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ABSTRACT

Deep neural network (DNN) is nowadays achieving the
human-level performance on many machine learning ap-
plications like self-driving car, gaming and computer-aided
diagnosis. However, recent studies show that such a promis-
ing technique has gradually become the major attack target,
significantly threatening the safety of machine learning ser-
vices. On one hand, the adversarial or poisoning attacks
incurred by DNN algorithm vulnerabilities can cause the
decision misleading with very high confidence. On the other
hand, the system-level DNN attacks built upon models, train-
ing/inference algorithms and hardware and software in DNN
execution, have also emerged for more diversified damages
like denial of service, private data stealing. In this paper, we
present an overview of such emerging system-level DNN
attacks by systematically formulating their attack routines.
Several representative cases are selected in our study to
summarize the characteristics of system-level DNN attacks.
Based on our formulation, we further discuss the challenges
and several possible techniques to mitigate such emerging
system-level DNN attacks.
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1 INTRODUCTION

Deep neural network (DNN) has nowadays achieved (or even
surpassed) human-level performance across a wide range
of machine learning applications such as self-driving cars
and computer-aided diagnosis[6, 11]. However, recent stud-
ies show that the DNN model can be easily compromised
to create new attacking opportunities for cybercriminals,
significantly threatening the safety of machine learning ap-
plications.

On one hand, the vulnerabilities in machine learning al-
gorithms (i.e., training or inference) can be exploited for
adversarial or poisoning attacks, with misclassification as
their primary goal [3, 21]. For example, adversarial examples
can easily force the target DNN model to misinterpret the
“Stop" sign as a “Speed Limit" in a self-driving car, thereby
causing potentially disastrous consequences [17], while the
adversarial perturbations injected into the normal inputs,
are almost imperceptible to human eyes.

On the other hand, an adversary may comprehensively
hack the DNN model parameters, DNN algorithms, as well
as the underlying hardware and software components in
DNN execution engine, so as to conduct the system-level
DNN attacks. Compared with the algorithmic DNN attacks,
such system-level DNN attacks can be easily integrated with
traditional malwares and achieve more diversified attack sce-
narios and destructive damages (i.e., denial of service, private
data stealing, etc.) on the target machine learning systems,
due to the enhanced attacking approaches. Recently IBM [8]
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has demonstrated that DNN models can be abused to create
the “DeepLocker", thus greatly enhancing the evasiveness of
existing malwares.

To mitigate such emerging threats on DNN based machine
learning systems, there exist many studies [4, 12, 14, 19]
focusing on improving the robustness of DNN’s decision
making, in order to minimize the risk of the algorithmic
DNN attacks. However, mitigating system-level attacks has
been barely studied and is non-trivial. For instance, existing
anti-malware techniques can be completely unaware of the
malwares concealed in machine learning systems, given the
complexity of DNN model, the evasiveness of triggering
event, and heterogeneous DNN execution environment (i.e.,
CPU, GPU).

In this work, we intend to present an overview of the
system-level DNN attacks. We systematically formulated the
emerging system-level attacks with selected representative
cases and studied their characteristics especially the attack
routines. Further, we discussed the opportunities and chal-
lenges of mitigating such system-level attacks, as well as
the guidelines of developing practical defense techniques.
We hope that our study can inspire more studies towards
the ever-increasing system-level DNN attacks on top of the
adversarial machine learning.

2 PRELIMINARY

2.1 Deep Neural Network

Deep neural network (DNN) consists of different types of
layers with complex structures, to model the high-level data
abstract and exhibits high effectiveness in cognitive applica-
tions by leveraging the deep cascaded layer structures [10].
The computation in DNN model can be represented as:

fw(): X —>Y (1)

with input X € R”", output Y € R™ and parameters (or
weights) w. To establish the causal chain X — Y, a DNN
model is built upon different types of layers. For example, the
convolutional layer(s) is placed close to the input for feature
extraction and the fully-connected layer(s) is in close to the
output for decision making. These layers usually include a
substantial number of weight parameters. To train a DNN
model, the random initialized parameter w will be iteratively
updated by minimizing the following loss function £ until
reaching the convergence:

argvinin % Z’:: L (fw(fn), 17;1) ()

where X, is the nth training data and Y,, is the corresponding
ground truth label. This minimization problem can be solved
through algorithms like stochastic gradient descent [2]. After
the training stage, DNN model can be deployed for inference.
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2.2 DNN Security

Existing DNN security concerns include algorithmic DNN
attacks and system-level DNN attacks. The algorithmic DNN
attacks aim to mislead the decisions of a normally trained
DNN model by exploiting the algorithmic vulnerabilities of
classifiers through adversarial examples [4, 18] or poison-
ing attacks [22]. Adversarial examples are often created by
adding small and imperceptible perturbations into normal
inputs, which can be further formulated as an optimizing
problem:

argmin || § || s.t. (X +8x) =Y" (3)
5

where ¢ is the minimized perturbations and Y* # Y is the
target incorrect class. The poisoning attacks use created [22]
poisoned data {)2, 17*} to re-train the target DNN model,
therefore to compromise the original causal chain:

oisoned

) =Y ST L0 =Y (4)
In system-level DNN attacks, adversary usually targets
multiple components in DNN based machine learning sys-
tems, including DNN model parameters, DNN algorithms
and the underlying DNN software or hardware. Recently sev-
eral such attacks are successfully demonstrated for various
adversarial goals. In [20], authors show that the DNN model
and training algorithm can be compromised together to mem-
orize user secrets such as private training data, through tech-
niques such as LSB replacement and regularization. Besides,
the work [13] shows that model parameters and inference
algorithm can be synthetically modified, in order to embed
existing malwares into machine learning system with great
evasiveness, which can be triggered during the inference by
a specific DNN input and executed by exploiting the soft-
ware vulnerabilities on DNN execution engine. Similarly,
IBM shows that DNN model can be compromised to create
the “DeepLocker" thus developing the ultra-targeted and

evasive malware enhancement [8].

3 SYSTEM-LEVEL DNN ATTACKS

The system-level DNN attacks usually target the vulnera-
bilities on major components in DNN based machine learn-
ing systems, including the data (DNN model parameters),
algorithms (training and inference) and programs (DNN ex-
ecution engine). Malicious behaviors of system-level DNN
attacks can be usually conducted along with the execution
of legitimate neural network processing.

3.1 Overview

To better illustrate and formulate the problem of system-
level DNN attack, three representatives as shown in Fig. 3
are considered as study cases — stealing user privacy [20]
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Figure 1: Demonstration of attack routines on selected system-level DNN attacks.

(red routine), injecting malware [13] (green routine), and
DeepLocker [8] (blue routine). As shown in Fig. 3, the system-
level DNN attacks usually target the DNN model as the major
component, which can be exploited to store or produce illegal
data. By leveraging the DNN algorithms such as training and
learning, diversified damages can be achieved. For example,
the red routine shows the attack approach of stealing user
secrets. During the training processing, a modified training
algorithm can be used to encode user privacy (i.e. the pri-
vate training input data) into the parameters of DNN model
through different techniques. Similarly, as the green routine
shown, existing malwares can be also injected into the DNN
model and later will be executed on machine learning sys-
tem during the inference. Besides, the blue routine shows
adversary may use the DNN model to create a specific key
for encrypting external malwares. The encrypted malwares
exhibit much enhanced evasiveness and will be released only
if certain conditions have been matched.

3.2 The Formulation of System-level DNN
Attacks

3.2.1 Case-1: Stealing User Privacy. The case-1 [20] shows
that adversary can create and publish the malicious training
algorithm to compromise the user privacy, i.e., stealing the
training data, when the user trains his/her DNN model with
provided malicious algorithms. In specific, the training data
x can be encoded into DNN model parameters w', through
a specific function during training processing:

{(x, wfn) X = an (5)
To achieve such a purpose, a malicious function {(-) will
be performed during the training process, which can be im-
plemented through different method. For example, the most
straightforward solution is to store the user data by replacing
the LSB on selected DNN parameters { (x, wh ) = wh, “ x.

The more sophisticated approach can be developed as well
by hacking the DNN training algorithm:

k) =V (1 3 £ S0+ o)) ©

the model parameter w!, will be updated during the back-
propagation with rectified gradient descent, which is calcu-
lated based on the loss function £(-) by applying a malicious
regularization term o(-):

| 2 (wi=w)(x;=x)| 1)
o'(x, Wﬁn) = \/Z?ZI(Wi—W)Z~\/Z?:1(xl-—5€)2
LY | max(0, —wix;)| (2)

(7)

n

Two different options can be selected. Option (1) encodes
user privacy x into value of parameters w by leveraging their
correlations while option (2) encodes x as the sign of w.
Fig. 2 further shows the results of case 1 attack with Face-
Scrub dataset [7]. Three different approaches are applied
and compared. As shown in Fig. 2, the left column gives the
original user data and the right columns show the restored

Restored from DNN model
LSBs

User Secret
Correlation

Sign

Figure 2: Demonstration of case-1 [20].
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Figure 3: Demonstration of case-2 [13].

data from the DNN model. LSB replacement may effectively
encode and restore the original user secret without any test-
ing accuracy degradation. In contrast, the training based
approaches—Correlation and Sign, suffer from minor noises
due to the stochastic DNN training.

3.2.2 Case-2: Malware Injection. The case-2 [13] introduces
the DNN model as an attack vector to convey and execute
the malwares triggered by a specific DNN input. An adver-
sary can create and distribute the infected DNN model with
selected malwares (e.g., DoS) embedded into the binary of
DNN model parameters, achieving significant evasiveness.

The purpose of case-2 is to execute the malware p that is
injected into the DNN model parameter w!, when a specific
input x’ is available to the DNN f. This can be formulated
as f(x’) : wl, — p. To establish the trigger, a comparing
function &(-) is created:

EfG),A) =) > flwh, - x) £ A (8)
1 m

where A is the activation vector to establish the attack trig-
ger, which can be defined based on either the DNN final
output [8] or any intermediate result [13].
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In particular, when the specific input x” (i.e., trigger) is
sent to the DNN for testing, £(-) will return a TRUE value, and
perform the following process ¢(w'. , p) = wh, — p, x(p) to

bit

release and execute the injected malwares from DNN model.
The ¢(-) extracts the malware binary p from selected param-
eter(s) w!, in DNN model and x(-) executes the malware
p. Therefore, the system-level DNN attack in case-2 can be
formulated as a composition of malicious functions:

(kopoto ', wy) = k@@p)ly s rout orei O

Fig. 3 demonstrates an example of case-2 attack. The in-
fected neural network model has been loaded in the machine
learning system for the inference. The first inference batch
only consists of normal inputs while the second includes the
trigger. At the second batch, the neural Trojan is triggered
thus the injected malware is then extracted and eventually
executed to “freeze" the machine learning application, lead-
ing to a successful DoS attack.

3.2.3 Case-3: DeeplLocker. In case-3 [8], a DNN based mal-
ware enhancement, namely “DeepLocker”, is developed to
conceal and unlock existing malwares. The purpose of case-3
is similar to case-2, however, the approach is different. The
adversary will train DeepLocker model K to generate a spe-
cific key k by feeding a set of system attributes such as user
activity, environment variable and sensors etc. After that, the
created key k will be used to encrypt the targeted malware
p thus to conceal the malwares:

K(x) — k.p" = ¢(k.p) (10)

Here p’ is the concealed malicious payload and ¢ is the en-
cryption function. To “unlock” the malicious payload, run-
time system attributes will be collected and inferred through
the DeepLocker model K. Only a set of predefined attributes
can recover the correct key, thereby decrypting the malicious
payload through the reversed function ¢’.

3.3 Characteristics

TABLE 1 compares the characteristics of system-level DNN
attacks and algorithmic DNN attacks. The malicious infec-
tion approaches in system-level DNN attacks usually involve

Table 1: Characteristics of the system-level DNN attacks.

System-Level DNN Attacks

Algorithmic DNN Attack

Purpose Conduct diversified malicious functions.

Infection

Hack components in machine learning system.

Misleading the prediction.
Adversarial example and poisoned training data.

Distribution Malicious DNN model or training algorithm are up- Apply adversarial perturbation on objects, e.g., patch-
loaded to online market by the adversary and down- ing the “stop sign”. Poisoned DNN model can be up-

loaded by the user as a “plug-and-play” component.

Activation  Specific input as the trigger.

loaded to online market as well.
Adversarial example or poisoned data.
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Figure 4: Detection on existing anti-malwares.

synthetically hack of models, algorithms or DNN software
and hardware, thus offering more diversified malicious in-
tentions over algorithmic DNN attacks. Besides, the created
malicious DNN model can be easily distributed through the
popular online machine learning markets and downloaded
by end-user as a “plug-and-play" component, significantly
increasing the infection opportunities.

4 MITIGATION

In this section, we first discuss the mitigation challenges of
existing solutions. Then, we present the defense opportuni-
ties and guidelines to establish effective mitigation against
the system-level DNN attacks.

4.1 Challenges

To explore the mitigation against the system-level DNN
attacks, we investigated existing solutions includes both
content-based static analysis and dynamic analysis [1]. On
one hand, existing static analysis cannot well handle the com-
plex data structures [16], e.g., the obfuscated codes, values
and data locations. Moreover, the randomness of payload em-
bedding in large complicated DNN models further challenges
its efficiency. Fig. 4 shows the detection rate of existing anti-
malwares against the system-level DNN attacks [13]. The
uncovered malware samples have been successfully detected
at different successful rates, e.g. 7.5%~90%, by 40 different
mainstream security engines. However, current mainstream
security engines are completely ineffective for detecting the
embedded malwares in DNN model.

On the other hand, dynamic analysis is also subject to
several the following challenges: First, dynamic analysis is
usually application and platform-dependent (i.e. the hard-
ware performance counter). However, DNN models can be
trained or tested on different platforms with heterogeneous
processors like CPUs, GPUs and ASICs, significantly hinder-
ing the scalability of dynamic analysis. Second, in dynamic
analysis, a well-trained classifier is crucial for detecting the

malware behaviors. However, training such a classifier is
expensive and requires a large number of training samples,
i.e., known malicious DNN models. Such an approach is less
feasible given that the system-level DNN attack is an emerg-
ing threat without a sufficient number of samples. Moreover,
the parameter size of DNN models are far exceeding that of
malware samples.

4.2 Opportunity and Guideline

Opportunities. Compared with the traditional malware
that relies on a complex control-flow for its execution, the
system-level DNN attack is more data-flow intensive, but
with a much simplified control-flow. As presented in Sec. 3,
though the DNN model usually maintains a huge volume
of parameters (data-flow intensive), the system-level DNN
attack is actually a simple function composition that per-
forms abnormal behaviors triggered by specific DNN input
(control-flow simplified). Besides, the time and space com-
plexity of the function composition can be estimated through
the profiling techniques [9]. Therefore, we believe that tech-
niques such as symbolic execution or performance profiling
can be applicable to detect the system-level DNN attacks by
either tracing the control flow of DNN model or analyzing
the discrepancies of time- and space- complexity of DNN
operations.

Symbolic Execution for DNN. In work [5], a DNN ori-
ented symbolic execution technique is developed to extract
the mathematical characterizations such as path conditions
and symbolic expressions of the internal behavior of the net-
works. Such a technique can be used to analyze explanations
of behaviors. For example, through the DNN oriented sym-
bolic execution, a specific causality chain can be identified
to indicate the saliency of DNN input with respect to the
DNN output. Therefore, it can be extended to analyze the

(a) Time discrepancies

o1 Alexnet + Artemis

0.08
0.06
0.04

0.02 \ ArA A A

0
== CPU

Execution Time (s)

CPU+Mal GPU GPU+Mal

(b) Space discrepancies

Alexnet+Artemis
Alexnet

53 58 63 68
# Parameter Access (Millions)

Figure 5: Example of performance profiling,.
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triggering mechanism in system-level DNN attacks since a
specific DNN input will be assessed to trigger the attack, e.g.,
the key in case-3 in our formulation.

Performance profiling. The performance profiling tech-
nique is a form of dynamic program analysis that measures
the space (memory) or time complexity of a program, which
is widely adopted in program optimization [15]. Based on our
discussion, this technique can be used to detect the system-
level DNN attacks as well. Fig. 5 shows a simple example. A
Trojan “Artemis" has been injected into Alexnet [10] to simu-
late the system-level DNN attacks. As shown in Fig. 5(a), time
discrepancies (~ 0.05s) on both CPU-time and GPU-time can
be captured between the execution of normal Alexnet (CPU
and GPU ) and infected model (CPU+Mal and GPU+Mal).
Fig. 5(b) further shows that the space discrepancies-the dif-
ference of the number of parameter access, can be also useful
to detect the system-level DNN attacks.

5 CONCLUSION

As the deep neural network (DNN) based machine learning
systems are subject to ever-increasing security challenges,
in this work, we survey the emerging system-level DNN
attacks built upon models, training/inference algorithms and
hardware and software in DNN execution. We systematically
formulate the problem of system-level DNN attacks based
on recent published case studies. Based on our formulation,
we also discuss the challenges, opportunities, and guidelines
of defending against such attacks.
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