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Abstract

Angle-action maps that have a periodicity in the action direction can have
accelerator modes: orbits that are periodic when projected onto the torus, but
that lift to unbounded orbits in an action variable. In this paper we construct a
family of volume-preserving maps, with two angles and one action, that have
accelerator modes created at Hopf-one (or saddle-center-Hopf) bifurcations.
Near such a bifurcation we show that there is often a bubble of invariant tori.
Computations of chaotic orbits near such a bubble show that the trapping
times have an algebraic decay similar to that seen around stability islands in
area-preserving maps. As in the 2D case, this gives rise to anomalous diffusive
properties of the action in our 3D map.
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1. Introduction

In this work we consider real-analytic, volume-preserving maps (VPM) F on the cylinder
T4 x R, where T¢ = S'x -%. xS!, and §' = R/Z. We think of the variables (x,z) € T¢ x R!
as being d-angles and [-actions, and call F an angle-action map. As an important, non-generic
property, we will assume that F is the lift of a smooth map F on the torus T¢ x T/; that is, we
assume there is a projection

IT: T¢ x R — T4+, (1)
such that for each point in T% x R/,

Foll =TIoF. @
We will simply take II(x, z) = (x,zmod 1): the unit modulus is applied to each action variable.
Such maps may have special orbits, called accelerator modes that are unbounded orbits of F
whose projections onto the torus become periodic orbits of F [13, 14, 32, 50, 59]. The interest
in such orbits is due to the fact that they can have a huge impact on the properties of chaotic
orbits that are unbounded in the action direction—namely normal diffusion can become super,
or anomalous, diffusion [34]. The way these diffusive properties change due to the presence
of accelerator modes depends on the local structure of the phase space near the projected
periodic orbit. And, as we will see, for finite-time simulations the statistics outside this local
structure also plays a leading role.
Throughout this paper we label an orbit of F by subscripts, so that (x;41,z:+1) = F (X, 2¢).
Accelerator modes have predominantly been studied for area-preserving maps defined on
S! x R (i.e. for d = I = 1), as exemplified by Chirikov’s standard map [13]

X
Ci:S'xR—=S'xR, G: (:) — (Z,) = (H;;nz(’zm)). 3)

As Chirikov showed, when the parameter k =n € N; := N\ {0} there are 2n accelerator-
mode orbits

1 1 3 3
C]'.I R =\ ] C]'.I R = \5.4— ] » Za
(P =(ptn). Gl3.9)=(3.9-n. Pge

that project onto two fixed points of C, located at P; = (4.0) and P, = (3,0). When k is an
integer these fixed points are parabolic. The unfolding of this bifurcation will be recalled in
section 2.1. When x, = k —n > 0, is small, there appear islands of stability. Chaotic orbits
outside these islands of stability may be trapped nearby for many iterations, a phenomena
known as stickiness [31, 32]. In the map C; this produces large excursions in the action vari-
able z.

There has been some previous work on the existence and effects of accelerator modes
for higher-dimensional symplectic maps. In [33] the authors report on the stickiness effects
produced by the accelerator modes for the example of the four-dimensional Froeschlé map.
A possible scenario leading to the creation of bubbles of stability in 4D has been investigated
recently [4, 5]. However, as far as the authors are aware, accelerator modes in 3D VPM have
not yet been studied. This is the goal of this paper. We remark that the mechanism for the
creation of such bubbles in four-dimensional maps reported in [4, 5] is different than the one
explained in this work. In particular in the present case the bubbles appear for a codimension-
one set of values of the parameter while in the 4D example they require higher codimension.

The aim of this paper is to understand this phenomenon for three-dimensional VPM with
two-angles and one-action. Such maps can be thought of as an intermediate case between
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the area-preserving and four-dimensional symplectic cases, but they nevertheless have some
distinctive geometrical and dynamical features. For example, the invariant tori that persist
in the 3D case with two frequencies and one action have codimension one, while in the 4D
symplectic case they would have codimension two. This can play an important role in the trap-
ping statistics. Moreover, 3D VPM are interesting in themselves since they model periodically
time-dependent velocity fields in incompressible fluid flows. Such flows have been studied
both experimentally and in models, e.g. [22, 29, 47, 51, 52].
More concretely, in this paper we will:

1. Construct a one-parameter family of VPM of the cylinder T? x R that has accelerator
modes (see section 3).
We restrict ourselves to a family F : T> x R — T? x R of the form:

X X' x + Qi(z) hy(x,y,2)
Feofyl = (Y| =1+ +efhxyz)]. “
z 7 z h3(x,y,z)

The preservation of volume is imposed as det DF.(x,y,z) = 1. The generalization from
2D to 3D will be done by constructing the family to mimic some features of Chirikov’s
map (3). Namely:

(a) The parameter ¢ in (4) represents the deviation from integrability. For € = 0 all orbits
lie on 2D rotational invariant tori (RIT), {(x,y,2):z2 = %}, and the dynamics is simply
a rigid rotation in the angles with rotation vector Q(zp) = (€21(z0). Q2(z0)) " For
€ > 0, but small, F. is assumed to satisfy the hypotheses of the KAM-like theorems
for volume-preserving maps [12, 58]. Hence there is a Cantor set of RIT.

(b) Accelerator modes of F arebornaté =n € N, These project to isolated fixed points
of F.

(¢) When O < £ —n < 1 there is a neighborhood of some of the accelerator modes that
contains a bubble of trapped orbits that exhibit regular motion.

The requirement (c) is mandatory since we are interested in accelerator modes that give
rise to anomalous diffusion along the z coordinate. To ensure this, we will assume that
the parameter k, = € — n unfolds a “Hopf-one’ or ‘saddle-center-Hopf” bifurcation at
the accelerator modes. This bifurcation, a discrete analogue of the Hopf-zero bifurca-
tion for ODEs, corresponds to the creation of a fixed point with multipliers A\; = 1 and
A3 = e®2™% on the unit circle. The unfolding of this bifurcation gives rise to a pair of
saddle-focus fixed points. There is a rich structure around the stability region where orbits
may be trapped for a long time so that they affect the diffusion in the action variable. See
section 2.4 for more discussion.
The proposed family of maps F. seems to be the first studied example of VPM with
accelerator modes.

2. Study the effect of these accelerator modes on the diffusive properties of the action (see
section 4).
We perform a numerical exploration based on long-term simulations of F. to study, on
the one hand, the diffusive properties of the action, and on the other hand, the trapping
statistics due to the passages near the stability region that appears in a vicinity of the
accelerator modes. Here, by trapping statistics we mean the distribution of trapping times
in a neighborhood of the accelerator-mode stability region. Our experiments suggest that
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this behaves ast 2, b € (2, 3), which is consistent with the behavior observed in the area-
preserving case. Furthermore, the action exhibits an anomalous, super-diffusive behavior.

This paper is organized as follows. In section 2 we recall some preliminary facts and set
the problem in context by discussing the well-known area-preserving setting. We summarize
some relevant facts on the Hopf-one bifurcation in the volume-preserving context. The rest of
the paper is separated into two distinct parts according to the previous enumeration. In sec-
tion 3 we construct a family of VPM with accelerator modes and study the scaling properties
of the local dynamics. In section 4, we numerically study the diffusive properties and trapping
statistics due to these accelerator modes for an example. In section 5 we discuss these results,
taking into account geometrical and statistical facts. Finally, in section 6 we summarize our
results and propose new lines of research that emerge from this study.

2. Preliminaries

In this section we introduce the main ideas on which this paper is based. In section 2.1 we
review well-known facts about the accelerator modes of Chirikov’s standard map: the mech-
anism of their creation, their local dynamics, and their effect on the action diffusion due to
stickiness. This map serves as inspiration for the construction of our main model. In sec-
tion 2.2 we generalize the concept of accelerator mode to higher-dimensional maps. In sec-
tion 2.3 we define a VPM that can possess accelerator modes as a composition of simple
shears. We finish this preliminary section by reviewing some facts on the Hopf-one bifurcation
in volume-preserving maps in section 2.4. This is a mechanism that can create a region of
stable motion in a vicinity of an accelerator mode.

2.1 Accelerator modes in area-preserving maps

One of the most studied area-preserving models with accelerator modes is Chirikov’s standard
map C; (3) [13]. This map has three properties that we will generalize to higher dimensions.

1. Accelerator modes. As we noted in section 1, the backward and forward orbits of the
points P; = (4,0) and P, = (3,0) are unbounded under C, for n € N;. These points are
unstable, parabolic fixed points of the projection C,. and their properties are equivalent
under a reflection symmetry of the map. The parameter x, =k — n unfolds a saddle-
center bifurcation at P; (resp. P;) giving rise to an elliptic fixed point P; . and a hyperbolic
fixed point Py, (resp. P>, and P> ) of C',,Jr,ﬁn. The positions of these fixed points depend
on k,, but, to simplify the notation, we do not make this explicit. These four fixed points
are projections of accelerator modes of C.

2. Stability islands around elliptic accelerator modes and limit local dynamics. When
0 < kp < 1, islands of stability appear around P;, and P;,. The area of these islands
decreases with n as 1/n% + O(n~%). The orbits P; . and P, undergo a period-doubling
bifurcation at k = n + 2/(nw?) 4+ O(n=3). Chirikov and Izraelev [14] showed that these
scalings hold for a larger class of maps (where the force sin(27x) in (3) is generalized to
an odd periodic function of x). In [45] it was proved that the leading terms of the suitably
scaled Taylor expansions of C, around the accelerator modes could be written as the
quadratic area- and orientation-preserving Hénon map (which we just call the Hénon map
from now on) in Karney’s form [32]
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et (3) = () = () ®

The corrections to this map are O(n~2) in each variable. Hence the Hénon map becomes
asymptotically accurate asn — oo. Furthermore, the coefficients of the O(n~2) corrections
are small [46], so that even when n = 1, the Hénon map is a fairly good approximation.

3. Statistics of chaotic orbits in the presence of accelerator modes. The stability islands
around the accelerator modes are responsible for the anomalous transport of the action of
Cpy,. There are two interconnected problems of interest in this situation. Let us restrict
ourselves to the island around P, ., though by the reflection symmetry, the following also
applies to the island around P, ,.

(a)

(b)

Trapping statistics around stability islands. Let KC be a compact subset of the phase
space that contains the stability island around P, , for C. Initial conditions in K that
are not confined by an invariant curve of the stability island or any of its satellites will
escape from KC, but have a trapping probability that decays asymptotically as t~7,
where v € (1,2) [17, 18, 28, 31, 32, 42, 41, 46, 55, 59]. Equivalently, the density of
the exit-time distribution P (t), the probability that an orbit leaves KC after exactly ¢
iterates [40], decays as

Pu(t) ~17,  be(2,3), (6)

where b =1+~ and ~ denotes asymptotic behavior as f — co. The numerical
simulations—for finite times—show that b depends on k. Note that the probability
density P (t) has bounded average but all higher-order moments are unbounded.
Anomalous diffusion of the action. The action diffusion is computed from the standard
deviation or(k) of the action z after T iterates over an ensemble of orbits that are not
confined in stability islands. Without accelerator modes, one expects [34]

or(k) ~ \/i

but when there is an elliptic accelerator mode, for example, when
kn € (0,2/(nm?) + O(n=3)), one observes super-diffusion:

1
or(k) ~TX, x> 3. ™)

Again, it is observed that the exponent y depends on & in a complicated way.

The dependence of the exponents b and y on k—for finite time simulations—is primarily
due to the structure of the invariant sets (Cantori, satellite islands, etc) surrounding the main
accelerator-mode island [42]. The variation of the exponents is most prominent just after the
breakdown of an outermost invariant curve that had confined a large region of chaos. The
corresponding values of x, where larger variations are expected are related to the breakdown
of the invariant curves around elliptic periodic islands of moderate period, as can be seen in
the Hénon map [45]. Even though this geometrical fact is well known, and forms the basis
for most of the models of trapping statistics [2, 3, 18, 42, 54], it is still not completely under-
stood theoretically and requires extensive numerical explorations for confirmation. We refer
to [15, 16, 46, 59] for dedicated numerical explorations focusing on concrete Cantori with a
prescribed rotation number.
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It is natural to think that the exponents in o7 (k) and P () are related. Under some simplify-
ing assumptions, it has been shown that 2x + b = 4 [31]. This was also later derived in [24,
30, 57, 60, 61], see the review [1] and references therein. A similar result, obtained in [46],
shows that o7 (k) is bounded from below by 72~ ®+1Y2 for Jarge enough T.

2.2. Accelerator modes for higher-dimensional maps

As in section 1, let F : (x,z) ~ (x’,z’) be a volume-preserving map of T¢ x R’ that smoothly
projects to a map F on the torus T¢ x T, as defined by (2).

As in the area-preserving case, an accelerator mode of F is an orbit with unbounded action
that projects to a periodic orbit of F, due to the periodicity of the map in the action direction.
This implies that the action increases linearly under iteration of F.

Definition 1. The orbit of a point (x, z) under F is an accelerator mode if there exist g > 1
and n € Z'\ {0} such that FU(x,7) = (x,z + n).

Note that the projection of an accelerator mode is a g-periodic orbit of F. In section 2.3 we
present a simple way to generate VPM on the cylinder T? x R with accelerator modes. We are
mainly interested in those accelerator modes that project onto fixed points of F, i.e. for g = 1.
We refer to these kind of orbits as ‘fixed point” accelerator modes, or simply FPAM.

2.3. Volume-preserving maps as compositions of shears

To ease the construction of volume-preserving maps, we will consider angle-action maps that
are compositions of shears. Let S; be a shear in the ith direction, that is, if w = (x,z) € Td+,
then §; : T4+ — R is

Si(w) =w+si(w) &,

where s; : T4+ — R is a smooth function that is independent of the ith component, w;, and
&; is the ith unit vector in the canonical basis of R4t%. Assuming that s; projects to a smooth
function on the circle R/Z, then S; projects to a smooth, volume and orientation preserv-
ing map, S;, on T4+, Thus any composition F = S:. o S o...0 S with arbitrary j > 1 and
i1,i,...,5 € {1,2,...,d + [} is a volume-preserving map on the d + [-torus.

In this paper, we are interested in the dynamics of a volume-preserving map with two
angles (x;,x;) = (x,¥) € T? and one action z € R, and we will use three shears, one in each
direction:

x x+51(y.2) X X x x
Si: |y y Sy e (y+n®) ), S5y = y :
z z z z z z+ s3(x,y)

There are two sets of conjugate maps formed by composition of these three shears in some
order, but the families are equivalent under permutations of the labels. To fix ideas, we let
F Sg o] S 19 S3

X X' x+s51(y,2')
F:lyl= Y] = |y+n.)| modl 8)
z 4 z+ 53(x,y)
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We will assume that the functions s; are either periodic or degree-one functions of their argu-
ments. In this case periodic orbits of FonT3 may not be periodic orbits of F, the lift to T? x R:
the lifted z variable may increase or decrease by an integer amount in g iterates for suitable (x, y).
Thus for an FPAM, there must exist points (xo, Yo, zo) such that F(xo, ¥0,z0) = (X0, Y0, 20 + 1)
for some nonzero integer n.

The inverse of the map (8) is simply given by f’;' =387 To Sl_] oS, !, where the three
inverses ;" L Jj = 1,2, 3 are obtained by simply changing the sign of the functions s;.

In section 3.1 we will obtain a one-parameter family of maps F., by letting
53(x,y) — €s53(x,¥). The existence of an FPAM will then depend upon the parameter ¢.

2.4. The Hopf-one bifurcation in volume-preserving maps

Suppose that the map (8) has an accelerator mode. In this section we will add extra condi-
tions on F to ensure that the corresponding periodic orbit of F has a neighborhood of stable
motion. For area-preserving maps, stable motion around accelerator modes is generated by a
saddle-center bifurcation, recall section 2.1. A generalization of this mechanism to VPM is
the codimension-two, Hopf-one or saddle-center-Hopf bifurcation [19, 20]. This bifurcation
is the discrete-time, volume-preserving version of a bifurcation that has been variously called
the Hopf-zero, fold-Hopf or Gavrilov—Guckenheimer bifurcation [27].

To guarantee that there is a stability region near an accelerator mode that is born from a
Hopf-one bifurcation, we will require that the leading terms of the Taylor expansion give a
map that is locally conjugate, using a suitable scaling, to a map, M, : R3 — R3, of the form

'

u u u+ o
My,: v |= |7V | = v+ ow’ , 9)
w w w+ ¢ (1 —u? —av)

for suitable values of the parameters ¢ and a. This map can be regarded as a 3D analogue of
the Hénon map (5) since (a) it is a quadratic truncation of the unfolding of the normal form
near a triple-one multiplier [20], (b) its inverse is also a quadratic volume-preserving map
[35], and (c) it appears as a truncation of the return map near a homoclinic quadratic tangency
[25].
The map (9) is a discretization of the well-known Michelson ODEs [43]

du dv dw

—=p, —=w, — =1—u*—apv, a>no, 10
dt dt dt (10
that appear in travelling wave solutions of the Kuramoto—Sivashinsky PDE. The flow of (10)
has an ‘integrable’ limit for a — oc. To see this, it is convenient to introduce the scaling u = &,
v = /an,w =a(,t = 7/\/a. Then (10) reads

¢ dn d¢

_ A
Loy Sog Loci-g)n an

where &€ = a—>/2. The system (11) has an equilibrium at (— 1, 0, 0) with eigenvalues 2¢ + O(&?)
and i — e + O(£?), and an equilibrium at (1,0,0) with eigenvalues —2¢ + O(c%) and
+i+ e+ 0O(e2).

When a grows, and therefore € decreases, the measure of the set of bounded orbits of (11)
also grows. To study this limit, introduce the variable s = £ + ¢ and cylindrical coordinates
(R,0) with n = Rcos ¢ and ¢ = Rsinf. Now when € < 1 and R is bounded from below, the
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a=10

a=237

-1 —0.5 0 0.5 1

Figure 1. Slices || < & of trajectories of the map (9), in the (&,7,() coordinates of
(11), showing the rectangle —1 < £ < 1,—2 <n < 2. The parameters are a = 10,
p=0.1, § =0.001 (left), a=4.95, ¢ =0.01, § =0.001 (middle), and a = 3.7,
= 0.001, § = 0.0001 (right).

dynamics is fast in 6, namely § = —1 + O(e/R), while it is slow in s. After averaging over the
fast angle, R becomes also slow and the system reads

2
E:s(l—sp'—R—), d—R:sRs.
dr 2

This system has the integral

R?
— p2 _ el
h=R (l 5 —4). (12)

The domain of interest is & € [0, 1]. The level # = 0 contains the two saddle-foci of (11) at
(5.R) = (&1,0). The level h =1 corresponds to an elliptic equilibrium (s, R) = (0, /2),
which approximates, as € — 0, the intersection of an elliptic periodic orbit of (11) with the
Poincaré section {¢ = 0}. The level sets h € (0, 1) are close to invariant circles on the Poincaré
section of the flow of (11) [21]. These correspond to 2D invariant tori of (11). When € < 1,
the ratio of the two frequencies on the invariant tori is large.

More generally, the system (11) has two equilibria that are saddle-foci: Q' = (-1, 0, 0) and
Q"= (1, 0, 0) which have 1D invariant manifolds W*(Q') and W*(Q") that nearly coincide as
€ — 0. As ¢ tends to zero, the 2D invariant manifolds W*(Q') and W*(Q") approach a spheri-
cal shell, that we refer to as the bubble [9—11, 56]. The bubble encloses a family of nested
tori around a normally elliptic invariant circle (see e.g. figure 1(a)) when ¢ is small enough. If
€ > 0(11) is not integrable and the 1D and 2D invariant manifolds no longer coincide [6-8,
21]. See [21] for a detailed numerical study of the region of bounded motion of (10)3.

The quadratic map (9) is also not integrable. Fixing a > 0, the points Q' and Q" are saddle-
foci when ¢ small enough [20]. This occurs approximately when ag? € (0,4). More precisely,
ifp < %it is sufficient to have ap? < 3.87 and if p < i it is sufficient to have ap? < 3.98. For
these values of the parameters some of the bubble structure of the flow is preserved. Namely,
the 2D invariant manifolds of Q' and Q" (which do not coincide), bound a Cantor family of
invariant tori that enclose, for most values of the parameters ¢ and a, an elliptic invariant
circle [20].

When ¢ < 1, the dynamics of (9) limits on that of the ODEs (10). In figure 1 we show, in
the (&, 17, ¢) coordinates of (11), the points on some orbits which start in the slice |{| < § < 1.
The orbits shown in the three panels pass through this slice, moving ‘up’, ¢’ > ¢, whenn < 0
and ‘down’, {’ < ¢, if n 2 0. The boundary between the orbits going ‘up’ and ‘down’ is

3 A movie of the evolution of the flow with a is at www.maia.ub.es/dsg/moviehsn
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n = (1 — £2). For the leftmost panel, where a = 10, the set of bounded orbits resembles that
of the integrable case discussed above: at £ =~ 0 and n ~ +1/2 we observe what seem to be
two elliptic fixed points that are actually points on a transversally elliptic invariant circle. The
nested invariant curves in the plot are slices through invariant tori surrounding this circle. For
the center panel, where a = 4.95, one can also see satellite islands and several unbounded
orbits that are temporarily trapped near the outermost torus. The blue points correspond to the
intersection of a satellite torus that performs twelve complete turns around the £ axis before
closing. Tori that have 9, 10, 11 and 13 turns before closing have also been easily detected.
Similar structures also would appear in the left panel under a sufficiently high magnification.
Finally for the right panel, where a = 3.7, the regular region has eroded, though there are
still some tori around the central invariant curve. Moreover, there appears what seems to be a
period-five elliptic invariant circle surrounded by tori that are satellites of the central structure.

3. A volume-preserving map with accelerator modes

In this section we construct a 3D angle-action map with accelerator modes. Our goal is to
study the stickiness of a bubble of regular orbits in an otherwise seemingly fully chaotic phase
space. Hence, we look for a family f. of VPM of T? x R, that smoothly projects to a map fs
on T? under I1, recall (2).

To construct our model, we choose f; so that it fulfills the following three requirements
(already sketched in section 1):

R1 The map has an integrable limit £ — 0, where the phase space is foliated by horizontal
rotational invariant tori (RIT) {z = const} and the restriction of the dynamics on each
RIT is topologically conjugate to a rigid rotation. Near this limit, some of these tori
should persist: a volume-preserving KAM theorem should apply [12, 58].

R2 For e =n € Ny, the origin P, = (0,0,0) is a fixed point of f,,, and for all me Z,
£2(0,0,m) = (0,0,m + nq). Hence, the origin is an FPAM, recall definition 1.

R3 Near the creation of the FPAM, the parameter x, = ¢ — n unfolds a Hopf-one bifurcation.
Hence, for 0 < k, < 1, asmall volume of regular orbits may exist near P . We will define
the family f. in such a way that its Taylor expansion around P, for € =n+ k,, n € Ny
is locally conjugate to a map in the family M, , (9), where the higher order terms (in u,
v, w) depend on n in such a way that they tend to vanish as n — oo, see proposition 1 in
section 3.2.

3.1 Shearing functions

In this subsection we construct a concrete family of maps satisfying the requirements R1- R3
using the composition of three shears (8).
The second and third requirements are achieved for the family

X x’) x 4 psin(2my) + ¥(7) )

filyl= 1Y ]| =|y+vsn2r) (13)

z 7 z+ e (cos(2mx) — Bsin(2my))

where p,v,(3 are parameters. We assume that ¢ is a degree-one circle map (i.e.
¥(z+ 1) = z+ 1(z)) that satisfies

$(0) =¢'(0) =0. (14)
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To satisfy R1 the function 1(z) could simply be z itself, and—as we will show below— R2
is automatically fulfilled when 1/(0) = 0. The condition R3 requires, however, that the first
derivative vanishes at the location of the FPAM, see section 3.2.

From the expression (13) it is clear that P, = (0,0,0) and P_ = (%, 0, 0) are fixed points of
the projection ﬁ, Under f,, P, goes up by n units and P_ goes down by » units in z upon each
iterate (see also remark 2). After the Hopf-one bifurcation the point P gives rise to a pair of
FPAM, to be denoted by P"j: in section 3.2. It would be nice to have similar properties for P_,
i.e, for it to give rise to a FPAM pair P as well. A simple way to obtain this is by choosing 1
to be an odd function: ¢)(—z) = —(z). This is not necessary to unfold the bifurcation, but it
is simpler to have similar bubbles created near P, and P_, one going up and the other down.

To satisfy (14) and to have the odd character of 1> we choose 1/(z) to be an odd, degree-one
map given by

7
¥(z) =z+ ) _ ajsin(2mjz). (15)

j=1

The choice of the function «y above is justified in appendix A, where appropriate values for the
Fourier amplitudes, a;, are also given, see (A.1).
To ensure that (13) fulfills R1 we can take

p=cp, ji=0().
The point is that when € = g = 0 each horizontal two-torus {z = const} is invariant, and the
dynamics on each torus is a rigid rotation with rotation vector w = (¢/(z), v sin(27z)).

The first requirement is then satisfied if f_ satisfies the hypotheses of the volume-preserving
KAM theorem [12, 58]. This theorem is stated for an analytic map of the form (4). Our model
(13) can be written in this form upon taking

Q) = (¢(2). vsin(2m2)),
ehi(x,y.2) = 2 () — () + efisin(2ry),
ehy(x.y.2) = M(2') — N(z), and
h3(x,y,z) = cos(2mx) — Bsin(2wy).
In addition, we have to check if the following two necessary conditions hold for f; [58]:

1. Intersection property. The image under f. of any homotopically non-trivial two-torus,
sufficiently close to a horizontal torus {z = const}, intersects itself. This is achieved
because h3(x, v, z) has zero average with respect to the angles (x,y).

2. Nondegeneracy condition. There exists a k € N, such that the frequency map satisfies a
twist-like, nondegeneracy condition:

1@ M)
rank : : =2 (16)
k k
o) 9@
If|e| < 1, p = O(¢), and v(z) is chosen to satisfy (16), KAM theory implies that f; will have
a Cantor set of RIT that are deformations of the horizontal tori that exist for £ = 0.

Remark 1. By contrast with the case of symplectic maps, since the number of actions is
less than the number of angles (I < d), the frequency map 2 : R — T< cannot be surjective.
Hence one cannot assure the persistence of a RIT with prescribed frequencies. Thus KAM
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theory does not guarantee the persistence of a torus with a given rotation vector, only that there
are many tori when € < 1.

Remark 2. For the map (4), the condition that /3 has zero average means that there is zero
net volume flux through any rotational torus, which implies the intersection property. For the
map (13), this condition also implies that for each FPAM with positive acceleration, e.g. P,
there is another with negative acceleration. In our case, the corresponding downwards FPAM
is located at P_ = (3.0,0).

The nondegeneracy condition (16) may have a different minimal value of k in different ranges
of z. For example, for f;, (16) does not apply for k = 2 at z = 0 since ¢'(0) = 2" (0) = 0.
However, it will hold for k = 3 so long as ¥/(®)(0) # 0. This may happen for other values of z
depending on the choice of 1(z). Indeed, since (z) is odd, (16) for k = 2 is also violated at
z= % Consequently, we expect that there will be more prominent chaotic zones near {z = 0}
and {z = %} for small € > 0. For the choice (15) with the coefficients (A.1), the condition (16)
is violated for k = 2 at ten additional points z € (0, 1), but one can check that it does hold for
k = 3 at all of these points.

To verify that (13) satisfies R2, we can compute its fixed points and accelerator modes. For
any values of the parameters, there are four fixed points located at (1,0,0), (. 3.0), (3,0,0),
and (%, %, 0). Since the map preserves volume, all of these are generically unstable: the prod-

uct of the three multipliers of Df is one, AjA2A3 = 1. So, unless all three have modulus one,
there will be at least one unstable multiplier. Additional fixed points correspond to accelerator
modes. The following lemma is proved in appendix B.

Lemma 1. Suppose that

1 1
0 = 0 —.

Then for each € =n € Ny f. has a Hopf-one bifurcation that creates four FPAM. Two of
these, P, = (0,0,0) and Q; = (0, 1.0), accelerate upwards, and two, P_ = (3.0,0) and
0_ = (3. 1.0), accelerate downwards.

Finally, we note that the map f; commutes with the involution R: f; o R = R o f,, where
R is given by

1
R@x.y.2) = (5 —x,—y.—2). (18)

Indeed, this follows for any map of the form (8) when the shears are odd about the point
(4.0,0), which is a fixed point of R. In particular R(P",) = P"_and R(P".) = P_. Also the
manifolds associated to the P"/ are obtained under the symmetry R from the manifolds of P[jrr
See section 5.1 for details.

For the remainder of the paper, we will not vary p with €, but will return to the form (13) for
a fixed small value of ;. We think of € as the primary parameter, and take (p, v, 3) as ‘fixed’.

3.2. Local dynamics near an accelerator mode
In this section we study the local dynamics around the FPAM of f- (13) when ¢ isnearn € N

This is done by expanding about the FPAM to quadratic order and rescaling the variables.
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To motivate the scaling, consider for example, the dynamics around P, = (0, 0, 0). Let
€ = N + Ky, where &, > 0 is small. Then P, bifurcates into a pair of new FPAM located at

P = (x*",0,0) where (13) implies that x'" must satisfy (n + &) cos(2mx"") = n. When &,
is small, this implies

1 [k
X = :F;\/; + O(Kn). (19)

This scaling motivates the introduction of a new parameter 6 = n«, and of the scaled phase
variables n(x,y, z), so that the distance between the new FPAM becomes O(v/3).

Proposition 1. Given p. v, 3, let ¢ =n+ 6/n and P be any of the accelerator modes of
lemma 1. Thus d/n measures the distance from the birth of P. Define new phase variables

(&n.¢) =n((x,y,z) — P), and let f;(£.n.C) be the projected map f, 5/, in the new vari-
ables. Then the following holds.

1. The Taylor expansion of f; around the origin can be written as ff =L+ O(n™"), where
L is a quadratic volume-preserving map.

2. An additional normalization (u,v,w) = (ag&, ayn, acC) conjugates L to the Michelson
map (9) for suitable parameters p and a.

Proof. For the moment, let us restrict ourselves to the dynamics around P . In the variables
(5, na C) = n(x!y! Z), map f; becomes

¢ &+ npsin (272) + nyp (gﬂi)
7| = 1+ nvsin (h%’) , (20)

 \en((0+) (cos(205) - psin 2r2)) ~ )

where —n in the third component is due to the projection to the torus. Expanding around
(0,0,0) gives

fi =Lsg+0(n™"),

where
g § + 2muny
Lsg: |7 | =|n + 2mv( . 21
¢’ ¢ + 6272 —2nfny

Note that n has disappeared, except for the last term, proportional to Sn.

The same procedure can be applied to the remaining three FPAM, but one has to take into
account some changes of sign due to expanding the trigonometric functions around  instead
of 0, and the fact that P_ and Q_ jump downwards. Table 1 summarizes the scalings and gives
the form of L one obtains after this procedure. Note that the only difference in the final form
is that 8 — — 3 for the Q4 FPAM.

Applying the additional normalization (u,v,w) = (agé, anmn, ac€) to (21) shows that
Ls g ~ M, 4, the Michelson map (9), if we choose
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Table 1. Scalings to obtain the quadratic map L near an FPAM.

FPAM (& n.Q) Map
P+ = (0! 0! 0) "(xs y,z) L‘SUB
P_=(3.,0,0) n(i—x,—y,—2) Lsp
0+ =1(0,3.0) n(—x,y — 1,2) Ls—p
0_-=(3.3.0) n(x—1,3—y,-2) Ls—p
22 A% 32472 s
g = T (3) 4 p = T (32%) s Qg = T ( 5 ) s (22)
1 3
o = m(un)’,  a = () (23)

These expressions are the same for the other fixed points except that for Q, the parameter a
changes sign since, by table 1, 7 — —f. |

Remark 3. There are some important aspects of the local form that are worth noting:

« The fixed points of (21), at (i\/;, 0,0), collide as & — 0.

e For fixed [, the parameter a as given in (23) grows linearly with n. Recall, from sec-
tion 2.4, that a bubble of stability for M, , appears when ayp? = 47 Bnv € (0,4). Hence,
for the one-parameter family f., we can only expect to detect a finite number of such
stability regions, those born at ¢ = n < (Bn?v)~L

e A bubble of stability occurs near P+ when Sv > 0, but since the sign of a in (23) changes
for Q, the bubble will occur near 0+ when Sr < 0. Hence the requirement R3 is satis-
fied.

Proposition 1 implies that M, , encodes the local dynamics near an FPAM under the proper
scaling. To do this, we think of f as a two-parameter family fZ 5. A final scaling of the param-
eter 3 implies the following.

Corollary 1. For given p,v let 3, = B/n and e, = n+ 8/n for fixed j3 and 6. Then there is
a ball around Py (Q) inside of which the Taylor expansion of 7 s, converges, asn — oo, to
a map that is conjugate 1o My o (M,_g), where ¢ = m1(32p%v26) /% and a = B (2v/o12) /2.

4. Diffusion in the presence of a bubble: a case study
In this section we study the diffusive properties of chaotic orbits of (13) when there is a bubble

of stable orbits near some of the FPAM, see appendix B. To this end, we perform numerical
simulations for0 <& —1 < L.

4.1 Choosing parameters

We use the function 1/(z) introduced in appendix A and choose values of the parameters p, v
and S of f: in (13) so that
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Figure 2. The fraction of bounded orbits around the accelerator mode P, of f. as
a function of £ for parameters (24). Initial conditions are chosen with z =0 in the
box (x,y) € [—0.024,0.024] x [—0.12,0]. The three curves correspond to different
maximal number of iterates T,,,,. as labelled. Left: the bounded fraction fore = 1 + &,
for x; € [107,0.0096] in steps of 10~5. The labelled values £, = 1.0007, &, = 1.0015
and 3 = 1.004 are studied in section 4.4. Right: magnification near £ = 1.003 of the
box in the left figure.

1. Fore — 1 > Oand small thelocal map M, ,(9) around P, satisfiesap? = 4p7%v € (0,4).
2. The critical parameter value, .5, at which the last RIT of f; is destroyed is as large as
possible.

The first requirement is a necessary condition to ensure that there is a region of regular motion
near the FPAM P_. The second requirement, ensures that the map is not too chaotic. Note
that the value & is analogous to Greene’s critical value for Chirikov’s standard map (3) [26].
Such values have been found for VPM in [23, 39].

After an exploration of the dynamics for various parameters, we choose

p=001, v=024, and B=0.12. (24)

For this choice, agp® ~ 1.137n, so we only expect to detect a region of regular motion around
P for n < 4, recall remark 3.

For the parameters (24), we conjecture that* eqt € (0.093,0.094). To determine this, we
iterated a set of initial conditions in T2 x [0, 1] for T = 2 - 10”. Each initial condition was
classified first as either escaping or non-escaping from z € [0, 1]. Those that did not escape
were classified as either chaotic or regular using an approximation of the Lyapunov exponent.
If this approximation was small, so that the orbit appeared to be regular, we checked whether
it could be on a RIT by looking to see if its (x, y) projection completely filled all the pixels on
a 400 x 400 grid.

4.2. Regular region around the accelerator mode

We focus on the effect of the FPAM that appear for € = 1, since they are expected to have the
largestbubble. Figure 2 shows the relative measure of bounded orbits near P thatstartin the half-
plane z = 0, y < 0. We considered a 400 x 360 grid in (x,y) € [—0.024,0.024] x [—0.12,0].
This range is chosen accordingly to the position of the fixed points of fe that bifurcate from
the origin at € = 1. We iterate the centers of the grid cells up to a time T,y , and declare that the

*This critical value is not too far from Greene’s critical value kery = 0.971 635/(2m) = 0.154 641.

5628



Nonlinearity 31 (2018) 5615 J D Meiss et al

orbit escapes from the bubble if at any time max(|x|, |y|, |z]) > 0.25. The left panel of the plot
shows values of £ over the full range where a stable accelerator mode with n = 1 is detected.
The fraction of bounded orbits exhibits a number of sudden decreases, and an enlargement
of some of these are shown in the right panel of the figure. These drops in bounded area cor-
respond to the breakdown of an outermost invariant two-torus that allows previously confined
motion to escape from the bubble.

4.3. Diffusion in the chaotic zone: expectations

After the breakdown of the last RIT near .4t = 0.094, the phase space seems to become much
more chaotic. In particular, for 0.2 < & < 1 we have numerically checked that any regular
component in the phase space is below pixel size (1/400? squared units in T?). For € in a
subinterval of [1,1.009] one detects the presence of a bubble of stability around P, recall
figure 2. In this section we investigate the diffusion in the z variable for £ € [0.2, 1.8].

Outside the range in € where the accelerator-mode bubble appears, we expect an exponen-
tial decay of correlations giving ‘normal’ diffusion in the action variable z, namely, that the
standard deviation after T iterates

or = (<(ZT —20)%) — (ar — Zc:r)z)E ~ TX, (25)

where x = 1, so that the limit

2
(26)

exists. Here (-) stands for the average over an ensemble of initial conditions (xp,Yo,z0),
which we usually take to be uniform on some domain of T? outside bubbles of stability, and
(xr, ¥, zr) = fI (X0, Y0, 20). The one-step coefficient, known as the quasilinear approximation,
can be easily evaluated as

2
D, = % (@ —2)?) = /Tz(z' —z)* = %(1 + %), (27)

using (13).

The behavior of the action diffusion when there is a bubble, e.g. for £ € [1, 1.009], can be
expected to be very different. Indeed as was discussed in section 2.1, the hierarchical island-
around-island structure of the 2D case gives rise to a power-law behavior of the trapping time
distribution [42], which, in turn, gives rise to anomalous diffusion [1]. However for the 3D
case, the way that tori in a bubble are organized by their rotation vectors is not known, so we
do not have the ability to create a model similar to the 2D one.

4.4. Numerical experiments

In this section we describe the results of the numerical experiments for diffusion and trapping
statistics. In section 4.4.1 we will show that the presence of accelerator-mode orbits gives
rise to anomalous diffusion of the action. In section 4.4.2 we show that the trapping statistics
appears to have power-law decay P.(t) ~ t=?, b > 2. Both of these results are consistent with
the 2D case [37, 38].

In order to avoid choosing initial conditions inside a bubble, we take them on a fundamen-

tal domain of the right branch of the 1D unstable manifold of the fixed point (%, 0,0). When
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Figure 3. The standard deviation o7 as £ varies. Left: the standard deviation as a function
of T for nine values, £ = 0.2(0.1)1, in black, and eight values, £ = 1.1(0.1)1.8, in red.
Center: Growth rate A, defined by o ~ A+/T for these £ values. Right: the standard
deviation for fourteen (non-equispaced) e € [1.0005,1.0055]. The labelled curves
correspond to £y = 1.0007 (blue), £, = 1.0015 (green) and =3 = 1.0040 (red).

€ =0(1)and p,v and 3 as given in (24), this point is a saddle with a 1D unstable manifold
and a 2D stable manifold. We choose N = 10° to 107 initial conditions on W“(%, 0, 0), logarith-
mically equispaced over a distance interval [10~2?, 10~8] from the fixed point.

Each initial condition was iterated between 10® and 10'! times, depending on the observed
behavior, and we compute the following two observables:

1. The standard deviation. Anomalous diffusion of the action is detected by examining the
growth rate of or, (25). In a phase space that is seemingly fully chaotic and has no accel-
erator modes, one expects the limit (26) to exist and that D should be near the quasilinear
value (27). When there are accelerator modes one expects a faster growth so that the limit
(26) does not exist.

2. The trapping statistics. We kept track of the number of consecutive iterates that an orbit
remains close to a bubble, i.e. in the union W = W, UW_ of neighborhoods of P, and
P_. For most of cases, the neighborhoods

Wy ={(x,y.z) : |x] £0.024,]y] < 0.12, |z| < 0.08},

W= {(x32) ¢ b @

1

31 <0024,y < 0.12.|z| < 0.08}.
appear to completely contain the bubbles; however, we modify these regions slightly in
section 5.2. Note that the set W, N {z =0, y < 0} was used in figure 2. The probability

of having a stay of exactly length f near the bubbles is

¢Ww, jeli—li+t+1}

This is the analogue of the trapping statistic (6) used in the area-preserving case.

P.(1) = Prob ((xj,yj,zj mod 1) {e W, JEh....iti, } e LT - ;]) . 29)

We computed P.(f) for an orbit of length T = 2266 &~ 10® by partitioning this interval
into subintervals that are logarithmically equispaced, i.e. I; = [2°!, 201041 for i up to 265.
We declare an orbit to be ‘trapped’ around a bubble if it remains in W for at least f, = 128
consecutive iterates, so we start with i = 70, corresponding to this shortest trapping segment.

A histogram is constructed for the number of trapped orbit segments in W of length r € I;.
Normalizing this gives the probability, P: for t = 2%-1+172) in the logarithmic middle of I;.

4.4.1. Normal and anomalous diffusion. The left panel of figure 3 shows the standard devia-
tion (25) as a function of T for seventeen values of & € [0.2, 1.8]. When € < 1 (black curves)
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Figure 4. The standard deviation as a function of T (red curves) on a log-log scale for
the £ values shown. A least squares linear fit (blue) gives the slopes, y, indicated in each
plot. The upper curves (black) show the maximal value of |z;l among the N = 10* initial
conditions iterated.

Table 2. Exponent y for the standard deviation (25), and b for the exit time distribution
(6)-(29) obtained from the numerical experiments on the map f (13) for the values =,
£7, and £3. See section 5.3 concerning the last column.

€ X b x+b/2
1.0007 0.6482 2.0989 1.6977
1.0015 0.6591 2.4243 1.8713
1.004 0.6856 2.5630 1.9671

there are no accelerator modes and when € = 1, there are no bubbles. When ¢ > 1.1 (red
curves) the accelerator bubbles have already disappeared.

From this data it seems reasonable to assert that o ~ VT. To check this claim, we per-
formed least squares fits of the full data sets for each displayed ¢ to a function of the form
or = ATX, For all fits, we found x € (0.4975,0.5025), close to the expected value of % The
corresponding values of A are displayed in the central plot of figure 3 (black dots), together
with the estimate /2Dy (in red), recall (27). The deviation between the numerically obtained
values and the quasilinear prediction is larger for £ = 1 and the effect of the accelerator mode
can be seen even when there is no bubble. Note that when ¢ < 1 the diffusion coefficient
appears to grow nearly linearly with €, but at a slope larger than the quasilinear estimate.
Recall that for Chirikov’s standard map, the quasilinear prediction is a better approximation
for large parameter values [13, 46, 49, 54], but we have not checked values of £ larger than
1.8 here.

In the right panel of figure 3 we see that when ¢ € [1.0005, 1.0055]—when the FPAM
around P have stable bubbles—o7 grows more rapidly than /T and depends irregularly on
€. Intervals of linear growth, corresponding to very long trapping segments, are interspersed
with intervals of slower growth where the orbit is not trapped or has only short trapped inter-
vals. The considerable variability in the growth of or as a function of € is presumably due to
the strong dependence of the geometry of the bubbles on € and to the sensitivity of the long
trapping times to chaos.

To assess the anomalous diffusive properties of f. we iterated N = 10* initial conditions to
T=10"to compute o7 for the three particular values, €, £ and £3—the highlighted values in
figure 3. Logarithmic plots of the averaged or are shown in figure 4. In these plots, a trapping
interval can cause jumps in

zp™ = max (|zr|),
(x0.Y0.20)
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Figure 5. Trapping statistics versus time for £ = 1.0007, 1.0015 and 1.0040. Each right
panel shows an example of a trapped orbit near the bubble of P, for the corresponding
£ value on the left.

sometimes up to an order of magnitude over a time interval of order 10°. In the previous defini-
tion (xg, Yo, Zp) ranges in the set of initial conditions.

For the three ¢ values of figure 4, a fit to o7 = ATX over 10® < t < 10! gives exponents
shown in table 2. All are significantly larger than the diffusive value % Note that the value of
x depends on the range of values used for T. In particular, it abruptly changes if we end the
simulation just before or after a big jump.

4.4.2. Trapping statistics. The trapping statistics (29) for bubbles at £, €3, and &3 are shown
in log-log plots in figure 5. In all cases it seems plausible to assume, following (6), that
Pe(t) ~ t~°, with some fluctuations. A least-squares fit (performed over the entire range) to
a straight line (black) gives the exponents shown in table 2. Repeating the computations for
&1 with N = 10° initial conditions and 10'? iterates gives the same value of b to three decimal
figures. Such a power law decay was previously observed for orbits started near a 2D torus in
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Figure 6. Slices through orbits near the bubbles of figure 5. Points on the orbits with
|z| < r are shown projected onto the (x, y) plane. Top row: temporarily trapped orbits for
r=0.01 (left and middle) and r = 0.02 (right). Bottom row: trapped orbits inside the
bubbles (red, r = 10~%) and, for £ = 1.0007, an escaping orbit (blue, r = 10~). For the
middle plot the value of r = 10~7 has been used for the black points.

a volume-preserving map in [48]; by contrast in [53] the authors observe an exponential decay
of trapping statistics in a different VMP.

Each panel in the right column of figure 5 shows a typical orbit trapped near P, for the
same € as the left column. Slices near z = 0 of these same orbits are shown in the (x, y) plane
in the top row of figure 6. The bottom row of this figure shows slices through some regular
orbits in the P, bubble. Recall that when «; > 0 the point P bifurcates into a pair of accel-
erating orbits PY = (x*,0,0) (19).

In section 2.4 we noted that P7, (P‘Jr) has a 1D stable (unstable) invariant manifold and a
2D unstable (stable) manifold. These seem to play an important role in the trapping, and we
will discuss this in section 5.1.

For our three standard values of the parameter, we observe the following.

e c; = 1.0007. Close to the birth of the bubble (recall figure 2) the invariant manifolds of
PIJ': can be clearly guessed in figure 6. The longest trapped orbits approach the bubble
along W*(P', ), then follows a trajectory that seems to cover a 2D torus, finally escaping
along W*(P",).

® ¢ = 1.0015. Further away from the birth of the bubble there are prominent satellite tori
outside the main tori, and the longest trapped orbits appear to be primarily stuck around
such satellites: in figure 6 this region has the highest density. Each of these satellites
encloses an elliptic invariant circle giving what seems to be a period-twelve orbit in the
section (the black points in the bottom middle panel of figure 6). In fact, there are six
invariant curves of f2, one the image of the other under f.. Under f? each of these curves
closes after two revolutions around the x axis. The central region of the bubble, near the
1D manifolds of Plj:, has a lower density, but it still seems to play a role in its stickiness.

e c3 = 1.0040. Now the regular region around the bubble is almost destroyed, but one still
expects trapping around the main tori or satellite tori. The orbit shown in figure 6 seems
to be trapped around a family of tori that surrounds a single elliptic invariant curve, which
closes after five revolutions around the x axis.
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Figure 7. One-dimensional manifolds of P i‘ for £3 = 1.004 projected into the (x,y)
(left) and (x, z) (right) planes, shown for x € [—0.5,1].

Recall that by proposition 1, the Michelson map (9) is a quadratic approximation near P
for the family (13). Though this approximation is less accurate when n = 1, there is a coor-
dinate change of the form (x,y) — (x — G(¢)y*,y), for suitable G(¢), that brings the plots in
figure 6 closer to those in figure 1 for the Michelson map.

5. Discussion

In this section we discuss in more detail how chaotic orbits approach the vicinity of a bubble.
We also discuss how the results of the previous section fit with, and deviate from, existing
theoretical approaches, suggesting a possible approach to deal with the discrepancies.

5.1 Entering and exiting the bubbles

As we noted above, the entrance and exit routes for a bubble often correspond to the 1D
manifolds of the fixed points P" jf of fg. Numerical computations of these manifolds are shown
in figure 7 for £3. Qualitatively similar curves are obtained for other parameters. Recall that
the reversing symmetry (18) implies that the invariant manifolds of p’/ can be obtained from
those of P’ Jf using the reversor (18), and this symmetry is clearly manifest in the figure. When
a bubble is present, points on outer branches of the unstable 1D manifolds do not appear to
return to a neighborhood of the bubbles in a small number of iterations. The implication is
that these manifolds correspond to entrance and exit routes for the neighborhood of a bubble.

A large fraction of orbits that get trapped in Wy (28) approach P, " along the right branch
of W*(P"_), the purple curve in figure 7. They then move away from this point along its 2D
unstable manifold, W*(P’, ) (not shown in the figure). This manifold curves towards the neigh-
boring saddle-focus, Pﬂr. The 2D stable manifold of this point similarly curves towards P,
and so these two manifolds intersect. Some orbits are thus funneled along W’(Pﬂr) towards
P'.. They finally escape the bubble close to the left branch of W*(P",), the green curve in the
figure. Though the incoming orbits to W4 need not be very close to W*(P’, ), the attraction
of W5(P',) tends to make escaping orbits closely follow W*(P"_). Moreover, the length of
the trapped segment is longer if an orbit is closer to the stable manifolds, since such orbits
spend more time near the saddle-foci. By symmetry the same explanation applies to incoming
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and escaping orbits for the region W_ around P . The case £ = 1.0007 in figure 5 and its
corresponding slice around z = 0 in figure 6 illustrate this situation.

If an orbit remains trapped for a long time, it will often follow a trajectory close to a bound-
ary torus of the bubble (an outermost 2D torus). When such an orbit reaches the vicinity of
P'_, it can be swept through the center of the bubble along the right branch of W*(P', ). This
will lead to a return near P’,, and the orbit can repeat the process. A small number of trajecto-
ries make many turns inside the bubble becoming trapped for a long time near sticky, 2D tori.
Each turn requires a passage close to the two saddle-foci where the orbit spends a relatively
large number of iterates. The effect of repeated returns can be clearly seen in the trapping sta-
tistics plots of figure 5 especially for £;. Let us give some details on what is observed:

1. First, orbits that enter the bubble and leave it without being swept through the center, can
escape more rapidly from W than those orbits that return close to P, ", . This creates a dis-
continuity in the trapping statistics. The same thing happens for orbits that have multiple
passages through the channel created by the 1D manifolds: for each additional passage
there is a new discontinuity. Consequently, the trapping statistics in the figure show corre-
sponding jumps (for, say, 10> < ¢ < 10* for ;).

2. Second, the relative measure of orbits that do not perform any close return to P”, decreases
as the distance to the saddle-foci decreases. The implication is that there are more orbits
spending shorter times near the bubble than longer times. For the statistics at ¢, this
explains the decrease in the abundance of trapped orbits for, say, 102 < ¢ < 103, Similar
effects are seen, but to a smaller extent, for the orbits that pass multiple times through the
channel. These effects are weaker, but still visible in the plots for 5 and 3.

As € grows, the channel around the 1D manifolds that traps orbits grows in diameter, but
can still play some role. For example, the slices for € = 1.0015 in figure 6 show that some
trapped orbits still can be stuck in a zone with larger volume near the 1D manifolds. Of course
if € is large enough this channel will be less important.

5.2. A transport model

A statistical model of transport usually assumes that ensembles evolve as a random walk on a
discrete Markov chain with states corresponding to regions of phase space bounded by partial
barriers. For area-preserving maps, the barriers are Cantori, and the transition flux between
states is the turnstile area [36, 37, 40].

A simplified model for trapping statistics and anomalous diffusion corresponds to discre-
tization into two such states [1, 30, 57, 60, 61]: a region W = W, U W_, (28), where orbits
are accelerated, and its complement,

We=T3\ W.

The idea is that when an orbit is in W it undergoes a flight, where the action grows linearly in
time, and while it is in WW* it undergoes normal diffusion. In this model there are just two pos-
sible transitions: escape from, or entry into W, i.e. the transitions W — W and W° — W,
respectively. If we take W to be a vicinity of a bubble of stability, then this simplification
requires that we know the exit-time probability P (t) (29), the pdf of a W — W transition at
time f. From our observations it seems plausible to assume that this has the power law form (6)
with b € (2, 3). This is consistent with previous numerical results for a 3D map [48] and with
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Figure 8. Exit time probability density function for W on a log-linear plot. The
distribution is computed for N = 2 x 107 initial conditions in a fundamental domain of
the unstable manifold of the point (3/4,0,0).

the observations for 2D maps, recall section 2.1. Note that b must be at least two since, when
a map is volume preserving, Kac’s theorem implies that the average exit time must exist [38].
When b < 3, the variance does not exist.

Of course the true distributions in figure 5 are not exactly power laws: there are jumps and
oscillations. The former is probably due to low flux through regions containing newly broken

tori, and the latter to the number of passages close to the saddle-foci P, jf [44, chapter 5].

The analogous pdf for the lengths of stays outside W is the exit-time distribution for W°.
As was also observed in the area-preserving context [46], this distribution seems to be well
approximated by an exponential. In figure 8 we show, for &, the exit time distribution for W*¢
as a function of time. In essence, excluding fast returns to W (say, of length less than 50), it
appears that the probability of entering W after spending f iterates in VW seems to follow a
geometric distribution with rate ¢, and hence that the exit time distribution for W* is

P(t) ~ (1 —c) ~e 7, (30)

when ¢ < 1. Estimating ¢ from a linear fit on a log-linear plot like figure 8 gives, for £, €2,
and &3,

c=~3.00x107% 253 x 107%, and 2.10 x 1078,

respectively. Note that the average exit time is of the order of ¢~! so that the average time in
WE is of the order of 4(10)° iterates. That is, there are long periods outside the bubbles.

Correlations between the transitions YW — W€ and W* — W must be taken into account
to be able to estimate the anomalous diffusion exponent y from the trapping statistics. To
measure these, we consider two random variables: say X, that denotes the length of a stay in
W; and Y, that measures the length of the next trapping segment in W°. In this way we can
measure the correlation between successive stays in complementary regions.

For 21 and &7 we found that the correlation coefficient between X and Y to be small, i.e. to
be inside the confidence interval at the level of 95% given by Student’s t-test. However, for &3
we initially found correlations. This anomaly has an easy geometrical explanation: the shape
of the bubble is increasingly distorted (by the cubic term in #(z)) as € grows, recall figure 6.
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The implication is that the size of the domain for W in (28) is too small to properly contain the
trapped segments around the bubble. If we slightly increase the size of this domain to

Wi ={(xy,2) : |x| <0.04,[y[ <0.15]z] < 0.1},

and an analogous form for W_, then the correlation between successive stays is again small.
This enlargement only affects short stays in WW and W* due to orbits that are located on the
periphery of the bubble. Hence, it has a minor effect on the long-time trapping statistics shown
in figure 5 and the long-time behavior of o shown in figure 4.

5.3. Relating anomalous diffusion to stickiness

Our numerical experiments suggest that the action diffusion for our map is anomalous, recall
table 2. What is the relation between the exponent y of o7 and the exponent b of the exit time
distribution? A number of previous studies of the analogous phenomena for 2D maps imply
that

x=2-b/2, (31)

see e.g. [24, 30, 31, 57, 60, 61]. However this result does not hold for our map when ¢ is close
to one; the final column in table 2 shows the deviation of x + b/2 from the expected value of
2. Indeed, even the sign of the relation is not correct: as b increases, y should decrease accord-
ing to (31); instead it increases.

We believe that a major reason for this disagreement is the relatively small value of ¢ in
the exponential decay of the W¢ — W transitions. The point is that even though we have iter-
ated each initial condition up to 10'! times, we may still be far from observing the ‘correct’
asymptotic behavior. Indeed, the derivation of (31) relies on the W¢ — W transitions being
fast compared with those for W — W¢. When c is small, orbits spend more time outside W.
Hence, for a fixed total number of iterates, less time is spent in W. Thus longer experiments
are probably needed to faithfully compute the effect of the W — W transitions on o7.

It would be interesting to take into account the role of the parameter ¢ in the simple two-
state transport model, especially to compute finite time corrections to an asymptotic exponent.

6. Conclusions

In the first part of this paper we constructed a family f; (13) of two-angle, one-action, volume-
preserving maps of the cylinder T? x IR that smoothly projects to the three-torus T>. This map
has fixed point accelerator modes that are born whenever € = n. The phase space of fj is foli-
ated by horizontal, rotational invariant tori, and these persist when € (and ) is small according
to volume-preserving versions of the KAM theorem. Thus our model generalizes Chirikov’s
standard map to the 3D volume-preserving setting.

The accelerator modes are created by a Hopf-one bifurcation. The local behavior near
this bifurcation is modeled by the Michelson quadratic volume-preserving map (9). Previous
studies of this map gave necessary conditions for the appearance of a bubble regular motion
around the accelerator modes.

In the second part of the paper, we assessed the diffusive properties of the f; as ¢ varied
near the first Hopf-one bifurction at € = 1. We found, as expected, that if there are no accel-
erator modes, the action variable exhibits normal diffusive behavior: its standard deviation
ZSrows as /T . However when there is a bubble of stable orbits, the action diffusion seems to be
anomalous: the standard deviation with exponent x > 0.6. Moreover, the exit time distribution
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for a neighborhood of the bubble decay as a power-law 12 with b € (2, 3). Our experiments
suggest that the distribution for the lengths of untrapped segments is exponential, and that
stays outside and inside the bubbles are independent.

In this paper we provide evidence that P.(t) ~ t=°, b € (2,3), agreeing with the results in
[48]. This contrasts with the exponential distribution for exit times observed for the map in
[53]. We do not know the reason for this radical difference.

Another important question that remains is the relation between the exponents b and y.
From our computations, this differs from the relation obtained for the 2D case, recall sec-
tion 5.3. We hypothesize that the reason for this is that the mean exit time from the comple-
ment of the bubbles is too long for our numerical experiments to reach their asymptotic limit.

The observed algebraic decay of the exit time distribution seems to imply that there exist
remnants of destroyed invariant two-tori in the chaotic zone outside the KAM-bubble. These
would be analogous to the Cantori for 2D twist maps. There is no theory, however, for the
existence of these in the volume-preserving context. If one could find these remnants, and
compute the flux through them, then it should be possible to construct a Markov tree model,
similar to that in [42], that could explain the observed stickiness of the bubble. To solve these
problems requires a theory for the destruction of invariant tori [23, 39]. Is there an analogue of
Chirikov’s overlap criterion? Are there remnant tori, and if so, what is their topology?
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Appendix A. A choice for ¢(z)

Here we construct a concrete example of an odd, degree-one circle map ) that satisfies (14).
This will be used in section 4 to give numerical evidence of anomalous diffusion in the dynam-
ics of the map f; along the action variable.

First consider a function zf;(z) = —z+ ¢32° defined on [0, 1]. If ¢3 > 4 there is a unique
ze < 1} such that m; = 9/(z) is the slope of the straight line between (zc,¥(z:)) and (1,0).
The value z. is determined as a solution of the cubic equation,

- 1 -
".f)'(zc)(i —2zc) +¥(z) = 0.
Define the C' function

b (2) it ze[0z)
VYet(z) =4 me(z— %) if z€[z.1—2z]
—(1—z) if ze(l—z,l].
This is an odd function with zero average. We will use an analytic approximation of it via (a
truncated) Fourier series, that will only contain sine terms with coefficients d; < 0, and call
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Figure Ai. Left: function v(z) in (13), see (15). Right: ¢/(z) — z.

this approximation zfjex,. For the choice ¢3 = 82 it is enough to take the first seven harmonics
to get a fairly good approximation of 1)ex. That is, we take

7
$(z) = 2+ Acthext(z) = 2+ Ac ) _ g sin(2mkz),

k=1

where A\ = |diex(0)/dz|~! is a correction factor to make sure that 1'(0) = 0. For our map
(13), this gives the form (15) with a; = A.@;, i = 1,...,7 being

ar = —0.03172255262410020, as = —0.00394622128219923,
a; = —0.01500144672104500, as = —0.00257376369649251,
a3y = —0.009094902 844667 39, a; = —0.00159954483407287.
a; = —0.00594357151581041,
(A.)

In figure A1 we can see the graph of 1(z) in [0, 1] (left), and how much it differs from the
identity (right).

Appendix B. Proof of lemma 1

Here we prove lemma 1, on the existence of fixed point accelerator modes for the map (13).
Recall that the function ¢(z) is assumed to be an odd, degree-one circle map that satisfies (14).

A point (x,y, z) belongs to an FPAM if (x',y',7') = (x + n1,y + na,z + n3), ny,np,n3 € Z,
and n3 # 0. From (13) this implies

psin(2my) + (&) = m, (B.1)
vsin(2nz') = ny, (B.2)
€ (cos(2mx) — Bsin(27my)) = ns. (B.3)

Given the limits (17) and (B.2) implies that n; = 0, and thus either 7’ =por 7 =p + %, for
some p € Z.

1. Assume first that 77 =p € Z. Since 7 —z=n3, then, z=¢g =p —n3 € Z. Since

¥(p) =p, and p is restricted by (17) and (B.1) requires that n; = p, which requires

y=yswithy, =rory_=r+ 1 forr € Z
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In particular, in both cases (B.3) reduces to £ cos(2mx) = n3 € Z \ {0}. Solutions to this
equation are born at&é = nzatx =sorx =s+ %, being s € Z. Hence we have FPAM that
are born when & = n3 at the points

1

P, = (0,0,0), 04 = (0, 5,0),
1 11

P_ = (=,0,0), _=(5.7.0),
(2 ) 0 (2 > )

on T3, and all equivalent lifts of these points to R>.
At the Hopf-one bifurcation, the linearization Df; should have 1 as eigenvalue. This holds
since at the FPAM, cos(2my, ) = =1 and sin(27x) = 0, and the first and second traces of

Df. are
T =0 =3 F4Ber’v.

Finally, the second pair of multipliers is on the unit circle when —1 < 7 = o < 3, which
gives the requirement

0 < ter?Br < 4.

Thus if S > 0 only the fixed points P have the stability property to become saddle-
foci, recall remark 3.

2.If Z=p+4 peZ then since ¥(z)—z is a period-one, odd func-
tion, (Z)=v(p+4)=p+¢(3)=p+3 Thus (B.1) requires that
ny =p + 1 + psin(2mwy) = 0. Under the restriction (17), this implies that 71 ¢ Z. Hence,
no point in T° of the form P = (x,y, 1), x,y € S! can be an FPAM.
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