing

mitigation methods.

F. Effect of Cache Partitioning
Cache partitioning is a well-known technique to improve

isolation in a multicore system by giving a dedicated cache

space to each individaul task or core. In this experiment,

we use PALLOC [32], a page-coloring based kernel-level

memory allocator for Linux. Page coloring is an OS technique

that controls the physical addresses of memory pages. By

allocating pages over non-overlapping cache sets, the OS can

effectively partition the cache. Using PALLOC, we investigate

the effect of cache partitioning on protecting DeepPicar’s CNN

based controller.

1331 06

L2 cache-sets

15

L1D cache-sets

Page sets12

Partition bits

Fig. 10: Physical address mapping of L1/L2 caches of Broad-

com BCM2837 processor in Raspberry Pi 3.

Figure 10 shows the physical address mapping of the

Raspberry Pi 3’s BCM2837 processor, which has 32K private

L1 I&D (4way) caches and a shared 512KB L2 (16 way)

cache. In order to avoid partitioning the private L1 caches, we

use bits 13 and 14 for coloring, which results in 4 usable page

colors.
In the first experiment, we investigate the cache space

sensitivity of the DeepPicar’s CNN-based control loop. Using

PALLOC, we create 4 different cgroups which are configured

to use 4, 3, 2, and 1 colors (100%, 75%, 50% and 25%

of the L2 cache space, respectively). We then execute the

CNN control loop (inference) on one core using a different

cgroup cache partition, one at a time, and measure the average

processing time.
Figure 11 shows the results. As can be seen, the CNN

inference timing hardly changes at all regardless of the size

of the allocated L2 cache space. In other words, we find that

the CNN workload is largely insensitive to L2 cache space.
The next experiment further validates this finding. In this

experiment, we repeat the experiment in Section IV-E—i.e.,

co-scheduling the CNN model and three Bandwidth (BwRead

or BwWrite) instances—but this time we ensure that each task

is given equal amounts of L2 cache space by assigning one

color to each task’s cache partition.
Figure 12 shows the results. Compared to Figure 9 where

no cache partioning is applied, assigning a dedicated L2
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Fig. 11: Cache space sensitivity of the CNN controller.
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Fig. 12: Average processing time vs. the number of memory

intensive co-runners; Each core (task) is given an equal-sized

dedicated cache partition.

cache parititon to each core does not provide significant

isolation benefits. For BwRead co-runners, cache partitioning

slightly improves isolation, but for BwWrite co-runners, cache

partitioning causes worse worst-case slowdown.

In summary, we find that the CNN inferencing workload is

not sensitive to cache space and that cache partitioning is not

effective in providing timing isolation for our CNN workload.

G. Effect of Memory Bandwidth Throttling

In this subsection, we examine the CNN workload’s mem-

ory bandwidth sensitivity and the effect of memory bandwidth

throttling in providing isolation. For the experiments, we use

MemGuard [33], a Linux kernel module that can limit the

amount of memory bandwidth each core receives. MemGuard

operates periodically, at a 1 ms interval, and uses hardware

performance counters to throttle cores if they exceed their

given bandwidth budgets within each regulation period (i.e., 1

ms), by scheduling high-priority idle kernel threads until the

next period begins.

In the first experiment, we measure the performance of the

CNN model on a single core, first w/o using MemGuard and

then w/ using MemGuard while varying the core’s bandwidth

throttling parameter from 500 MB/s down to 100 MB/s.

Figure 13 shows the results. When the core executing the

CNN model is throttled at 400 MB/s or more, the performance
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Fig. 13: Memory bandwidth sensitivity of the CNN control

loop.

of the model is largely the same as the non-throttled case.

However, as we decrease the assigned memory bandwidth

below 300 MB/s, we start to observe noticeable decreases in

the model’s performance. In other words, the CNN model is

sensitive to memory bandwidth and it requires 400 MB/s or

more bandwidth to ensure ideal performance.

In the next experiment, we repeat the experiment in Sec-

tion IV-E—i.e., co-scheduling memory intensive synthetic

tasks—but this time we throttle the cores of the co-runners

using MemGuard and vary their memory bandwidth budgets

to see their impact on the CNN model’s performance.
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Fig. 14: Effect of throttling three memory intensive co-runners.

Figures 14 shows the results. As can clearly be seen in

the figure, limiting the co-runners’s memory bandwidth is

effective in protecting the CNN model’s performance for

BwRead and BwWrite co-runners. The benefits are especially

more pronounced in case of BwWrite co-runners as, when we

throttle them more, the CNN’s performance quickly improves.

In summary, we find that the CNN inferencing workload is

sensitive to memory bandwidth and that memory bandwidth

throttling is effective in improving the performance isolation

of the CNN workload.

V. EMBEDDED COMPUTING PLATFORM COMPARISON

In this section, we compare three computing platforms—

the Raspberry Pi 3, the Intel UP [14] and the NVIDIA Jetson

TX2 [23]—from the point of view of supporting end-to-end

deep learning based autonomous vehicles. Table III shows the

architectural features of the three platforms 4.

Our basic approach is to use the same DeepPicar software,

and repeat the experiments in Section IV on each hardware

platform and compare the results. For the Jetson TX2, we

have two different system configurations, which differ in

whether TensorFlow is configured to use its GPU or only the

CPU cores. Thus, a total of four system configurations are

compared.
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Fig. 15: Average control loop execution time.

Figure 15 shows the average control loop completion timing

of the four system configurations we tested as a function of

the number of CPU cores used. (cf. Figure 7) Both the Intel

UP and Jetson TX2 exhibit better performance than Raspberry

Pi 3. When all four CPU cores are used, the Intel UP is 1.33X

faster than Pi 3, while the TX2 (CPU) and TX2 (GPU) are

2.79X and 4.16X times faster that the Pi 3, respectively. Thus,

they all satisfy 33.3 ms WCET by a clear margin, and, in the

case of the TX2, 50 Hz or even 100 Hz real-time control is

feasible with the help of its GPU. Another observation is that

the CNN task’s performance on TX2 (GPU) does not change

much as we increase the number of cores. This is because

most of the neural network computation is done by the GPU.
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Fig. 16: Timing impact of co-scheduling multiple CNNs on

different embedded multicore platforms.

4The GPU of Intel UP and the two Denver cores in the Tegra TX2 are not
used in evaluation due to TensorFlow issues.
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Item Raspberry Pi 3 (B) Intel UP NVIDIA Jetson TX2
BCM2837 X5-Z8350 (Cherry Trail) Tegra X2

CPU 4x Cortex-A53@1.2GHz/512KB L2 4x Atom@1.92GHz/2MB L2 4x Cortex-A57@2.0GHz/2MB L2
2x Denver@2.0GHz/2MB L2 (not used)

GPU VideoCore IV (not used) Intel HD 400 Graphics (not used) Pascal 256 CUDA cores
Memory 1GB LPDDR2 (Peak BW: 8.5GB/s) 2GB DDR3L (Peak BW: 12.8GB/s) 8GB LPDDR4 (Peak BW: 59.7GB/s)

Cost $35 $100 $600

TABLE III: Compared embedded computing platforms

Figure 16 shows the results of the multi-model co-

scheduling experiment (cf. Figure 8). Once again, they can

comfortably satisfy 30 Hz real-time performance for all of the

co-scheduled CNN control loops, and in the case of the TX2

(GPU), even 100 Hz real-time control is feasible in all co-

scheduling setups. Given that the GPU must be shared among

the co-scheduled CNN models, the results suggest that the

TX2’s GPU has sufficient capacity to accomodate multiple

instances of the CNN models we tested.
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Fig. 17: Average processing time vs. the number of memory

intensive co-runners.

Figure 17 shows the results of the synthetic memory inten-

sive task co-scheduling experiments (cf. Figure 9). For read co-

runners (BwRead), the performance of all platforms gradually

decreased as additional BwRead instances were introduced: up

to 1.6X for the Pi 3, up to 1.3X for the Intel UP, and up to 1.6X

and 2.2X for the TX2 (CPU) and TX2(GPU), respectively. For

write co-runners (BwWrite), however, we observe generally

more noticieable execution time increases. As we discussed

earlier in Section IV, the Pi 3 suffers up to 11.6X execution

time increase, while the Intel UP and Jetson TX2 suffer less

dramatic but still significant execution time increases.

Another interesting observation is that the TX2 (GPU) also

suffers considerable execution time increase (2.3X) despite the

fact that the co-scheduled synthetic tasks do not utilize the

GPU (i.e., the CNN model has dedicated access to the GPU.)

This is, however, a known characteristic of integrated CPU-

GPU architecture based platforms in which both the CPU and

GPU share the same memory subsystem [3] and therefore can

suffer bandwidth contention as we observe in this case.

In summary, we find that todays embedded computing

platforms, even as inexpensive as a Raspberry Pi 3, are

powerful enough to support CNN based real-time control

applications. Furthermore, availability of CPU cores and a

GPU on these platforms allows consolidating multiple CNN

workloads. However, shared resource contention among these

diverse computing resources remains an important issue that

must be understood and controlled, especially for safety-

critical applications.

VI. RELATED WORK

There are several relatively inexpensive RC-car based au-

tonomous car testbeds. MIT’s RaceCar [28] and UPenn’s

F1/10 [2] are both based on a Traxxas 1/10 scale RC car

and a NVIDIA Jetson multicore computing platform, which

is equipped with many sophisticated sensor packages, such as

a lidar. However, they both cost more than $3,000, requiring

a considerable investment. DonkeyCar [1] is similar to our

DeepPicar as it also uses a Raspberry Pi 3 and a similar CNN

for end-to-end control, although it costs more (about $200).

The main contribution of our paper is in the detailed analysis

of computational aspects of executing a CNN-based real-time

control workload on diverse embedded computing platforms.

In this paper, we have analyzed real-time performance of

a real-world CNN, which was used in NVIDIA’s DAVE-

2 self-driving car [5], on a low-cost Raspberry Pi 3 quad-

core platform and other embedded multicore platforms. It

should be noted, however, that DAVE-2’s CNN is relatively

small compared to recent state-of-the-art CNNs, which are

increasingly larger and deeper. For example, the CNN based

object detector models evaluated in Google’s recent study [11]

have between 3M to 54M parameters, which are much larger

than DAVE-2’s CNN. Using such large CNN models will

be challenging on resource constrainted embedded computing
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platforms, especially for real-time applications such as self-

driving cars.

While continuing performance improvements in embedded

computing platforms will certainly make processing these

complex CNNs faster, another actively investigated approach

is to reduce the required computational complexity itself.

Many recent advances in network compression have shown

promising results in reducing such computational costs during

the feedforward process. The fundamental assumption in those

techniques is that the CNNs are redundant in their structure

and representation. For example, network pruning can thin out

the network and provides a more condensed topology [10].

Another common compression method is to reduce the

quantization level of the network parameters, so that arithmetic

defined with floating-point operations are replaced with low-

bit fixed-point counterparts. To this end, single bit quantization

of the network parameters or ternary quantization have been

recently proposed [4], [8], [12], [13], [17], [27], [29]. In

those networks, the inner product between the originally real-

valued parameter vectors is defined with XNOR followed

by bit counting, so that the network can greatly minimize

the computational cost in the hardware implementations. This

drastic quantization can produce some additional performance

loss, but those new binarized or ternarized systems provide a

simple quantization noise injection mechanism during training

so that the additional error is minimized to an acceptable level.

The XNOR operation and bit counting have been known

to be efficient in hardware implementations. In [27], it was

shown that the binarized convolution could substitute the

expensive convolutional feedforward operations in a regular

CNN, by using only about 1.5% of the memory space, while

providing 20 to 60 times faster feedforward. Binary weights

were also able to provide 7 times faster feedforward than a

floating-point network for the hand written digit recognition

task as well as 23 times faster matrix multiplication tasks

on a GPU [12]. Moreover, FPGA implementations showed

that the XNOR operation is 200 times cheaper than floating-

point multiplications with single precision [4], [8]. XNOR-

POP is another hardware implementation that reduced the

energy consumption of a CNN by 98.7% [15].

These research efforts are expected to make complex CNNs

accessible for a wider range of real-time embedded systems.

We plan to investigate the feasibility of these approaches in the

context of DeepPicar so that we can use even more resource

constrained micro-controller class computing platforms in

place of the current Raspberry Pi 3.

VII. CONCLUSION

We presented DeepPicar, a low cost autonomous car plat-

form that is inexpensive to build, but is based on state-of-

the-art AI technology: End-to-end deep learning based real-

time control. Specifically, DeepPicar uses a deep convolutional

neural network to predict steering angles of the car directly

from camera input data in real-time. Importantly, DeepPicar’s

neural network architecture is identical to that of NVIDIA’s

real self-driving car DAVE-2.

Despite the complexity of the neural network, DeepPicar

uses a low-cost embedded quad-core computer, the Rasp-

berry Pi 3, as its sole computing resource. We systematically

analyzed the platform’s real-time capability in supporting

the CNN-based real-time control task. We also evaluated

other, more powerful, embedded computing platforms to better

understand achievable real-time performance of DeepPicar’s

CNN based control system and the impact of computing

hardware architectures. We find all tested embedded platforms,

including the Pi 3, are capable of supporting the CNN based

real-time control, from 20 Hz up to 100 Hz, depending

on the platform. Futhermore, all platforms were capable of

consolidating multiple CNN models and/or tasks.

However, we also find that shared resource contention

remains an important issue that must be considered to ensure

desired real-time performance on these shared memory based

embedded computing platforms. Toward this end, we evaluated

the impact of shared resource contention to the CNN work-

load in diverse consolidated workload setups, and evaluated

the effectivness of state-of-the-art shared resource isolation

mechanisms in protecting performance of the CNN based real-

time control workload.

As future work, we plan to investigate ways to reduce

computational and memory overhead of CNN inferencing and

to evaluate the effectiveness of FPGA and other specialized

accelerators.
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APPENDIX

A. DNN Training and Testing

We have trained and tested the deep neural network with

several different track conditions, different combinations of

input data, and different hyper parameters. In the following

paragraphs, we describe details on two of the training methods

that performed reasonably well.

In the first method, we trained the neural network model

across a set of 30 completed runs on the track seen in Figure 4b

by a human pilot. Half of the runs saw the car driving one

way along the track, while the remaining half were of the

car driving in the opposite direction on the track. In total,

we collected 2,556 frames for training and 2,609 frames for

validation. The weights of the network are initialized using the

Xavier initializer [7], which is known to perform better than

a random weight assignment. In each training step, we use a

batch size of 100 frames, which are randomly selected among

all the collected training images, to optimize the network. We

repeat this across 2,000 training steps.

In the second method, we use the same data and parameters

as above except that now images are labeled as ‘curved’ and

‘straight’ and we pick an equal number of images from each

category at each training step to update the model. In other

words, we try to remove bias in selecting images. We find that

the car performed better in practice by applying this approach

as the car displayed a greater ability to stay in the center of

the track (on the white tape). However, we find that there

is a discrepency between the training loss and the validation

loss, indicating that the model may suffer from an overfitting

problem, despite its better real-world performance.

B. System-level Factors Affecting Real-Time Performance

In using the Raspberry Pi 3 platform, there are a few system-

level factors, namely power supply and temperature, that need

to be considered to achieve consistent performance.

In all of our experiments on the Raspberry Pi 3, the CPU is

configured at the maximum clock speed of 1.2 GHz. However,

without care, the CPU can operate at a lower frequency

involuntarily. An important factor is CPU thermal throttling,

which can affect CPU clock speed if the CPU temperature

is too high (Pi 3’s firmware is configured to throttle at 85

deg. C). DNN inferencing is computationally intensive, thus

the temperature of the CPU could rise quickly. This can

be especially problematic in situations where multiple DNN

models run simultaneously on the Pi 3. If the temperature

reaches the threshold, the Pi 3’s thermal throttling kicks in

and decreases the clock speed down to 600MHz— half of the

maximum 1.2GHz—so that the CPU’s temperature stays at

a safe level. We found that without proper cooling solutions

(heatsink or fan), prolonged use of the system would result in

CPU frequency decrease that may affect evaluation.

Another factor to consider is power supply. The Pi 3

frequency throttling also kicks in when the power source

can not provide 2A current. In experiments conducted with

a power supply that only provided 1 Amp, the Pi was unable

to sustain a 1.2 GHz clock speed. As a result, it is necessary,

or at least highly recommended, that the power supply used for

the Raspberry Pi 3 be capable of outputting 2 Amps, otherwise

optimal performance isn’t guaranteed.

Our initial experiment results suffered from these issues, af-

ter which we always carefully monitored the current operating

frequencies of the CPU cores during the experiments to ensure

the correctness and repeatability of the results.
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