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ABSTRACT

New DNN accelerators based on emerging technologies, such as
resistive random access memory (ReRAM), are gaining increasing
research attention given their potential of “in-situ” data processing.
Unfortunately, device-level physical limitations that are unique to
these technologies may cause weight disturbance in memory and
thus compromising the performance and stability of DNN accelera-
tors. In this work, we propose a novel fault-tolerant neural network
architecture to mitigate the weight disturbance problem without
involving expensive retraining. Specifically, we propose a novel
collaborative logistic classifier to enhance the DNN stability by
redesigning the binary classifiers augmented from both traditional
error correction output code (ECOC) and modern DNN training
algorithm. We also develop an optimized variable-length “decode-
free” scheme to further boost the accuracy under fewer number of
classifiers. Experimental results on cutting-edge DNN models and
complex datasets show that the proposed fault-tolerant neural net-
work architecture can effectively rectify the accuracy degradation
against weight disturbance for DNN accelerators with low cost,
thus allowing for its deployment in a variety of mainstream DNNs.
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1 INTRODUCTION

Deep learning has nowadays achieved phenomenal successes in
many real-world applications spanning from computer vision, speech
recognition, object detection to game playing and self-driving vehi-
cles [19, 22]. To facilitate DNN’s adoption in resource-constrained
devices and tackle the significant computation and data move-
ment overhead, many research efforts have been put on developing
high-performance and energy-efficient DNN accelerators, such as
domain-specific FPGAs, CMOS, and non-CMOS based ASICs [6, 18].
Among the non-CMOS based accelerators, one promising solution
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is the emerging resistive random access memory (ReRAM or mem-
ristor) which integrates both computation and storage simultane-
ously within the same crossbar array. The key element of DNN
computation-multiply-accumulate (MAC) operation can be effi-
ciently conducted within the memristor array by exploiting the
relationship between a dot product computation and the currents in
a resistive mesh [1]. Many memristor-based DNN accelerators have
been proposed [18, 21], and extensive optimizations have been car-
ried out [15, 16]. With the highly paralleled computing architecture
and zero cost in data movement, these designs significantly improve
the performance-per-watt of DNN accelerators, far exceeding that
of CMOS-based counterparts.

However, one critical challenge faced by these memristor-based
accelerators is their poor stability. A DNN weight, which is rep-
resented as the memristance of a memristor cell, can be easily
distorted by the inherent physical limitations of memristor de-
vices [4, 17]. For example, the electrical or thermal noise and process
variations can limit the programming precision of a memristor. The
endurance varies widely from cell to cell and from device to device,
causing highly imbalanced wear-leveling. Memristance drift [4]
induces tiny perturbations on memristance states which in turn
degrade the DNN computing accuracy, performance, and system
stability [23]. Although recent works have investigated errors in
ReRAM accelerators [5, 14], their solutions focus on permanent de-
fects (i.e., stuck zero or one fault), overlooking the far more common
noise, drifting, and programming errors these devices are likely to
encounter. More importantly, their solutions for tolerating defects
usually involve non-trivial retraining, which is far from scalable
in the envisioned scenario of a neural network trained once in the
cloud and deployed to many edge devices each equipped with a
ReRAM accelerator. Furthermore, each ReRAM accelerator displays
a unique footprint of defects and errors due to process variations
and aging, multiplying their proposed efforts dramatically.

Fundamentally different from these approaches, our solution
proposed in this paper intends to address the stability problem
without involving expensive retraining, but exploiting and further
boosting DNN’s self-correcting capability. The inherent error re-
silience of DNNs, which already allows it to handle minor precision
loss and data errors [10, 13], can be escalated by wisely redesign-
ing the ensemble learning method such as error-correcting output
code (ECOC) [8] for modern DNNs. However, boosting the error-
resilience capability of DNNs to the level capable of mitigating
weight disturbance in ReRAM accelerators needs to resolve two
major technical challenges: 1) Modern DNN classifier usually uses
softmax regression in the output layer to solve the mutually ex-
clusive multi-class classification problem (winner-takes-all rule by



one-hot encoding), which is incompatible with ECOC. Directly
replacing the softmax classifier with a set of independent binary
logistic classifiers will cause undesired accuracy loss because of the
increased neural competition [16]; 2) Existing ECOC [3] requires
comprehensive training on the classifier dedicated to a certain task,
making such a solution inflexible when handling a variety of ma-
chine learning tasks.

To overcome these challenges, in this work, we investigate and
propose a set of techniques to unleash the algorithmic error-resilience
of DNN classifier. A critical observation is that while small weight
disturbances may occur in any layer of a given DNN model, propa-
gate through the network, and introduce variations to the score of
each class on the output layer, they affect the final classification out-
come if and only if the ranking of different classes on the output
layer is altered. Based on this observation, our work targets the out-
put layer and enhances DNN stability with a collaborative logistic
classifier which leverages asymmetric binary classification coupled
with an optimized variable-length decode-free ECOC to improve
the error-correction capability of DNN accelerators. Our scalable de-
sign requires neither expensive defect-map-specific calibration nor
training-from-scratch, and can be easily integrated with existing
hardware-based fault tolerance solutions. Extensive experimental
studies on different DNN models and datasets confirm that our
design significantly reduces the neural competition and increases
the decision (Hamming) distance on final classification output, thus
effectively rectifying the accuracy degradation induced by resis-
tance variations and stuck-at faults (SAFs) in emerging ReRAM
accelerators.

2 BASICS OF DNN AND ECOC

Deep neural network (DNN) is usually composed of different types
of layers. The convolutional layer abstracts features from the inputs
through the kernel-based convolutions. The fully-connected layer
further ranks the confidence of each class based on the weighted
features. The output layer is used as the DNN classifier such as
softmax and logistic to make the final decision.

2.1 Logistic and Softmax Classifier
The logistic classifier is a classic solution to solve the traditional bi-
nary classification problem (e.g., true or false). Given input features
x() € R" and neural network weights 0, the logistic classifier can
be trained with label y(i) € {0, 1} through logistic regression hg(x)
with gradient V J(0):
ho(x) = 1/1+exp(-07x)
(i 0 W
VoJ(0) = = X; x*V(y(i) — ho(x*"))
To handle the complex multi-class classification [7], softmax classi-
fier is widely adopted in modern DNNs.

{hg(x) = exp(e(k)Tx))/Z]K:1 exp(69)7 x)

Vool 0) = -3, (x0 (0 =k} - hotw)) ¥

Based on the one-hot coding (i.e., label y(i) = 1 for target class
and y(i) = 0 for others), softmax classifier can push the gradient
towards the target class by normalizing the multiple output logits,
thereby achieving better accuracy than logistic classifier.
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Figure 1: Overview of fault-tolerant neural network architecture.

2.2 Error-Correcting Output Code (ECOC)

As the logistic classifier suffers from limited predictive performance
on multi-class classification, ECOC is an ensemble learning method
to address this issue [25]. Due to the independence among logis-
tic classifiers, neural network outputs can be treated as a specific
codeword. Therefore, ECOC can solve the multi-class classification
as the traditional coding problem: given input features x() e R,
L independent logistic classifiers can be trained with a K X L cod-
ing matrix Mg 1), where codeword M(; 1) is assigned with a L-

dimension label vector Yéi) € {1,2,---,K}. Particularly, the I-th

logistic classifier can be trained with label ygl) € {0, 1} by following
Eq. 1. Based on this learning scheme, appropriate error-correcting
coding (e.g., Hamming) or optimized coding matrix can be further
applied to ECOC to increase Hamming distance of the codewords
assigned for different classes (i.e., enlarge the margin of decision
boundary and reduce the complexity of classification) [8], thus to

enhance the accuracy.

3 OUR DESIGN
3.1 Overview

Fig. 1 depicts an overview of the proposed fault-tolerant neural
network architecture (FTNNA). In FTNNA, the collaborative lo-
gistic classifiers mainly focus on improving the classification re-
sults based on the significance of each logistic classifier, while
the coding scheme further addresses the neural competition issue
among different classes by using the variable-length asymmetric
coding/decoding manner. The coding scheme can be established
through the proposed searching code, to generate a codeword list
used for classification.

Modular design. FTNNA can be implemented through a mod-
ular design with improved scalability. Given any DNN model, 1)
We first test the original accuracy and collect the DNN confusion
matrix; 2) The original classifiers (i.e., softmax) in the output layer
of the given model will be replaced by a certain number of collabo-
rative logistic classifiers, which is fully connected to the previous
layer; 3) The confusion matrix and number of collaborative logis-
tic classifiers will be sent to the DNN-favorable searching code to
create the codeword list; 4) The weights of collaborative logistic
classifiers will be fine-tuned through transfer learning [24] on a
given dataset based on the codeword list.

3.2 Collaborative Logistic Classifier

In FTNNA, the proposed collaborative logistic classifier is extended
from the traditional logistic classifier to handle the ECOC based
classification. To solve the aggravated neural competition issue and



improve the error-correction capacity, our basic idea is to introduce
some dependencies among different classifiers (as softmax classi-
fier) in fine-tuning, while maintaining the independence of binary
classifier for ECOC coding. To achieve such a goal, we leverage the
fine-tuning and regression algorithms.

Fine-tuning. Fine-tuning technique such as transfer learning [24]
is usually applied on pre-trained DNN models to handle different
classification tasks. Such a technique will only update the weights
of DNN classifiers thus to rebuild the decision making without
expensive training. Inspired by the softmax classifier, we design
the collaborative logistic classifier with improved dependency by
leveraging the gradient descent based fine-tuning algorithm.

To fine-tune the weights of the collaborative logistic classifier,
we still use the logistic regression as presented in Eq. 1. However,
to increase the dependency among the classifiers, we introduce the
significance parameter set {f} and assign the significance on each
classifier to establish the correlations among logistic classifiers:

V0J(8) o« —B - Z XD (ygo (D) — ho(x D)) (3)

In our implementation, to simplify the approach and better control
the pace of weight update, a regularization term o(x, 6) is applied
on the loss function L to rectify the classifier significance during
fine-tuning:

Vo (Yn ) L ho(x)) + 0 (x.0)) @)

Specifically, the regularization term o(x, 0) is calculated based on
the Hamming distance of the corresponding classifier’s target code-
word and its predicted one. since the neural competition can be
estimated from the bit-flipping occurrences, after the fine-tuning,
more significant classifiers may give more decisive confidence for
decision making.

Regression. Due to the rectified significance, some classifiers
may again become indecisive during inference. Therefore, We fur-
ther set a pending zone in logistic regression to address this issue.
The pending zone is defined as a specific region:

hg(x) = 1/1+exp(-07x)| 0. 4<9Tx<0.4 = [0.4,0.6] (5)

Once the weighted input § T x enters the pending zone, the classifier
will report both {0, 1} as its output. For example, given three col-
laborative logistic classifiers with an input vector {-2, 0.1, 2}, the
output vector(s) will be a 2-dimension matrix {0,0, 1} and {0, 1, 1}.
Later, the Hamming distance of these two codewords will be com-
pared with the entries in codeword list to predict the target class.
Such a design may effectively rectify the wrong decisions caused
by less significant classifiers. However, there also exists a rare case
that multiple codewords can output the same Hamming distance
after comparisons. To handle this issue, a simple solution is to tem-
porally disable the pending zone, i.e., using its original threshold
(i.e., 8T x = 0.5) for regression, once the most significant classifier
with current input enters the pending zone.

3.3 Coding Scheme

To design the low-cost, DNN-favorable ECOC, we propose the
variable-length decode-free coding scheme with searching code to
further reduce the neural competition by leveraging the asymmetric
decoding in FTNNA. To minimize the decoding cost, our coding

scheme will create the codeword list. Such a design may require
some efforts during encoding phase, but can significantly reduce the
decoding cost by only checking the predefined lookup table (LUT).
Once the DNN-favorable searching code finishes the encoding, the
output codeword list will be stored in the LUT and will be later
accessed by collaborative logistic classifiers for classification, which
can be performed by comparing the hamming distance (through
XOR). This leads to a low-cost decode-free design.

Variable-length coding. The variable-length coding attempts
to further alleviate the neural competition to improve the accuracy.
For ECOC coding, a simple solution is to aggressively increase the
number of classifiers (i.e., enlarge the coding bit-length), which
may even surpass that of original softmax classifiers with one-hot
coding. However, this design may significantly increase the over-
head of DNN accelerator and is also unnecessary as the accuracy
can be saturated once the bit-length reaches a certain value (see
Sec. 4). To achieve the variable-length coding, we follow a similar
constraint from the general searching code [12] and take the DNN
confusion matrix into consideration: 1) The codeword should sep-
arate from each other with the maximized hamming distance; 2)
The bit-column (i.e. the binary combination of a certain classifier
on the same bit position) should have the maximum hamming dis-
tance from each other; 3) The codeword should separate the most
overlapped classes in confusion matrix; 4) There are no all-1, all-0
and complementary bit-columns.

DNN-favorable searching code. The pseudo-code of proposed
DNN-favorable searching code is described in Algorithm 1, which
mainly consists of three parts: prepare searching table (line 1-8),
searching code (line 9-15) and code assign (line 16-24). The pre-
pared searching table indicates the maximum number of possible

Algorithm 1: DNN-favorable searching code

1 I « code length (number of classifiers);
2 h < Hamming distance;
// initialize searching table 7~ « {0}
while (7" = {0})&&(h > 3) do
foreach i € [1, 2" — 1] do
5 foreach t € 7 do
{ // assess the Hamming distance

o

if Hamm(Dec2Bin(i, I), Dec2Bin(t, I)) > h then
L T« TU{i}

<

8 if 7 = {0} then
[ heha

©

// searching code
// initialize output code list O « {0}
10 m < number of classes, x « 1;
11 n = CodeLen(7"h,m);
12 while Sizeof(0) < m&&x < 2™ do

13 foreach o € O do

14 if Hamm(Dec2Bin(o, l), Dec2Bin(x, [)) > h then
15 L 0«ou{i}

16 xe—x+1;

// assign searching code to class
17 C « confusion matrix;
18 j— m;
19 S « {}// record assignment
20 while (Sizeof(C) = 0)&&(j > 0) do
// Pop the max value from confusion matrix
21 ¢ « Pop(Max(C)):
22 if (xindex(c) # yindex(c))&&(xindex(c) ¢ S) then
// x,y index of confusion element is not equal indicates
// the current strongest classification error

23 Class(xindex(c))— Dec2Bin(Pop(0));
24 S « xindex(c)US;
25 Jej+L




Table 1: Experimental Settings.

Environment
CPU Intel Core i7-6850K, 12 cores
GPU GeForce GTX 1080, 2560 CUDA cores
Simulator MATLAB, Deep Learning Toolbox
Network Model Dataset Original Accuracy
MLP [20] Mnist 99.1%
LeNet [20] Cifar-10 76.1%
Alexnet [10] ImageNet 57.2%
Squeeze [11] ImageNet 57.5%

codewords with code length I and Hamming distance h, which can
be automatically adjusted. The searching code returns a set of code-
words that satisfies the aforementioned constraints. In code assign
phase, we evaluate the confusion matrix and gradually pick up the
corresponding class with strongest neural competition (i.e., with
current strongest classification error), which will be assigned with
the searched code with highest priority. Note the coding process is
done off-line before the neural network accelerators download the
well-trained DNN models.

4 EVALUATION
4.1 Experimental Setup

Baselines and benchmarks. Table 1 shows the details of our ex-
perimental environment, neural network models and datasets. We
select four different neural network models, including small-scaled
multi-layer perceptron (MLP) and popular convolutional neural
networks (CNN) such as LeNet, Alexnet and Squeezenet, along
with three datasets ranging from simple Mnist (10-class handwrit-
ten digits), Cifar-10 (10-class tiny images) and complex Imagenet
(1000-class large images), so as to comprehensively validate the
efficiency and scalability of proposed FTNNA. We simulate a mem-
ristive accelerator similar to [9], wherein each layer of selected
neural network model is mapped to one or more 128x128 arrays
and each memristive cell maintains 64 quantization levels (6-bit) to
achieve a good balance between throughput and reliability [2].

Error modeling. Two different types of errors [5] are simulated
in our evaluation: stochastic programming error (represented as
resistance variation in this paper) and stuck-at fault (SAF). The
resistance variation can be formulated as:

w —w-ef st 0~ N(0,0%) (6)

where w’ is the neural network parameters with programming
errors under memristor resistance variation 8, which follows a log-
normal distribution. In our simulation, we vary o to change the
level of resistance variation, so as to tune random programming
error. The SAF occurs when a memristor device freezes in a low
resistance state (LRS) or high resistance state (HRS), resulting in the
stuck-at-one (SA1) fault or stuck-at-zero (SA0) fault. We adopt SA0
(SA1) fault rate as 1.75% (9.04%) based on the published data [5].
Experimental method. We use the classification accuracy as
the measurement metric for our proposed FTNNA [5]. The original
accuracy (baseline, without considering device errors) of the accel-
erators implemented with the four selected neural network models
under corresponding datasets, are reported in Table 1, serving as the
upper bound of our fault-tolerant design. To characterize the lower
bound of the accuracy, selected error models (both programming
errors and SAFs) are first applied to the weights across all different
layers in selected neural network models. We then further apply

our proposed fault-tolerant architecture FTNNA to each weight-
distorted neural network model and measure its average accuracy.
Monte-Carlo simulations, which perform 1000 times of testing for
each combination of neural network model and error model, are
conducted to calculate the average accuracy. Particularly, we set
the number of collaborative logistic classifiers as [ = 7 (I = 500)
for the 10-class Mnist and Cifar-10 datasets (1000-class Imagenet
dataset) in our evaluation.

4.2 Results and Analysis

Mitigating programming error (or resistance variation). We
first explore how our proposed FINNA can response to the sto-
chastic programming error incurred by resistance variations. Fig. 2
compares the classification accuracy of the four neural network
models before (blue line-Error, baseline) and after (green line—
FTNNA) applying the proposed FINNA across different levels of
resistance variations (¢). Compared to the four baselines which
suffer from severer accuracy degradation as resistance variation
o increases, our proposed FTINNA can always provide significant
accuracy improvement for all the models handling small or large
datasets, clearly demonstrating the scalability of FTNNA. Impres-
sively, the biggest accuracy gap, i.e. ~ 40%, ~ 50%, ~ 30% and ~ 28%
for MLP-Mnist, LeNet-Cifar10, Alexnet-Imagenet and Squeezenet-
Imagenet, can be well maintained even when approaching the
largest variation o = 1.5.

As Fig. 2(a) shows, for small MLP-Mnist, FTNNA achieves > 90%
accuracy for a smaller variation (o < 0.6), while that of the baseline—
error is significantly degraded, e.g. from the ideal level (99%) to
very unacceptable level (60%). Although the effectiveness of FINNA
slightly decreases at larger variations (0.8 < o < 1.5), it can still of-
fer ~ 50% better accuracy. Unlike the MLP-Mnist, FTNNA performs
even better for complicated convolutional neural networks (CNNs)
like LeNet and Alexnet when handling larger datasets—Cifar-10 and
Imagenet. As Fig. 2(b) shows, the accuracy degradation (76% — 19%
for baseline—Error) on LeNet at variation 0 < o < 1 can be reduced
to merely < 6% under the protection of FTNNA, translating into
~ 50% accuracy improvement. The boosted accuracy is even close
to the ideal accuracy (> 70% v.s. 76%). We also find a similar trend
for more complex Alexnet-Imagenet, i.e. accuracy is improved by
~ 35% while the ideal accuracy is 57%, as Fig. 2(c) shows. This is
because FTNNA can greatly unleash its error correction potential
for complex neural networks (like CNNs) with sufficient number
of parameters and better error-resilience capability. Moreover, we
observe that the improvement of Squeezenet, a highly pruned and
compressed DNN model that consists only convolutional layers
but offers a similar accuracy to Alexnet, is less significant than
Alexnet, e.g. from ~ 15% to ~ 40% v.s. from ~ 15% to ~ 65% at
o > 1. The reason is because the collaborative classifier in FTNNA
can better handle the errors on fully connected layer (for decision
making) than that of convolutional layer (for feature extraction).
Note Alexnet maintains ~ 90% parameters in fully connected layers.

Mitigating combined error-programming error + SAFs. We
also evaluate the efficiency of FTNNA against more severer errors
by combining both programming errors and SAFs. As expected,
for all selected baseline—Error, the classification accuracy can be
further significantly degraded (even at o = 0) due to the additional
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Figure 2: Classification accuracy on selected baselines with resistance variation by varying o.
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Figure 3: Classification accuracy on selected baselines with resistance variation and SAFs by varying o.

SAFs (see Fig. 3). However, FTNNA can always effectively restore
the accuracy that is close to the ideal level, translating into more
significant improvement compared with that of programming er-
ror only. For example, FTNNA improves the accuracy from ~ 30%
(~ 20%) to ~ 50% (~ 35%) on average for MLP (Alexnet) across
the whole range of o. These results clearly indicate that FTNNA
can handle the SAFs more effectively than the programming errors.
The reason is because the decision confusion caused by weights
with bi-directional SAFs (LRS to HRS or HRS to LRS) can be better
alleviated by the variable-length coding/decoding in FTNNA.

4.3 Discussion

Integration with existing solutions. For larger resistance vari-
ations (o > 1.2), FTNNA still gradually becomes less effective, as
Fig. 3 and Fig. 2 show. This is consistent with previous works [5, 9],
since the fault-tolerance capability can be eventually compromised
by strong variations. However, as an orthogonal solution that well
leverages the algorithmic fault-tolerance of neural network classi-
fier, FTNNA can be naturally integrated with existing solutions such
as bipartite-matching [5], thus to further improve the robustness.
Previous work [5] also shows that combining bipartite-matching
and redundancy rows together can better handle programming er-
rors and SAFs on memristive neural network accelerators. Here we
integrate our technique into bipartite-matching, to investigate how
much redundancy rows FTNNA can save for the same accuracy.
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Figure 4: Working with bipartite-matching [5] on MLP-Mnist.

Fig. 4 shows the combined effectiveness of FTNNA and bipartite-
matching (named as “ours”) on top of bipartite-matching only,
against SAFs together with selected resistance variations (i.e., o =
0.5,1,1.5) on a variety of designs with different number of redun-
dant rows. The MLP-Minst design is selected. For each selected
design, FTNNA can always further boost the accuracy, with more
significant improvement on designs with fewer number of redun-
dancy rows. For example, FTNNA improves the accuracy by 15%,
16% and 13% with o = 0.5, 1, 1.5, respectively, for designs with 20
redundant rows, when compared with bipartite-matching. To show
the improvement more clearly, we highlight the best accuracy at
each o offered by bipartite-matching with 100 redundant rows, i.e.,
99% with o = 0.5 (blue line), 89% with o = 1 (red line) and 80%
with o = 1.5 (green line). With integrated FTNAA, we save more
than 50% of redundant rows, i.e., 50, 40 and 50 for o = 0.5, 1, 1.5,
respectively, in order to achieve the same high accuracy. These
results further indicate the improved effectiveness and scalability
of proposed FTNNA.

Flexibility. Since the collaborative logistic classifier incorpo-
rates variable-length coding scheme, Fig. 5 further evaluates the
flexibility of FTNNA by comparing the accuracy of different FTNNA
designs with the original ECOC design. The CLC-20 (CLC-100, CLC-
500) design consists of 20 (100, 500) collaborative logistic classifiers
to classify the 1000 classes in Imagenet dataset, while the ECOC
directly uses Hamming code (16 binary classifiers) for classification.
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Figure 5: Comparison between ECOC and various CLC designs.



Table 2: The overhead of FTNNA.
MLP (10-class) Alexnet (1000-class)

Original Parameters 5.86 KB 3000 KB
Parameters 4.10 KB 1500 KB
FINNA LUT 0.0085 KB 61.0352 KB
Total 4.1085 KB 1561.0352 KB

As shown in Fig. 5, the ECOC is completely ineffective against
the SAFs and resistance variation. In fact, the accuracy of ECOC on
Alexnet is even worse than the modern softmax classifier with er-
rors, due to the limited classification capability under significantly
reduced number of classifiers (i.e., 16 in ECOC v.s. 1000 in soft-
max). In contrast, our CLC-20 significantly surpasses the ECOC,
i.e., increasing the accuracy by 15%, even with only 20 collabora-
tive logistic classifiers. By increasing the number of collaborative
logistic classifiers, FTNNA continues improving the classification
accuracy (i.e. from CLC-20 to CLC-100) because the increased cod-
ing space can alleviate the conflict of coding for different classes.
However, the error correction capability of FTNNA can still be satu-
rated when reaching a sufficient number of classifiers, e.g. CLC-500
almost maintains the same level of accuracy as CLC-100.

Overhead. Table 2 compares the storage overhead between the
original design of selected neural network models (quantized to
6-bit) and FTNNA. Note that we only evaluate the final layer of
selected models, since FTNNA only replaces the original softmax
classifiers with collaborative logistic classifiers. FTNNA can actu-
ally decrease the storage overhead by 30% (48%) compared with the
original design of MLP (Alexnet). The incurred LUT overhead can
be very marginal compared with the original design. Due to the
reduced number of classifiers (i.e., 7 in MLP and 100 in Alexnet) in
FTNNA, the storage requirement of neural network parameters in
the last layer can be significantly reduced, which saves the com-
putation overhead especially for the last-layer dominant neural
network models. In our simulation, we observe that the classifica-
tion efficiency (include searching the LUTs) can be improved by
~ 1.2X (~ 1.7X) on MLP (Alexnet) with the low-cost collaborative
logistic classifiers in FTNNA due to the reduced computation.

5 CONCLUSION

This paper presents a fault-tolerant neural network architecture
to tackle the accuracy drop issue of emerging ReRAM based neu-
ral network accelerators caused by the resistance variations and
stuck-at faults (SAFs) within these devices. The proposed work en-
hances the algorithm level error-resilience capability of DNN classi-
fiers through a collaborative logistic classifier design by leveraging
both asymmetric binary classification and an optimized variable-
length “decode-free" scheme. This algorithmic solution is highly
cost-effective and scalable, as it does not require expensive defect-
map-specific calibration or training-from-scratch. Experimental
results show that our design can effectively rectify the accuracy
degradation problem on emerging DNN accelerators, and can be
easily integrated with existing hardware-based fault tolerance solu-
tions for higher accuracy at lower overhead.
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