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Abstract

Angle-action maps that have a periodicity in the action direction can have 
accelerator modes: orbits that are periodic when projected onto the torus, but 
that lift to unbounded orbits in an action variable. In this paper we construct a 
family of volume-preserving maps, with two angles and one action, that have 
accelerator modes created at Hopf-one (or saddle-center-Hopf) bifurcations. 
Near such a bifurcation we show that there is often a bubble of invariant tori. 
Computations of chaotic orbits near such a bubble show that the trapping 
times have an algebraic decay similar to that seen around stability islands in 
area-preserving maps. As in the 2D case, this gives rise to anomalous diffusive 
properties of the action in our 3D map.
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1. Introduction

In this work we consider real-analytic, volume-preserving maps (VPM) F on the cylinder 

Td×Rl, where Td=S1×
d
··· ×S1, and S1=R/Z. We think of the variables (x,z)∈Td×Rl 

as being d-angles and l-actions, and call F an angle-action map. As an important, non-generic 
property, we will assume that F is the lift of a smooth map ̃F on the torus Td×Tl; that is, we 
assume there is a projection

Π:Td×Rl→Td+l, (1)

such that for each point in Td×Rl,

F̃◦Π=Π◦F. (2)

We will simply take Π(x,z)=(x,zmod 1): the unit modulus is applied to each action variable. 
Such maps may have special orbits, called accelerator modes that are unbounded orbits of F 
whose projections onto the torus become periodic orbits of ̃F [13, 14, 32, 50, 59]. The interest 
in such orbits is due to the fact that they can have a huge impact on the properties of chaotic 
orbits that are unbounded in the action direction—namely normal diffusion can become super, 
or anomalous, diffusion [34]. The way these diffusive properties change due to the presence 
of accelerator modes depends on the local structure of the phase space near the projected 
periodic orbit. And, as we will see, for fnite-time simulations the statistics outside this local 
structure also plays a leading role.
Throughout this paper we label an orbit of F by subscripts, so that (xt+1,zt+1)=F(xt,zt).
Accelerator modes have predominantly been studied for area-preserving maps defned on 

S1×R (i.e. for d  =  l  =  1), as exemplifed by Chirikov’s standard map [13]

Ck:S
1×R→S1×R,Ck:

x

z
→

x

z
=

x+z

z+ksin(2πx)
. (3)

As Chirikov showed, when the parameter k=n∈N+:=N\{0} there are 2n accelerator-
mode orbits

Cn(
1

4
,p)=(

1

4
,p+n), Cn(

3

4
,q)=(

3

4
,q−n), p,q∈Z,

that project onto two fxed points of ̃Cn located at P1=(
1
4,0) and P2=(

3
4,0). When k is an 

integer these fxed points are parabolic. The unfolding of this bifurcation will be recalled in 
section 2.1. When κn=k−n>0, is small, there appear islands of stability. Chaotic orbits 
outside these islands of stability may be trapped nearby for many iterations, a phenomena 
known as stickiness [31, 32]. In the map Ck this produces large excursions in the action vari-
able z.
There has been some previous work on the existence and effects of accelerator modes 

for higher-dimensional symplectic maps. In [33] the authors report on the stickiness effects 
produced by the accelerator modes for the example of the four-dimensional Froeschlé map. 
A possible scenario leading to the creation of bubbles of stability in 4D has been investigated 
recently [4, 5]. However, as far as the authors are aware, accelerator modes in 3D VPM have 
not yet been studied. This is the goal of this paper. We remark that the mechanism for the 
creation of such bubbles in four-dimensional maps reported in [4, 5] is different than the one 
explained in this work. In particular in the present case the bubbles appear for a codimension-
one set of values of the parameter while in the 4D example they require higher codimension.
The aim of this paper is to understand this phenomenon for three-dimensional VPM with 

two-angles and one-action. Such maps can be thought of as an intermediate case between 
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the area-preserving and four-dimensional symplectic cases, but they nevertheless have some 
distinctive geometrical and dynamical features. For example, the invariant tori that persist 
in the 3D case with two frequencies and one action have codimension one, while in the 4D 
symplectic case they would have codimension two. This can play an important role in the trap-
ping statistics. Moreover, 3D VPM are interesting in themselves since they model periodically 
time-dependent velocity felds in incompressible fuid fows. Such fows have been studied 
both experimentally and in models, e.g. [22, 29, 47, 51, 52].
More concretely, in this paper we will:

 1.  Construct a one-parameter family of VPM of the cylinder T2×R that has accelerator 
modes (see section 3).

   We restrict ourselves to a family Fε:T
2×R→T2×R of the form:

Fε:




x

y

z



→




x

y

z



=




x+Ω1(z)

y+Ω2(z)

z



+ε




h1(x,y,z)

h2(x,y,z)

h3(x,y,z)



. (4)

   The preservation of volume is imposed as detDFε(x,y,z)≡1. The generalization from 
2D to 3D will be done by constructing the family to mimic some features of Chirikov’s 
map (3). Namely:

 (a)   The  parameter ε in (4) represents the deviation from integrability. For ε=0 all orbits 
lie on 2D rotational invariant tori (RIT), {(x,y,z):z  =  z0}, and the dynamics is simply 
a rigid rotation in the angles with rotation vector Ω(z0)=(Ω1(z0),Ω2(z0)). For 
ε>0, but small, Fε is assumed to satisfy the hypotheses of the KAM-like theorems 
for volume-preserving maps [12, 58]. Hence there is a Cantor set of RIT.

 (b)   Accelerator  modes of Fε are born at ε=n∈N+. These project to isolated fxed points 
of ̃Fε.

 (c)   When 0<ε−n 1 there is a neighborhood of some of the accelerator modes that 
contains a bubble of trapped orbits that exhibit regular motion.

   The requirement (c) is mandatory since we are interested in accelerator modes that give 
rise to anomalous diffusion along the z coordinate. To ensure this, we will assume that 
the parameter κn=ε−n unfolds a ‘Hopf-one’ or ‘saddle-center-Hopf’ bifurcation at 
the accelerator modes. This bifurcation, a discrete analogue of the Hopf-zero bifurca-
tion for ODEs, corresponds to the creation of a fxed point with multipliers λ1=1 and 
λ2,3=e

±2πiω on the unit circle. The unfolding of this bifurcation gives rise to a pair of 
saddle-focus fxed points. There is a rich structure around the stability region where orbits 
may be trapped for a long time so that they affect the diffusion in the action variable. See 
section 2.4 for more discussion.

   The proposed family of maps Fε seems to be the frst studied example of VPM with 
accelerator modes.

 2.  Study the effect of these accelerator modes on the diffusive properties of the action (see 
section 4).

   We perform a numerical exploration based on long-term simulations of Fε to study, on 
the one hand, the diffusive properties of the action, and on the other hand, the trapping 
statistics due to the passages near the stability region that appears in a vicinity of the 
accelerator modes. Here, by trapping statistics we mean the distribution of trapping times 
in a neighborhood of the accelerator-mode stability region. Our experiments suggest that 
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this behaves as t−b, b∈(2, 3), which is consistent with the behavior observed in the area-
preserving case. Furthermore, the action exhibits an anomalous, super-diffusive behavior.

This paper is organized as follows. In section 2 we recall some preliminary facts and set 
the problem in context by discussing the well-known area-preserving setting. We summarize 
some relevant facts on the Hopf-one bifurcation in the volume-preserving context. The rest of 
the paper is separated into two distinct parts according to the previous enumeration. In sec-
tion 3 we construct a family of VPM with accelerator modes and study the scaling properties 
of the local dynamics. In section 4, we numerically study the diffusive properties and trapping 
statistics due to these accelerator modes for an example. In section 5 we discuss these results, 
taking into account geometrical and statistical facts. Finally, in section 6 we summarize our 
results and propose new lines of research that emerge from this study.

2. Preliminaries

In this section we introduce the main ideas on which this paper is based. In section 2.1 we 
review well-known facts about the accelerator modes of Chirikov’s standard map: the mech-
anism of their creation, their local dynamics, and their effect on the action diffusion due to 
stickiness. This map serves as inspiration for the construction of our main model. In sec-
tion 2.2 we generalize the concept of accelerator mode to higher-dimensional maps. In sec-
tion 2.3 we defne a VPM that can possess accelerator modes as a composition of simple 
shears. We fnish this preliminary section by reviewing some facts on the Hopf-one bifurcation 
in volume-preserving maps in section 2.4. This is a mechanism that can create a region of 
stable motion in a vicinity of an accelerator mode.

2.1. Accelerator modes in area-preserving maps

One of the most studied area-preserving models with accelerator modes is Chirikov’s standard 
map Ck (3) [13]. This map has three properties that we will generalize to higher dimensions.

 1.  Accelerator modes. As we noted in section 1, the backward and forward orbits of the 
points P1=(

1
4,0) and P2=(

3
4,0) are unbounded under Cn for n∈N+. These points are 

unstable, parabolic fxed points of the projection ̃Cn, and their properties are equivalent 
under a refection symmetry of the map. The parameter κn=k−n unfolds a saddle-
center bifurcation at P1 (resp. P2) giving rise to an elliptic fxed point P1,e and a hyperbolic 

fxed point P1,h (resp. P2,e and P2,h) of ̃Cn+κn. The positions of these fxed points depend 
on κn, but, to simplify the notation, we do not make this explicit. These four fxed points 
are projections of accelerator modes of Ck.

 2.  Stability islands around elliptic accelerator modes and limit local dynamics. When 
0<κn 1, islands of stability appear around P1,e and P2,e. The area of these islands 
decreases with n as 1/n2+O(n−6). The orbits P1,e and P2,e undergo a period-doubling 
bifurcation at k=n+2/(nπ2)+O(n−3). Chirikov and Izraelev [14] showed that these 
scalings hold for a larger class of maps (where the force sin(2πx) in (3) is generalized to 
an odd periodic function of x). In [45] it was proved that the leading terms of the suitably 
scaled Taylor expansions of Cn around the accelerator modes could be written as the 
quadratic area- and orientation-preserving Hénon map (which we just call the Hénon map 
from now on) in Karney’s form [32]

J D Meiss et alNonlinearity 31 (2018) 5615
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Hκ:
ξ

η
→

ξ

η
=

ξ+η

η+κ−2π2ξ2
. (5)

   The corrections to this map are O(n−2) in each variable. Hence the Hénon map becomes 
asymptotically accurate as n→∞. Furthermore, the coeffcients of the O(n−2) corrections 
are small [46], so that even when n  =  1,  the Hénon map is a fairly good approximation.

 3.  Statistics of chaotic orbits in the presence of accelerator modes. The stability islands 
around the accelerator modes are responsible for the anomalous transport of the action of 
Cn+κn. There are two interconnected problems of interest in this situation. Let us restrict 
ourselves to the island around P1,e, though by the refection symmetry, the following also 
applies to the island around P2,e.

 (a)   Trapping statistics around stability islands. Let K be a compact subset of the phase 
space that contains the stability island around P1,e for ̃Ck. Initial conditions in K that 
are not confned by an invariant curve of the stability island or any of its satellites will 
escape from K, but have a trapping probability that decays asymptotically as t−γ, 
where γ∈(1, 2) [17, 18, 28, 31, 32, 42, 41, 46, 55, 59]. Equivalently, the density of 
the exit-time distribution Pk(t), the probability that an orbit leaves K after exactly t 
iterates [40], decays as

Pk(t)∼t
−b, b∈(2, 3), (6)

where b=1+γ  and  ∼  denotes asymptotic behavior as t→∞. The numerical 
simulations—for fnite times—show that b depends on k. Note that the probability 
density Pk(t) has bounded average but all higher-order moments are unbounded.

 (b)   Anomalous diffusion of the action. The action diffusion is computed from the standard 
deviation σT(k) of the action z after T iterates over an ensemble of orbits that are not 
confned in stability islands. Without accelerator modes, one expects [34]

σT(k)∼
√
T,

  but when there is an elliptic accelerator mode, for example, when 
κn∈(0, 2/(nπ

2)+O(n−3)), one observes super-diffusion:

σT(k)∼T
χ, χ>

1

2
. (7)

   Again, it is observed that the exponent χ depends on k in a complicated way.

The dependence of the exponents b and χ on k—for fnite time simulations—is primarily 
due to the structure of the invariant sets (Cantori, satellite islands, etc) surrounding the main 
accelerator-mode island [42]. The variation of the exponents is most prominent just after the 
breakdown of an outermost invariant curve that had confned a large region of chaos. The 
corresponding values of κn where larger variations are expected are related to the breakdown 
of the invariant curves around elliptic periodic islands of moderate period, as can be seen in 
the Hénon map [45]. Even though this geometrical fact is well known, and forms the basis 
for most of the models of trapping statistics [2, 3, 18, 42, 54], it is still not completely under-
stood theoretically and requires extensive numerical explorations for confrmation. We refer 
to [15, 16, 46, 59] for dedicated numerical explorations focusing on concrete Cantori with a 
prescribed rotation number.

J D Meiss et alNonlinearity 31 (2018) 5615



5620

It is natural to think that the exponents in σT(k) and Pk(t) are related. Under some simplify-
ing assumptions, it has been shown that 2χ+b=4 [31]. This was also later derived in [24, 
30, 57, 60, 61], see the review [1] and references therein. A similar result, obtained in [46], 
shows that σT(k) is bounded from below by T

2−(b+1/b)/2 for large enough T.

2.2. Accelerator modes for higher-dimensional maps

As in section 1, let F:(x,z)→(x,z) be a volume-preserving map of Td×Rl that smoothly 
projects to a map ̃F on the torus Td×Tl, as defned by (2).
As in the area-preserving case, an accelerator mode of F is an orbit with unbounded action 

that projects to a periodic orbit of ̃F, due to the periodicity of the map in the action direction. 
This implies that the action increases linearly under iteration of F.

Defnition 1. The orbit of a point (x,z) under F is an accelerator mode if there exist q 1 
and n∈Zl\{0} such that Fq(x,z)  =  (x,z  +  n).

Note that the projection of an accelerator mode is a q-periodic orbit of ̃F. In section 2.3 we 
present a simple way to generate VPM on the cylinder T2×R with accelerator modes. We are 
mainly interested in those accelerator modes that project onto fxed points of F̃, i.e. for q  =  1. 
We refer to these kind of orbits as ‘fxed point’ accelerator modes, or simply FPAM.

2.3. Volume-preserving maps as compositions of shears

To ease the construction of volume-preserving maps, we will consider angle-action maps that 
are compositions of shears. Let Si be a shear in the ith direction, that is, if w=(x,z)∈T

d+l, 
then Si:T

d+l→Rd+l is

Si(w)=w+si(w)̂ei,

where si:T
d+l→R is a smooth function that is independent of the ith component, wi, and 

êi is the ith unit vector in the canonical basis of R
d+l. Assuming that si projects to a smooth 

function on the circle R/Z, then Si projects to a smooth, volume and orientation preserv-

ing map, ̃Si, on T
d+l. Thus any composition ̃F=S̃i1◦̃Si2◦...◦̃Sij with arbitrary j 1 and 

i1,i2,...,ij∈{1, 2,...,d+l} is a volume-preserving map on the d  +  l-torus.
In this paper, we are interested in the dynamics of a volume-preserving map with two 

angles (x1,x2)=(x,y)∈T
2 and one action z∈R, and we will use three shears, one in each 

direction:

S1:




x

y

z



→




x+s1(y,z)

y

z



,S2:




x

y

z



→




x

y+s2(x,z)

z



,S3:




x

y

z



→




x

y

z+s3(x,y)



.

There are two sets of conjugate maps formed by composition of these three shears in some 
order, but the families are equivalent under permutations of the labels. To fx ideas, we let 
F̃=S̃2◦̃S1◦̃S3,

F̃:




x

y

z



→




x

y

z



=




x+s1(y,z)

y+s2(x,z)

z+s3(x,y)



 mod 1.

 

(8)
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We will assume that the functions si are either periodic or degree-one functions of their argu-
ments. In this case periodic orbits of F̃ on T3 may not be periodic orbits of F, the lift to T2×R: 
the lifted z variable may increase or decrease by an integer amount in q iterates for suitable (x,y). 
Thus for an FPAM, there must exist points (x0,y0,z0) such that F(x0,y0,z0)=(x0,y0,z0+n) 
for some nonzero integer n.

The inverse of the map (8) is simply given by ̃F−1ε =S
−1
3 ◦S

−1
1 ◦S

−1
2 , where the three 

inverses S−1j , j=1, 2, 3 are obtained by simply changing the sign of the functions si.
In section 3.1 we will obtain a one-parameter family of maps Fε, by letting 

s3(x,y)→εs3(x,y). The existence of an FPAM will then depend upon the parameter ε.

2.4. The Hopf-one bifurcation in volume-preserving maps

Suppose that the map (8) has an accelerator mode. In this section we will add extra condi-
tions on F to ensure that the corresponding periodic orbit of ̃F has a neighborhood of stable 
motion. For area-preserving maps, stable motion around accelerator modes is generated by a 
saddle-center bifurcation, recall section 2.1. A generalization of this mechanism to VPM is 
the codimension-two, Hopf-one or saddle-center-Hopf bifurcation [19, 20]. This bifurcation 
is the discrete-time, volume-preserving version of a bifurcation that has been variously called 
the Hopf-zero, fold-Hopf or Gavrilov–Guckenheimer bifurcation [27].
To guarantee that there is a stability region near an accelerator mode that is born from a 

Hopf-one bifurcation, we will require that the leading terms of the Taylor expansion give a 
map that is locally conjugate, using a suitable scaling, to a map, Mϕ,a:R

3→R3, of the form

Mϕ,a:




u

v

w



→




u

v

w



=




u+ϕv

v+ϕw

w+ϕ1−u2−av



, (9)

for suitable values of the parameters ϕ and a. This map can be regarded as a 3D analogue of 
the Hénon map (5) since (a) it is a quadratic truncation of the unfolding of the normal form 
near a triple-one multiplier [20], (b) its inverse is also a quadratic volume-preserving map 
[35], and (c) it appears as a truncation of the return map near a homoclinic quadratic tangency 
[25].
The map (9) is a discretization of the well-known Michelson ODEs [43]

du

dt
=v,

dv

dt
=w,

dw

dt
=1−u2−av, a>0, (10)

that appear in travelling wave solutions of the Kuramoto–Sivashinsky PDE. The fow of (10) 
has an ‘integrable’ limit for a→∞. To see this, it is convenient to introduce the scaling u=ξ, 
v=
√
aη, w=aζ, t=τ/

√
a. Then (10) reads

dξ

dτ
=η,

dη

dτ
=ζ,

dζ

dτ
=ε(1−ξ2)−η, (11)

where ε=a−3/2. The system (11) has an equilibrium at (−1, 0, 0) with eigenvalues 2ε+O(ε3) 
and ±i−ε+O(ε2), and an equilibrium at (1, 0, 0) with eigenvalues −2ε+O(ε3) and 
±i+ε+O(ε2).
When a grows, and therefore ε decreases, the measure of the set of bounded orbits of (11) 

also grows. To study this limit, introduce the variable s=ξ+ζ and cylindrical coordinates 
(R,θ) with η=Rcosθ and ζ=Rsinθ. Now when ε 1 and R is bounded from below, the 
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dynamics is fast in θ, namely ̇θ=−1+O(ε/R), while it is slow in s. After averaging over the 
fast angle, R becomes also slow and the system reads

ds

dτ
=ε 1−s2−

R2

2
,

dR

dτ
=εRs.

This system has the integral

h=R2 1−s2−
R2

4
. (12)

The domain of interest is h∈[0, 1]. The level h  =  0 contains the two saddle-foci of (11) at 
(s,R)=(±1, 0). The level h  =  1 corresponds to an elliptic equilibrium (s,R)=(0,

√
2), 

which approximates, as ε→0, the intersection of an elliptic periodic orbit of (11) with the 
Poincaré section {ζ=0}. The level sets h∈(0, 1) are close to invariant circles on the Poincaré 
section of the fow of (11) [21]. These correspond to 2D invariant tori of (11). When ε 1, 
the ratio of the two frequencies on the invariant tori is large.
More generally, the system (11) has two equilibria that are saddle-foci: Ql  =  (−1, 0, 0) and 

Qr  =  (1, 0, 0) which have 1D invariant manifolds Wu(Ql) and Ws(Qr) that nearly coincide as 
ε→0. As ε tends to zero, the 2D invariant manifolds Ws(Ql) and Wu(Qr) approach a spheri-
cal shell, that we refer to as the bubble [9–11, 56]. The bubble encloses a family of nested 
tori around a normally elliptic invariant circle (see e.g. fgure 1(a)) when ε is small enough. If 
ε>0 (11) is not integrable and the 1D and 2D invariant manifolds no longer coincide [6–8, 
21]. See [21] for a detailed numerical study of the region of bounded motion of (10)3.
The quadratic map (9) is also not integrable. Fixing a  >  0,  the points Ql and Qr are saddle-

foci when ϕ small enough [20]. This occurs approximately when aϕ2∈(0, 4). More precisely, 

if ϕ<12 it is suffcient to have aϕ
2<3.87 and if ϕ<14 it is suffcient to have aϕ

2<3.98. For 
these values of the parameters some of the bubble structure of the fow is preserved. Namely, 
the 2D invariant manifolds of Ql and Qr (which do not coincide), bound a Cantor family of 
invariant tori that enclose, for most values of the parameters ϕ and a, an elliptic invariant 
circle [20].
When ϕ 1, the dynamics of (9) limits on that of the ODEs (10). In fgure 1 we show, in 

the (ξ,η,ζ) coordinates of (11), the points on some orbits which start in the slice |ζ|<δ 1. 
The orbits shown in the three panels pass through this slice, moving ‘up’, ζ>ζ, when η 0 
and ‘down’, ζ<ζ, if η 0. The boundary between the orbits going ‘up’ and ‘down’ is 

Figure 1. Slices |ζ|<δ of trajectories of the map (9), in the (ξ,η,ζ) coordinates of 
(11), showing the rectangle −1<ξ<1,−2<η<2. The parameters are a  =  10, 
ϕ=0.1, δ=0.001 (left), a  =  4.95, ϕ=0.01, δ=0.001 (middle), and a  =  3.7, 
ϕ=0.001, δ=0.0001 (right).

3 A movie of the evolution of the fow with a is at www.maia.ub.es/dsg/moviehsn
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η=ε(1−ξ2). For the leftmost panel, where a  =  10, the set of bounded orbits resembles that 
of the integrable case discussed above: at ξ≈0 and η≈±

√
2 we observe what seem to be 

two elliptic fxed points that are actually points on a transversally elliptic invariant circle. The 
nested invariant curves in the plot are slices through invariant tori surrounding this circle. For 
the center panel, where a  =  4.95, one can also see satellite islands and several unbounded 
orbits that are temporarily trapped near the outermost torus. The blue points correspond to the 
intersection of a satellite torus that performs twelve complete turns around the ξ axis before 
closing. Tori that have 9, 10, 11 and 13 turns before closing have also been easily detected. 
Similar structures also would appear in the left panel under a suffciently high magnifcation. 
Finally for the right panel, where a  =  3.7, the regular region has eroded, though there are 
still some tori around the central invariant curve. Moreover, there appears what seems to be a 
period-fve elliptic invariant circle surrounded by tori that are satellites of the central structure.

3. A volume-preserving map with accelerator modes

In this section we construct a 3D angle-action map with accelerator modes. Our goal is to 
study the stickiness of a bubble of regular orbits in an otherwise seemingly fully chaotic phase 
space. Hence, we look for a family fε of VPM of T2×R, that smoothly projects to a map ̃fε 
on T3 under Π, recall (2).
To construct our model, we choose fε so that it fulflls the following three requirements 

(already sketched in section 1):

 R1  The map has an integrable limit ε→0, where the phase space is foliated by horizontal 
rotational invariant tori (RIT) {z=const} and the restriction of the dynamics on each 
RIT is topologically conjugate to a rigid rotation. Near this limit, some of these tori 
should persist: a volume-preserving KAM theorem should apply [12, 58].

 R2   For ε=n∈N+, the origin P+   =  (0,0,0) is a fxed point of ̃fn, and for all m∈Z, 
fqn(0, 0,m)=(0, 0,m+nq). Hence, the origin is an FPAM, recall defnition 1.

 R3   Near the creation of the FPAM, the parameter κn=ε−n unfolds a Hopf-one bifurcation. 
Hence, for 0<κn 1, a small volume of regular orbits may exist near P+ . We will defne 
the family fε in such a way that its Taylor expansion around P+ for ε=n+κn,n∈N+ 
is locally conjugate to a map in the family Mϕ,a (9), where the higher order terms (in u, 
v, w) depend on n in such a way that they tend to vanish as n→∞, see proposition 1 in 
section 3.2.

3.1. Shearing functions

In this subsection we construct a concrete family of maps satisfying the requirements R1– R3 
using the composition of three shears (8).
The second and third requirements are achieved for the family

fε:




x

y

z



→




x

y

z



=




x+µsin(2πy)+ψ(z)

y+νsin(2πz)

z+ε(cos(2πx)−βsin(2πy))



,

 

(13)

where µ,ν,β are parameters. We assume that ψ is a degree-one circle map (i.e. 
ψ(z+1)=z+ψ(z)) that satisfes

ψ(0)=ψ(0)=0. (14)
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To satisfy R1 the function ψ(z) could simply be z itself, and—as we will show below— R2 
is automatically fulflled when ψ(0)=0. The condition R3 requires, however, that the frst 
derivative vanishes at the location of the FPAM, see section 3.2.

From the expression (13) it is clear that P+   =  (0,0,0) and P−=(
1
2, 0, 0) are fxed points of 

the projection ̃fn. Under fn, P+ goes up by n units and P− goes down by n units in z upon each 
iterate (see also remark 2). After the Hopf-one bifurcation the point P+ gives rise to a pair of 

FPAM, to be denoted by Pl,r+ in section 3.2. It would be nice to have similar properties for P−, 

i.e, for it to give rise to a FPAM pair Pl,r− as well. A simple way to obtain this is by choosing ψ 
to be an odd function: ψ(−z)=−ψ(z). This is not necessary to unfold the bifurcation, but it 
is simpler to have similar bubbles created near P+ and P−, one going up and the other down.
To satisfy (14) and to have the odd character of ψ we choose ψ(z) to be an odd, degree-one 

map given by

ψ(z)=z+

7

j=1

ajsin(2πjz). (15)

The choice of the function ψ above is justifed in appendix A, where appropriate values for the 
Fourier amplitudes, aj, are also given, see (A.1).
To ensure that (13) fulflls R1 we can take

µ=ε̃µ, µ̃=O(1).

The point is that when ε=µ=0 each horizontal two-torus {z=const} is invariant, and the 
dynamics on each torus is a rigid rotation with rotation vector ω=(ψ(z),νsin(2πz)).
The frst requirement is then satisfed if fε satisfes the hypotheses of the  volume-preserving 

KAM theorem [12, 58]. This theorem is stated for an analytic map of the form (4). Our model 
(13) can be written in this form upon taking

Ω(z)=(ψ(z),νsin(2πz)),

εh1(x,y,z)=Ω1(z)−Ω1(z)+ε̃µsin(2πy),

εh2(x,y,z)=Ω2(z)−Ω2(z), and

h3(x,y,z) = cos(2πx)−βsin(2πy).

In addition, we have to check if the following two necessary conditions hold for fε [58]:

 1.  Intersection property. The image under fε of any homotopically non-trivial two-torus, 
suffciently close to a horizontal torus {z=const}, intersects itself. This is achieved 
because h3(x, y, z) has zero average with respect to the angles (x,y).

 2.  Nondegeneracy condition. There exists a k∈N, such that the frequency map satisfes a 
twist-like, nondegeneracy condition:

rank







Ω1(z) Ω2(z)
...

...

Ω
(k)
1 (z) Ω

(k)
2 (z)





=2. (16)

If |ε| 1, µ=O(ε), and ψ(z) is chosen to satisfy (16), KAM theory implies that fε will have 
a Cantor set of RIT that are deformations of the horizontal tori that exist for ε=0.

Remark 1. By contrast with the case of symplectic maps, since the number of actions is 
less than the number of angles (l  <  d), the frequency map Ω:Rl→Td cannot be surjective. 
Hence one cannot assure the persistence of a RIT with prescribed frequencies. Thus KAM 
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theory does not guarantee the persistence of a torus with a given rotation vector, only that there 
are many tori when ε 1.

Remark 2. For the map (4), the condition that h3 has zero average means that there is zero 
net volume fux through any rotational torus, which implies the intersection property. For the 
map (13), this condition also implies that for each FPAM with positive acceleration, e.g. P+ , 
there is another with negative acceleration. In our case, the corresponding downwards FPAM 

is located at P−=(
1
2, 0, 0).

The nondegeneracy condition (16) may have a different minimal value of k in different ranges 

of z. For example, for fε, (16) does not apply for k  =  2  at z  =  0  since ψ(0)=ψ(0)=0. 

However, it will hold for k  =  3 so long as ψ(3)(0)=0. This may happen for other values of z 
depending on the choice of ψ(z). Indeed, since ψ(z) is odd, (16) for k  =  2 is also violated at 

z=1
2. Consequently, we expect that there will be more prominent chaotic zones near {z  =  0} 

and {z=1
2} for small ε>0. For the choice (15) with the coeffcients (A.1), the condition (16) 

is violated for k  =  2 at ten additional points z∈(0, 1), but one can check that it does hold for 
k  =  3 at all of these points.
To verify that (13) satisfes R2, we can compute its fxed points and accelerator modes. For 

any values of the parameters, there are four fxed points located at (14, 0, 0), (
1
4,
1
2,0), (

3
4, 0, 0), 

and (34,
1
2,0). Since the map preserves volume, all of these are generically unstable: the prod-

uct of the three multipliers of Dfε is one, λ1λ2λ3=1. So, unless all three have modulus one, 
there will be at least one unstable multiplier. Additional fxed points correspond to accelerator 
modes. The following lemma is proved in appendix B.

Lemma 1. Suppose that

0<|µ|<
1

2
, 0<|ν|<

1

2
. (17)

Then for each ε=n∈N+ fε has a Hopf-one bifurcation that creates four FPAM. Two of 

these, P+   =  (0,0,0)  and Q+=(0,
1
2,0), accelerate upwards, and two, P−=(

1
2, 0, 0) and 

Q−=(
1
2,
1
2,0), accelerate downwards.

Finally, we note that the map fε commutes with the involution R: fε◦R=R◦fε, where 
R is given by

R(x,y,z)=(
1

2
−x,−y,−z). (18)

Indeed, this follows for any map of the form (8) when the shears are odd about the point 

(14, 0, 0), which is a fxed point of R. In particular R(P
l
+)=P

r
− and R(P

r
+)=P

l
−. Also the 

manifolds associated to the Pr,l− are obtained under the symmetry R from the manifolds of P
l,r
+. 

See section 5.1 for details.
For the remainder of the paper, we will not vary µ with ε, but will return to the form (13) for 

a fxed small value of µ. We think of ε as the primary parameter, and take (µ,ν,β) as ‘fxed’.

3.2. Local dynamics near an accelerator mode

In this section we study the local dynamics around the FPAM of fε (13) when ε is near n∈N+. 
This is done by expanding about the FPAM to quadratic order and rescaling the variables.
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To motivate the scaling, consider for example, the dynamics around P+   =  (0, 0, 0). Let 
ε=n+κn, where κn>0 is small. Then P+ bifurcates into a pair of new FPAM located at 

Pl,r+ =(x
l,r, 0, 0) where (13) implies that xl,r must satisfy (n+κn) cos(2πx

l,r)=n. When κn 

is small, this implies

xl,r=∓
1

π

κn
2n
+O(κn). (19)

This scaling motivates the introduction of a new parameter δ=nκn and of the scaled phase 

variables n(x,y,z), so that the distance between the new FPAM becomes O(
√
δ).

Proposition 1. Given µ,ν,β, let ε=n+δ/n and P be any of the accelerator modes of 
lemma 1. Thus δ/n measures the distance from the birth of P. Defne new phase variables 

(ξ,η,ζ)=n((x,y,z)−P), and let f∗δ(ξ,η,ζ) be the projected map ̃fn+δ/n in the new vari-

ables. Then the following holds.

 1.  The Taylor expansion of f∗δ around the origin can be written as f
∗
δ=L+O(n

−1), where 
L is a quadratic volume-preserving map.

 2.  An additional normalization (u,v,w)=(αξξ,αηη,αζζ) conjugates L to the Michelson 
map (9) for suitable parameters ϕ and a.

Proof. For the moment, let us restrict ourselves to the dynamics around P+ . In the variables 
(ξ,η,ζ)=n(x,y,z), map f∗δ becomes




ξ

η

ζ



=








ξ+nµsin2πηn +nψ
ζ
n

η+nνsin2πζn

ζ+n n+δn cos2πξn −βsin2π
η
n −n







, (20)

where  −n in the third component is due to the projection to the torus. Expanding around 
(0, 0, 0) gives

f∗δ=Lδ,β+O(n
−1),

where

Lδ,β:




ξ

η

ζ



=




ξ + 2πµη

η + 2πνζ

ζ + δ−2π2ξ2−2πβnη



. (21)

Note that n has disappeared, except for the last term, proportional to βn.

The same procedure can be applied to the remaining three FPAM, but one has to take into 
account some changes of sign due to expanding the trigonometric functions around π instead 
of 0, and the fact that P− and Q− jump downwards. Table 1 summarizes the scalings and gives 
the form of L one obtains after this procedure. Note that the only difference in the fnal form 
is that β→−β for the Q± FPAM.
Applying the additional normalization (u,v,w)=(αξξ,αηη,αζζ) to (21) shows that 

Lδ,β Mϕ,a, the Michelson map (9), if we choose
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αξ = π 2
δ

1
2, αη = π 4µ2

δ2ν

1
3

, αζ = π 32µ2ν2

δ5

1
6

, (22)

ϕ = π32µ2ν2δ
1
6, a = βn 2ν

δµ2

1
3

. (23)

These expressions are the same for the other fxed points except that for Q±, the parameter a 
changes sign since, by table 1, β→−β. □ 

Remark 3. There are some important aspects of the local form that are worth noting:

 •  The fxed points of (21), at (± δ
2π2
, 0, 0), collide as δ→0.

 •   For fxed β, the parameter a as given in (23) grows linearly with n. Recall, from sec-
tion 2.4, that a bubble of stability for Mϕ,a appears when aϕ2=4π2βnν∈(0, 4). Hence, 
for the one-parameter family fε, we can only expect to detect a fnite number of such 
stability regions, those born at ε=n<(βπ2ν)−1.

 •  A bubble of stability occurs near P± when βν >0, but since the sign of a in (23) changes 
for Q±, the bubble will occur near Q± when βν <0. Hence the requirement R3 is satis-
fed.

Proposition 1 implies that Mϕ,a encodes the local dynamics near an FPAM under the proper 
scaling. To do this, we think of f∗ε as a two-parameter family f

∗
ε,β. A fnal scaling of the param-

eter β implies the following.

Corollary 1. For given µ,ν let βn=β̃/n and εn=n+δ/n for fxed ̃β and δ. Then there is 
a ball around P± (Q±) inside of which the Taylor expansion of f∗εn,βn converges, as n→∞, to 

a map that is conjugate to Mϕ,a (Mϕ,−a), where ϕ=π(32µ2ν2δ)1/6 and a=β̃2ν/δµ2 1/3.

4. Diffusion in the presence of a bubble: a case study

In this section we study the diffusive properties of chaotic orbits of (13) when there is a bubble 
of stable orbits near some of the FPAM, see appendix B. To this end, we perform numerical 
simulations for 0<ε−1 1.

4.1. Choosing parameters

We use the function ψ(z) introduced in appendix A and choose values of the parameters µ,ν 
and β of fε in (13) so that

Table 1. Scalings to obtain the quadratic map L near an FPAM.

FPAM (ξ,η,ζ) Map

P+   =  (0,  0,  0) n(x,y,z) Lδ,β

P−=(
1
2, 0, 0) n(12−x,−y,−z)

Lδ,β

Q+=(0,
1
2,0) n(−x,y−12,z)

Lδ,−β

Q−=(
1
2,
1
2,0) n(x−12,

1
2−y,−z)

Lδ,−β
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 1.   For ε−1>0 and small the local map Mϕ,a (9) around P±, satisfes aϕ2=4βπ2ν∈(0, 4).
 2.  The critical parameter value, εcrit, at which the last RIT of fε is destroyed is as large as 
possible.

The frst requirement is a necessary condition to ensure that there is a region of regular motion 
near the FPAM P±. The second requirement, ensures that the map is not too chaotic. Note 
that the value εcrit is analogous to Greene’s critical value for Chirikov’s standard map (3) [26]. 
Such values have been found for VPM in [23, 39].
After an exploration of the dynamics for various parameters, we choose

µ=0.01, ν=0.24, and β=0.12. (24)

For this choice, aϕ2≈1.137n, so we only expect to detect a region of regular motion around 
P± for n  <  4,  recall  remark 3.
For the parameters (24), we conjecture that4 εcrit∈(0.093, 0.094). To determine this, we 

iterated a set of initial conditions in T2×[0, 1] for T=2·107. Each initial condition was 
classifed frst as either escaping or non-escaping from z∈[0, 1]. Those that did not escape 
were classifed as either chaotic or regular using an approximation of the Lyapunov exponent. 
If this approximation was small, so that the orbit appeared to be regular, we checked whether 
it could be on a RIT by looking to see if its (x,y) projection completely flled all the pixels on 
a 400×400 grid.

4.2. Regular region around the accelerator mode

We focus on the effect of the FPAM that appear for ε=1, since they are expected to have the  
largest bubble. Figure 2 shows the relative measure of bounded orbits near P+ that start in the half-
plane z=0,y 0. We considered a 400×360 grid in (x,y)∈[−0.024, 0.024]×[−0.12, 0]. 
This range is chosen accordingly to the position of the fxed points of ̃fε that bifurcate from 
the origin at ε=1. We iterate the centers of the grid cells up to a time Tmax, and declare that the 

 0

 0.05

 0.1

 1  1.003  1.006  1.009

A
107

3(10)7

106

 0.02

 0.025

 0.03

 1.0026  1.0029  1.0032

107

3(10)7

106A

Figure 2. The fraction of bounded orbits around the accelerator mode P+ of fε as 
a function of ε for parameters (24). Initial conditions are chosen with z  =  0  in  the 
box (x,y)∈[−0.024, 0.024]×[−0.12, 0]. The three curves correspond to different 

maximal number of iterates Tmax, as labelled. Left: the bounded fraction for ε=1+κ1, 

for κ1∈[10
−6, 0.0096] in steps of 10−6. The labelled values ε1=1.0007, ε2=1.0015 

and ε3=1.004 are studied in section 4.4. Right: magnifcation near ε=1.003 of the 
box in the left fgure.

4 This critical value is not too far from Greene’s critical value kcrit≈0.971 635/(2π)≈0.154 641.
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orbit escapes from the bubble if at any time max(|x|,|y|,|z|)>0.25. The left panel of the plot 
shows values of ε over the full range where a stable accelerator mode with n  =  1  is  detected. 
The fraction of bounded orbits exhibits a number of sudden decreases, and an enlargement 
of some of these are shown in the right panel of the fgure. These drops in bounded area cor-
respond to the breakdown of an outermost invariant two-torus that allows previously confned 
motion to escape from the bubble.

4.3. Diffusion in the chaotic zone: expectations

After the breakdown of the last RIT near εcrit≈0.094, the phase space seems to become much 
more chaotic. In particular, for 0.2<ε<1 we have numerically checked that any regular 
component in the phase space is below pixel size (1/4002 squared units in T2). For ε in a 
subinter val of [1, 1.009] one detects the presence of a bubble of stability around P±, recall 
fgure 2. In this section we investigate the diffusion in the z variable for ε∈[0.2, 1.8].
Outside the range in ε where the accelerator-mode bubble appears, we expect an exponen-

tial decay of correlations giving ‘normal’ diffusion in the action variable z, namely, that the 
standard deviation after T iterates

σT= (zT−z0)
2 − zT−z0

2
1
2

∼Tχ, (25)

where χ=1
2, so that the limit

D= lim
T→∞

σ2T
2T
, (26)

exists. Here · stands for the average over an ensemble of initial conditions (x0,y0,z0), 
which we usually take to be uniform on some domain of T3 outside bubbles of stability, and 
(xT,yT,zT)=f

T
ε(x0,y0,z0). The one-step coeffcient, known as the quasilinear approx imation, 

can be easily evaluated as

Dql=
1

2
(z−z)2 =

T2
(z−z)2=

ε2

4
(1+β2), (27)

using (13).
The behavior of the action diffusion when there is a bubble, e.g. for ε∈[1, 1.009], can be 

expected to be very different. Indeed as was discussed in section 2.1, the hierarchical island-
around-island structure of the 2D case gives rise to a power-law behavior of the trapping time 
distribution [42], which, in turn, gives rise to anomalous diffusion [1]. However for the 3D 
case, the way that tori in a bubble are organized by their rotation vectors is not known, so we 
do not have the ability to create a model similar to the 2D one.

4.4. Numerical experiments

In this section we describe the results of the numerical experiments for diffusion and trapping 
statistics. In section 4.4.1 we will show that the presence of accelerator-mode orbits gives 
rise to anomalous diffusion of the action. In section 4.4.2 we show that the trapping statistics 
appears to have power-law decay Pε(t)∼t

−b, b  >  2. Both of these results are consistent with 
the 2D case [37, 38].
In order to avoid choosing initial conditions inside a bubble, we take them on a fundamen-

tal domain of the right branch of the 1D unstable manifold of the fxed point (34, 0, 0). When 
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ε=O(1) and µ,ν and β as given in (24), this point is a saddle with a 1D unstable manifold 

and a 2D stable manifold. We choose N  =  106 to 107 initial conditions on Wu(34, 0, 0), logarith-
mically equispaced over a distance interval [10−9, 10−8] from the fxed point.
Each initial condition was iterated between 108 and 1011 times, depending on the observed 

behavior, and we compute the following two observables:

 1.  The standard deviation. Anomalous diffusion of the action is detected by examining the 
growth rate of σT, (25). In a phase space that is seemingly fully chaotic and has no accel-
erator modes, one expects the limit (26) to exist and that D should be near the quasilinear 
value (27). When there are accelerator modes one expects a faster growth so that the limit 
(26) does not exist.

 2.  The trapping statistics. We kept track of the number of consecutive iterates that an orbit 
remains close to a bubble, i.e. in the union W =W+∪W− of neighborhoods of P+ and 
P−. For most of cases, the neighborhoods

W+={(x,y,z):|x| 0.024,|y| 0.12,|z| 0.08},

W−={(x,y,z):|x−
1

2
| 0.024,|y| 0.12,|z| 0.08},

 (28)

   appear to completely contain the bubbles; however, we modify these regions slightly in 
section 5.2. Note that the set W+∩{z=0,y 0} was used in fgure 2. The probability 
of having a stay of exactly length t near the bubbles is

Pε(t)=Prob (xj,yj,zjmod 1)
∈W,j∈[i,...,i+t],

/∈W,j∈{i−1,i+t+1}
:i∈[1,T−t]. (29)

   This is the analogue of the trapping statistic (6) used in the area-preserving case.

We computed Pε(t) for an orbit of length T=2
26.6≈108 by partitioning this interval 

into subintervals that are logarithmically equispaced, i.e. Ii=[2
0.1i,20.1(i+1)) for i up to 265. 

We declare an orbit to be ‘trapped’ around a bubble if it remains in W for at least t0  =  128 
consecutive iterates, so we start with i  =  70, corresponding to this shortest trapping segment.
A histogram is constructed for the number of trapped orbit segments in W of length t∈Ii. 

Normalizing this gives the probability, Pε for t  =  20.1(i+1/2), in the logarithmic middle of Ii.

4.4.1. Normal and anomalous diffusion. The left panel of fgure 3 shows the standard devia-
tion (25) as a function of T for seventeen values of ε∈[0.2, 1.8]. When ε<1 (black curves) 

T
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1.8(10)4

0.9(10)4

0
0
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A

ε
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0.5 1.5 T
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ε1
ε2

ε3

1(10)6

2(10)6
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4(10)8 8(10)8

Figure 3. The standard deviation σT as ε varies. Left: the standard deviation as a function 
of T for nine values, ε=0.2(0.1)1, in black, and eight values, ε=1.1(0.1)1.8, in red. 
Center: Growth rate A, defned by σT∼A

√
T for these ε values. Right: the standard 

deviation for fourteen (non-equispaced) ε∈[1.0005, 1.0055]. The labelled curves 
correspond to ε1=1.0007 (blue), ε2=1.0015 (green) and ε3=1.0040 (red).
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there are no accelerator modes and when ε=1, there are no bubbles. When ε 1.1 (red 
curves) the accelerator bubbles have already disappeared.
From this data it seems reasonable to assert that σT∼

√
T. To check this claim, we per-

formed least squares fts of the full data sets for each displayed ε to a function of the form 

σT=AT
χ. For all fts, we found χ∈(0.4975, 0.5025), close to the expected value of 12. The 

corresponding values of A are displayed in the central plot of fgure 3 (black dots), together 

with the estimate 2Dql (in red), recall (27). The deviation between the numerically obtained 
values and the quasilinear prediction is larger for ε≈1 and the effect of the accelerator mode 
can be seen even when there is no bubble. Note that when ε<1 the diffusion coeffcient 
appears to grow nearly linearly with ε, but at a slope larger than the quasilinear estimate. 
Recall that for Chirikov’s standard map, the quasilinear prediction is a better approximation 
for large parameter values [13, 46, 49, 54], but we have not checked values of ε larger than 
1.8 here.
In the right panel of fgure 3 we see that when ε∈[1.0005, 1.0055]—when the FPAM 

around P± have stable bubbles—σT grows more rapidly than 
√
T and depends irregularly on 

ε. Intervals of linear growth, corresponding to very long trapping segments, are interspersed 
with intervals of slower growth where the orbit is not trapped or has only short trapped inter-
vals. The considerable variability in the growth of σT as a function of ε is presumably due to 
the strong dependence of the geometry of the bubbles on ε and to the sensitivity of the long 
trapping times to chaos.
To assess the anomalous diffusive properties of fε we iterated N  =  10

4 initial conditions to 
T  =  1011 to compute σT for the three particular values, ε1, ε2 and ε3—the highlighted values in 
fgure 3. Logarithmic plots of the averaged σT are shown in fgure 4. In these plots, a trapping 
interval can cause jumps in

zmaxT = max
(x0,y0,z0)

(|zT|),
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Figure 4. The standard deviation as a function of T (red curves) on a log-log scale for 
the ε values shown. A least squares linear ft (blue) gives the slopes, χ, indicated in each 
plot. The upper curves (black) show the maximal value of |zT| among the N  =  10

4 initial 
conditions iterated.

Table 2. Exponent χ for the standard deviation (25), and b for the exit time distribution 
(6)–(29) obtained from the numerical experiments on the map fε (13) for the values ε1, 
ε2, and ε3. See section 5.3 concerning the last column.

ε χ b χ+b/2

1.0007 0.6482 2.0989 1.6977
1.0015 0.6591 2.4243 1.8713
1.004 0.6856 2.5630 1.9671
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sometimes up to an order of magnitude over a time interval of order 108. In the previous defni-
tion (x0,y0,z0) ranges in the set of initial conditions.
For the three ε values of fgure 4, a ft to σT=AT

χ over 108<t<1011 gives exponents 

shown in table 2. All are signifcantly larger than the diffusive value 12. Note that the value of 

χ depends on the range of values used for T. In particular, it abruptly changes if we end the 
simulation just before or after a big jump.

4.4.2. Trapping statistics. The trapping statistics (29) for bubbles at ε1,ε2, and ε3 are shown 
in log-log plots in fgure 5. In all cases it seems plausible to assume, following (6), that 
Pε(t)∼t

−b, with some fuctuations. A least-squares ft (performed over the entire range) to 
a straight line (black) gives the exponents shown in table 2. Repeating the computations for 
ε1 with N  =  10

6 initial conditions and 1010 iterates gives the same value of b to three decimal 
fgures. Such a power law decay was previously observed for orbits started near a 2D torus in 

Figure 5. Trapping statistics versus time for ε=1.0007, 1.0015 and 1.0040. Each right 
panel shows an example of a trapped orbit near the bubble of P+ for the corresponding 
ε value on the left.
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a volume-preserving map in [48]; by contrast in [53] the authors observe an exponential decay 
of trapping statistics in a different VMP.
Each panel in the right column of fgure 5 shows a typical orbit trapped near P+ for the 

same ε as the left column. Slices near z  =  0 of these same orbits are shown in the (x,y) plane 
in the top row of fgure 6. The bottom row of this fgure shows slices through some regular 
orbits in the P+ bubble. Recall that when κ1>0 the point P+ bifurcates into a pair of accel-

erating orbits Pl,r+ =(x
l,r, 0, 0) (19).

In section 2.4 we noted that Pr+ (P
l
+) has a 1D stable (unstable) invariant manifold and a 

2D unstable (stable) manifold. These seem to play an important role in the trapping, and we 
will discuss this in section 5.1.
For our three standard values of the parameter, we observe the following.

 • ε1=1.0007. Close to the birth of the bubble (recall fgure 2) the invariant manifolds of 

Pl,r+ can be clearly guessed in fgure 6. The longest trapped orbits approach the bubble 

along Ws(Pr+), then follows a trajectory that seems to cover a 2D torus, fnally escaping 

along Wu(Pl+).
 •  ε2=1.0015. Further away from the birth of the bubble there are prominent satellite tori 
outside the main tori, and the longest trapped orbits appear to be primarily stuck around 
such satellites: in fgure 6 this region has the highest density. Each of these satellites 
encloses an elliptic invariant circle giving what seems to be a period-twelve orbit in the 
section (the black points in the bottom middle panel of fgure 6). In fact, there are six 
invariant curves of f6ε, one the image of the other under fε. Under f

6
ε each of these curves 

closes after two revolutions around the x axis. The central region of the bubble, near the 

1D manifolds of Pl,r+, has a lower density, but it still seems to play a role in its stickiness.
 •  ε3=1.0040. Now the regular region around the bubble is almost destroyed, but one still 
expects trapping around the main tori or satellite tori. The orbit shown in fgure 6 seems 
to be trapped around a family of tori that surrounds a single elliptic invariant curve, which 
closes after fve revolutions around the x axis.
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Figure 6. Slices through orbits near the bubbles of fgure 5. Points on the orbits with 
|z|<r are shown projected onto the (x,y) plane. Top row: temporarily trapped orbits for 
r  =  0.01 (left and middle) and r  =  0.02 (right). Bottom row: trapped orbits inside the 
bubbles (red, r  =  10−4) and, for ε=1.0007, an escaping orbit (blue, r  =  10−4). For the 
middle plot the value of r  =  10−7 has been used for the black points.
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Recall that by proposition 1, the Michelson map (9) is a quadratic approximation near P± 
for the family (13). Though this approximation is less accurate when n  =  1, there is a coor-
dinate change of the form (x,y)→(x−G(ε)y3,y), for suitable G(ε), that brings the plots in 
fgure 6 closer to those in fgure 1 for the Michelson map.

5. Discussion

In this section we discuss in more detail how chaotic orbits approach the vicinity of a bubble. 
We also discuss how the results of the previous section ft with, and deviate from, existing 
theoretical approaches, suggesting a possible approach to deal with the discrepancies.

5.1. Entering and exiting the bubbles

As we noted above, the entrance and exit routes for a bubble often correspond to the 1D 

manifolds of the fxed points Pr,l± of ̃fε. Numerical computations of these manifolds are shown 
in fgure 7 for ε3. Qualitatively similar curves are obtained for other parameters. Recall that 
the reversing symmetry (18) implies that the invariant manifolds of Pr,l− can be obtained from 

those of Pr,l+ using the reversor (18), and this symmetry is clearly manifest in the fgure. When 

a bubble is present, points on outer branches of the unstable 1D manifolds do not appear to 
return to a neighborhood of the bubbles in a small number of iterations. The implication is 
that these manifolds correspond to entrance and exit routes for the neighborhood of a bubble.
A large fraction of orbits that get trapped in W+ (28) approach Pr+ along the right branch 

of Ws(Pr+), the purple curve in fgure 7. They then move away from this point along its 2D 
unstable manifold, Wu(Pr+) (not shown in the fgure). This manifold curves towards the neigh-

boring saddle-focus, Pl+. The 2D stable manifold of this point similarly curves towards P
r
+, 

and so these two manifolds intersect. Some orbits are thus funneled along Ws(Pl+) towards 

Pl+. They fnally escape the bubble close to the left branch of W
u(Pl+), the green curve in the 

fgure. Though the incoming orbits to W+ need not be very close to Ws(Pr+), the attraction 

of Ws(Pl+) tends to make escaping orbits closely follow W
u(Pr−). Moreover, the length of 

the trapped segment is longer if an orbit is closer to the stable manifolds, since such orbits 
spend more time near the saddle-foci. By symmetry the same explanation applies to incoming 
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Figure 7. One-dimensional manifolds of Pr,l± for ε3=1.004 projected into the (x,y) 
(left) and (x,z) (right) planes, shown for x∈[−0.5, 1].
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and escaping orbits for the region W− around P
l,r
−. The case ε=1.0007 in fgure 5 and its 

corre sponding slice around z  =  0  in fgure 6 illustrate this situation.
If an orbit remains trapped for a long time, it will often follow a trajectory close to a bound-

ary torus of the bubble (an outermost 2D torus). When such an orbit reaches the vicinity of 

Pl+, it can be swept through the center of the bubble along the right branch of W
u(Pl+). This 

will lead to a return near Pr+, and the orbit can repeat the process. A small number of trajecto-

ries make many turns inside the bubble becoming trapped for a long time near sticky, 2D tori. 
Each turn requires a passage close to the two saddle-foci where the orbit spends a relatively 
large number of iterates. The effect of repeated returns can be clearly seen in the trapping sta-
tistics plots of fgure 5 especially for ε1. Let us give some details on what is observed:

 1.  First, orbits that enter the bubble and leave it without being swept through the center, can 
escape more rapidly from W+ than those orbits that return close to Pr+. This creates a dis-
continuity in the trapping statistics. The same thing happens for orbits that have multiple 
passages through the channel created by the 1D manifolds: for each additional passage 
there is a new discontinuity. Consequently, the trapping statistics in the fgure show corre-
sponding jumps (for, say, 103 t 104 for ε1).

 2.   Second, the relative measure of orbits that do not perform any close return to Pr+ decreases 
as the distance to the saddle-foci decreases. The implication is that there are more orbits 
spending shorter times near the bubble than longer times. For the statistics at ε1, this 
explains the decrease in the abundance of trapped orbits for, say, 102 t 103. Similar 
effects are seen, but to a smaller extent, for the orbits that pass multiple times through the 
channel. These effects are weaker, but still visible in the plots for ε2 and ε3.

As ε grows, the channel around the 1D manifolds that traps orbits grows in diameter, but 
can still play some role. For example, the slices for ε=1.0015 in fgure 6 show that some 
trapped orbits still can be stuck in a zone with larger volume near the 1D manifolds. Of course 
if ε is large enough this channel will be less important.

5.2. A transport model

A statistical model of transport usually assumes that ensembles evolve as a random walk on a 
discrete Markov chain with states corresponding to regions of phase space bounded by partial 
barriers. For area-preserving maps, the barriers are Cantori, and the transition fux between 
states is the turnstile area [36, 37, 40].
A simplifed model for trapping statistics and anomalous diffusion corresponds to discre-

tization into two such states [1, 30, 57, 60, 61]: a region W =W+∪W−, (28), where orbits 
are accelerated, and its complement,

Wc=T3\W.

The idea is that when an orbit is in W it undergoes a fight, where the action grows linearly in 
time, and while it is in Wc it undergoes normal diffusion. In this model there are just two pos-
sible transitions: escape from, or entry into W, i.e. the transitions W →Wc and Wc→W, 
respectively. If we take W to be a vicinity of a bubble of stability, then this simplifcation 
requires that we know the exit-time probability Pε(t) (29), the pdf of a W →W

c transition at 
time t. From our observations it seems plausible to assume that this has the power law form (6) 
with b∈(2, 3). This is consistent with previous numerical results for a 3D map [48] and with 
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the observations for 2D maps, recall section 2.1. Note that b must be at least two since, when 
a map is volume preserving, Kac’s theorem implies that the average exit time must exist [38]. 
When b  <  3, the variance does not exist.
Of course the true distributions in fgure 5 are not exactly power laws: there are jumps and 

oscillations. The former is probably due to low fux through regions containing newly broken 

tori, and the latter to the number of passages close to the saddle-foci Pr,l± [44, chapter 5].
The analogous pdf for the lengths of stays outside W is the exit-time distribution for Wc. 

As was also observed in the area-preserving context [46], this distribution seems to be well 
approximated by an exponential. In fgure 8 we show, for ε1, the exit time distribution for W

c 
as a function of time. In essence, excluding fast returns to W (say, of length less than 50), it 
appears that the probability of entering W after spending t iterates in Wc seems to follow a 
geometric distribution with rate c, and hence that the exit time distribution for Wc is

P(t)∼(1−c)t∼e−ct, (30)

when c 1. Estimating c from a linear ft on a log-linear plot like fgure 8 gives, for ε1,ε2, 
and ε3,

c≈3.00×10−6, 2.53×10−6, and 2.10×10−6,

respectively. Note that the average exit time is of the order of c−1 so that the average time in 
Wc is of the order of 4(10)5 iterates. That is, there are long periods outside the bubbles.
Correlations between the transitions W →Wc and Wc→W must be taken into account 

to be able to estimate the anomalous diffusion exponent χ from the trapping statistics. To 
measure these, we consider two random variables: say X, that denotes the length of a stay in 
W; and Y, that measures the length of the next trapping segment in Wc. In this way we can 
measure the correlation between successive stays in complementary regions.
For ε1 and ε2 we found that the correlation coeffcient between X and Y to be small, i.e. to 

be inside the confdence interval at the level of 95% given by Student’s t-test. However, for ε3 
we initially found correlations. This anomaly has an easy geometrical explanation: the shape 
of the bubble is increasingly distorted (by the cubic term in ψ(z)) as ε grows, recall fgure 6. 

Figure 8. Exit time probability density function for Wc on a log-linear plot. The 
distribution is computed for N=2×107 initial conditions in a fundamental domain of 
the unstable manifold of the point (3/4, 0, 0).
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The implication is that the size of the domain for W in (28) is too small to properly contain the 
trapped segments around the bubble. If we slightly increase the size of this domain to

W+={(x,y,z):|x| 0.04,|y| 0.15,|z| 0.1},

and an analogous form for W−, then the correlation between successive stays is again small. 
This enlargement only affects short stays in W and Wc due to orbits that are located on the 
periphery of the bubble. Hence, it has a minor effect on the long-time trapping statistics shown 
in fgure 5 and the long-time behavior of σT shown in fgure 4.

5.3. Relating anomalous diffusion to stickiness

Our numerical experiments suggest that the action diffusion for our map is anomalous, recall 
table 2. What is the relation between the exponent χ of σT and the exponent b of the exit time 
distribution? A number of previous studies of the analogous phenomena for 2D maps imply 
that

χ=2−b/2, (31)

see e.g. [24, 30, 31, 57, 60, 61]. However this result does not hold for our map when ε is close 
to one; the fnal column in table 2 shows the deviation of χ+b/2 from the expected value of 
2. Indeed, even the sign of the relation is not correct: as b increases, χ should decrease accord-
ing to (31); instead it increases.
We believe that a major reason for this disagreement is the relatively small value of c in 

the exponential decay of the Wc→W transitions. The point is that even though we have iter-
ated each initial condition up to 1011 times, we may still be far from observing the ‘correct’ 
asymptotic behavior. Indeed, the derivation of (31) relies on the Wc→W transitions being 
fast compared with those for W →Wc. When c is small, orbits spend more time outside W. 
Hence, for a fxed total number of iterates, less time is spent in W. Thus longer experiments 
are probably needed to faithfully compute the effect of the W →Wc transitions on σT.
It would be interesting to take into account the role of the parameter c in the simple two-

state transport model, especially to compute fnite time corrections to an asymptotic exponent.

6. Conclusions

In the frst part of this paper we constructed a family fε (13) of two-angle, one-action, volume-
preserving maps of the cylinder T2×R that smoothly projects to the three-torus T3. This map 
has fxed point accelerator modes that are born whenever ε=n. The phase space of f0 is foli-
ated by horizontal, rotational invariant tori, and these persist when ε (and µ) is small according 
to volume-preserving versions of the KAM theorem. Thus our model generalizes Chirikov’s 
standard map to the 3D volume-preserving setting.
The accelerator modes are created by a Hopf-one bifurcation. The local behavior near 

this bifurcation is modeled by the Michelson quadratic volume-preserving map (9). Previous 
studies of this map gave necessary conditions for the appearance of a bubble regular motion 
around the accelerator modes.
In the second part of the paper, we assessed the diffusive properties of the fε as ε varied 

near the frst Hopf-one bifurction at ε=1. We found, as expected, that if there are no accel-
erator modes, the action variable exhibits normal diffusive behavior: its standard deviation 
grows as 

√
T. However when there is a bubble of stable orbits, the action diffusion seems to be 

anomalous: the standard deviation with exponent χ>0.6. Moreover, the exit time distribution 
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for a neighborhood of the bubble decay as a power-law t−b with b∈(2, 3). Our experiments 
suggest that the distribution for the lengths of untrapped segments is exponential, and that 
stays outside and inside the bubbles are independent.
In this paper we provide evidence that Pε(t)∼t

−b, b∈(2, 3), agreeing with the results in 
[48]. This contrasts with the exponential distribution for exit times observed for the map in 
[53]. We do not know the reason for this radical difference.
Another important question that remains is the relation between the exponents b and χ. 

From our computations, this differs from the relation obtained for the 2D case, recall sec-
tion 5.3. We hypothesize that the reason for this is that the mean exit time from the comple-
ment of the bubbles is too long for our numerical experiments to reach their asymptotic limit.
The observed algebraic decay of the exit time distribution seems to imply that there exist 

remnants of destroyed invariant two-tori in the chaotic zone outside the KAM-bubble. These 
would be analogous to the Cantori for 2D twist maps. There is no theory, however, for the 
existence of these in the volume-preserving context. If one could fnd these remnants, and 
compute the fux through them, then it should be possible to construct a Markov tree model, 
similar to that in [42], that could explain the observed stickiness of the bubble. To solve these 
problems requires a theory for the destruction of invariant tori [23, 39]. Is there an analogue of 
Chirikov’s overlap criterion? Are there remnant tori, and if so, what is their topology? 
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Appendix A. A choice for ψ(z)

Here we construct a concrete example of an odd, degree-one circle map ψ that satisfes (14). 
This will be used in section 4 to give numerical evidence of anomalous diffusion in the dynam-
ics of the map fε along the action variable.

First consider a function ̃ψ(z)=−z+c3z
3 defned on [0, 1]. If c3 4 there is a unique 

zc
1
2 such that mc=ψ̃(zc) is the slope of the straight line between (zc,̃ψ(zc)) and (

1
2,0). 

The value zc is determined as a solution of the cubic equation,

ψ̃(zc)(
1

2
−zc)+̃ψ(zc)=0.

Defne the C1 function

ψ̃ext(z)=






ψ̃(z) if z∈[0,zc),

mc(z−
1
2) if z∈[zc,1−zc],

−ψ̃(1−z) if z∈(1−zc,1].

This is an odd function with zero average. We will use an analytic approximation of it via (a 
truncated) Fourier series, that will only contain sine terms with coeffcients ̂ak<0, and call 

J D Meiss et alNonlinearity 31 (2018) 5615



5639

this approximation ̂ψext. For the choice c3=8π
2 it is enough to take the frst seven harmonics 

to get a fairly good approximation of ̃ψext. That is, we take

ψ(z)=z+λĉψext(z)≈z+λc

7

k=1

âksin(2πkz),

where λc=|d̂ψext(0)/dz|
−1 is a correction factor to make sure that ψ(0)=0. For our map 

(13), this gives the form (15) with ai=λĉai, i=1,...,7 being

a1 = −0.031 722 552 624 100 20, a5 = −0.003 946 221 282 199 23,

a2 = −0.015 001 446 721 045 00, a6 = −0.002 573 763 696 492 51,

a3 = −0.009 094 902 844 667 39, a7 = −0.001 599 544 834 072 87.

a4 = −0.005 943 571 515 810 41,
 (A.1)

In fgure A1 we can see the graph of ψ(z) in [0, 1] (left), and how much it differs from the 
identity (right).

Appendix B. Proof of lemma 1

Here we prove lemma 1, on the existence of fxed point accelerator modes for the map (13). 
Recall that the function ψ(z) is assumed to be an odd, degree-one circle map that satisfes (14).
A point (x,y,z) belongs to an FPAM if (x,y,z)=(x+n1,y+n2,z+n3), n1,n2,n3∈Z, 

and n3=0. From (13) this implies

µsin(2πy)+ψ(z)=n1, (B.1)

νsin(2πz)=n2, (B.2)

ε(cos(2πx)−βsin(2πy)) =n3. (B.3)

Given the limits (17) and (B.2) implies that n2  =  0, and thus either z=p or z=p+
1
2, for 

some p∈Z.

 1.  Assume frst that z=p∈Z. Since z−z=n3, then, z=q=p−n3∈Z. Since 
ψ(p)=p, and µ is restricted by (17) and (B.1) requires that n1  =  p, which requires 

y=y± with y+   =  r or y−=r+
1
2, for r∈Z.

Figure A1. Left: function ψ(z) in (13), see (15). Right: ψ(z)−z.
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   In particular, in both cases (B.3) reduces to εcos(2πx)=n3∈Z\{0}. Solutions to this 

equation are born at ε=n3 at x  =  s or x=s+
1
2, being s∈Z. Hence we have FPAM that 

are born when ε=n3 at the points

P+=(0, 0, 0), Q+=(0,
1

2
,0),

P−=(
1

2
, 0, 0), Q−=(

1

2
,
1

2
,0),

   on T3, and all equivalent lifts of these points to R3.
   At the Hopf-one bifurcation, the linearization Dfε should have 1 as eigenvalue. This holds 
since at the FPAM, cos(2πy±)=±1 and sin(2πx)=0, and the frst and second traces of 
Dfε are

τ=σ=3∓4βεπ2ν.

Finally, the second pair of multipliers is on the unit circle when −1<τ=σ<3, which 
gives the requirement

0<±επ2βν <4.

Thus if βν >0 only the fxed points P± have the stability property to become saddle-
foci, recall remark 3.

 2.   If z=p+12, p∈Z, then since ψ(z)−z is a period-one, odd func-
tion, ψ(z)=ψ(p+12)=p+ψ(

1
2)=p+

1
2.  Thus  (B.1)  requires  that  

n1=p+
1
2+µsin(2πy)=0. Under the restriction (17), this implies that n1/∈Z. Hence, 

no point in T3 of the form P=(x,y,12), x,y∈S
1 can be an FPAM.
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