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ABSTRACT

21 cm power spectrum observations have the potential to revolutionize our understanding of the
epoch of reionization and dark energy, but require extraordinarily precise data analysis methods
to separate the cosmological signal from the astrophysical and instrumental contaminants. This
analysis challenge has led to a diversity of proposed analyses, including delay spectra, imaging
power spectra, m-mode analysis, and numerous others. This diversity of approach is a strength,
but has also led to a confusion within the community about whether insights gleaned by one
group are applicable to teams working in different analysis frameworks. In this paper, we
show that all existing analysis proposals can be classified into two distinct families based on
whether they estimate the power spectrum of the measured or reconstructed sky. This subtle
difference in the statistical question posed largely determines the susceptibility of the analyses
to foreground emission and calibration errors, and ultimately the science different analyses can
pursue. In this paper, we detail the origin of the two analysis families, categorize the analyses
being actively developed, and explore their relative sensitivities to foreground contamination
and calibration errors.

Key words: methods: data analysis —dark ages, reionization, first stars —cosmology: obser-
vations.

1 INTRODUCTION

Radio observations of redshifted 21 cm hydrogen emission have
the potential to reveal our cosmic dawn, constrain dark energy, and
constrain cosmological parameters over an unprecedented cosmic
volume. Major power spectrum (PS) analyses of hundreds of hours
of data are underway by PAPER, LOFAR, GMRT, GBT, MWA, and
CHIME, and HERA is about to start science data collection (Donald
C. Backer Precision Array for Probing the Epoch of Reionization,
Parsons et al. 2010; Low-Frequency Array, Haarlem et al. 2013;
Giant Metrewave Radio Telescope, Gupta et al. 2017; Green Bank
Telescope, Prestage et al. 2009; Canadian Hydrogen Intensity Map-
ping Experiment, Bandura et al. 2014; Murchison Widefield Array,
Tingay et al. 2013; Hydrogen Epoch of Reionization Array, De-
Boer et al. 2016). Many different PS analyses have been proposed,
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and a number have been developed into full-fledged data analysis
pipelines.

The community is learning rapidly, and instrument/analysis fea-
tures such as the ‘foreground wedge,” the ‘window,” and the ‘pitch-
fork’ are major focuses of the literature (see Section 2 and references
therein). However, as the effects are always measured or simulated
within one of the many analysis frameworks, the details of the
analysis become intertwined with the results. Consequently, even
domain experts are often uncertain which effects identified by other
groups will apply to their own work.

After a careful review of the 21 cm cosmology literature, we find
that all of the proposed analyses can be sorted into two ‘families’
based on the mathematics of the final estimator (Section 3). The
first family of analyses calculates the PS of the measured sky, while
the second family calculates the PS of the reconstructed sky. This
subtle difference in the statistical question being posed has profound
effects on the sensitivity of the analyses to foreground emission and
calibration errors.
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The mathematics for how foregrounds contaminate measured
(delay-style) and reconstructed (imaging-style) power spectra is
fully developed in a paper by Liu, Parsons & Trott (2014). However,
the practical ramifications of this distinction have not been fully
explored and are underappreciated by the community. The goal of
this paper is to clearly illustrate the connections between different
analyses. This will enable practitioners both to recognize which
effects apply to their efforts, and illuminate the pros and cons of
measured and reconstructed power spectra.

After a brief review of interferometric 21 cm measurements with
chromatic instruments (Section 2), we identify the two families
of analysis (Section 3). We then use this insight to explore how
astrophysical foregrounds (Section 4) and calibration errors (Sec-
tion 5) appear in the two families of analyses. In Section 6, we
discuss the pros and cons of the two approaches, and where we
see the state-of-the-art 21 cm PS analysis heading in the years
to come.

2 INSTRUMENT CHROMATICITY

All interferometric measurements are inherently chromatic. Be-
cause the astrophysical foregrounds are very spectrally smooth, in
principle the line-of-sight 21 cm fluctuations are free of foreground
contamination (see Furlanetto, Oh & Briggs 2006 and Morales &
Wyithe 2010 for reviews). However, the natural chromatic response
of an instrument leads to a wedge-like region of contamination pre-
dicted in Datta, Bowman & Carilli (2010), Morales et al. (2012),
Parsons et al. (2012), Trott, Wayth & Tingay (2012), Vedantham,
Shankar & Subrahmanyan (2012), Dillon, Liu & Tegmark (2013b),
Hazelton, Morales & Sullivan (2013), Thyagarajan et al. (2013),
Thyagarajan et al. (2015a) and observed in Pober et al.(2013),
Dillon et al. (2013a), Thyagarajan et al. (2015b), Jacobs et al.
(2016), and Beardsley et al. (2016). The origin of this contami-
nation can be seen by carefully examining the frequency response
of a single visibility. In this section, we briefly review the ori-
gin of chromaticity and the associated wedge and window in
21 cm cosmology PS, closely following the developments in Tay-
lor, Carilli & Perley (1999), Thompson, Moran & Swenson (2001),
Morales et al. (2012), Liu, Parsons & Trott (2014), and Pober
et al. (2016).

The measured visibilities are the cross-correlations of the electric
field measured between pairs of antennas. The visibility for one pair
of antennas can be written as

w5 = [ (a0 NEG. )
XAj(a, f)E*(o, f) e—iZﬂ[Ar,-j f/c]0> d20’ (1)

where E(@, f) is the instantaneous electric field of the sky as a
function of direction and frequency, A is the directional electri-
cal sensitivity of antennas i & j, and Ar; is the physical distance
between the antennas. The observed electric field detected by each
antenna is given by AE with the exponential describing the direction-
dependent time delay of the signal at the second antenna relative to
the first (the Green’s function propagator of the electric field for a
far-field source). The measured visibility is then the angular integral
and time average (angle brackets) of the cross-power between the
two antennas.

We can move from electric field to brightness description us-
ing (EE*), = I. We can further simplify the resulting equation
by assuming the antennas have the same angular response, so we
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can use the antenna power sensitivity B = |A|?, and by replacing
the physical distance with the antenna separation in wavelengths
u,-j = Ar,-j f/CZ

w(f)= [ 10,1180, pre oo, @

Note both # and @ are vectors in this notation. We can immedi-
ately see that for a single flat-spectrum source (/ is a §-function
at @) the visibility will be proportional to B(@, f)e "2™4ii(/10s _
the visibility will oscillate with increasing frequency. The longer
the baseline length u;;, the more rapid the fequency oscillations.
While there are several sources of instrument chromaticity, fun-
damentally the array appears larger (in wavelengths) at higher
frequencies.

To understand the effect of this visibility oscillation on the power
spectra, it is useful to continue to the Fourier representation of the
instrument measurement. The integral in equation (2) is equivalent
to a 2D angular Fourier transform (FT) from §=u. Taking the FT
we obtain

vij(f)=/[1(14,f)*B(u,f)]S(u—It?j)dzu, 3

where we have Fourier tranformed both the sky brightness 7 and
the antenna brightness sensitivity B,! used the Fourier convolution
theorem (* is the convolution operator), and expressed the discreet
baselines u;; as a §-function. Alternatively, we can use the §-function
to remove the convolution over all # to obtain

u(f) = [ 10 B =, . @

In other words, the visibility is equal to the FT of the sky brightness
integrated by the compact uv-antenna response pattern B(u).

Fig. 1 pictorially shows this process using the angular wavenum-
ber versus frequency space I(u, f). In the cartoon, the corrugated
shading represents the real (or imaginary) component of the emis-
sion from a single flat-spectrum source away from the beam centre.
An offset §-function in image space (one point source) becomes
an angular corrugation after the angular FT, with constant emission
strength as a function of frequency. The visibilities measured the
sky emission at the baseline separations indicated by the diago-
nal black lines. The distance between two antennas measured in
wavelengths increases with frequency (u;; = Ar;; f/c), naturally
leading to oscillating visibility measurements with frequency (equa-
tion 2). As baselines become longer, the speed of oscillation from
the foreground source increases. This is the fundamental source
of the foreground wedge, as studied in depth in Vedantham et al.
(2012), Morales et al. (2012), Trott et al. (2012), Parsons et al.
(2012), and Hazelton et al. (2013). However, as we will explore in
Section 4, the foreground wedge does appear differently in the two
families of PS estimators.

While the foregrounds are spectrally smooth, the cosmological
signal has frequency structure due to redshifted line-of-sight fluc-
tuations in the 21 cm brightness temperature. The true PS of the
sky is equal to taking the true sky I(u, f), mapping u — k, with the
angular diameter distance and mapping f to line-of-sight distance,
and Fourier transforming to obtain I(k , k) and squaring to obtain

! Often Fourier transformed variables are indicated with a tilde (e.g. I (x, f)),
but as we want to use a hat to differentiate between true and estimated
quavntities later in the paper we omit the tilde and indicate the FT by the
variable being a function of the Fourier coordinate u.
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Figure 1. Cartoon adapted from Morales et al. (2012) shows how flat-

spectrum foregrounds create oscillatory visibilities, and why the oscillations
are faster for longer baselines. Described in detail in Section 2.

uor k|

P"(k) (Morales & Hewitt 2004). However, no instrument measures
the true sky. The analysis challenge is how to construct an estimate
of the true PS from the measured interferometric visibilities, and it
is how this estimate is constructed that determines to which family
the PS analysis belongs.

3 POWER SPECTRUM ESTIMATORS

There have been a number of different proposed methods for esti-
mating the cosmological PS P from interferometric measurements,
including the imaging PS, the variance statistic, the delay spec-
trum, and m-mode analysis (Morales & Hewitt 2004; Zaldarriaga,
Furlanetto & Hernquist 2004; Mellema et al. 2006; Chang et al.
2008; Iliev et al. 2008; Stuart et al. 2008; Pen et al. 2009; Parsons
et al. 2012; Vedantham et al. 2012; Masui et al. 2013; Switzer et al.
2013; Dillon et al. 2014; Paul et al. 2014, 2016; Patil et al. 2014,
Shaw et al. 2014; Liu, Zhang & Parsons 2016; Trott et al. 2016;
Gehlot & Koopmans 2017). While the language used to describe the
estimators is highly variable, the mathematics fall into two families
depending on whether they measure the PS of the measured visibil-
ities (‘delay spectrum’ approaches) or the PS of the reconstructed
sky (‘imaging’ PS approaches). In this section we carefully review
the proposed measures, and sort the proposals into two families of
estimators.

‘While complete analysis pipelines that transform raw visibilities
into PS estimates are often broken into several distinct software
packages, here we are considering the complete pipelines and clas-
sifying them by the characteristics of the final estimator.
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Figure 2. This cartoon shows the oscillations of the different baselines in
Fig. 1, showing the faster oscillation for longer baselines. Reconstructed PS
estimators Pk, k) take the frequency FT along a fixed angular scale, as
shown by the vertical thick dashed line, whereas measured sky PS estimators
Pk, , k;)take the frequency FT along the direction of the baselines as shown
by the thin dash—dotted line. This figure is described in detail in Section 3.

3.1 Imaging or reconstructed sky PS

The three dimensional PS of reconstructed 21 cm EoR images was
first introduced in Morales & Hewitt (2004). Conceptually this is a
very simple estimator—it is just the 3D FT and square of the recon-
structed sky estimate [(6, f) mapped to cosmological coordinates.
The resulting PS estimator is P(k,, k;), where k, and k; are the
angular and line-of-sight wavenumbers respectively.

The subtlety is in how the sky estimate is made from interferomet-
ric visibility measurements. Because kj is calculated by taking the
FT of [(k., f) perpendicular to k,, the upper and lower frequen-
cies incorporate information from baselines of different physical
length as indicated by the vertical thick dashed line in Fig. 2. All of
the baselines agree on the amplitude and phase of the foreground
sources at that scale (dark colour where the dashed line crosses),
so the majority of the power after the line-of-sight FT is at k; = 0.
If the estimate of the sky / was equal to the true sky, the imaging
PS estimator ﬁ(k 1, kj) would be free of foreground contamination
except at the lowest k; scales. But there are necessarily errors in the
estimate of the sky, and these errors leak power from the smooth-
spectrum foregrounds into the cosmological volume. This leakage
appears in a distinctive ‘wedge’ pattern with a ‘window’, which we
will explore in Section 4.

A deep literature on how to estimate / and Pk, ky) from in-
terferometric visibilities has been developed, and it has spurred
the application of optimal map making and advanced data inver-
sion techniques to interferometric data (e.g. Myers et al. 2003;
Bhatnagar et al. 2008; Morales & Matejek 2009; Sullivan et al.
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2012; Dillon et al. 2014; Shaw et al. 2014; Zheng et al. 2017). The
reconstructed PS has two defining features:

(i) The line-of-sight coordinate k; is orthogonal to the k, coor-
dinate (by construction).

(i) Because of this choice of coordinates, data from multi-
ple baselines are linearly combined in forming the values of the
Pk, k) estimator. The FT of frequency is at a fixed angular scale,
and due to the change in array size with frequency (in wavelengths)
this involves incorporating information from multiple baselines in
a frequency-dependent way. This strongly affects how foregrounds
appear in the resulting PS and the sensitivity to calibration errors,
as we will discuss in Sections 4 and 5.

It is interesting to note that many of the advanced PS estimation
techniques never create an image. But by creating a PS estimate
in the k, ,k; coordinates, they are implicitly working with a recon-
structed sky and are combining data from baselines of different
length in a frequency-dependent way during the estimation process.

3.2 Delay spectrum or measured sky PS

The delay spectrum was introduced by Parsons et al. (2012) and
has been used with PAPER data to provide PS limits. In the delay
PS, a visibility — either a single baseline or an average of redundant
baselines — is Fourier transformed along frequency and squared to
form the PS estimator. Fundamentally, this is a PS of the measured
sky, and no reconstruction of the true sky is attempted.

From Fig. 2, if k; is the line-of-sight wavenumber we can see
that for short baselines the visibility as a function of frequency is
sampling sky information nearly parallel to the line of sight but not
quite. The estimator is really along k, (diagonal dash—dotted line),
where 7 is the time delay of the electric field propagation between
antennas t; = Ary - 0/c, and it is this time delay that gives the
delay-spectrum approach its name.

Measurements of multiple baseline lengths can be used to fill out
the delay-spectrum estimator P(k,, k), and baselines of different
orientation or from different sidereal times can be added incoher-
ently to improve the signal to noise of the estimator. Significant
additional work has improved the sensitivity of the technique by
optimal time integration fringe-rate filtering (Parsons et al. 2016),
leading to a very deep literature and mature estimator. But for our
purposes, the measured sky PS estimators have two key features:

(1) Because the FT from f to k, follows the baseline migration
(diagonal lines in Fig. 2), the same baselines contribute at all fre-
quencies. Redundant baselines can be added together to create a
single low-noise measurement before the FT and squaring oper-
ations (Parsons et al. 2012), and advanced versions can combine
baselines that are not identical (Zhang, Liu & Parsons 2018). But
crucially, the baselines contributing to the FT do not change with
frequency.

(ii) The line-of-sight coordinate k, is nearly, but not exactly,
orthogonal to the transverse coordinate k. Because k; ~ kj, this
has a negligible effect on the cosmological PS, and if needed the
theory could be rephrased in terms of P(k,, k;) (Parsons et al.
2012). However, choosing k, as the basis of the estimator has a
significant impact on how the foreground emission contaminates
the PS estimate as explored at length in Section 4.

3.3 Classifying analysis efforts

Table 1 classifies the 21 cm PS analysis efforts that have been devel-
oped into full analysis pipelines. The first column lists the measured
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sky PS (P(ky, k.)), and the second column lists the reconstructed
sky PS (P(k., ky)). Each of these analysis efforts is backed by many
more papers than we have space to list here (see references therein).
Other analyses such as Peterson et al. (2009) and Liu et al. (2016)
can also be sorted into P(k, , k) or Pk, k) families, but have not
yet been developed in to full data-ready software pipelines.

The process of classifying all of the analyses highlights two
particularly interesting variants: the m-mode analysis by Shaw et al.
(2014, 2015) and the physical gridding proposal by Vedantham et al.
(2012) and Paul et al. (2014, 2016).

The m-mode analysis was proposed by Shaw et al. (2014), and
further developed in Shaw et al. (2015), and is the basis for the
CHIME dark energy measurement. On first glance, the m-mode
formalism looks very different from most PS analyses, and in many
ways it is: no image is ever formed, it is optimized for a drift
telescope that sees all right ascensions, and it must work deep in
the foreground wedge to achieve CHIME’s dark energy science.
In the m-mode analysis, the antenna beams are decomposed into
spherical harmonics and are used to map the measured visibilities
directly into the /,m spherical harmonic basis. Further, in CHIME
the close packing of the antennas along the feed in the N-S (/)
direction and the rapid sampling in time () leads to almost perfect
sampling. Because of the drift scanning strategy that covers all right
ascension, these measurements are never mapped to a ‘uv-plane’.
But in the chosen harmonics, the measurement coverage is nearly
perfect up to the angular resolution of the instrument — perfect ‘uv’
coverage.

‘While the m-mode analysis never creates an image, it does es-
timate the &, coefficients of the sky, and is properly classified as
a reconstructed sky PS. The estimator is explicitly in the P(k, , ky)
frame, and if desired the dy,, coefficients could be transformed into
a reconstructed image of the sky. Further, because the instrument
is chromatic there is a frequency-dependent mapping of baselines
to @, (ky) estimators — baselines of different physical length are
linearly combined to form one estimator. These are the two hall-
marks of a ‘reconstructed sky’ PS analysis: using the P(k k)
basis and combining data from baselines of different physical size
in a frequency-dependent manner. m-mode analysis is in the same
family as more traditional imaging PS, albeit a very advanced im-
plementation specifically tuned for a unique style of instrument.

Another variant first proposed by Vedantham et al. (2012) and
further developed by Paul et al. (2014, 2016) and Gehlot &
Koopmans (2017), is to grid visibilities by their physical separa-
tion (r instead of ). This can be visualized as a skewed version of
Fig. 1, where the black baselines now run vertically but the fringes
from a flat- spectrum source run diagonally (same crossing angle,
fringes run from top left to bottom right). One can efficiently im-
age this kind of analysis using the Chirp-Z Transform in place of
the FT, but the proposed PS estimator is to take the FT along the
black lines of set physical separation. While gridding is normally
associated with imaging and reconstructing a sky, in this case the
PS estimator is implicitly in P(k,, k.), and because the FT aligns
with the physical baseline separation, data from baselines of differ-
ent physical length are never combined in a frequency-dependent
way. So despite the gridding, this matches the characteristics of a
measured sky delay-spectrum analysis.

‘Which family an estimator belongs to is of more than academic in-
terest, as it directly determines how foregrounds and calibration er-
rors affect the final PS measurement. In general, any lesson learned
can be directly applied to all of the analyses in the same family.
There may need to be some translation, but even technical effects
such as uv beam clipping (how the contribution of a baseline goes
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Table 1. Major 21 cm PS analysis efforts.
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Measured PS

Reconstructed PS P(k ki)

PAPER & HERA delay PS

(Parsons et al. 2012; Ali et al. 2015;

Jacobs et al. 2015; Kohn et al., in preparation)
MWA gridded delay PS

(Vedantham et al. 2012; Paul et al. 2016)
LOFAR gridded delay PS (Gehlot & Koopmans
2017)

GMRT
(Paciga et al. 2011)

GBT auto and cross-correlation
(Masui et al. 2013; Switzer et al. 2013)

LOFAR variance (Patil et al. 2014)

LOFAR PS (Patil et al. 2017)

MWA FHD + EmpCov
(Dillon et al. 2015; Ewall-Wice et al. 2016)

MWA FHD + ¢ppsilon
(Jacobs et al. 2016; Beardsley et al. 2017)

MWA RTS + CHIPS
(Trott et al. 2016; Beardsley et al. 2017)

CHIME m-mode (Shaw et al. 2014, 2015)

to zero as it passes away from the angular mode of interest, e.g.
Figs 2 and 4) translate generally from FHD to CHIPS and m-mode
analysis and all of the other P(k, k;)-style analyses. Similarly the
‘pitchfork’ effect identified by Thyagarajan et al. (2015a) can be
directly translated to all of the measured sky Pk, k) analyses.

In the next two sections we will explore how residual foregrounds
and calibration errors generically affect analyses within the two
families.

4 FOREGROUND FEATURES

One of the significant developments in 21 ¢cm cosmology has been
the recognition and understanding of the ‘foreground wedge’ and the
associated ‘EoR window’. The appearance of the foreground wedge
in both reconstructed and measured PS has led to the erroneous
conclusion that the approaches are effectively identical. While the
foreground wedge appears in the same location in both formalisms,
the amplitude and characteristics of the wedge differ between them.

To illustrate these effects, we have analytically calculated the
visibilities (equation 2) for a single flat- spectrum source towards
the edge of the field of view for an idealized array with uniform
uv-density.? We then use these analytic visibilities with full PS
estimation pipelines to produce both measured and reconstructed
sky PS shown in Fig. 3.}

Referring back at equation (2), we can see that a single
source will cause frequency ripple in a visibility proportional to
e i2mlAry f1el6 — p=i2muii ()95 where u is proportional to the an-
gular cosmological distance k. For the measured PS, we simply
FT each visibility along frequency to get a §-function in delay

2Uniform uv-density is not realizable with a physical antenna layout, but is
useful for illustration purposes as the baseline density does not depend on
ki.

3 At the dynamic range shown, all measured PS estimators will give the left-
hand plot, and all reconstructed PS estimators will give the right-hand plot.
At higher dynamic ranges, implementation details will become important.
For these figures, the MWA beam was used to simulate the visibilities,
a custom python implementation of the delay PS was used for the left-
hand plot, and the FHD-¢ppsilon reconstruction package was used to create
the right-hand plot (detailed in Barry et al., in prep.). Both incorporate a
Blackman-Harris spectral window function.

(convolved with a spectral window function associated with the
bandpass and frequency-dependent beam, Parsons et al. 2012). For
our array with many baselines and one contaminating source, the
resulting measured sky PS Pk, k) is shown in the left-hand panel
of Fig. 3. The power from the contaminating source appears at a
constant diagonal line at 7 o< k| - 6.

The primary feature of the foreground contamination in the mea-
sured sky PS is that all of the power from a contaminating source
appears at the associated k.. The delay transform is a form of 1D
‘imaging’, with every source having a specific delay. With many
sources at different locations the wedge will fill in via superposi-
tion, and as it is the apparent brightness of the sources that matters
the amplitude of the foreground wedge will fall in k, proportional
to the antenna beam with no meaningful contamination beyond
the Earth’s horizon (Thyagarajan et al. 2015a carefully explores
how diffuse structure appears near the horizon in measured sky
PS). As the foreground sources are approximately four orders of
magnitude brighter than the EoR signal, the contamination of the
foreground in the wedge is much brighter than the expected sig-
nal. In data, this bright foreground emission with a clear drop in
emission at the horizon is most clearly seen in Pober et al. (2013)
and confirmed in simulations and observations by Thyagarajan
et al. (2015a,b).

For reconstructed sky PS, the frequency FT is taken at a fixed
angular scale () instead of along individual visibilities. Often this
is accomplished by gridding to a uvf-cube prior to the FT, but the
same effects can be incorporated with frequency-dependent visibil-
ity mappings such as in the m-mode and CHIPS analyses. This trans-
form at a fixed angular scale is shown visually by the thick dashed
vertical line in Fig. 2. Along that line, the different baselines agree on
the amplitude and phase of a contaminating source, so the dominant
term in the FT is the flat spectrum k; = 0 DC mode. The right-hand
panel of Fig. 3 shows the reconstructed sky PS for the same analytic
visibilities. There is contamination along the same diagonal band
as seen in the left-hand measured PS but at a significantly reduced
amplitude.

The amplitude of the foreground wedge in a reconstructed PS
is related to the accuracy of the sky reconstruction — with perfect
reconstruction all of the foreground emission is correctly mapped
to ky ~ 0 and the foreground wedge disappears. In practice, the
accuracy of the sky reconstruction depends on both the analysis
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Figure 3. This figure shows the measured (left) and reconstructed (right) PS for the same simulated data. Visibilities for a single flat-spectrum foreground
source near the edge of the field of view were analytically generated for an instrument with uniform baseline density. In both cases of PS, we have taken a
2D slice through the 3D PS volume with &k aligned with the source. In the left-hand measured PS, all of the power from the contaminating source appears
at the associated band in the PS (the dashed line shows the theoretical contamination location of the source). In the right-hand reconstructed PS, most of the
power is reconstructed at k = 0, with a smaller amount of power appearing in the same diagonal band due to imperfect sky reconstruction. While both PS
have foreground contributions at the same location in the wedge, the amplitude of that contamination and the power at k| & 0 is quite different as described in
the text. If we were to add many more sources at different locations, the wedge would fill in as seen in data.

and the instrument characteristics. For smooth spectrum sources,
the instrumental effects indicated in Fig. 1 can be inverted to
create a catalogue or model, either through traditional deconvo-
lution (e.g. Carroll et al. 2016; Hurley-Walker et al. 2017) or
more formal matrix inversion techniques (e.g. Shaw et al. 2014).
Foreground emission captured in these models can be fully re-
moved (modulo calibration and instrument model errors), with no
associated emission in the foreground wedge. Residual foreground
emission not captured in these models has its power split between
the k; ~ 0 modes and the wedge as shown in the right-hand panel
of Fig. 3. The fraction of the residual emission in the diagonal
band is determined by the point-spread function (PSF) of the in-
strument — the better the PSF the more accurate the (dirty) sky
reconstruction and correspondingly less emission in the foreground
wedge. As the uv coverage and calibration precision of an array
increases, both the PSF and the depth of foreground source cata-
logues improve and the magnitude of the emission in the foreground
wedge decreases.

While both measured and reconstructed sky PS see a foreground
wedge, the wedge has qualitatively different properties:

(i) For the measured sky PS, the foreground naturally recon-
structs to k, - 0. k;, = 0 simply refers to sources at phase centre
(zero delay) and is not preferred over other locations in the wedge.
The amplitude of the foreground emission in the wedge is much
brighter in a measured PS because it contains the full amplitude

MNRAS 483, 2207-2216 (2019)

of the foregrounds. This is clearly seen in Pober et al. (2013) and
Thyagarajan et al. (2015b).

(ii) For the reconstructed sky PS, most of the foreground power
appears at k ~ 0, with leakage due to imperfect foreground isolation
forming a line at the associated k - 6. The wedge will fill in with
the superposition of many sources, but the amplitude of the wedge
is strongly associated with the instrument PSF and the quality of
the foreground removal. This is seen in PS measurements in Jacobs
et al. (2016) and Beardsley et al. (2016).

Measured and reconstructed PS estimators are asking different
statistical questions. The measured PS estimator £ (k , k) is the PS
of the calibrated visibilities and does not explicitly project sources
to a specific location on the sky. A particular k; in the wedge
can be generated by either a flat-spectrum source at a particular
position or by sources with spectral variations at other locations —
the estimator does not distinguish. In contrast, 13(k 1, ky) is the PS
of the reconstructed sky. The reconstruction actively tries to remove
the effects of the chromatic instrument and place the emission at its
true location. The errors in this reconstruction due to unsubtracted
sources coupling with the chromatic PSF lead to the emission in the
wedge. In both estimators, the foreground wedge is generated by the
baseline movement of the instrument (Fig. 1), so the wedge appears
in the same location. But because the estimators are asking different
questions, the foreground characteristics and the amplitude of the
wedge are different.
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The differences in how the foregrounds appear in the two classes
of estimators impact the kinds of science that can be pursued. But
to fully understand these effects, we must also understand how the
analyses respond to calibration errors.

5 CALIBRATION

The importance of calibration has long been recognized in 21 cm
cosmology and is a very active area of current research (e.g.
Barry et al. 2016; Patil et al. 2016; Trott et al. 2016; Ewall-Wice
et al. 2017). The purpose of calibration is to measure the as-built
instrument performance — A;(0, f) in equation (1) — and include it
in the analysis. A full understanding of the causes and effects of
calibration errors is well beyond the scope of this paper, however,
it is instructive to qualitatively understand how calibration errors
affect our two families of PS estimators.

Because calibration is tightly associated with array layout, we
find the clearest general argument is analytic. Assuming the broad
calibration worked well, we will focus only on small differences
between the true antenna performance and the antenna calibration
used in the analyses — the calibration errors. In the limit of small
calibration errors, it is conceptually helpful to factor the error in the
antenna model into three terms:

f indep. f dep. beam shape
MA@, )= Aaie™ x Aai(fe* "D x AGi(@, ). (5)

These terms represent the overall frequency-independent error in
the sensitivity (Aa) and timing (A¢) of an antenna, the frequency-
dependent sensitivity and timing errors, and the beam shape error.
In the following subsections, we will explore how these different
kinds of calibration errors affect the reconstructed and measured
sky PS. The major result of this analysis is that reconstructed PS are
much more sensitive to frequency-independent calibration errors
than measured PS.

5.1 Frequency-independent calibration errors

Our first case is a small frequency-independent error in either the
sensitivity or phase of one antenna (Aa or A¢). For the delay
spectrum of a single baseline, frequency-independent calibration
errors have almost no effect. The amplitude makes a minute error in
the strength of the PS. The phase error corresponds to a small shift
in 7. If many baselines are added together incoherently, the phase
error will shift and blur the delay PS very slightly, but will have
no material effect on the location and amplitude of the foreground
emission and the EoR window should remain clean.

In contrast, for a reconstructed sky PS the same calibration error
can move power from the k; = O line into the foreground wedge
and potentially beyond. We can show this pictorially in Fig. 4
for simple interferometric imaging, though the same mathemati-
cal effect occurs in all reconstructed PS, even those in which no
image is explicitly formed. In simple interferometric imaging, a
visibility is first gridded to the uvf-cube (I(u, f)) using a grid-
ding kernel with a small width in AuAv, as shown in the left-hand
side of Fig. 4. Mathematically, the estimated apparent sky in uvf
coordinates is

>y vii(f)B*(u — Ary f/c, f)
> B*w—Ariif/e f)

where B*is the gridding kernel. The term Aryfic captures the
frequency-dependent movement of the baseline. Because of the

Iu, f)= , (6)
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Figure 4. The contribution of a single miscalibrated baseline to the re-
constructed uvf-cube. In the left-hand panel, a single miscalibrated baseline
(diagonal line) contributes to the estimate at a particular angular scale (verti-
cal dashed line) over a range of frequencies. At every frequency, the baseline
contributes to a range of angular scales as indicated by the small triangles
(the gridding kernel in an imaging analysis or the covariance scale in other
reconstructed sky estimators). The error contribution of the miscalibrated
visibility to the angular scale of interest is shown to the right in three scenar-
ios: (a) frequency-independent calibration error in the high baseline number
limit, (b) frequency-independent calibration error in the single baseline limit,
and (c) frequency-dependent calibration error in the high baseline number
limit.

finite width of the gridding kernel, each baseline contributes to a
range of frequencies with a weight associated with the uv-space
beam shape. The range of frequencies depends on the size of the
gridding kernel (antenna size, inverse of FoV) and the baseline
length since longer baselines cross more quickly. We see that along
any given angular scale u the uvf-cube [ (u, f)is a weighted average
of the visibilities.

The question is how are I(u, f) and Pk, k) affected by a
single miscalibrated visibility measurement. Because [(u, f) is a
weighted average, the effect depends on how many visibilities are
contributing.

In the limit of many visibilities, a frequency-independent error
takes on the shape of the uv-beam as it crosses the angular scale u
of interest, as shown in (a) on the right-hand side of Fig. 4. This
produces an enveloped error. The shape of the envelope depends
on the gridding kernel, and how close the baseline comes to di-
rectly crossing the angular scale u (impact parameter), but for a
single miscalibrated baseline that does directly cross and an an-
gularly symmetric frequency-independent beam, the error in the
reconstruction at the angular scale u is

Al(u, f) = Avi; B (A f Ary; /o), )

where Af is the difference from the frequency at the centre of
the baseline crossing. The frequency shape of the error along the
angular scale of interest is just the shape of the gridding kernel times
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a scaling factor ry/c related to how quickly the baseline moves with
frequency. In most analyses, the gridding kernel is the angular FT
of the antenna beam shape, so the contamination is a scaled version
of the antenna beam in uv coordinates. In a nice bit of symmetry,
when we perform the frequency FT f — kj to calculate P(k,, k),
this translates the uv beam back to scaled angular coordinates.
The calibration contamination in the PS is enveloped by a scaled
version of the angular antenna beam, centred at k; = 0. So in the
limit of many baselines, frequency-independent calibration errors
move power from k; ~ 0 into the wedge for a reconstructed PS. (A
full mathematical description can be obtained by substituting in the
visibility error Av into the mathematics of Liu et al. 2014, and can
be qualitatively understood with a similar substitution into Hazelton
et al. 2013 and the animated version their fig. 2 available online).

There is, however, the other limit of very few baselines. In this
limit, the weighting provided by the beam in the numerator and
denominator of equation (6) divide out, and we get a sharp change
in the reconstructed f(u, f) as the miscalibrated visibility crosses,
as shown in case (b) of Fig. 4. This sharp change leads to calibration
errors contributing to all &, including those in the window.

These effects can be seen in data. For the MWA, the baseline
density is very high at small k; and becomes sparse at large &, . In
the PS published in Jacobs et al. (2016) and Beardsley et al. (2016),
the contamination at low & is mostly confined to the wedge because
the baseline density is high, whereas it leaks into the window at high
k, where the baseline density becomes low and the opposite limit
is reached.

Sparse baselines usually correspond to low sensitivity, so only
areas of high baseline density materially contribute to most PS
measurements. So, the frequency-independent calibration errors are
confined to the wedge for most reconstructed PS. However, the
baseline density is not infinite, so some of the contamination can
bleed into the window.

The frequency-dependent contribution of a measurement to a sin-
gle angular scale — the hallmark of a reconstructed sky PS estimator
— is what causes frequency-independent calibration errors to move
power from k; ~ O into the wedge and potentially into the win-
dow. This is fundamental to the approach, as it was exactly this
frequency-dependent baseline contribution that enabled the power
to be reconstructed to k; ~ 0 in the first place. This kind of calibra-
tion error, where baselines of different physical length must agree
very precisely on the amplitude and phase, is a very active area of
current research.

In conclusion, measured sky PS estimators P(k,, k;) are much
less sensitive to frequency-independent calibration errors than re-
constructed sky PS estimators.

5.2 Frequency-dependent calibration errors

There are two other classes of calibration errors from equation (5).
The first of these is frequency-dependent calibration errors. Ef-
fects such as a cable reflection can source sinusoidal ripples in
the antenna sensitivity (and phase) that are nearly impossible to
calibrate at the necessary precision (Barry et al. 2016; Beardsley
et al. 2016). These frequency-dependent calibration errors can be
described with a set of §-functions in 7 at the corresponding time de-
lays. For the delay spectrum, these errors act like a large additive de-
lay At and can directly move power from the foreground wedge into
the window.

For areconstructed sky analysis in the large baseline limit, the im-
pactof asinusoidal calibration error is shown in (c) on the right-hand
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side of Fig. 4. The sinusoidal calibration error appears, enveloped
by the gridding kernel. This will throw power into the EoR window,
as in the measured PS case, but it will not be as sharp a contribution
due to the modulation of the sinusoid by the gridding kernel. The
effect of frequency-dependent calibration errors on reconstructed
PS was simulated and explored in depth in Barry et al. (2016).

As both classes of PS estimators are extremely sensitive to
frequency-dependent calibration errors, eliminating spectral fea-
tures is driving the instrumental requirements of HERA, MWA 1II,
and SKA-Low (DeBoer et al. 2016).

5.3 Beam shape errors

The last calibration error from equestion (5) is the antenna beam
shape. In particular, due to manufacturing and electronic differences
one antenna may have a different angular response. Measuring the
antenna beam using celestial sources (e.g. Newburgh et al. 2014;
Berger et al. 2016), satellites (Neben et al. 2015, 2016a,b, Line et al.
in preparation), and drones (Jacobs et al. 2017) is an active area of
research.

Using modern techniques (e.g. Myers et al. 2003; Bhatnagar et al.
2008; Morales & Matejek 2009), sky reconstruction analyses can
correct for the direction-dependent polarized response of individ-
ual antennas. Effectively, the analysis can project visibilities to the
sky and apply direction-dependent corrections during image recon-
struction. The PS of the reconstructed image is then free of these
errors to the precision of the direction-dependent calibration.

In contrast, because measured sky PS have no sky reconstruction
step, it is more difficult to apply a direction-dependent gain correc-
tion. Parsons et al. (2016) show how limited direction-dependent
information can be propagated to the PS estimator, but there is no
way to completely correct for angular differences in the polarized
antenna beams. The measured sky PS inherently assumes that the
angular gain of all antennas are similar and that the polarization at
the relevant spectral scales is small (e.g. Moore et al. 2013; Kohn
et al. 2016; Moore et al. 2017).

In both classes of analyses, purely angular differences in the
antenna beam shape will be confined to the wedge. This can be
seen by substituting perturbed beams into Liu et al. (2014), or by
noting that beam errors will make certain areas of the sky appear
artificially bright or dim but not affect the spectral structure. In
reconstructed analyses, the contamination of the wedge can be re-
duced using knowledge of the individual antenna beams to improve
the reconstruction. There is no fully analogous technique for mea-
sured PS, but the foreground wedge is already extremely bright for
these measurements.

5.4 Calibration effects reviewed

The two classes of PS estimators have different responses to the
three kinds of calibration errors described in equation (5).

(i) Both measured and reconstructed PS are extremely sensitive
to frequency-dependent calibration errors (Section 5.2). These er-
rors can move foreground power into the window. This sensitivity
to spectral ripple is driving the intrinsically smooth bandpass re-
quirements for antennas in next generation 21 cm instruments.

(ii) Frequency-independent calibration errors (Section 5.1) have
negligible impact on measured PS, but in reconstructed PS can
move power from k; ~ 0 into the wedge and window. Amplitude
and phase calibration between baselines of different physical length
must be very precise to enable working within the wedge.

6102 aunp || uo Jasn AlsiaAiun a1e1s euozuy Aq 08/t 1S/.022/2/S810e1sqe-a|oie/Seluw/wod dno-olwapeoe//:sdny woJl papeojumoq



(iii) Direction-dependent calibration can be incorporated in re-
constructed sky PS, but there is no natural way of incorporating
direction-dependent effects in measured sky PS.

6 DISCUSSION

By realizing that all of the proposed 21 cm analyses can be catego-
rized into two broad classes of PS estimator (Section 3, Table 1),
we can start to ask more generic questions about the different ap-
proaches. In this paper, we have identified two major features: the
brightness of the wedge (Section 4) and the sensitivity to frequency-
independent calibration errors (Section 5.1).

The location of the foreground wedge is determined by the chro-
matic nature of an interferometer (Fig. 1), and is the same for both
measured and reconstructed PS estimators. However, the wedge is
much brighter for measured PS estimators. Because measured PS
analyses make no attempt to reconstruct the true location of the
emission, all of the foreground power in a visibility is mapped to
the corresponding location in the wedge (Fig. 3a). In contrast, for
reconstructed PS estimators most of the smooth spectrum emission
is mapped to k; ~ 0 (Figs 2 and 3b). The more precise the recon-
struction, the less power appears within the wedge. Reconstruction
errors due to residual sources, instrumental PSF, and calibration
errors determine the brightness of the foreground wedge in a recon-
structed PS analysis.

A particular advantage of measured PS estimators is their im-
munity to frequency-independent calibration errors (Section 5.1).
Because the frequency FT is taken along k, (Fig. 2), frequency-
independent calibration errors have almost no effect on the resulting
PS. In contrast, because different baselines contribute at different
frequencies for the FT to &y, reconstructed PS are quite sensitive to
frequency-independent calibration errors (Figs 2 and 4, Section 5.1).

For analyses that limit themselves to the window, there is no
clear advantage to either the measured or reconstructed PS ap-
proaches — contamination in the window is primarily associated
with frequency-dependent calibration errors. Instrument specific
differences such as the smoothness of the bandpass, antenna layout,
and calibration approach quickly determine the precision that can
be reached in the window.

Things become more interesting if one wishes to work within
the wedge. Both LOFAR and CHIME are predicated on being able
to work deep within the wedge, and there is a large boost in both
sensitivity and science reach that can be obtained if the cosmological
modes within the wedge can be used (e.g. Pober et al. 2013).

In practice, working within the wedge requires a reconstructed
PS analysis. PS of a reconstructed sky have the advantage that the
foreground contamination within the wedge is attenuated (Fig. 3b).
In contrast, the full foreground emission appears in the measured
PS wedge (Fig. 3a). Working within the wedge with a measured
PS would require much more precise foreground models because
there is no natural suppression from the instrumental PSF. Worse,
determining the foreground model to subtract would require an
imaging analysis. Within the delay-spectrum approach, there is no
way to identify whether the flux in a k-space bin is foreground or
cosmology — both smooth-spectrum foregrounds and the spectrally
varying cosmological signal map to the same bins. Measuring the
foregrounds to subtract in order to work within the wedge would
require an imaging analysis stage, and it would require imaging to
a significantly higher precision than is needed for a reconstructed
PS analysis. To work within the wedge with the measured PS, one
would have already been able to perform the analysis on lower
precision sky estimates with a reconstructed PS estimator.
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The measured PS estimators do enjoy a smaller software devel-
opment burden. While all of the PS efforts involve building large
custom software analysis pipelines, the complexity of the codes
needed to accurately reconstruct the sky is significantly higher (e.g.
Sullivan et al. 2012; Jacobs et al. 2016; Trott et al. 2016; Hazel-
ton et al. in prep; Pindor et al. in preparation). Because of the
unprecedented precision required for 21 cm imaging, extraordinar-
ily small errors can lead to unexpected deleterious results, such as
those described in Trott et al. (2016), Beardsley et al. (2016), Patil
et al. (2017), and Barry et al. (2016). Reconstructing the sky at the
precision needed for 21 cm cosmology is incredibly difficult.

There are nascent efforts to develop hybrid analyses such as
Kerrigan et al. (2018). It may be possible to filter foregrounds in
one style of analysis and construct a PS in the other, or transfer
calibrations. These methods are in their infancy but crossing the
divide between the measured and reconstructed PS analyses may
capitalize on the unique advantages of both.

7 CONCLUSIONS

The GBT, PAPER, MWA, and LOFAR teams are all actively re-
ducing hundreds of hours of EoR data, and the progress of all the
associated analyses is progressing rapidly. CHIME is just starting
to collect its first science data, major hardware upgrades to the
MWA and LOFAR are underway, HERA construction has begun,
and SKA-low is on the horizon.

Looking to the future of 21 cm cosmology analysis, it is the belief
of many in the community that we will need to incorporate lessons
from all of the different approaches, and that both measured and
reconstructed PS approaches have key roles to play. HERA, MWA-
II, and CHIME have all been designed to have both redundant
baselines (best for measured sky PS) and excellent uv coverage
(best for reconstructed PS), and HERA and MWA-II are explicitly
planning to perform both styles of analysis.

This is an exciting time for 21 cm cosmology as we develop the
foundational analysis tools and techniques. In this paper, we have
endeavoured to conceptually organize the different proposed analy-
ses (Section 3), characterize how foregrounds and calibration errors
appear (Sections 4 and 5), and highlight the relative advantages of
the different approaches (Section 6).

In future work, we intend to further explore the subtle differences
in the shape and extent of the window between the two classes of
analysis, and we hope our categorization will help best practices
be more quickly shared across the many groups working on 21 cm
cosmology.
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