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ABSTRACT

Deep neural networks (DNNs) are known vulnerable to adversarial
attacks. That is, adversarial examples, obtained by adding delicately
crafted distortions onto original legal inputs, can mislead a DNN to
classify them as any target labels. This work provides a solution
to hardening DNNs under adversarial attacks through defensive
dropout. Besides using dropout during training for the best test
accuracy, we propose to use dropout also at test time to achieve
strong defense effects. We consider the problem of building robust
DNNs as an attacker-defender two-player game, where the attacker
and the defender know each others’ strategies and try to optimize
their own strategies towards an equilibrium. Based on the observa-
tions of the effect of test dropout rate on test accuracy and attack
success rate, we propose a defensive dropout algorithm to deter-
mine an optimal test dropout rate given the neural network model
and the attacker’s strategy for generating adversarial examples. We
also investigate the mechanism behind the outstanding defense
effects achieved by the proposed defensive dropout. Comparing
with stochastic activation pruning (SAP), another defense method
through introducing randomness into the DNN model, we find that
our defensive dropout achieves much larger variances of the gradi-
ents, which is the key for the improved defense effects (much lower
attack success rate). For example, our defensive dropout can reduce
the attack success rate from 100% to 13.89% under the currently
strongest attack i.e., C&W attack on MNIST dataset.

1 INTRODUCTION

Deep neural networks (DNNs) are powerful models that achieve
extraordinary performance in various speech and vision tasks, in-
cluding speech recognition [15], natural language processing [7],
scene understanding [17], and object recognition [20, 22, 23]. How-
ever, recent studies [13, 21, 31] show that DNNs are vulnerable to
adversarial attacks implemented by generating adversarial exam-
ples, i.e., adding imperceptible but well-designed distortions to the
original legal inputs. Delicately crafted adversarial examples can
mislead a DNN to classify them as any target labels, while they
appear recognizable and visually normal to human eyes.
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Evidences have shown that audio/visual inputs sound/look like
speeches/objects to DNNs but non-sense to humans [4, 26]. Re-
cently Kurakin, Goodfellow, and Bengio have demonstrated the
existence of adversarial attacks not only in theoretical models but
also the physical world [21]. They mimicked the scenario of physi-
cal world application of DNNs by feeding the adversarial examples
to a DNN through a cellphone camera to find that adversarial ex-
amples remain mis-classified by the DNN even when perceived
through a camera.

Concerns have been aroused for applying DNNs in security-
critical tasks. The security properties of DNNs have been widely
investigated from two aspects: (i) crafting adversarial examples to
test the vulnerability of DNNs and (ii) enhancing the robustness of
DNNs under adversarial attacks. For the former aspect, adversarial
examples have been generated by solving optimization problems
[1, 5, 6, 13, 28, 31]. For the later aspect, research works have been
conducted by either filtering out added distortions [2, 10, 14, 34]
or revising DNN models [9, 11, 29] to defend against adversarial
attacks. These two aspects mutually benefit each other towards
hardening DNNs under adversarial attacks.

In this work, we provide a new solution to hardening DNNs
under adversarial attacks through defensive dropout. Dropout is a
commonly used regulation method to deal with the overfitting issue
due to limited training data [30]. As a regulation method, dropout is
applied during training that for each training case in a mini-batch,
a sub-network is sampled by dropping some of the units (i.e., neural
nodes). Based on some observations from preliminary experiments,
we propose to use dropout also at test time as a defense method
against adversarial attacks. By introducing dropout to test time, we
achieve shorter and fatter distributions of the gradients, which is
the key for the improved defense effects (lower attack success rate)
compared with another model-randomness-based defense method
i.e., stochastic activation pruning (SAP) [8]. For MNIST dataset,
our defensive dropout reduces the attack success rate from 100%
to 13.89% under the currently strongest attack i.e., C&W attack [5],
while the distillation as a defense [29] and the adversarial training
[32] are totally vulnerable under C&W attack. For CIFAR dataset,
our defensive dropout reduces the attack success rate to 43.33%,
while SAP can only reduce the attack success rate to 77.78% under
C&W attack based on the same neural network model.

The contributions of this work are summarized as following:
(i) We consider the problem of building robust DNNs as an

attacker-defender two-player game, where the attacker and the
defender know each others’ strategies and try to optimize their
own strategies towards an equilibrium.

(ii) We propose a defensive dropout algorithm that determines an
optimal test dropout rate given the neural network model and the



attacker’s strategy for generating adversarial examples. Basically,
we need to trade-off between the defense effects and test accuracy.

(iii) We explain the mechanism behind the outstanding defense
effects by the proposed defensive dropout. The shorter and fatter
gradient distributions make it difficult for the attacker to generate
adversarial examples using the gradients from the sampled sub-
networks.

2 RELATED WORK

2.1 Preliminaries

In this paper we focus on neural networks used as image classifiers.
In this case, the input images can be denoted as 3-dimensional

tensors x ∈ Rh×w×c , where h,w and c denote the height, width and
number of channels. For a gray scale image (e.g. MNIST), c = 1; and
for a colored RGB image (e.g. CIFAR-10), c = 3. For both attacks and
defends, all pixel values in the images are scaled to [0, 1] for easy
calculation, and therefore a valid input image should be inside a
unit cube in the high dimensional space. We use model F (x) = y to
denote a neural network, where F accepts an input x and generates
an output y.

Suppose the neural network is an m-class classifier and the
output layer performs softmax operation. Let Z (x) denote the
output of all layers except for the softmax layer, and we have
F (x) = softmax(Z (x)) = y. The input to the softmax layer, Z (x),
is called logits. The element yi of the output vector y represents
the probability that input x belongs to the i-th class. The output
vector y is treated as a probability distribution and its elements
satisfy 0 ≤ yi ≤ 1 and y1 + y2 + · · · + ym = 1. The neural net-
work classifies input x according to the maximum probability i.e.,
C(x) = argmax

i
yi .

The adversarial attack can be either targeted or untargeted. Given
an original legal input x with its correct label t∗ and a target label
t � t∗, the targeted adversarial attack is to find an input x ′ such
thatC(x ′) = t and x and x ′ are close according to some measure of
the distortion between x and x ′. The input x ′ is then called as an
adversarial example. The untargeted adversarial attack is to find
an input x ′ satisfying C(x ′) � t∗ and x and x ′ are close according
to some measure of the distortion. The untargeted adversarial at-
tack does not specify any target label t to mislead the classifier. In
this work, we consider targeted adversarial attacks since they are
believed stronger than untargeted attacks.

The general problem of constructing adversarial examples can
be formulated as: Given an original legal input x ,

minimize D(δ )

subject to C(x + δ ) = t

x + δ ∈ [0, 1]n
(1)

where δ is the distortion added onto input x , D(δ ) is a measure of
the added distortion.

We need to measure the distortion between the original legal
input x and the adversarial example x ′ = x + δ . Lp norms are the
most commonly used measures in the literature. The Lp norm of
the distortion is defined as:

��x − x ′
��
p
=

(
n∑

i=1

��xi − x ′i
��p
) 1
p

(2)

We see the use of L0, L1, L2, and L∞ norms in different attacks.

- L0 norm: measures the number of mismatched elements be-
tween x and x ′.

- L1 norm: measures the sum of the absolute values of the
differences between x and x ′.

- L2 norm: measures the standard Euclidean distance between
x and x ′.

- L∞ norm: measures the maximum difference between xi and
x ′i for all i’s.

2.2 Attacks

2.2.1 Fault Injection [24]: published in ICCAD 2017, proposes
two kinds of fault injection attacks that only require slight changes
to the DNN’s parameters to achieve misclassification: single bias at-
tack (SBA) and gradient descent attack (GDA). SAB is able to achieve
misclassification by modifying only one bias value in the network.
And GDA achieves higher stealthiness and efficiency by using layer-
wise searching and modification compression techniques. It imple-
ments very efficient attacks on MNIST and CIFAR-10 datasets. This
work perceives the DNN attack problem from a different angle, i.e.,
modifying the DNN models, while all the other attacks and defends
mentioned in this paper assume the modifications are performed
onto the inputs.

2.2.2 Fast Gradient Sign Method (FGSM) [13]: is an L∞ attack
and utilizes the gradient of the loss function to determine the di-
rection to modify the pixels. They are designed to be fast, rather
than optimal. They can be used for adversarial training by directly
changing the loss function instead of explicitly injecting adversar-
ial examples into the training data. FGSM generates adversarial
examples following:

x ′ = x − ϵ · sign(∇(lossF ,t (x))) (3)

where ϵ is the magnitude of the added distortion, t is the target
label. Using backpropagation, FGSM calculates the gradient of the
loss function with respect to the label t to determine the direction
to change the pixel values.

2.2.3 Jacobian-based Saliency Map A�ack (JSMA) [28]: is an L0
attack and uses a greedy algorithm that picks the most in�uential
pixels by calculating Jacobian-based Saliency Map and modifies
the pixels iteratively. The computational complexity of this attack
method is very high.

2.2.4 C&W [5]: is a series of L0, L2, and L∞ attacks that achieve
100% attack success rate with much lower distortions comparing
with the above-mentioned attacks. In particular, the C&W L2 attack
is superior to other L2 attacks because it uses a better objective
function. C&W formulates the problem of generating adversarial
examples in an alternative way that can be better optimized:

minimize D(δ ) + c · f (x + δ )

subject to x + δ ∈ [0, 1]n
(4)

where c > 0 is a constant to be chosen and objective function f has
the following form:

f (x + δ ) = max( max{Z (x + δ )i : i � t} − Z (x + δ )t ,−κ) (5)

Here, κ is a parameter that controls the confidence in attacks. Sto-
chastic gradient decent methods can be used to solve this problem.
For example, the Adam optimizer [18] is used due to its fast and
robust convergence behavior.



Figure 1: (a) A standard neural networkwith 2 hidden layers.

(b) A sub-network produced by applying dropout. Units in

grey color are dropped from the whole network.

2.3 Defense Methods

2.3.1 Adversarial Training [33]: injects adversarial examples
with correct labels into the training dataset and then retrains the
neural network, thus increasing robustness of DNNs under adver-
sarial attacks.

2.3.2 Distillation as a Defense [29]: introduces temperature T

into the softmax layer and uses a higher temperature for training
and a lower temperature for testing. The training phase first trains
a teacher model that can produce soft labels for the training dataset
and then trains a distilled model using the training dataset with
soft labels. The distilled model with reduced temperature will be
preserved for testing. The modified softmax function utilized in the
distilled model is given by:

softmax(x ,T )i =
eZ (x )i /T

∑
j e

Z (x )j /T
(6)

where Z (x)i is the i-th logit corresponding to the last hidden layer
output before softmax.

2.3.3 Stochastic Activation Pruning (SAP) [8]: SAP uses L1 nor-
malization to calculate the multinomial distribution regarding every

activation layer. For every hidden activation vector hi ∈ Ra
i
at the

i-th layer, SAP defines the probability pij of whether or not to prune

the j-th activation output hij with the following,

pij =
|hij |

∑ai

k=1
|hi
k
|

(7)

The remaining activation outputs are scaled up according to the
pruning probability and the number of outputs kept at this layer
by using the reweighting factor,

qij = 1 − (1 − pij )
r ip (8)

where r ip is the number of outputs sampled.

3 PROPOSED DEFENSIVE DROPOUT

3.1 Dropout Preliminaries

Motivated by the mixability theory in the evolutionary biology
[25], dropout was proposed as a regularization method in machine
learning to prevent the overfitting issue with limited training data
[30]. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, the unit along

Figure 2: (a) At training time, a unit presents with probabil-

ity p. (b) At test time, the unit is always present and the out-

going weights are multiplied by p.

with all its incoming and outgoing connections are temporarily
removed from the network. Fig. 1 shows applying dropout to a
neural network amounts to sampling a sub-network from it.

The feedforward operation of a standard neural network can be
described as:

z
(l+1)
i = w

(l+1)
i y(l ) + b

(l+1)
i (9)

y
(l+1)
i = f (z

(l+1)
i ) (10)

where y(l ) denotes the vector of outputs from layer l , z(l ) denotes

the vector of inputs to layer l , W(l ) and b(l ) are weight matrix and
bias vector of layer l , and f is any activation function.With dropout,
the feedforward operation becomes [16]:

r
(l )
j ∼ Bernoulli(p) (11)

ỹ(l ) = r(l ) 	 y(l ) (12)

z
(l+1)
i = w

(l+1)
i ỹ(l ) + b

(l+1)
i (13)

y
(l+1)
i = f (z

(l+1)
i ) (14)

where r(l ) is a vector of independent Bernoulli random variables,
each with probability p of being 1, and 	 denotes an element-wise
product.

A neural network with n units can been seen as a collection
of 2n sampled sub-networks, which all share weights so that the
total number of parameters is still O(n2). During training a neural
network with dropout, stochastic gradient descent is used as in
standard training, except that for each training case in a mini-batch,
a sub-network is sampled by dropping out units, and forward and
backpropagation for that training case are done only on this sub-
network. The gradients for each parameter are averaged over the
training cases in each mini-batch. Therefore, training a neural net-
work with n units using dropout can be seen as training a collection
of 2n sub-networks with extensive weight sharing.

The purpose of applying dropout is to prevent units from co-
adapting too much by combining the predictions of many sub-
networks with shared weights. However, at test time, it is not feasi-
ble to explicitly average the predictions from exponentially many
sub-networks. A very simple approximate averaging method is
to use a single neural network at test time without dropout, the
weights of which are scaled-down versions of the trained weights.
If a unit presents with probability p during training with dropout,



the outgoing weights of that unit are multiplied by p at test time,
as shown in Fig. 2. This ensures that the output at test time is the
same as the expected output at training time.

3.2 Defensive Dropout Implementations in
Training and Test

Dropout is a commonly used regularization method. To achieve
very good test accuracy, in practice dropout is usually applied to
units in the fully-connected layer close to the output layer of the
neural network [12]. Also, the dropout rate r = 1 − p, instead of
the probability p of presence for a unit is used during training with
dropout [3]. For each training case in a mini-batch, the units are
dropped with rate r and a sub-network is sampled for the training
case. The gradient for each parameter (weight) is then calculated
based on the sampled sub-network. Please note that, for a unit with
rate r of being dropped, if it presents in the sub-network, we need to
divide the output of its activation function by 1−r when evaluating
the loss function for gradient calculation. This is for making the
output at test time roughly the same as the expected output at
training time. If a parameter is not used in the sub-network, a zero
gradient is set for that. Gradients for each parameter are averaged
over all training cases in the mini-batch. When dropout is applied
as a regulation method to deal with overfitting, at test time the
whole neural network without dropout is used, but with the output
of the activation function divided by 1 − r if the unit is dropped
with rate r during training.

Intuitively, introducing randomness into the test time can also
help to harden deep neural networks against adversarial attacks.
Therefore, we propose to apply dropout also at the test time as
a defense method. If dropout was applied to units in a specific
layer during training with dropout rate r , we are going to apply
dropout to the same layer at test time with dropout rate r ′. For
each test case, units are dropped with rate r ′ and a sub-network is
sampled for it. To have roughly the same expected output as the
whole neural network at test time, we also need to scale-up the
activation functions of the retained units in the dropout layer of

the sub-network by 1
1−r ′ . Please note that r is optimized during

deep neural network training, and r ′ is the optimization variable of
our defense method to be derived by the Algorithm in Section 3.4.

Our work aims at defending against the strongest attacks, i.e.,
the white-box attacks, that is, the attacker has perfect information
about the neural network architecture and parameters. Therefore,
when we defend against adversarial attacks, we assume the attacker
knows not only the complete neural network model but also the
stochastics in the model (i.e., which layer applied dropout and the
dropout rates r and r ′). Specifically, when the attacker generating
adversarial examples by solving an optimization problem based
on stochastic gradient descent, the gradients are calculated in the
similar manner as training with dropout i.e., using sampled sub-

networks and the activation functions scaled-up by 1
1−r ′ . By doing

this, we give the attacker full access to the neural network model
andwe are able to evaluate our defensemethod against the strongest
white-box attacks.

3.3 Observations and Motivations

We perform some preliminary experiments that motivate and sup-
port our defensive dropout method. We pick the currently strongest
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Figure 3: (a) Test accuracy, (b) Attack success rate, and (c) L2
norm under C&W attack on MNIST dataset using different

training dropout rates and test dropout rates.



attack, i.e., C&W attack [5] and experiment on different training
dropout rates and different test dropout rates to analyze test ac-
curacy and defense effects. Fig. 3 presents the results, where the
x-axes denote test dropout rate and each curve represents one train-
ing dropout rate. From Fig. 3 (a), we can observe that test accuracy
decreases with increasing test dropout rate. Also, a training dropout
rate of 0.3 achieves the highest test accuracy for MNIST dataset.
The increase in test accuracy is more prominent in other datasets.
For example, a training dropout rate of 0.7 increases the test accu-
racy by 7.5% in our neural network model on CIFAR-10 dataset. In
summary, the decrease in test accuracy due to the test dropout rate
can be compensated in some extent by the training dropout rate.

Fig. 3 (b) and (c) demonstrate the defense effects of training
and test dropout rates. In general, increasing test dropout rate can
reduce the attack success rate, see Fig. 3 (b). And the L2 norm of
the added distortions in the adversarial examples reaches a peak at
certain test dropout rate, see Fig. 3 (c). The solution for defending
against C&W attack on MNIST dataset is to use a test dropout rate
of 0.5 when the training dropout rate is 0.3, which loses 0.8% test
accuracy but decreases the attack success rate from 100% to 13.89%
with the largest L2 norm of the distortion (the peak point in Fig. 3
(c)), indicating that the added distortion in the adversarial examples
might be large enough to be recognized by humans. Please note
that under C&W attack, the distillation as a defense [29] and the
adversarial training [32] could not decrease the attack success rate
at all [5], i.e., still 100% attack success rate under these defense
methods.

We also investigate the mechanism behind the outstanding de-
fense effects achieved by the proposed defensive dropout. It is intu-
itive to explain the defense effects as model randomness through
adding dropout at test time. However, there are also other defenses
through introducing model randomness, such as stochastic activa-
tion pruning (SAP) [8] and migration through randomization (MTR)
[34], that only achieve limited defense effects against C&W. We are
trying to explain the mechanism in a different way. Fig. 4 is plotted
for the probability density of uniformly sampled gradients when
generating adversarial example using C&W attack on CIFAR-10
dataset. Please note that the gradients have 32 × 32 × 3 dimensions,
and therefore we select 5 dimensions for visualization, each pre-
sented by a color and each containing 50 data points throughout Fig.
4 (a)∼(f). Also for fair comparison, we use the same neural network
model with training dropout rate of 0.7 for the best test accuracy,
and the same original input image for Fig. 4 (a)∼(f), including our
defensive dropout and SAP.

From Fig. 4 (a)∼(e), with increasing test dropout rate, the proba-
bility densities become shorter and fatter, demonstrating increasing
variances of the gradients, which is the key for the improved de-
fense effects (decreasing attack success rate) with increasing test
dropout rate. The larger variances of the gradients, the more diffi-
cult for the attacker to generate effective adversarial examples by
using stochastic gradient descent when solving the optimization
problem. It cross-validates the conclusion from Fig. 3 (a) and (b).
Of course, we could not use the largest test dropout rate for the
strongest defense effects, because the test accuracy might be very
low. We need to trade-off defense effects for the test accuracy. Fig.
4 (f) is the probability densities of the gradients from stochastic
activation pruning (SAP) [8], which shows very small variances

of the gradients comparing with our defense method. That is the
reason our defensive dropout outperforms SAP.

3.4 Defensive Dropout Algorithm

Towards hardening deep neural networks under adversarial attacks,
the attacker and the defender improve their own strategies like in
a two-player game. In such a game, the attacker and the defender
know each others’ strategies and try to optimize their own strate-
gies towards an equilibrium. The defender can benefit from the
improvement of the attacker’s strategy. Therefore, we need to take
into consideration the attacker’s strategy of generating adversarial
examples when designing our defense.

Based on the observations on the test dropout rate’s effect on test
accuracy and attack success rate, we design the defensive dropout
algorithm that helps us to determine an optimal test dropout rate
given the neural network model and the attacker’s strategy for
generating adversarial examples. In the algorithm, we also optimize
the training dropout rate along with the test dropout rate, but that
is only for the purpose of training neural network for the best test
accuracy. Basically, we first train a neural network model F by find-
ing a proper training dropout rate r . Then we fix the model F and
search for the largest test dropout rate r ′ for the strongest defense
effects while satisfying the test accuracy requirement. Pseudo code
of the defensive dropout algorithm is given in Algorithm 1.

Algorithm 1 Defensive Dropout Algorithm

Require: X: Dataset

F : Neural Network Model

π : Attacker Strategy (e.g., C&W, FGSM, JSMA)

ε : Maximum decrease of test accuracy

Ensure: r ′: Test Dropout Rate

r : Training Dropout Rate

1: Retrain neural network model F using a proper training

dropout rate r ∈ [0.3, 0.7] and obtain the best test accuracy

amax
test ;

2: a ← amax
test ;

3: r ′ ← 0;

4: while a > amax
test − ε do

5: r ′ ← r ′+ step_size;

6: Generate adversarial examples using attacker strategy π ,

neural network model F , and test dropout rate r ′;

7: Evaluate test accuracy a using neural network model F and

test dropout rate r ′;

8: Evaluate attack success rate using neural network model F

and test dropout rate r ′;

9: end while

4 EXPERIMENTAL RESULTS

4.1 Setup

As in other attack and defense work, we are also using the two
datasets: MNIST and CIFAR-10. The MNIST dataset (Modified Na-
tional Institute of Standards and Technology database) [35] is a
collection of handwritten digits that is commonly used for train-
ing and test various machine learning tasks. It consists of 70, 000
28 × 28 (60, 000 training images and 10, 000 test images) grey-scale



Figure 4: Probability density of sampled gradients when generating adversarial example using C&W attack on CIFAR-10. The

same neural network architecture, the same original input image, and the same training dropout rate of 0.7 for the best test

accuracy is used throughout (a)∼(f). Histogram and the corresponding �tted probability density curve in each color denote

one out of 32× 32× 3 dimensions in the sampled gradients and include 50 data points. (a)∼(e) are from our proposed defensive

dropout for different test dropout rate, and (f) is from stochastic activation pruning (SAP).

images for digits 0 to 9. The CIFAR-10 dataset (Canadian Institute
For Advanced Research) [19] is a collection of color images. It con-
tains 60, 000 32 × 32 images in 10 different classes (e.g., cars, birds,
airplanes, etc.).

For DNN models in our experiment, we use standard convo-
lutional neural networks with 4 convolutional layers and 2 fully-
connected layers. This architecture has been used as standardmodel
in many previous work [5, 29]. While the overall neural network
architecture for MNIST or CIFAR-10 dataset is the same, the size
of the neural network model for CIFAR-10 is slightly larger than
that for MNIST, since CIFAR-10 images have higher resolution. The
activation function is rectified linear unit (ReLU) for all convolu-
tional and fully connected layers. The architectures of the neural
network models for MNIST and CIFAR-10 are summarized in Table
1. In both models we apply defensive dropout to Fully connected

layer 1. After training, the models achieve the state-of-the-art 99.4%
and 80% test accuracies for MNIST dataset and CIFAR-10 dataset,
respectively.

We implement FGSM, JSMA, and C&W attacks based on the
CleverHans package [27]. For FGSM, we use a fixed ϵ = 0.25 as
suggested in the original paper [13]. For JSMA, we use the codes

Table 1: Architectures of neural network models for MNIST

and CIFAR-10

Model for MNIST Model for CIFAR-10

Conv layer 32 filters with size (3,3) 64 filters with size (3,3)

Conv layer 32 filters with size (3,3) 64 filters with size (3,3)

Pooling layer pool size (2,2) pool size (2,2)

Conv layer 64 filters with size (3,3) 128 filters with size (3,3)

Conv layer 64 filters with size (3,3) 128 filters with size (3,3)

Pooling layer pool size (2,2) pool size (2,2)

Fully connected 1 200 units 256 units

Fully connected 2 200 units 256 units

Output layer 10 units 10 units

from CleverHans directly. For C&W, we perform 10 iterations of
binary search for constant c . With a selected c , we then run 100
iterations of gradient decent with the Adam optimizer. We compare
with other defenses such as adversarial training [33], distillation as
a defense [29], and stochastic activation pruning (SAP) [8], among
which we implement SAP ourselves, and defense effects of the
adversarial training and distillation as a defense are cited from [5].



Table 2: Test accuracy, attack success rate, and L2 normusing

SAP against C&W attack on CIFAR-10.

train 0 train 0.1 train 0.3 train 0.5 train 0.7 train 0.9

Test acc. 72.07% 75.69% 76.39% 78.12% 78.15% 68.35%

C&W ASR 54.44% 64.44% 77.78% 78.89% 85.56% 70%

L2 norm 0.504 0.522 0.618 0.498 0.679 0.784

Table 3: Attack success rate using our defensive dropout

against FGSM attack on CIFAR-10.

Dropout rate test 0 test 0.1 test 0.3 test 0.5 test 0.7 test 0.9

train 0 32.48% – – – – –

train 0.5 15.87% 14.46% 13.89% – – –

Table 4: Attack success rate using our defensive dropout

against FGSM attack on MNIST.

Dropout rate test 0 test 0.1 test 0.3 test 0.5 test 0.7 test 0.9

train 0.7 22.74% 21.89% 20.67% 19.56% 16.44% –

4.2 Results

We use two metrics to evaluate the defense effects against adver-
sartial attacks, i.e., attack success rate (ASR) and L2 norm of the
distortion. The lower attack sucssess rate and the higher L2 norm
imply the stronger defense effects.

We first compare with SAP on the defense effects against C&W
attack using CIFAR-10 dataset. The results of SAP are summarized
in Table 2. The results of our defensive dropout are summarized
through Fig. 5. In Table 2, we perform SAP on neural network mod-
els using different training dropout rates (in columns). The second
to forth rows report test accuracy, attack success rate (ASR), and
L2 norm. If we allow test accuracy decrease within 4%, the SAP can
reduce the attack success rate from 100% to 77.78% with a test accu-
racy of 76.39%. From Fig. 5, we can observe that at training dropout
rate of 0.7 and test dropout rate of 0.7, our defensive dropout can
reduce the attack success rate to 43.33% with a test accuracy of 77%,
demonstrating superior defense effects to SAP. Also the L2 norm of
our defensive dropout is around 1.1 which is much higher than that
of SAP (i.e., 0.618 from Table 2). Table 3 shows the attack success
rate using our defensive dropout against FGSM attack on CIFAR-10,
observing that the defensive dropout reduces attack success rate
from 32.48% to 13.89% at test accuracy of 77.89%. In general, attack
success rate of FGSM is much lower than C&W, because it is a faster,
but not optimal attack.

We also summarize the results onMNIST dataset using our defen-
sive dropout against FGSM, JSMA, and C&W attacks, respectively,
in Tables 4, 5, and 6, with <1% test accurary drop. For FGSM, defen-
sive dropout reduces attack success rate from 40.67% to 16.44%. For
JSMA, defensive dropout reduces attack success rate from 91.89%
to 26.78%. For C&W, defensive dropout reduces attack success rate
from 100% to 13.89%. Please note that adversarial training and dis-
tillation as a defense are totally vulnerable to C&W attack [5].
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Figure 5: (a) Test accuracy, (b) Attack success rate, and (c) L2
norm under C&W attack on CIFAR-10 dataset using differ-

ent training dropout rates and test dropout rates.



Table 5: Attack success rate using our defensive dropout

against JSMA attack on MNIST.

Dropout rate test 0 test 0.1 test 0.3 test 0.5 test 0.7 test 0.9

train 0.7 90.67% 60.56% 43.78% 35.67% 26.78% –

Table 6: Attack success rate using our defensive dropout

against C&W attack on MNIST.

Dropout rate test 0 test 0.1 test 0.3 test 0.5 test 0.7 test 0.9

train 0.3 100% 24.66% 24.00% 13.89% – –

5 CONCLUSION

In this paper, we propose defensive dropout for hardening deep
neural networks under adversarial attacks. Considering the prob-
lem of building robust DNNs as an attacker-defender two-player
game, we provide a defensive dropout algorithm that determines
an optimal test dropout rate given the neural network model and
the attacker’s strategy for generating adversarial examples. We
also explain the mechanism behind the outstanding defense effects
achieved by the proposed defensive dropout.
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