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ABSTRACT

New DNN accelerators based on emerging technologies, such as

resistive random access memory (ReRAM), are gaining increasing

research attention given their potential of łin-situ" data processing.

Unfortunately, device-level physical limitations that are unique to

these technologies may cause weight disturbance in memory and

thus compromising the performance and stability of DNN accelera-

tors. In this work, we propose a novel fault-tolerant neural network

architecture to mitigate the weight disturbance problem without

involving expensive retraining. Specifically, we propose a novel

collaborative logistic classifier to enhance the DNN stability by

redesigning the binary classifiers augmented from both traditional

error correction output code (ECOC) and modern DNN training

algorithm. We also develop an optimized variable-length łdecode-

freež scheme to further boost the accuracy under fewer number of

classifiers. Experimental results on cutting-edge DNN models and

complex datasets show that the proposed fault-tolerant neural net-

work architecture can effectively rectify the accuracy degradation

against weight disturbance for DNN accelerators with low cost,

thus allowing for its deployment in a variety of mainstream DNNs.
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1 INTRODUCTION

Deep learning has nowadays achieved phenomenal successes in

many real-world applications spanning from computer vision, speech

recognition, object detection to game playing and self-driving vehi-

cles [19, 22]. To facilitate DNN’s adoption in resource-constrained

devices and tackle the significant computation and data move-

ment overhead, many research efforts have been put on developing

high-performance and energy-efficient DNN accelerators, such as

domain-specific FPGAs, CMOS, and non-CMOS based ASICs [6, 18].

Among the non-CMOS based accelerators, one promising solution
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is the emerging resistive random access memory (ReRAM or mem-

ristor) which integrates both computation and storage simultane-

ously within the same crossbar array. The key element of DNN

computationśmultiply-accumulate (MAC) operation can be effi-

ciently conducted within the memristor array by exploiting the

relationship between a dot product computation and the currents in

a resistive mesh [1]. Many memristor-based DNN accelerators have

been proposed [18, 21], and extensive optimizations have been car-

ried out [15, 16]. With the highly paralleled computing architecture

and zero cost in data movement, these designs significantly improve

the performance-per-watt of DNN accelerators, far exceeding that

of CMOS-based counterparts.

However, one critical challenge faced by these memristor-based

accelerators is their poor stability. A DNN weight, which is rep-

resented as the memristance of a memristor cell, can be easily

distorted by the inherent physical limitations of memristor de-

vices [4, 17]. For example, the electrical or thermal noise and process

variations can limit the programming precision of a memristor. The

endurance varies widely from cell to cell and from device to device,

causing highly imbalanced wear-leveling. Memristance drift [4]

induces tiny perturbations on memristance states which in turn

degrade the DNN computing accuracy, performance, and system

stability [23]. Although recent works have investigated errors in

ReRAM accelerators [5, 14], their solutions focus on permanent de-

fects (i.e., stuck zero or one fault), overlooking the far more common

noise, drifting, and programming errors these devices are likely to

encounter. More importantly, their solutions for tolerating defects

usually involve non-trivial retraining, which is far from scalable

in the envisioned scenario of a neural network trained once in the

cloud and deployed to many edge devices each equipped with a

ReRAM accelerator. Furthermore, each ReRAM accelerator displays

a unique footprint of defects and errors due to process variations

and aging, multiplying their proposed efforts dramatically.

Fundamentally different from these approaches, our solution

proposed in this paper intends to address the stability problem

without involving expensive retraining, but exploiting and further

boosting DNN’s self-correcting capability. The inherent error re-

silience of DNNs, which already allows it to handle minor precision

loss and data errors [10, 13], can be escalated by wisely redesign-

ing the ensemble learning method such as error-correcting output

code (ECOC) [8] for modern DNNs. However, boosting the error-

resilience capability of DNNs to the level capable of mitigating

weight disturbance in ReRAM accelerators needs to resolve two

major technical challenges: 1) Modern DNN classifier usually uses

softmax regression in the output layer to solve the mutually ex-

clusive multi-class classification problem (winner-takes-all rule by
DOI: 10.1145/3316781.3317742



one-hot encoding), which is incompatible with ECOC. Directly

replacing the softmax classifier with a set of independent binary

logistic classifiers will cause undesired accuracy loss because of the

increased neural competition [16]; 2) Existing ECOC [3] requires

comprehensive training on the classifier dedicated to a certain task,

making such a solution inflexible when handling a variety of ma-

chine learning tasks.

To overcome these challenges, in this work, we investigate and

propose a set of techniques to unleash the algorithmic error-resilience

of DNN classifier. A critical observation is that while small weight

disturbances may occur in any layer of a given DNN model, propa-

gate through the network, and introduce variations to the score of

each class on the output layer, they affect the final classification out-

come if and only if the ranking of different classes on the output

layer is altered. Based on this observation, our work targets the out-

put layer and enhances DNN stability with a collaborative logistic

classifier which leverages asymmetric binary classification coupled

with an optimized variable-length decode-free ECOC to improve

the error-correction capability of DNN accelerators. Our scalable de-

sign requires neither expensive defect-map-specific calibration nor

training-from-scratch, and can be easily integrated with existing

hardware-based fault tolerance solutions. Extensive experimental

studies on different DNN models and datasets confirm that our

design significantly reduces the neural competition and increases

the decision (Hamming) distance on final classification output, thus

effectively rectifying the accuracy degradation induced by resis-

tance variations and stuck-at faults (SAFs) in emerging ReRAM

accelerators.

2 BASICS OF DNN AND ECOC

Deep neural network (DNN) is usually composed of different types

of layers. The convolutional layer abstracts features from the inputs

through the kernel-based convolutions. The fully-connected layer

further ranks the confidence of each class based on the weighted

features. The output layer is used as the DNN classifier such as

softmax and logistic to make the final decision.

2.1 Logistic and Softmax Classifier

The logistic classifier is a classic solution to solve the traditional bi-

nary classification problem (e.g., true or false). Given input features

x (i) ∈ Rn and neural network weights θ , the logistic classifier can

be trained with label y(i) ∈ {0, 1} through logistic regression hθ (x)

with gradient ∇θ J (θ ):
{

hθ (x) = 1/1+exp(−θ⊤x )

∇θ J (θ ) = −
∑

i x
(i)(y(i) − hθ (x

(i)))
(1)

To handle the complex multi-class classification [7], softmax classi-

fier is widely adopted in modern DNNs.
{

hθ (x) = exp(θ (k )⊤x ))/
∑K
j=1 exp(θ

(j )⊤
x )

∇
θ (k )

J (θ ) = −
∑

m

i=1

(

x (i)
(

{y(i) = k} − hθ (x)
)) (2)

Based on the one-hot coding (i.e., label y(i) = 1 for target class

and y(i) = 0 for others), softmax classifier can push the gradient

towards the target class by normalizing the multiple output logits,

thereby achieving better accuracy than logistic classifier.
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Figure 1: Overview of fault-tolerant neural network architecture.

2.2 Error-Correcting Output Code (ECOC)

As the logistic classifier suffers from limited predictive performance

on multi-class classification, ECOC is an ensemble learning method

to address this issue [25]. Due to the independence among logis-

tic classifiers, neural network outputs can be treated as a specific

codeword. Therefore, ECOC can solve the multi-class classification

as the traditional coding problem: given input features x (i) ∈ Rn ,

L independent logistic classifiers can be trained with a K × L cod-

ing matrix M(K,L), where codeword M(i,L) is assigned with a L-

dimension label vector Y
(i)
L
∈ {1, 2, · · · ,K}. Particularly, the l-th

logistic classifier can be trained with labely
(i)

l
∈ {0, 1} by following

Eq. 1. Based on this learning scheme, appropriate error-correcting

coding (e.g., Hamming) or optimized coding matrix can be further

applied to ECOC to increase Hamming distance of the codewords

assigned for different classes (i.e., enlarge the margin of decision

boundary and reduce the complexity of classification) [8], thus to

enhance the accuracy.

3 OUR DESIGN

3.1 Overview

Fig. 1 depicts an overview of the proposed fault-tolerant neural

network architecture (FTNNA). In FTNNA, the collaborative lo-

gistic classifiers mainly focus on improving the classification re-

sults based on the significance of each logistic classifier, while

the coding scheme further addresses the neural competition issue

among different classes by using the variable-length asymmetric

coding/decoding manner. The coding scheme can be established

through the proposed searching code, to generate a codeword list

used for classification.

Modular design. FTNNA can be implemented through a mod-

ular design with improved scalability. Given any DNN model, 1)

We first test the original accuracy and collect the DNN confusion

matrix; 2) The original classifiers (i.e., softmax) in the output layer

of the given model will be replaced by a certain number of collabo-

rative logistic classifiers, which is fully connected to the previous

layer; 3) The confusion matrix and number of collaborative logis-

tic classifiers will be sent to the DNN-favorable searching code to

create the codeword list; 4) The weights of collaborative logistic

classifiers will be fine-tuned through transfer learning [24] on a

given dataset based on the codeword list.

3.2 Collaborative Logistic Classifier

In FTNNA, the proposed collaborative logistic classifier is extended

from the traditional logistic classifier to handle the ECOC based

classification. To solve the aggravated neural competition issue and



improve the error-correction capacity, our basic idea is to introduce

some dependencies among different classifiers (as softmax classi-

fier) in fine-tuning, while maintaining the independence of binary

classifier for ECOC coding. To achieve such a goal, we leverage the

fine-tuning and regression algorithms.

Fine-tuning. Fine-tuning technique such as transfer learning [24]

is usually applied on pre-trained DNN models to handle different

classification tasks. Such a technique will only update the weights

of DNN classifiers thus to rebuild the decision making without

expensive training. Inspired by the softmax classifier, we design

the collaborative logistic classifier with improved dependency by

leveraging the gradient descent based fine-tuning algorithm.

To fine-tune the weights of the collaborative logistic classifier,

we still use the logistic regression as presented in Eq. 1. However,

to increase the dependency among the classifiers, we introduce the

significance parameter set {β} and assign the significance on each

classifier to establish the correlations among logistic classifiers:

∇θ J (θ ) ∝ −β(k ) ·
∑

i

x (i)(y(k )(i) − hθ (x
(i))) (3)

In our implementation, to simplify the approach and better control

the pace of weight update, a regularization term σ (x ,θ ) is applied

on the loss function L to rectify the classifier significance during

fine-tuning:

∇θ

(

1/n
∑

L(y,hθ (x)) + σ (x ,θ )
)

(4)

Specifically, the regularization term σ (x ,θ ) is calculated based on

the Hamming distance of the corresponding classifier’s target code-

word and its predicted one. since the neural competition can be

estimated from the bit-flipping occurrences, after the fine-tuning,

more significant classifiers may give more decisive confidence for

decision making.

Regression. Due to the rectified significance, some classifiers

may again become indecisive during inference. Therefore, We fur-

ther set a pending zone in logistic regression to address this issue.

The pending zone is defined as a specific region:

hθ (x) = 1/1+exp(−θ⊤x )|−0.4≤θ⊤x ≤0.4 ≈ [0.4, 0.6] (5)

Once the weighted input θ⊤x enters the pending zone, the classifier

will report both {0, 1} as its output. For example, given three col-

laborative logistic classifiers with an input vector {−2, 0.1, 2}, the

output vector(s) will be a 2-dimension matrix {0, 0, 1} and {0, 1, 1}.

Later, the Hamming distance of these two codewords will be com-

pared with the entries in codeword list to predict the target class.

Such a design may effectively rectify the wrong decisions caused

by less significant classifiers. However, there also exists a rare case

that multiple codewords can output the same Hamming distance

after comparisons. To handle this issue, a simple solution is to tem-

porally disable the pending zone, i.e., using its original threshold

(i.e., θ⊤x = 0.5) for regression, once the most significant classifier

with current input enters the pending zone.

3.3 Coding Scheme

To design the low-cost, DNN-favorable ECOC, we propose the

variable-length decode-free coding scheme with searching code to

further reduce the neural competition by leveraging the asymmetric

decoding in FTNNA. To minimize the decoding cost, our coding

scheme will create the codeword list. Such a design may require

some efforts during encoding phase, but can significantly reduce the

decoding cost by only checking the predefined lookup table (LUT).

Once the DNN-favorable searching code finishes the encoding, the

output codeword list will be stored in the LUT and will be later

accessed by collaborative logistic classifiers for classification, which

can be performed by comparing the hamming distance (through

XOR). This leads to a low-cost decode-free design.

Variable-length coding. The variable-length coding attempts

to further alleviate the neural competition to improve the accuracy.

For ECOC coding, a simple solution is to aggressively increase the

number of classifiers (i.e., enlarge the coding bit-length), which

may even surpass that of original softmax classifiers with one-hot

coding. However, this design may significantly increase the over-

head of DNN accelerator and is also unnecessary as the accuracy

can be saturated once the bit-length reaches a certain value (see

Sec. 4). To achieve the variable-length coding, we follow a similar

constraint from the general searching code [12] and take the DNN

confusion matrix into consideration: 1) The codeword should sep-

arate from each other with the maximized hamming distance; 2)

The bit-column (i.e. the binary combination of a certain classifier

on the same bit position) should have the maximum hamming dis-

tance from each other; 3) The codeword should separate the most

overlapped classes in confusion matrix; 4) There are no all-1, all-0

and complementary bit-columns.

DNN-favorable searching code. The pseudo-code of proposed

DNN-favorable searching code is described in Algorithm 1, which

mainly consists of three parts: prepare searching table (line 1-8),

searching code (line 9-15) and code assign (line 16-24). The pre-

pared searching table indicates the maximum number of possible

Algorithm 1: DNN-favorable searching code

1 l ← code length (number of classifiers);

2 h ← Hamming distance;

// initialize searching table T ← {0}

3 while (T = {0})&&(h ≥ 3) do
4 foreach i ∈ [1, 2n − 1] do
5 foreach t ∈ T do

// assess the Hamming distance

6 if Hamm(Dec2Bin(i, l ), Dec2Bin(t, l )) ≥ h then

7 T ← T ∪ {i }

8 if T = {0} then
9 h← h-1

// searching code

// initialize output code list O ← {0}

10 m ← number of classes, x ← 1;

11 n = CodeLen(T ,h,m);

12 while Sizeof (O) < m&&x < 2n do

13 foreach o ∈ O do

14 if Hamm(Dec2Bin(o, l ), Dec2Bin(x, l )) ≥ h then

15 O ← O ∪ {i }

16 x←x+1;

// assign searching code to class

17 C ← confusion matrix;

18 j ←m ;

19 S ← {}// record assignment

20 while (Sizeof (C) ≥ 0)&&(j ≥ 0) do
// Pop the max value from confusion matrix

21 c ← Pop(Max (C));

22 if (xindex (c ) , yindex (c ))&&(xindex (c ) < S) then
// x,y index of confusion element is not equal indicates

// the current strongest classification error

23 Class(xindex(c))← Dec2Bin(Pop(O));

24 S ← xindex (c ) ∪ S;

25 j ← j + 1;



Table 1: Experimental Settings.

Environment

CPU Intel Core i7-6850K, 12 cores
GPU GeForce GTX 1080, 2560 CUDA cores
Simulator MATLAB, Deep Learning Toolbox

Network Model Dataset Original Accuracy

MLP [20] Mnist 99.1%
LeNet [20] Cifar-10 76.1%
Alexnet [10] ImageNet 57.2%
Squeeze [11] ImageNet 57.5%

codewords with code length l and Hamming distance h, which can

be automatically adjusted. The searching code returns a set of code-

words that satisfies the aforementioned constraints. In code assign

phase, we evaluate the confusion matrix and gradually pick up the

corresponding class with strongest neural competition (i.e., with

current strongest classification error), which will be assigned with

the searched code with highest priority. Note the coding process is

done off-line before the neural network accelerators download the

well-trained DNN models.

4 EVALUATION

4.1 Experimental Setup

Baselines and benchmarks. Table 1 shows the details of our ex-

perimental environment, neural network models and datasets. We

select four different neural network models, including small-scaled

multi-layer perceptron (MLP) and popular convolutional neural

networks (CNN) such as LeNet, Alexnet and Squeezenet, along

with three datasets ranging from simple Mnist (10-class handwrit-

ten digits), Cifar-10 (10-class tiny images) and complex Imagenet

(1000-class large images), so as to comprehensively validate the

efficiency and scalability of proposed FTNNA. We simulate a mem-

ristive accelerator similar to [9], wherein each layer of selected

neural network model is mapped to one or more 128×128 arrays

and each memristive cell maintains 64 quantization levels (6-bit) to

achieve a good balance between throughput and reliability [2].

Error modeling. Two different types of errors [5] are simulated

in our evaluation: stochastic programming error (represented as

resistance variation in this paper) and stuck-at fault (SAF). The

resistance variation can be formulated as:

w ′ ← w · eθ s.t. θ ∼ N (0,σ 2) (6)

where w ′ is the neural network parameters with programming

errors under memristor resistance variation θ , which follows a log-

normal distribution. In our simulation, we vary σ to change the

level of resistance variation, so as to tune random programming

error. The SAF occurs when a memristor device freezes in a low

resistance state (LRS) or high resistance state (HRS), resulting in the

stuck-at-one (SA1) fault or stuck-at-zero (SA0) fault. We adopt SA0

(SA1) fault rate as 1.75% (9.04%) based on the published data [5].

Experimental method.We use the classification accuracy as

the measurement metric for our proposed FTNNA [5]. The original

accuracy (baseline, without considering device errors) of the accel-

erators implemented with the four selected neural network models

under corresponding datasets, are reported in Table 1, serving as the

upper bound of our fault-tolerant design. To characterize the lower

bound of the accuracy, selected error models (both programming

errors and SAFs) are first applied to the weights across all different

layers in selected neural network models. We then further apply

our proposed fault-tolerant architecture FTNNA to each weight-

distorted neural network model and measure its average accuracy.

Monte-Carlo simulations, which perform 1000 times of testing for

each combination of neural network model and error model, are

conducted to calculate the average accuracy. Particularly, we set

the number of collaborative logistic classifiers as l = 7 (l = 500)

for the 10-class Mnist and Cifar-10 datasets (1000-class Imagenet

dataset) in our evaluation.

4.2 Results and Analysis

Mitigating programming error (or resistance variation). We

first explore how our proposed FINNA can response to the sto-

chastic programming error incurred by resistance variations. Fig. 2

compares the classification accuracy of the four neural network

models before (blue lineśError, baseline) and after (green lineś

FTNNA) applying the proposed FINNA across different levels of

resistance variations (σ ). Compared to the four baselines which

suffer from severer accuracy degradation as resistance variation

σ increases, our proposed FTNNA can always provide significant

accuracy improvement for all the models handling small or large

datasets, clearly demonstrating the scalability of FTNNA. Impres-

sively, the biggest accuracy gap, i.e. ∼ 40%, ∼ 50%, ∼ 30% and ∼ 28%

for MLP-Mnist, LeNet-Cifar10, Alexnet-Imagenet and Squeezenet-

Imagenet, can be well maintained even when approaching the

largest variation σ = 1.5.

As Fig. 2(a) shows, for small MLP-Mnist, FTNNA achieves > 90%

accuracy for a smaller variation (σ < 0.6), while that of the baselineś

error is significantly degraded, e.g. from the ideal level (99%) to

very unacceptable level (60%). Although the effectiveness of FINNA

slightly decreases at larger variations (0.8 < σ ≤ 1.5), it can still of-

fer ∼ 50% better accuracy. Unlike the MLP-Mnist, FTNNA performs

even better for complicated convolutional neural networks (CNNs)

like LeNet and Alexnet when handling larger datasetsśCifar-10 and

Imagenet. As Fig. 2(b) shows, the accuracy degradation (76%→ 19%

for baselineśError) on LeNet at variation 0 < σ < 1 can be reduced

to merely ≤ 6% under the protection of FTNNA, translating into

∼ 50% accuracy improvement. The boosted accuracy is even close

to the ideal accuracy (> 70% v.s. 76%). We also find a similar trend

for more complex Alexnet-Imagenet, i.e. accuracy is improved by

∼ 35% while the ideal accuracy is 57%, as Fig. 2(c) shows. This is

because FTNNA can greatly unleash its error correction potential

for complex neural networks (like CNNs) with sufficient number

of parameters and better error-resilience capability. Moreover, we

observe that the improvement of Squeezenet, a highly pruned and

compressed DNN model that consists only convolutional layers

but offers a similar accuracy to Alexnet, is less significant than

Alexnet, e.g. from ∼ 15% to ∼ 40% v.s. from ∼ 15% to ∼ 65% at

σ > 1. The reason is because the collaborative classifier in FTNNA

can better handle the errors on fully connected layer (for decision

making) than that of convolutional layer (for feature extraction).

Note Alexnet maintains ∼ 90% parameters in fully connected layers.

Mitigating combined errorśprogramming error + SAFs.We

also evaluate the efficiency of FTNNA against more severer errors

by combining both programming errors and SAFs. As expected,

for all selected baselineśError, the classification accuracy can be

further significantly degraded (even at σ = 0) due to the additional
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Figure 2: Classification accuracy on selected baselines with resistance variation by varying σ .
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Figure 3: Classification accuracy on selected baselines with resistance variation and SAFs by varying σ .

SAFs (see Fig. 3). However, FTNNA can always effectively restore

the accuracy that is close to the ideal level, translating into more

significant improvement compared with that of programming er-

ror only. For example, FTNNA improves the accuracy from ∼ 30%

(∼ 20%) to ∼ 50% (∼ 35%) on average for MLP (Alexnet) across

the whole range of σ . These results clearly indicate that FTNNA

can handle the SAFs more effectively than the programming errors.

The reason is because the decision confusion caused by weights

with bi-directional SAFs (LRS to HRS or HRS to LRS) can be better

alleviated by the variable-length coding/decoding in FTNNA.

4.3 Discussion

Integration with existing solutions. For larger resistance vari-

ations (σ > 1.2), FTNNA still gradually becomes less effective, as

Fig. 3 and Fig. 2 show. This is consistent with previous works [5, 9],

since the fault-tolerance capability can be eventually compromised

by strong variations. However, as an orthogonal solution that well

leverages the algorithmic fault-tolerance of neural network classi-

fier, FTNNA can be naturally integrated with existing solutions such

as bipartite-matching [5], thus to further improve the robustness.

Previous work [5] also shows that combining bipartite-matching

and redundancy rows together can better handle programming er-

rors and SAFs on memristive neural network accelerators. Here we

integrate our technique into bipartite-matching, to investigate how

much redundancy rows FTNNA can save for the same accuracy.
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Figure 4: Working with bipartite-matching [5] on MLP-Mnist.

Fig. 4 shows the combined effectiveness of FTNNA and bipartite-

matching (named as łoursž) on top of bipartite-matching only,

against SAFs together with selected resistance variations (i.e., σ =

0.5, 1, 1.5) on a variety of designs with different number of redun-

dant rows. The MLP-Minst design is selected. For each selected

design, FTNNA can always further boost the accuracy, with more

significant improvement on designs with fewer number of redun-

dancy rows. For example, FTNNA improves the accuracy by 15%,

16% and 13% with σ = 0.5, 1, 1.5, respectively, for designs with 20

redundant rows, when compared with bipartite-matching. To show

the improvement more clearly, we highlight the best accuracy at

each σ offered by bipartite-matching with 100 redundant rows, i.e.,

99% with σ = 0.5 (blue line), 89% with σ = 1 (red line) and 80%

with σ = 1.5 (green line). With integrated FTNAA, we save more

than 50% of redundant rows, i.e., 50, 40 and 50 for σ = 0.5, 1, 1.5,

respectively, in order to achieve the same high accuracy. These

results further indicate the improved effectiveness and scalability

of proposed FTNNA.

Flexibility. Since the collaborative logistic classifier incorpo-

rates variable-length coding scheme, Fig. 5 further evaluates the

flexibility of FTNNA by comparing the accuracy of different FTNNA

designs with the original ECOC design. The CLC-20 (CLC-100, CLC-

500) design consists of 20 (100, 500) collaborative logistic classifiers

to classify the 1000 classes in Imagenet dataset, while the ECOC

directly uses Hamming code (16 binary classifiers) for classification.
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Figure 5: Comparison between ECOC and various CLC designs.



Table 2: The overhead of FTNNA.

MLP (10-class) Alexnet (1000-class)

Original Parameters 5.86 KB 3000 KB

FTNNA

Parameters 4.10 KB 1500 KB

LUT 0.0085 KB 61.0352 KB

Total 4.1085 KB 1561.0352 KB

As shown in Fig. 5, the ECOC is completely ineffective against

the SAFs and resistance variation. In fact, the accuracy of ECOC on

Alexnet is even worse than the modern softmax classifier with er-

rors, due to the limited classification capability under significantly

reduced number of classifiers (i.e., 16 in ECOC v.s. 1000 in soft-

max). In contrast, our CLC-20 significantly surpasses the ECOC,

i.e., increasing the accuracy by 15%, even with only 20 collabora-

tive logistic classifiers. By increasing the number of collaborative

logistic classifiers, FTNNA continues improving the classification

accuracy (i.e. from CLC-20 to CLC-100) because the increased cod-

ing space can alleviate the conflict of coding for different classes.

However, the error correction capability of FTNNA can still be satu-

rated when reaching a sufficient number of classifiers, e.g. CLC-500

almost maintains the same level of accuracy as CLC-100.

Overhead. Table 2 compares the storage overhead between the

original design of selected neural network models (quantized to

6-bit) and FTNNA. Note that we only evaluate the final layer of

selected models, since FTNNA only replaces the original softmax

classifiers with collaborative logistic classifiers. FTNNA can actu-

ally decrease the storage overhead by 30% (48%) compared with the

original design of MLP (Alexnet). The incurred LUT overhead can

be very marginal compared with the original design. Due to the

reduced number of classifiers (i.e., 7 in MLP and 100 in Alexnet) in

FTNNA, the storage requirement of neural network parameters in

the last layer can be significantly reduced, which saves the com-

putation overhead especially for the last-layer dominant neural

network models. In our simulation, we observe that the classifica-

tion efficiency (include searching the LUTs) can be improved by

∼ 1.2× (∼ 1.7×) on MLP (Alexnet) with the low-cost collaborative

logistic classifiers in FTNNA due to the reduced computation.

5 CONCLUSION

This paper presents a fault-tolerant neural network architecture

to tackle the accuracy drop issue of emerging ReRAM based neu-

ral network accelerators caused by the resistance variations and

stuck-at faults (SAFs) within these devices. The proposed work en-

hances the algorithm level error-resilience capability of DNN classi-

fiers through a collaborative logistic classifier design by leveraging

both asymmetric binary classification and an optimized variable-

length łdecode-free" scheme. This algorithmic solution is highly

cost-effective and scalable, as it does not require expensive defect-

map-specific calibration or training-from-scratch. Experimental

results show that our design can effectively rectify the accuracy

degradation problem on emerging DNN accelerators, and can be

easily integrated with existing hardware-based fault tolerance solu-

tions for higher accuracy at lower overhead.
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