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Abstract. Topological data analysis (TDA), while abstract, allows a
characterization of time-series data obtained from nonlinear and com-
plex dynamical systems. Though it is surprising that such an abstract
measure of structure—counting pieces and holes—could be useful for
real-world data, TDA lets us compare different systems, and even do
membership testing or change-point detection. However, TDA is com-
putationally expensive and involves a number of free parameters. This
complexity can be obviated by coarse-graining, using a construct called
the witness complex. The parametric dependence gives rise to the con-
cept of persistent homology: how shape changes with scale. Its results
allow us to distinguish time-series data from different systems—e.g., the
same note played on different musical instruments.

1 Introduction

Topology gives perhaps the roughest characterization of shape, distinguishing
sets that cannot be transformed into one another by continuous maps [16]. The
Betti numbers βk, for instance, count the number of k-dimensional “holes” in a
set: β0 is the number of components, β1 the number of one-dimensional holes, β2

the number of trapped volumes, etc. Of course, measures that are this abstract
can miss much of what is meant by “structure,” but topology’s roughness can
also be a virtue in that it eliminates distinctions due to unimportant distortions.
This makes it potentially quite useful for the purposes of classification, change-
point detection, and other data-analysis tasks1.

Applying these ideas to real-world data is an interesting challenge: how should
one compute the number of holes in a set if one only has samples of that set, for
instance, let alone if those samples are noisy? The field of topological data analy-
sis (TDA) [13,24] addresses these challenges by building simplicial complexes
from the data—filling in the gaps between the samples by adding line segments,

1 The work we describe in this paper calls upon areas of mathematics—including
dynamical systems, topology and persistent homology—that may not be commonly
used in the data-analysis community. As a full explanation of these would require
several textbook length treatments, we content ourselves with discussing how these
ideas can be applied, leaving the details of the theory to references.
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triangular faces, etc.—and computing the ranks of the homology groups of those
complexes. These kinds of techniques, which we describe in more depth in Sect. 2,
have been used to characterize and describe many kinds of data, ranging from
molecular structure [23] to sensor networks [5].

As one would imagine, the computational cost of working with a simplicial
complex built from thousands or millions of data points can be prohibitive. In
Sect. 2 we describe one way, the witness complex, to coarse-grain this proce-
dure by downsampling the data. Surprisingly, one can obtain the correct topol-
ogy of the underlying set from such an approximation if the samples satisfy
some denseness constraints [1]. The success of this coarse-graining procedure
requires not only careful mathematics, but also good choices for a number of
free parameters—a challenge that can be addressed using persistence [7,18], an
approach that is based on the notion that any topological property of physical
interest should be (relatively) independent of parameter choices in the associated
algorithms. This, too, is described in Sect. 2.

In this paper, we focus on time-series measurements from dynamical systems,
with the ultimate goal of detecting bifurcations in the dynamics—change-point
detection, in the parlance of other fields. Pioneering work in this area was done
by Muldoon et al. [15], who computed Euler characteristics and Betti num-
bers of embedded trajectories. The scalar nature of many time-series datasets
poses another challenge here. Though it is all very well to think about comput-
ing the topology of a state-space trajectory from samples of that trajectory, in
experimental practice it is rarely possible to measure every state variable of a
dynamical system; often, only a single quantity is measured, which may or may
not be a state variable—e.g., the trace in Fig. 1(a), a time series recorded from
a piano. The state space of this system is vast: vibration modes of every string,
the movement of the sounding board, etc. Though each quantity is critical to
the dynamics, we cannot hope to measure all of them. Delay reconstruction [2]
lets one reassemble the underlying dynamics—up to smooth coordinate change,
ideally—from a single stream of data. The coordinates of each point in such
a reconstruction are a set of time τ delayed measurements x(t): from a dis-
crete time series {xt}N

t=1, one constructs a sequence of vectors {xt}N
t=dEτ where

xt = (xt, xt−τ , . . . , xt−(dE−1)τ ) that trace out a trajectory in a dE-dimensional
reconstruction space. An example is shown in Fig. 1(b). Because the reconstruc-
tion process preserves the topology—but not the geometry—of the dynamics, a
delay reconstruction can look very different than the true dynamics. Even so,
this result means that if we can compute the topology of the reconstruction, we
can assert that the results hold for the underlying dynamics, whose state vari-
ables we do not know and have not measured. In other words, the topology of
a delay reconstruction can be useful in identifying and distinguishing different
systems, even if we only have incomplete measurements of their state variables,
and even though the reconstructed dynamics do not have the same geometry as
the originals.

Like the witness-complex methodology, delay reconstruction has free parame-
ters. A reconstruction is only guaranteed to have the correct topology—that is,
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Fig. 1. A short segment (45 ms) of a recording of middle C (f = 261.62 Hz) played on
a Yamaha upright piano, recorded at 44100 Hz sample rate using a Sony ICD-PX312
digital voice recorder: (a) time series data (b) two-dimensional delay reconstruction
using τ = 1

fπ
.

to be an “embedding”—if the delay τ and the dimension dE are chosen properly.
Since we are using the topology as a distinguishing characteristic, that correct-
ness is potentially critical here. There are theoretical guidelines and constraints
regarding both parameters, but they are not useful in practice. For real data
and finite-precision arithmetic, one must fall back on heuristics to estimate val-
ues for these parameters [9,14], a procedure that is subjective and sometimes
quite difficult. However, it is possible to compute the coarse-grained topology
of 2D reconstructions like the one in Fig. 1(b) even though they are not true
embeddings [11]. This is a major advantage not only because it sidesteps a dif-
ficult parameter estimation step, but also because it reduces the computational
complexity of all analyses that one subsequently performs on the reconstruction.

This combination of ideas—a coarse-grained topological analysis of an incom-
plete delay reconstruction of scalar time-series data—allows us to identify, char-
acterize, and compare dynamical systems efficiently and correctly, as well as to
distinguish different ones. This advance can bring topology into the practice of
data analysis, as we demonstrate using real-world data from a number of musical
instruments.

2 Topological Data Analysis

There has been a great deal of work on change-point detection in data streams,
including a number of good papers in past IDA symposia (e.g., [4]). Most of
the associated techniques—queueing theory, decision trees, Bayesian techniques,
information-theoretic methods, clustering, regression, and Markov models and
classifiers (see, e.g., [6,10,17,22])—are based on statistics, though frequency
analysis can also play a useful role. Though these approaches have the advantages
of speed and noise immunity, they also have some potential shortcomings. If the
regimes are dynamically different but the operative distributions have the same
shapes, for example, these methods may not distinguish between them. They
implicitly assume that it is safe to aggregate information, which raises complex
issues regarding the window size of the calculation. Most of these techniques also
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assume that the underlying system is linear. If the data come from a nonstation-
ary but deterministic nonlinear dynamical system—a common situation—all of
these techniques can fail. Our premise is that computational topology can be
useful in such situations; the challenge is that it can be quite expensive.

The foundation of TDA is the construction of a simplicial complex to describe
the underlying manifold of which the data are a (perhaps noisy) sample: that
is, to reconstruct the solid object of which the points are samples. A simplicial
complex is, loosely speaking, a triangulation. The data points are the vertices,
edges—one-simplices—join those vertices, two-simplices cover the faces, and so
on. Abstractly, a k simplex is an ordered list σ = {x1, x2, . . . , xk+1} of k +1 ver-
tices. The mathematical challenge is to connect the data points in geometrically
meaningful ways. Any such solution involves some choice of scale ε: a discrete
set of points is only an approximate representation of a continuous shape and is
accurate only up to some spatial scale. This is both a problem and an advantage:
one can glean useful information from investigations of how the shape changes
with ε [19]. While topology has many notions of shape, the most amenable to
computation is homology, which determines the Betti numbers mentioned in
Sect. 1. Computing these as a function of ε is the fundamental idea of persistent
homology, as discussed further below.

Fig. 2. Different simplicial complexes built from the data set in Fig. 1(b) with ε = 0.073:
(a) a Čech complex, with all 2000 points used as vertices; (b) and (c) witness complexes
with � = 200 and � = 50, respectively—i.e., with 1/10th and 1/40th of the points used
as landmarks. Complexes (a), (b) and (c) contain 2770627, 3938, and 93 triangles,
respectively.

There are many ways to build a complex. In a Čech complex, there is an edge
between two vertices if the two balls of radius ε

2 centered at the vertices intersect;
here the selection of ε fixes the scale. Similarly, three vertices in a Čech complex
are linked by a two-simplex if the corresponding three ε

2 -balls have a common
intersection, and so on. Figure 2(a) shows a Čech complex constructed from the
points in Fig. 1(b). The distance checks involved in building such a complex—
between all pairs of points, all triples, etc.—are computationally impractical
for large data sets. There are many other ways to build simplicial complexes,
including the α-complex [8], the Vietoris-Rips complex [12], or even building
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a complex based on a cubical grid [13]. All of these approaches have major
shortcomings for practical purposes: high computational cost, poor accuracy,
and/or inapplicability in more than two dimensions.

An intriguing alternative is to coarse-grain the complex, employing a subset
of the data points as vertices and using the rest to how to fill in the gaps.
One way to do this is a witness complex [21], which is determined by the time-
series data, W (the witness set) and a smaller, associated set L—the landmarks,
which form the vertices of the complex. Key elements of this process are the
selection of appropriate landmarks, typically a subset of W , and a choice of a
witness relation R(W,L) ⊂ W × L, which determines how the simplices tile the
landmarks: a point w ∈ W is a witness to an abstract simplex σ ∈ 2L whenever
{w} × σ ⊂ R(W,L). One connects two landmarks with an edge if they share
at least one witness—this is a one-simplex. Similarly, if three landmarks have
a common witness, they form a two-simplex, and so on. (This is similar to the
Čech complex, except that not every point is a vertex.)

There are many ways to define what it means to share a witness. Informally,
the rationale is that one wants to “fill in” the spaces between the vertices in the
complex if there is at least one witness in the corresponding region. Following
this reasoning, we could classify a witness wi ∈ W as shared by landmarks
lj , lk ∈ L if −ε < |lj − wi| − |lk − wi| < ε—that is, if it is roughly equidistant
to both of them—and add an edge to the complex if we find such a witness. If
the set of witnesses included a point that were shared between three landmarks,
we would add a face to the complex, and so on. That particular definition is
problematic, however: it classifies an ε-equidistant witness as shared even if it is
on the opposite side of the data set from the two landmarks. To address this, we
add a distance constraint to the witness relation, classifying a witness wi ∈ W
as shared between two landmarks lj , lk ∈ L if both are within ε of being the
closest landmark to wi, i.e., if max(|lj − wi|, |lk − wi|) < minm |lm − wi| + ε:

Input: {xt}N
t=1, discrete R-valued time series

delay coordinate reconstruction, {xt}N
t=dEτ

select landmarks L = {li}�
i=1 ⊆ {xt}N

t=dEτ

compute pair-wise distances Dij = |li − xj |
for ε ∈ (εmin, εmax, εstep) : (build witness complex, Wε)

for xt ∈ X:
d = |L − xt| + ε
for (li, lj) ∈ L : (check for edges)

if |li − xt|, |lj−xt| < d :
{li, lj} ∈ Wε

for (li, lj , lk) ∈ L : (check for triangles)
if |li − xt|, |lj − xt|, |lk − xt| < d :

{li, lj , lk} ∈ Wε
... (check for higher dimensional simplices)

Output: {Wε}εmax
εmin

, series of witness complexes for specified ε range

Figure 2(b) shows a witness complex constructed in this manner from the data
of Fig. 2(a), with one-tenth of the points chosen as landmarks. The computation
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involved is much faster—an order of magnitude less than required for Fig. 2(a).
The scale factor ε and the number � of landmarks have critical implications for
the correctness and complexity of this approach, as discussed further below2.

Every simplicial complex has an associated set of homology groups, which
depend upon the structure of the underlying manifold: whether or not it is con-
nected, how many holes it has, etc. This is a potentially useful way to character-
ize and distinguish different regimes in data streams. An advantage of homology
over homotopy or some other more complete topological theory is that it can
be reduced to linear algebra [16]. Algorithms to compute homology depend on
computing the null space and range of matrices that map simplices to their
boundaries [13]. The computational complexity of these algorithms scales badly,
though—both with the number of vertices in the complex and with the dimen-
sion of the underlying manifold. In view of this, the parsimonious nature of the
witness complex is a major advantage. However, an overly parsimonious com-
plex, or one that contains spurious simplices, may not capture the structure
correctly.

The parsimony tradeoff plays out in the choices of both of the free parameters
in this method. Figure 2(b) and (c) demonstrate the effects of changing the
number of vertices � in the witness complex. With 200 vertices, the complex
effectively captures the three largest holes in the delay reconstruction; if � is
lowered to 50, the complex is too coarse to capture the smallest of these holes.
In general, increasing � will improve the match of the complex to the data, but
it will also increase the computational effort required to build and work with
that structure. Reference [11] explores the accuracy end of this tradeoff; the
computational complexity angle is covered in the later sections of this paper.

The other free parameter in the process, the scale factor ε, plays a subtler and
more interesting role. When ε is very small, as in Fig. 3(a), very few witnesses
are shared and the complex is very sparse. As ε grows, more and more witnesses
fall into the broadening regions that qualify them as shared, so more simplices
appear in the complex, fleshing out the structure of the sampled manifold. There
is a limit to this, however. When ε approaches the diameter of the point cloud,
the witness complex will be fully connected, which obscures the native structure
of the sampled set; well before that, simplices appear that do not reflect the true
structure of the data. One effective way to track all of this is the β1 persistence
diagram of [7], which plots the ε value at which each hole appears in the complex,
εB , on the horizontal axis and the value εD at which it disappears from the
complex on the vertical axis3. A persistence diagram for the piano data, for
example—part (d) of Fig. 3—shows a cluster of holes that are born and die

2 Landmark choice is another issue. There are a number of ways to do this; here, we
evenly space the landmarks across the data.

3 Choosing the range and increment for ε in such a plot requires some experimentation;
in this paper, we use εstep = 20 and εmax set for each instrument when the first 20-
dimensional simplex is witnessed. This is a good compromise between effectiveness
and efficiency for the data sets that we studied.
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Fig. 3. The effects of the scale parameter ε: (a)–(c) show witness complexes with
� = 200 and different ε values. (d) shows a β1 persistence diagram computed across
a range of ε values. Each point in (d) represents a hole in the complex; its x and y
coordinates show the ε values at which that hole appears and disappears, respectively.
Holes that persist beyond the upper εmax ≈ 0.13 are shown with triangles.

before ε = 0.06. These represent small voids in the data. The three points near
the top left of Fig. 3(d) represent holes that are highly persistent.

3 Persistent Homology and Membership Testing

Cycles are critical elements of the dynamical structure of many systems, and
thus useful in distinguishing one system from another. A chaotic attractor, for
example, is typically densely covered by unstable periodic orbits, and those orbits
provide a formal “signature” of the corresponding system [3]. Topologically, a
cycle is simply a hole, of any shape or size, in the state-space trajectory of
the system. The persistent homology methods described above include some
aspects of geometry, though, which makes the relationship between holes and
cycles not completely simple. Musical instruments are an appealing testbed for
exploring these issues. Of course, one can study the harmonic structure of a
note from an instrument, or any other time series, using frequency analysis or
wavelet transforms. Because delay reconstruction transforms time into space, it
not only reveals which frequencies are present at which points in the signal, as
well as their amplitudes. These reconstructions also bring out subtler features;
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any deviation from purely elliptical shape, for instance—or the kind of “winding”
that appears on Fig. 1(b)—signals the presence of another signal and also gives
some indication of its amplitude and relative frequency.

Topological data analysis brings out those kinds of features quite naturally.
The structure of the persistence diagrams for the same note played on two dif-
ferent musical instruments, for instance, is radically different, as shown in Fig. 4.
The witness complex of a clarinet playing the A above middle C contains seven
holes for ε < 0.05. Six of these holes die before ε = 0.06; they are represented
by the points in the lower left corner of the persistence diagram. The other hole
in the complex triangulates the large loop in the center of the reconstruction of
Fig. 4(a). This hole, which remains open until the end of the ε range of the cal-
culation, is represented by the triangle in the top left corner of the persistence
diagram in Fig. 4(c). The viol reconstruction in Fig. 4(b), on the other hand,
contains over twelve holes that are born at low ε values, including many short-
lived features depicted in the lower left of the persistence diagram. By ε = 0.10,
only four holes remain open. The smallest of these four features, which closes
up around ε = 0.23, is represented by the point in the top left of Fig. 4(d). The
three other holes, which remain open to the end of the ε range of the calculation,
are represented by the colored triangles at the top left of Fig. 4(d).

Fig. 4. Witness complexes for A440 (f = 440 Hz) played on a (a) clarinet and (b) viol
constructed using 2000 witnesses and 100 landmarks for ε = 0.099, 0.114 respectively.
Beneath each are the corresponding β1 persistence diagrams. The delay reconstructions
are for approximately 0.05 s each, with τ = 1

fπ
s. (Color figure online)
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The patterns in these persistence diagrams—the number of highly persis-
tent holes and short-lived features, and the ε values at which they appear and
disappear—suggest that computational topology can be an effective way to dis-
tinguish between musical instruments. To test this more broadly, we built a pair
of simple classifiers that work with persistent rank functions (PRFs), cumula-
tive functions on R

2+ that report the number and location of points in a per-
sistence diagram [20]. We trained each classifier on 25 disjoint 0.05 s windows
from recordings of the corresponding instrument. This involved computing the
persistent homology for each instance, then computing the mean, β1, and stan-
dard deviation, σ of the set of corresponding PRFs. The test set comprised 50
0.05 s windows, 25 from each instrument; for each of these samples, we com-
puted the L2 distance between the PRF of the sample and the mean β1 for each
instrument. If that distance was below kσ for some threshold parameter k, we
assigned membership in the corresponding instrument class. The receiver oper-
ating characteristic (ROC) curves in the top row of Fig. 5 plot the true positive
rates versus the false positive rates for the PRF classifiers. The clarinet classifier
achieves a true positive rate 70% around k = 0.5, and 100% when k = 1. The
false positive rate remains near 0% up through k = 5, demonstrating a broad
range of threshold values k for which the PRF classifier will successfully assign
membership in the clarinet class to most clarinet tones—and non-membership
to most viol tones. The viol classifier achieves a true positive rate near 70% by
k = 1 and over 90% by k = 2, maintaining a false positive rate below 50% for
all k up to 2.5.

As a comparison, we built a pair of FFT-based classifiers, whose results
are shown in the bottom row of Fig. 5, training and testing them on the same
samples used for the PRF-based classifiers. The feature vector in this case was
a set of 2000 logarithmically spaced values between 10 Hz and 10,000 Hz from
the power spectrum of the signal. As in the PRF-based classifier, we computed
the mean and standard deviation of this set of feature vectors, classifying a
sample as a viol or clarinet if its L2 distance to the corresponding mean feature
vector was less than kσ. As is clear from the shapes of the ROC curves, the PRF-
based classifiers outperformed the FFT-based classifiers. The FFT-based clarinet
classifier achieves 70% and 20% true and false positive rates, respectively, around
k = 0.5. Above that threshold, the false positive rate rapidly catches up to
the true positive rate, making the classifier equally likely to correctly classify
a clarinet as a clarinet as it is to erroneously classify a viol as a clarinet. The
ROC curve for the FFT-based viol membership classifier is even closer to the
diagonal: it will correctly classify a viol as a viol only slightly more often than it
will erroneously classify a clarinet as a viol, for any parameter value 0 < k < 5.

Clarinets and viols produce very different sounds, of course, so distinguishing
between them is not a hugely challenging task. A more interesting challenge is
to compare two pianos. As shown in Fig. 6, persistence diagrams of the same
note played on an upright piano and a grand piano are notably different: the
former has a single long-lived hole—the fundamental tone of the note—while the
latter has two, perhaps reflecting the greater sonic richness of the instrument.
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Fig. 5. ROC curves for a persistent homology-based classifier (top) and an FFT-based
classifier (bottom) for clarinet (left) and viol (right) membership testing. Color bar
indicates the threshold parameter value 0 < k < 5. (Color figure online)

Persistence diagrams for both pianos contain many short-lived holes at low ε
values, which also speaks to a notable variance in the volumes of the resonating
frequencies.

Table 1 shows the runtime and memory costs involved in the construction of
some of the complexes mentioned in this paper. These numbers make it quite
clear why the parsimonious nature of the witness complex is so useful: using all
of the points as landmarks is computationally prohibitive. And that parsimony,
surprisingly, does not come at the expense of accuracy, as long as the samples
satisfy some denseness constraints [1]. Nonetheless, this is still a lot of compu-
tational effort; the membership test process described here involves building the
complex, computing the homology, repeating those calculations across a range
of ε values, and perhaps computing a persistent rank function from the results.
The associated runtime and memory costs will worsen with increasing ε, and
with the size of the data set, so computational topology is not the first choice
technique for every IDA application. However, it can work when statistical- and
frequency-based techniques do not.
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Fig. 6. Persistence diagrams for A440 on two different pianos. (a): a Steinway grand
piano; (b): a Baldwin upright piano.

Table 1. The computational and memory costs involved in constructing different sim-
plicial complexes from the 2000-point reconstruction of Fig. 1(b) with ε = 0.073 on an
Ubuntu Linux machine with an Intel Core i5 1.70 GHz 4 CPU and 12 GB of memory.

Number of landmarks Runtime (s) Number of two-simplices Memory usage

2000 (Čech) 59.1 2,770,627 9.3 MB

200 3.9 3,938 0.9 MB

50 0.8 93 < 0.1 MB

4 Conclusion

We have shown that persistent homology can successfully distinguish musical
instruments using witness complexes built from two-dimensional delay recon-
structions for a single note. This approach does not rely on the linearity or
data aggregation of many traditional membership-testing techniques; moreover,
topological data analysis can outperform these traditional methods. Though the
associated computations are not cheap, the reduction in model order and the
parsimony of the witness complex greatly reduce the associated computational
costs.

Persistent homology calculations—on any type of simplicial complex—work
by blending geometry into topology via a scale parameter ε. Their leverage
derives from the patterns that one observes upon varying ε, which are presented
here in the form of persistence diagrams. The witness complex uses the scale
parameter to obtain its natural parsimony. While the specific form of the wit-
ness relation used in this paper is a good start, it can still create holes where none
“should” exist, and vice versa. Better witness relations—factoring in the tempo-
ral ordering and/or the forward images of the witnesses, or the curvature of those
paths—will be needed to address those issues. This is particularly important in
the context of the kinds of reduced-order models that we use here to further
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control the computational complexity. An incomplete delay reconstruction is a
projection of a high-dimensional structure onto a lower-dimensional manifold:
an action that can collapse holes, or create false ones. Changing τ also alters the
geometry of a delay reconstruction. Understanding the interplay of geometry
and topology in an incomplete embedding, and the way in which the witness
relation exposes that structure, will be key to bringing topological data analysis
into the practice of intelligent data analysis.
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