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Abstract

Precise instrument calibration is critical to the success of 21 cm cosmology experiments. Unmitigated errors in
calibration contaminate the Epoch of Reionization (EoR) signal, precluding a detection. Barry et al. characterized
one class of inherent errors that emerge from calibrating to an incomplete sky model; however, it has been unclear
if errors in the sky model affect the calibration of redundant arrays. In this paper, we show that redundant
calibration is vulnerable to errors from sky model incompleteness even in the limit of perfect antenna positioning
and identical beams. These errors are at a level that can overwhelm the EoR signal and prevent a detection in
crucial power spectrum modes. Finally, we suggest error mitigation strategies with implications for the Hydrogen
Epoch of Reionization Array and the Square Kilometre Array.
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1. Introduction

The promise of 21 cm cosmology observations to provide
crucial constraints on the Epoch of Reionization (EoR) and
dark energy depends on experimenters’ ability to suppress the
bright astrophysical foregrounds. The astrophysical fore-
grounds are 4-5 orders of magnitude brighter than the faint
cosmological signal, but because they are spectrally smooth,
they are in principle separable. For perfectly calibrated
instruments, this leads to the current paradigm of 21 cm power
spectrum (PS) observations where there is a contaminated
“foreground wedge” and a clean “measurement window” or
“EoR window.” (See Furlanetto et al. 2006 and Morales &
Wryithe 2010 for general reviews and Datta et al. 2010; Morales
et al. 2012; Parsons et al. 2012; Trott et al. 2012; Vedantham
et al. 2012; Dillon et al. 2013; Hazelton et al. 2013;
Thyagarajan et al. 2013, 2015 for discussions of how smooth
spectrum foregrounds appear in PS measurements.)

However, it has been recognized for some time that small
chromatic instrumental calibration errors limit the separability
of the cosmological signal and bright foreground emission.
When applied to data, frequency-dependent errors in calibra-
tion introduce frequency structure into the spectrally smooth
foregrounds. This couples foreground power into the EoR
window and can overwhelm the faint cosmological PS.
Precision calibration is therefore critical for enabling 21 cm
cosmology, and characterizing and mitigating calibration errors
has become a very active area of research (Pen et al. 2009;
Grobler et al. 2014, 2016; Newburgh et al. 2014; Berger et al.
2016; Patil et al. 2016; van Weeren et al. 2016; Wijnholds et al.

2016; Ewall-Wice et al. 2017; Joseph et al. 2018; Li et al.
2018; Orosz et al. 2018).

One such mechanism of error was identified in Barry et al.
(2016). This sky-based calibration error emerges from fitting
antenna bandpasses to an incomplete sky model. Missing
sources in the sky model introduce errors in the calibration
solutions. Because of instruments’ frequency-dependent point
spread functions (PSFs), these errors are chromatic and couple
foreground power into the EoR window.

Barry et al. (2016) described this mechanism in the context
of traditional sky-based calibration. However, to achieve the
extraordinary calibration precision needed for 21 cm cosmol-
ogy, many efforts have been designed around redundant arrays
and calibration schemes (e.g., Wieringa 1992; Parsons et al.
2010; DeBoer et al. 2016; Dillon & Parsons 2016; Dillon et al.
2018; Grobler et al. 2018). The community has often assumed
that redundant calibration approaches are immune to the effect
described in Barry et al. (2016) and similar systematics.

This paper is part of an ongoing exploration of the limits of
redundant calibration. Joseph et al. (2018) and Orosz et al.
(2018) examined theoretically the effects of antenna nonre-
dundancy due to position offsets and beam irregularities. Li
et al. (2018) used the unique array layout of Phase II of the
Murchison Widefield Array (MWA; Wayth et al. 2018) to
produce a direct comparison of precision sky-based and
redundant calibration solutions.

In this paper, we show that the calibration errors associated
with an incomplete sky model affect redundant calibration
through the absolute calibration step. Even in the limit of a
perfectly redundant array with identical antenna beam
responses, sky model incompleteness introduces frequency-
dependent calibration errors that contaminate the PS
measurement.

In Section 2, we develop our mathematical framework and
identify the channels through which sky model errors affect
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redundant calibration. In Section 3, we repeat the simulations
of Barry et al. (2016) for a hexagonal array. We show that the
systematics identified in Barry et al. (2016) affect the
hexagonal array’s redundant calibration solutions. In
Section 4, we extend our simulations to multiple redundant
and nonredundant arrays to explore the effect of array layout
and demonstrate that calibration errors from sky model
incompleteness are typically worse for the regular arrays
required by redundant calibration. In Sections 5 and 6, we
discuss the impact of the systematics identified in this paper
and propose error mitigation strategies with implications for
HERA (the Hydrogen Epoch of Reionization Array) and the
SKA (Square Kilometer Array).

2. Calibration Formalism

Calibration is an integral aspect of radio interferometry when
the instrument response varies across individual array antennas,
frequency channels, or measurement times. While there are
innumerable calibration strategies and algorithms, calibration
methods can be broadly categorized as sky based, redundant,
hybrid, or external. Sky-based calibration uses a sky model as a
prior and is well suited to imaging arrays with good UV
coverage. Redundant calibration works for highly regular
arrays and calibrates by matching visibilities from redundant
baselines (Wieringa 1992; Liu et al. 2010). Hybrid calibration
combines elements of both sky-based and redundant calibration
and is a nascent area of study (Sievers 2017; Li et al. 2018).
External calibration uses a separate calibration source, such as a
drone (Jacobs et al. 2017), satellites (Neben et al. 2015, 2016),
an injected noise source (Newburgh et al. 2014), or a pulsar to
measure the antenna response (Pen et al. 2009).

Understanding the mathematical framework for each cali-
bration technique is critical for identifying sources of
calibration error. Here we discuss sky-based and redundant
calibration and identify the channels through which sky model
incompleteness introduces errors in the calibration solutions.

2.1. The Measurement Equation

The basis of most interferometric calibration is the
measurement equation, which relates the measured sky
visibility vy(f) from antennas j and k at frequency f to the
theoretical “true” sky visibility for that baseline and frequency,

u(f):
Vik(f) = G (HHup(f) + np(f) )

(Hamaker et al. 1996). Here, G;(f) is the instrument gain and
n(f) is the noise.

Each term in the measurement equation is implicitly per
time. The antenna indices j and k index each polarization of
each antenna. In this paper, we consider just one polarization
mode to simplify the analysis with no loss of generality.

Different calibration approaches correspond to different
parameterizations of Gy(f), and finding the optimal para-
meterization is a central challenge of precision calibration.
Traditional calibration assumes per-antenna and per-frequency
gains, such that Gy (f) = gj(f)gk*(f), where gi(f) is the gain
for antenna j at frequency f.

2.2. Sky-based Calibration

Sky-based calibration uses a sky model as a prior. The sky
model is simulated through a model of the instrument to derive
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model visibilities, my(f). A calibration solution is calculated
by approximating the true sky visibilities with the model
visibilities, uy(f) ~ my(f). The measurement equation then
becomes

vi(f) ~ (g (Himu(f) + np(f). @)

Assuming the noise is Gaussian, mean zero, and uncorre-
lated with variance o%,\. (f), a maximum-likelihood estimate of
the per-antenna gains maximizes

LA (N H (N}, {mu(HHD
I8N Dmir(H vk )2

e 3)
fook

By taking the logarithm of both sides, we find that maximizing

L is equivalent to minimizing the per-frequency y-squared by

varying the per-antenna, per-frequency gains g;(f):
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These calculated gains are denoted g(f), where the “hat”

symbol indicates the maximum-likelihood estimate.
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2.3. Redundant Calibration

Redundant calibration works for highly regular arrays with
many redundant baselines. It calibrates by imposing a prior that
true sky visibilities from redundant baselines are equal
(Wieringa 1992; Liu et al. 2010). Instead of approximating
the true sky visibilities with a model, redundant calibration
solves for the true sky visibilities for each redundant baseline
set alongside the gains. Highly regular arrays have many more
measured visibilities than unique baselines, so the system is
overdetermined even when treating the sky visibilities as free
parameters.

The measurement equation for redundant calibration replaces
the sky visibilities, uy(f), with visibility terms that are
constrained to be equal across redundant baselines, u,(f),
where « indexes the redundant baseline sets:

vi(f) = g (N g (Hua(f) + np(f). )

As in sky-based calibration, we assume Gaussian uncorrelated
noise and construct a maximum-likelihood estimate for the
gains and sky visibilities. Here, the likelihood function is

L{g (N} {ua (N (HD

B 1(|g,-(f).ek*(f)un(f)—v/-k(m]2
bl

~TITI II ¢ )

S ikl

(6)

where {j, k}, are the sets of antennas that belong to each
redundant baseline type «. Maximizing this function is
equivalent to minimizing

Xfed(f) = Z Xi,red(f)

() — &(N&Hua(P
o3 (f)

by varying g;(f) and u,(f) for each frequency f.
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However, minimizing Equation (7) yields degenerate solu-
tions (Liu et al. 2010). The degeneracies can be parameterized
as four terms per frequency: overall amplitude A(f), overall
phase A(f), and two phase gradient components A,(f) and
Ay(f). Transformations of these parameters leave X%ed -
unchanged (here we have omitted explicit frequency
dependence):

1. Overall amplitude A: the transformation g, — Ag; does
not change the form of Xfe 4 if it is accompanied by the
transformation u, — A~2u,. Errors in the overall ampl-
itude change the sky brightness, making the sky appear
artificially bright or dim.

2. Overall phase A the transformation
g = lgles — |gle!ta) corresponds to
88 =lgllgle % — |gllgle! G TA=9=8) = gg¥, 5o
Xfe 4 18 unchanged under this transformation. Note that
this is also true for stky from Equation (4); this
degeneracy exists in sky calibration as well as redundant
calibration.

3. Phase gradient A, and A,: assuming a co-planar array,
the transformation g = [gle’ — |g|e!(%+ A5+ 4) does
not change the form of Xfe d if it is accompanied by the
transformation Uy = |ua|e’® — |uy|e! =Bk BN,

Here, (x;, y;) are the x- and y-coordinates of the position

of antenna j, and (x,, y,) are the x- and y-separations of

antennas that form baselines in redundant baseline set a.

Errors in the phase gradient parameters shift the sky

image such that sources appear offset from their true

positions.

Additional degeneracies arise in special cases. Arrays with
separate redundant subarrays can have more than four
degenerate parameters per frequency; for example, each of
the hexagonal subarrays in MWA Phase II has an independent
overall phase degeneracy (Li et al. 2018). Furthermore, while
this paper assumes the simple case of single-polarization
calibration, fully polarized redundant calibration has degen-
eracies associated with the coupling between polarizations
(Dillon et al. 2018).

Redundant calibration must be separated into two distinct
parts because of the degeneracies of solutions that minimize
Equation (7). “Relative calibration” solves for the antenna
gains up to the degenerate parameters A(f), A(f), AL(f), and
A(f), and “absolute calibration” constrains those degenera-
cies. We can parameterize the redundant calibration solutions
to reflect the inherent separation of redundant calibration into
relative and absolute calibration steps. We define a set of
parameters /1;(f) to be the gains constrained to have an average
amplitude of 1, average phase of 0, and phase gradient of 0.
Now,

gj(f) =A(f) AN +A()x+Ay ()] hj(f), (8)

where (x;, y;) is the position of antenna j.
A nondegenerate formulation of Equation (7) is

Xoad () =20 X g ()

Ve (f) — hi (RS wa (I
- vir (f .z({)lk(f)w (N
5% (f)

N )

a {jk}a
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where w, (f) = A2(f)e/ D%+ 80l y (£). Here, x, and y,
are the x- and y-coordinates of baselines in redundant baseline
set . Relative calibration minimizes this expression by varying
hif) and wo(f).

Absolute calibration solves for A(f), A(f), A«(f), and
A(f). These parameters cannot be constrained from baseline
redundancy and are generally calculated from a sky model.
Here we describe a typical implementation based on fitting the
absolute calibration parameters to sky-based calibration solu-
tions. Other absolute calibration methods avoid explicit sky-
based calibration by fitting the absolute calibration parameters
directly from the model visibilities. HERA Memo #063°
compares two absolute calibration techniques and shows that
they yield consistent results.

Minimizing Equation (4) with model visibilities m;(f) gives
a set of maximum-likelihood estimated sky-based gains
gisky (f). The overall amplitude can be fit by averaging across
the sky-based gain amplitudes:

N
Am=%2wmm. (10)

J=0

The phase gradient parameters can be fit by minimizing the
expression

N
X5(f) = D (Arg[g ()]

J=0

— A = AP = Ay(Hy)? (11

by varying A, A,, and A,. Here, Arg [g/-Sky (f)] is the complex
phase of &V(f). We assume that Arg[g™(f)] < 27 and
therefore do not have to account for the branch cut in the
complex plane.

The overall phase A(f) is degenerate in Equation (4), the x-
squared for sky-based calibration, so it must be calculated in
another way. One typical way to set the overall phase for either
sky-based or redundant calibration is to use a reference
antenna. The overall phase would then be set by requiring
that Arg[2,.(f)] = 0, where g,.¢(f) is the gain of the reference
antenna.

Redundant calibration requires combining the relative and
absolute calibration steps according to Equation (8) to get the
true calibration solutions { gj( NI}

2.4. Comparison of Sky-based and Redundant Calibration

As shown above, redundant calibration consists of relative
and absolute calibration steps. This is motivated by the
degeneracies in Equation (7), but we can also apply the same
parameterization to solutions from sky-based calibration. We
can decompose gains from sky-based calibration into relative

and absolute calibration components:
Abs. Cal. Rel. Cal.

- —
gj(f) = A(f)e![A(f)+A.x(f)x/+Ay(f));] hi(f).

The absolute calibration parameters A(f), A(f), ALf), and
A(f) describe the bulk array response across all antennas. The
relative calibration parameters /;(f) fit the calibration degrees
of freedom that describe differences between antennas.

° https:/ /reionization.org /science /memos/
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This decomposition allows us to directly compare calibration
parameters between sky-based and redundant calibration
methods. Calibration error mechanisms can be classified as
affecting relative calibration, absolute calibration, or both. The
errors depend on the specific calibration methods used and the
features of the instrument.

Relative calibration is not necessary for instruments with
highly uniform antenna responses. In this regime, it is
advantageous to require uniformity across all antennas’
calibration solutions, preventing overfitting of antenna-to-
antenna structure. Averaging per-antenna gains is equivalent
to setting 4,(f) = 1 for all antennas and frequencies (as well as
setting A, = A, = 0). Barry et al. (2016) demonstrated that this
averaging mitigates calibration errors from sky model incom-
pleteness (see the green “maximally averaged” line in Figure 8
of Barry et al. 2016, which includes both antenna- and time-
averaging).

Redundant calibration does not require a sky model for
relative calibration, and it excels at fitting antenna-to-antenna
variations. At the same time, redundant calibration inherently
assumes uniform beam responses across antennas. The
fundamental assumption of redundant calibration—that redun-
dant baselines measure the same sky visibility—breaks down if
the antennas have different beam responses. Therefore,
redundant calibration is best suited to arrays in which
antenna-to-antenna variations occur in the analog signal path
after the receiving element. These variations are consistent with
redundant calibration’s assumptions and can be captured by
relative calibration.

Any calibration steps that rely on a sky model are susceptible
to errors from an inaccurate or incomplete sky model. Sky-
based calibration uses a sky model in both relative and absolute
calibration, while redundant calibration uses a sky model in
absolute calibration only. Developing better sky models is an
active area of research (Carroll et al. 2016; Hurley-Walker et al.
2017), but no realistic sky model can achieve perfect accuracy
and completeness. As shown in Barry et al. (2016), missing
sources in the sky model introduce errors in sky-based
calibration solutions. This error mechanism affects absolute
calibration and therefore impacts redundant calibration.

In this paper, we investigate errors introduced in absolute
calibration, due to sky model incompleteness. These errors are
independent of the array redundancy requirement and are
present even in the limit of perfect redundancy. For the
purposes of this paper, we assume perfect relative calibration,
1.e., NnO errors in hAj( f), in order to focus on the errors in
absolute calibration. For discussions of relative calibration
errors in redundant calibration, see Orosz et al. (2018), Li et al.
(2018), and Joseph et al. (2018).

3. Errors in Redundant Calibration Due to an Incomplete
Sky Model

Redundant calibration is susceptible to errors from an
incomplete sky model that enter through the absolute
calibration step. In this section, we show that these errors are
frequency dependent and that they contaminate the EoR PS.

We simulate these errors for a redundant array of 331
antennas, arranged in a regular hexagonal layout with
minimum antenna spacings of 15m (see Figure 1). The
simulations use the MWA antenna zenith pointing beam model
in the 167-198 MHz frequency band. One beam model is used
for all frequencies across this band to eliminate errors from
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Figure 1. Representation of the hexagonal array layout used in the simulation.
The array has 331 antennas and minimum antenna spacings of 15 m.

frequency-dependent beam modulation. For simplicity, we
consider only one polarization; all results in this paper use
simulated data from east—west dipole antennas. Visibilities are
created for a 2 minute observation with the Fast Holographic
Deconvolution (FHD) software pipeline'® (Sullivan et al. 2012)
and are based on the GLEAM catalog (Hurley-Walker et al.
2017) at the “EoR-0” field (centered on R.A. 0"00 and decl.
—27°) for a total of 51,821 simulated sources with a minimum
flux density of 10 mJy. We then create a calibration catalog
from the 4000 brightest sources in apparent flux density
(minimum flux density 89 mJy), as was done in Barry et al.
(2016). By calibrating on only a subset of the simulated
catalog, we represent the fact that calibration catalogs are
realistically incomplete. The missing sources in the calibration
catalog introduce errors in the calibration solutions.

To calibrate, we first implement sky-based calibration with
FHD. This minimizes the kay from Equation (4), where the
“measured visibilities” vj. are simulated from 51,821 sources
and the “modeled visibilities” mj; are simulated from 4000.
This gives per-antenna, per-frequency gain solutions gfky( .
We then calculate the absolute calibration solutions from those
gains.

We use Equation (10) to calculate the overall amplitude, A,
plotted in Figure 2 as a function of frequency. Deviations from
A =1 are calibration errors due to the incompleteness of the
sky model. These errors are frequency dependent. When
applied to data, they introduce frequency structure to the
intrinsically spectrally smooth foregrounds, coupling their
power into the EoR window and obscuring the EoR signal.

We calculate the phase gradient parameters A, and A),,
plotted in Figure 3, from Equation (11). Here, deviations from
0 are calibration errors due to the incompleteness of the sky
model. As with the overall amplitude, the phase gradient
parameter errors are frequency dependent and can therefore
couple foreground power into the EoR window.

We require that the overall phase A = 0. As A is degenerate
in both sky and redundant calibration, setting a reference phase
is an important aspect of precision calibration across both

19 hitps://github.com /EoRTmaging /FHD



THE ASTROPHYSICAL JOURNAL, 875:70 (11pp), 2019 April 10

1.000

0.998

0.996

Gain Amplitude

0.994

00921y 1y Ty E P
170 175 180 185
Frequency (MHz)

. . 1
190

195

Figure 2. Plot of the average amplitude of the per-antenna gains as a function
of frequency, A( f), for the hexagonal array in Figure 1. The visibilities are
calibrated to an incomplete catalog that includes only a subset of the simulated
sources. Deviations from 1 correspond to calibration errors due to an
incomplete sky model. Because the average gain amplitude is a degenerate
parameter in the relative calibration step of redundant calibration, these errors
persist in redundant calibration even in the limit of perfect redundancy. The
specific features of the errors in this parameter depend on the locations and flux
densities of the sources missing from the sky model. In this case, those missing
sources are faint sources in the “EoR-0" field, as described by the GLEAM
catalog (Hurley-Walker et al. 2017).
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Figure 3. Plot of the gain complex phase gradient fit parameters as a function

of frequency, AAX (f) and A, (f), for the simulation described in Figure 2. Here,
x refers to the east—west direction and y refers to the north—south direction.
Deviations from O correspond to calibration errors due to an incomplete sky
model. Like the average gain amplitude, these two phase gradient parameters
are degenerate in relative calibration, so these errors persist in redundant
calibration even in the limit of perfect redundancy.

calibration methods. In simulation, the true antenna gain phases
are 0, so by setting the overall phase to 0 we simulate perfect
calibration of the overall phase.

To demonstrate contamination of the EoR window from the
errors in the average gain amplitudes plotted in Figure 2 and
the gain phase gradient fit terms plotted in Figure 3, we
produce 2D PS with the Error Propagated PS with InterLeaved
Observed Noise (eppsilon) software package'' (Jacobs et al.

' https://github.com/EoRTmaging /eppsilon
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2016). The 2D PS are a function of line-of-sight modes (k| ; the
Fourier modes across frequency) on the vertical axis and modes
perpendicular to the line of sight (k ; the Fourier modes across
the sky) on the horizontal axis. This 2D PS space is a useful
tool for isolating foreground power and identifying systematics
in the analysis pipeline. Here we use this tool to identify power
leakage from low to higher k; modes.

Figure 4 gives 2D PS for three separate simulated arrays.
The leftmost column of the figure corresponds to the hexagonal
array pictured in Figure 1. The middle and rightmost columns
correspond to the additional array configurations discussed in
Section 4. The PS of the sky model used in the calibration has
been subtracted, producing “residual” PS.

In the top left, Figure 4(a) gives the 2D PS of simulated
visibilities calibrated with absolute calibration errors. The gains

applied to these data are g, = AeP; where the parameters

A, AX, and Ay take the values calculated from Equations (10)
and (11) and plotted in Figures 2 and 3. Here, relative
calibration is perfect: calibration errors come from the absolute
calibration parameters only. This represents the best possible
redundant calibration achievable with the 4000 source
incomplete sky model in the limit of unrealistically perfect
redundancy and the absence of noise. Below, Figure 4(d) gives
the 2D PS of the same simulated data without calibration, or
with g; = 1 for all antennas. In simulations, this is equivalent to
perfect calibration, or calibration to a complete sky model.

Figures 4(a) and (d) illustrate inherent PS features. First of
all, the high power in the lowest line-of-sight mode (kj = 0)
represents the intrinsic foregrounds. Foreground emission is
extremely spectrally smooth; in this simulation, it is perfectly
flat. The red-orange wedge across the lower right part of the
spectrum is the “foreground wedge” and comes from the
chromatic instrument response, which mixes the intrinsic
foregrounds with higher line-of-sight modes (Morales et al.
2012; Parsons et al. 2012; Trott et al. 2012; Vedantham et al.
2012; Hazelton et al. 2013). The vertical streaks in the upper
half of the spectrum are an intrinsic PS feature resulting from
regions of low UV coverage (Figure 7(d) shows the UV
coverage of this array). The periodicity of these streaks
emerges from the regular layout of antennas in the hexagonal
array. Averaging over sufficiently long time intervals can
mitigate this effect by leveraging Earth’s rotation to fill in areas
of low UV coverage through a process called “UV rotation.”

Comparing the uncalibrated PS simulation in Figure 4(d) to
the PS simulation with absolute calibration errors in Figure 4(a)
shows that missing sources in the sky model introduce errors
that cause power leakage into high line-of-sight PS modes.
Even with perfect relative calibration, the frequency-dependent
errors in the absolute calibration parameters plotted in
Figures 2 and 3 introduce frequency structure into the
spectrally smooth foregrounds. This frequency structure results
in foreground power leakage into the PS modes in the EoR-
sensitive window, obscuring the faint EoR signal.

The power leakage in the EoR window falls off at large k
values. The maximum contaminated & mode is proportional to
the length of the array’s longest baseline. For a wide-field array
sensitive to emission at the horizon, power leakage occurs at a
maximum mode of b/c, where b is the length of the longest
baseline used in calibration and c¢ is the speed of light.
Converting to cosmological units (Morales & Hewitt 2004), we
expect calibration errors to produce PS contamination for the
hexagonal array pictured in Figure 1 on modes
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Figure 4. 2D “residual” PS of simulated data calibrated to an incomplete sky model. The plots in the top row have been calibrated with errors in the absolute
calibration parameters A, the overall gain amplitude, and A, and A,, the gain phase gradient parameters. There are no errors in the relative calibration. This
corresponds to a regime of perfect array redundancy and no thermal noise, where the only calibration errors emerge from absolute calibration to an incomplete model.
The plots in the bottom row have perfect calibration. Notice that errors in the absolute calibration parameters cause power bleed into higher line-of-sight modes. The
panels in the leftmost column are simulations of the hexagonal array pictured in Figures 1 and 6(a) and discussed in Section 3. The panels in the middle columns are
simulations from the offset hexagonal array in Figure 6(b), and those in the rightmost column are simulations from the random array pictured in Figure 6(c), both
discussed in Section 4. Line-of-sight modes (k) are plotted on the vertical axis and modes perpendicular to the line of sight (k) on the horizontal axis. The high power
in the lowest line-of-sight (k = 0) mode represents the intrinsic foregrounds. The red-orange wedge across the lower right part of the spectrum is the “foreground
wedge” and comes from the chromatic instrument response, which mixes the intrinsic foregrounds with higher line-of-sight modes (Datta et al. 2010; Morales et al.
2012; Parsons et al. 2012; Trott et al. 2012; Vedantham et al. 2012; Dillon et al. 2013; Hazelton et al. 2013; Thyagarajan et al. 2013, 2015). The solid and dashed
diagonal lines are the “horizon” and “primary field of view” lines, respectively. These denote contamination limits based on sources’ off-axis positions. The vertical
streaks visible in the upper half of panels (d) and (e) are regions of low UV coverage. The black rectangular outlines in each plot denote the values that contribute to
the 1D plots in Figures 5 and 8.

ky < 0.58h Mpc~". Limiting calibration to short baselines can accurately model visibilities from the baselines used in
restrict foreground leakage to low k; modes, freeing a larger calibration. Relying on short baselines for calibration would
region of the EoR window from contamination (Ewall-Wice require a highly accurate and complete model of diffuse
et al. 2017). However, it is critical that the calibration model foreground emission, as these short baselines are sensitive to
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Figure 5. 1D representation of power leakage in the EoR window due to errors
in absolute calibration from sky model incompleteness. The simulations are
based on the hexagonal array pictured in Figure 1. The blue line represents the
difference in EoR window power between simulations with errors in absolute
calibration and those with perfect calibration. The black rectangular outlines in
Figure 4 indicate the 2D PS modes that contribute to the blue line. The black
line is the predicted EoR signal. Excess power in the EoR window due to
absolute calibration errors overwhelm the predicted EoR signal on most of the
PS modes plotted here.

large-scale structure on the sky. In the absence of a diffuse
foreground emission model, it is advantageous to calibrate to
long baselines only (Patil et al. 2016).

To quantify the power leakage in the EoR window due to
absolute calibration errors from an incomplete sky model, we
first subtract the perfect calibration PS in Figure 4(d) from the
PS with absolute calibration errors in Figure 4(a). We then
select a slice of the EoR window region of the 2D PS that spans
kj = 0.07-1.0h Mpc ™" and
ky =8.15 x 107°—1.015 x 10">hMpc ™. This slice is cen-
tered on the mode measured by the shortest 15 m baselines in
the array and is a characteristic representation of the EoR
window contamination that avoids regions of low UV cover-
age. The black rectangular outlines in the PS in Figure 4 delimit
the region. Finally, we average over the power in this slice to
produce a 1D representation of power leakage in the EoR
window as a function of PS mode |k|. We plot the result in blue
in Figure 5. The black line in Figure 5 is a fiducial EoR signal
(Furlanetto et al. 2006).

Figure 5 demonstrates that absolute calibration errors from
sky model incompleteness can contaminate the PS measure-
ment to an extent that dwarfs the EoR signal. The PS modes
plotted here are characteristic of the EoR window, the region of
the PS that is sensitive to the EoR. An EoR detection is not
possible in modes in which foreground power leakage exceeds
the EoR signal. The power leakage shown here is one error
budget contribution corresponding to the limit of perfect array
redundancy. Errors in relative calibration and thermal noise are
not included in this simulation and will compound power
leakage in the EoR window. An EoR detection will require
mitigation of frequency-dependent absolute calibration errors
to keep the total error budget within the required tolerances.

4. Impact of Array Layouts on Calibration Errors

The magnitude of absolute calibration errors due to sky
model incompleteness depends on array layout. Errors are
driven by the frequency-dependent instrument PSF, which
couples to sources that are missing from the calibration model.
Arrays with good PSFs consolidate power in the true source
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locations, reducing the amount of power in the frequency-
dependent source sidelobes.

Pseudo-random arrays sample the UV plane more uniformly
than redundant arrays. In choosing an array layout, the benefits
of redundant calibration must be weighed against the trade-offs
associated with redundant arrays’ degraded UV coverage. In
this section, we compare calibration errors for different classes
of array layouts, some of which could support redundant
calibration. We compare errors in the absolute calibration
parameters, due to calibration model incompleteness for each
of these arrays.

To illustrate the impact of UV coverage on absolute
calibration errors, we compare simulations of three array
configurations, each with 331 antennas and with similar radial
antenna distributions. The first is the simple hexagonal array
discussed in Section 3 and pictured in Figures 1 and 6(a). Next,
we consider a hexagonal array divided into three subarrays
offset by one-third of the minimum antenna spacing (see
Figure 6(b); DeBoer et al. 2016). This array configuration
enables redundant calibration while offering better UV cover-
age than a simple hexagonal array. Finally, we simulate the
randomized array pictured in Figure 6(c). To create this array,
we calculate the radial baseline density of the hexagonal array
from Figure 6(a) and randomly select 331 radial distances from
that density distribution. We then randomly choose an
azimuthal position for each antenna, requiring a minimum
spacing of 5m between antennas. For each of the offset
hexagonal array and randomized array, we repeat the simula-
tions described in Section 3: we simulate visibilities from a
catalog of 51,821 sources, calibrate to a 4000 source sky model
with the FHD software pipeline, and use those calibration
solutions to calculate absolute calibration parameters from
Equations (10) and (11).

Figure 7 shows the average gain amplitudes A for the simple
hexagonal array (blue), offset hexagonal array (red), and
randomized array pictured in Figure 6(c) (bold orange). The
thin orange lines correspond to nine additional realizations of
randomized arrays, illustrating the degree of variability
expected across realizations. Figure 7 indicates that randomized
arrays have significantly smaller variations in A than either the
hexagonal array or the offset hexagonal array, while the offset
hexagonal array has slightly less A variation than the simple
hexagonal array. Similarly, but not pictured here, the gain
phase gradient parameters Ax and Ay have smaller variations
for arrays with better UV coverage.

To understand this effect, it is helpful to consider the per-
antenna sky-based calibration solutions alongside their average
values. Figure 6 plots the per-antenna gain amplitudes in gray
for the simple hexagonal array (left column), the offset
hexagonal array (middle column), and the randomized array
(right column). The average gain amplitudes A are overplotted
in color. The third row plots the per-antenna and averaged gain
amplitudes as a function of frequency. The bottom row gives
the PS representation of the gain amplitudes by taking their
Fourier transform and squaring it. This PS representation
highlights the magnitude of the frequency structure in the gain
amplitude errors and shows the PS modes that are contaminated
by these errors.

Although the randomized array’s average gain amplitudes
are less variable than those of either the simple or offset
hexagonal arrays, its per-antenna gain amplitudes are actually
more variable. This is because the error contributions for each
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Figure 6. Comparison of the gain amplitude errors for three array configurations. The top row shows the antenna positions for each configuration of 331 antennas:
from left to right, a simple hexagonal array (also pictured in Figure 1), an offset hexagonal array, and a randomized array. The antenna locations in the randomized
array are chosen to approximate the radial antenna distribution of the simple hexagonal array. The second row plots of the UV weights for each array configuration
integrated across the 167—-198 MHz frequency band and across a 2 minute observation. These plots are analogous to the measured response in the UV plane to a 1 Jy
source at zenith. They illustrate the UV coverage and smoothness of each of the three arrays. The third row plots gain amplitudes as a function of frequency for each
respective array. The gray lines represent the per-antenna gain amplitudes, and the colored lines (also plotted in Figure 7) denote their average. The bottom row gives
the PS (Fourier transform squared) representation of the per-antenna and average gain amplitudes. Note that the random array has a greater per-antenna gain amplitude
variation than the other two array layouts but a smaller average gain amplitude variation.

antenna in a highly redundant array are correlated. An
individual antenna’s calibration solutions depend on that
antenna’s PSF, i.e., the PSF from all baselines that include
the antenna. The hexagonal arrays have more uniform antenna
PSFs than the random array and therefore have smaller per-
antenna gain amplitude variations. However, modeled

visibilities for redundant baselines experience exactly the same
errors from missing sources in the calibration catalog. Thus,
errors in per-antenna calibration solutions will be correlated
across any antennas that contribute to redundant baselines.
When calculating the average calibration solutions across an
array, errors average coherently in highly redundant arrays and
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Figure 7. Plot of the average gain amplitudes as a function of frequency, A(P),
for the hexagonal array in Figure 6(a) (blue), the offset hexagonal array
pictured in Figure 6(d) (red), and 10 realizations of random arrays (orange).
The bold orange line corresponds to the random array pictured in Figure 6(c),
and the additional faint orange lines illustrate the degree of variability across
randomized realizations of the array configuration. The blue line is plotted
alone in Figure 2. This figure illustrates that the random arrays have less
variation in the average gain amplitude errors than the other two array
configurations. The random arrays therefore exhibit less foreground power
leakage in the EoR window region of the 2D PS from absolute calibration
errors.

incoherently in random arrays, leading to larger error variations
in the absolute calibration parameters for the highly redundant
arrays.

The impact of these errors on the absolute calibration
parameters is apparent in the 2D PS. Figure 4 presents 2D PS
for simulations of the simple hexagonal array (left column), the
offset hexagonal array (center column), and the random array
realization pictured in Figure 6(c) (right column). As described
in Section 3, the top row of the figure shows the PS of
simulated data calibrated with errors in the absolute calibration
parameters. The bottom row shows the same data with perfect
calibration. In each of these figures, the PS of the calibration
model has been subtracted, leaving “residual” PS.

As in Section 3, we produce 1D plots of power leakage in the
EoR window from the slices of the 2D PS space delimited by
the black rectangular outlines in Figure 4. We subtract the
perfect calibration PS from the PS that includes absolute
calibration errors to isolate the power leakage that comes from
the calibration errors. Next, we average the differences to
represent power leakage as function of |k|. These results are
plotted as the solid colored lines in Figure 8. The blue line
corresponds to the hexagonal array and is also plotted in
Figure 5. The red line corresponds to the offset hexagonal
array, and the solid orange line corresponds to the random array
from Figure 6(c). The black line is the fiducial EoR signal.

We also plot a dashed orange line corresponding to a
simulation of the random array calibrated with a traditional per-
antenna, per-frequency sky-based calibration scheme (i.e.,
minimizing Equation (4)). Under traditional sky-based calibra-
tion, sky model incompleteness introduces errors not only in
the absolute calibration parameters but in all per-antenna, per-
frequency calibration parameters. The discrepancy between the
dashed and solid orange lines shows the magnitude of EoR
window contamination from relative calibration errors for the
random array.
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Figure 8. 1D representation of the power leakage from the absolute calibration
errors in the region of the EoR window indicated by the black rectangular
outlines in Figure 4. The solid blue, red, and orange lines are the difference in
the EoR window power between simulations with errors in absolute calibration
and perfect calibration for the simple hexagonal array (Figure 6(a)), the offset
hexagonal array (Figure 6(b)), and the random array (Figure 6(c)), respectively.
The blue line is also plotted in Figure 5. The dashed yellow line represents the
power leakage in the EoR window when, instead of allowing errors in only the
absolute calibration parameters, we have implemented traditional sky-based
calibration and allowed errors in every per-antenna, per-frequency calibration
parameter. The black line is the predicted EoR signal.

5. Discussion

Any calibration scheme that involves a sky model must
contend with frequency-dependent calibration errors from sky
model incompleteness. This includes redundant calibration
techniques that eliminate sky model dependence in the relative
calibration step but nonetheless require a sky model for
absolute calibration. Error mitigation techniques must target
and suppress frequency-dependent calibration errors. These
techniques include developing near-perfect sky models,
calibrating to short baselines, building instruments with
extremely good UV coverage, and manufacturing antennas
with very smooth bandpasses. The success of next-generation
21 cm cosmology experiments such as HERA and the SKA is
contingent on their ability to sufficiently mitigate calibration
errors.

Developing highly complete and accurate sky models is an
active area of research (Carroll et al. 2016; Hurley-Walker et al.

2017). While the importance of sky model completeness has
long been recognized in the context of sky-based calibration,
redundant calibration also benefits from better sky modeling.
Current efforts to image diffuse foreground structure will also
enable better calibration of compact arrays that are sensitive to
large-scale structure. While realistic sky models can never
achieve perfect accuracy and completeness, better sky models
minimize errors from the sky model incompleteness.

In Section 3, we explain that foreground power leakage from
calibration errors falls off at a k| threshold determined by the
maximum baseline extent of the array. By calibrating to short
baselines only, it may be possible to restrict the contamination
of the EoR window to low kj modes (Ewall-Wice et al. 2017).
These short-baseline calibration schemes are sensitive to the
accuracy and completeness of the diffuse foreground model. To
characterize these errors, future work must extend the
simulations described in this paper to include diffuse emission.

In Section 4, we show that errors from an incomplete sky
model are reduced for arrays with more uniform UV coverage.
For redundant arrays, improving UV coverage may mean using
an array layout like the offset hexagon from Figure 6(d)
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(DeBoer et al. 2016) instead of a simple hexagon like that from
Figure 6(a) or adopting a hybrid array configuration with both
redundant and nonredundant components such as MWA Phase
II (Wayth et al. 2018). Nonredundant arrays can have more
uniform UV coverage than highly redundant arrays; the
benefits of redundancy must be weighed against the greater
errors in absolute calibration that result from poor UV
coverage. Furthermore, arrays with sufficiently uniform
antenna responses such that calibration benefits from averaging
across antennas do not gain an advantage from redundant
calibration. Averaging antennas eliminates the relative calibra-
tion degrees of freedom such that calibration consists of the
absolute calibration step only. In that regime, array redundancy
has an advantage if PS sensitivity, rather than calibration
systematics, is a principal concern (Parsons et al. 2012).
Instruments with smooth spectral responses are the gold
standard of precision calibration. Like antenna uniformity,
spectral smoothness can be used as a prior on calibration
solutions, prohibiting calibration errors from introducing power
into the high k; modes sensitive to the EoR (Trott &
Wayth 2016; de Lera Acedo et al. 2017; Trott et al. 2017).
However, if this prior is imposed on an instrument that is not
inherently spectrally smooth, calibration will not fit the true
spectral features of the instrument response, and they will
contaminate the PS. To avoid contamination of the EoR signal,
any spectral features in the antenna and receiver system faster
than ~8 MHz must be smaller than ~107> (Barry et al. 2016).

6. Conclusion

Redundant calibration requires a sky model to fit the
absolute calibration parameters that are degenerate under
relative calibration, as described in Section 2. Because of its
sky model dependence, redundant calibration is susceptible to
frequency-dependent calibration errors due to missing sources
in the sky model, an effect identified by Barry et al. (2016) in
the context of sky-based calibration. Unless these errors are
mitigated, this effect can quickly overwhelm the EoR signal,
precluding a detection even in the limiting case of no noise and
perfect redundancy.

In Section 2, we present the mathematical framework of both
sky and redundant calibration, and decompose redundant
calibration into two steps: relative calibration and absolute
calibration. Using this framework, we extend the work of Barry
et al. (2016) to redundant calibration by exploring errors in
absolute calibration in the limit of perfect relative calibration.
This corresponds to a nonphysical regime of perfect array
redundancy and the absence of noise. In Section 3, we present
results from simulations created with the FHD (Sullivan et al.
2012) and eppsilon (Jacobs et al. 2016) software packages. We
show that calibrating to an incomplete sky model introduces
frequency-dependent errors and that exploiting array redun-
dancy cannot eliminate these errors. Furthermore, we show that
these errors can exceed the predicted EoR signal, precluding a
detection. In Section 4, we simulate these errors for several
array configurations, showing that errors are suppressed for
arrays with a more uniform UV coverage.

A detection of the EoR will require mitigation of these
calibration errors. Error mitigation can be accomplished by
improving calibration models, using short-baseline calibration
schemes, building arrays with good UV coverage, developing
extremely spectrally smooth antenna and receiver systems, or
through some combination of these strategies. Calibration
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errors are currently a dominant systematic limitation in the field
and combating these errors should be a primary concern for the
next generation of 21 cm cosmology arrays such as HERA and
the SKA.
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