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Abstract—This paper generalizes stochastic collocation meth-
ods to handle correlated non-Gaussian random parameters. The
key challenge is to perform a multivariate numerical integration
in a correlated parameter space when computing the coefficient
of each basis function via a projection step. We propose an
optimization model and a block coordinate descent solver to
compute the required quadrature samples. Our method is verified
with a CMOS ring oscillator and an optical ring resonator,
showing 3000 x speedup over Monte Carlo.

I. INTRODUCTION

Stochastic spectral methods are popular techniques to quan-
tify the impact of process variations in nano-scale chip design.
Various techniques, such as stochastic Galerkin [1], stochastic
testing [2] and stochastic collocation [3], have achieved great
success in electronic circuits [4]-[6] and photonics [7], and
have shown significant speedup over Monte Carlo. These tech-
niques approximate a stochastic solution as a linear combina-
tion of some basis functions, providing a close-form surrogate
model for fast statistical analysis and design automation.

Almost all previous stochastic spectral methods assume that
the random parameters are mutually independent. This is rarely
true in practice. Device geometric or electrical parameters
influenced by the same fabrication steps are highly corre-
lated; circuit-level performance parameters used in system-
level analysis usually depend on each other. In this paper, we
focus on the non-Gaussian correlated parameters in Fig. 1 (c).
Karhunen-Loeve theorem is error-prone and not scalable.
Preprocessing techniques such as principal component analysis
can only handle Gaussian density functions.

Our contributions. We generalize stochastic collocation to
non-Gaussian correlated cases by two steps:

« We propose a new set of basis functions to capture the
impact caused by non-Gaussian correlated parameters that
cannot be handled by generalized polynomial chaos [8].
Previous integration methods such as sparse grid [9] or
Gauss quadrature [10] do not work for non-Gaussian cor-
related cases. Motivated by [11], [12], we propose an
optimization solver to calculate the quadrature nodes and
weights. We also present a block coordinate descent method
to improve the scalability of our solver.

We validate our algorithm by both electronic and photonic ICs,
showing 3000x speedup over Monte Carlo.
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Fig. 1. Joint density for (a): independent Gaussian, (b): correlated Gaussian,
(c): correlated non-Gaussian (e.g., a Gaussian-mixture distribution) cases.

II. REVIEW: STOCHASTIC COLLOCATION

Let & = [¢1,--- ,&4] € R? be d random parameters describ-
ing process variations. We aim at estimating the uncertainty
of a performance metric y(&) (e.g., chip frequency or power).
Stochastic spectral methods approximate the solution by

Y~ Y caValé), withE[Uq () Up (€)] = dap. (1)

lex|=0

Here E denotes expectation, § denotes a Delta function,
the basis functions {¥, (£)} are orthonormal polynomials,
a = [ag,+,04) € N7 indicates the highest polynomial
order of each parameter in the corresponding basis. The total
polynomial order || = @1 + ...+ «q is bounded by p, and
thus the total number of basis functions is N = (p+d)!/(p!d!).
Projection-based stochastic collocation methods compute
the coefficient ¢, via a numerical integration. If one has M
quadrature nodes {£; }L, and weights {w;}},, then

M
ca =E[y(€)Val®)] ~ Y v ValE)wr. ()
k=1

If £ are mutually independent, then ¥, (€, ) may be chosen as
the generalized polynomial chaos [8], and the quadrature nodes
and weights can be calculated via sparse grid [9] and Gauss
quadrature [10]. However, how to choose the basis functions
and quadrature rule is an open question for non-Gaussian
correlated cases. Soize suggested a modification of generalized
polynomial chaos [13], but the resulting basis functions are
non-smooth and unstable [14].

ITII. OUR BASIS FUNCTIONS

We adopt the Gram-Schmidt approach to calculate the basis
function recursively. Gram-Schmidt was originally used for



vector orthogonalization in the Euclidean space, and the key
difference here is to replace the vector inner product with
a functional expectation. Specifically, we first reorder the
monomials &% = & ...&7¢ in the graded lexicographic
order, and denote them as {p;(£)}}_,. Then we set ¥, (§) = 1
and calculate a set of orthonormal polynomials {W; (&)}

=1
in the correlated parameter space recursively:

j—1

U;(€) = p;(€) - Z Elp; (£)W:(€)]W;(€), 3)
Boe)

1
‘I’j(ﬁ)iji(g,j:Q,...,N. (4)
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The most time-consuming step is to compute the expectations.
We adopt the functional tensor train approach developed
in [14] to speed up this computation.

IV. AN OPTIMIZATION-BASED QUADRATURE RULE

Having chosen the basis functions, we still need to de-
termine the number and values of the quadrature nodes and
weights in order to calculate the coefficient ¢, by (2). Our
proposed method is summarized in Algorithm 1, and we
explain the key ideas as follows.

A. An Optimization-Based Quadrature Rule

Motivated by [11], [12], we set up an optimization model to
decide a proper quadrature rule. Our method differs from [11]
because the latter optimizes quadrature weights only. Our
method differs from [12] in the following sense: (1) we focus
on non-Gaussian correlated uncertainty analysis; (2) we handle
the nonnegative constraint of w and the nonlinear function of
& separately via a novel block coordinate descent framework.

Suppose that y(&) can be well approximated by an order-
p polynomial function, then the product term y(£)¥ (&) can
be well approximated by order-2p polynomials. As a result,
E[y(€)Po(&)] can be accurately computed if we have a
quadrature rule that can accurately estimate the integration of
every basis function bounded by order 2p:

M

E[W;(€)] =61; ~ Y (€ )we, Vi=1,...,Nyp, (5
k=1

with Na, = (d':f”), 01; = 1if j =1 and §;; = 0 otherwise.

This formulation can be rewritten as a nonlinear least-square

min | SE)w — el 6)

where (®(€));1 = V;(€), & = [€15---:€y] € RM, w =
[w1, ce ,w]\{}T € RM and e = [1,0, - ,O]T € RNep,

B. A Block Coordinate Solver for (6)

The number of unknowns in (6) is M (d-+1), which becomes
large as d increases. To improve the scalability, we solve (6)
by a block coordinate descent method. The idea is to update
the variables block-by-block: at the ¢-th iteration, given &, and
wy, we firstly fix Et and solve the w-subproblem to update

wt*1, then fix w*! and solve the &-subproblem to get € .

Algorithm 1: Extensions of stochastic collocation method
to non-Gaussian correlated variations

Step 1 Initialize the quadrature nodes and weight according to
Section IV-C.

Step 2 Increase phase. Update the quadrature nodes & weights
by solving (6). If the optimization fails to converge,
increase the node number and go back to Step 1.

Step 3 Decrease phase. Decrease the node number, and update
them by solving (6) again. Repeat Step 3 until no points
can be deleted. Return the optimal nodes and weights.

Step 4 Call a simulator to compute {y(&;)}2L,. Then compute
the coefficients {cq} for all || < p via (2).

Output: The coefficients {cq } in (1).

w-subproblem. Suppose &' = [€4:. .. €] is fixed, then
(6) reduces to a convex linear least-square problem

w'T! = arg min ||<I>(Et)w —e % (7)
w>0
Here, we require the quadrature weights to be nonnegative.
&-subproblem. When w1 is fixed, we apply the Gaussian
Newton method to the £-subproblem

M
=gy, where {d} = argmin || 3 Gldy x|
k=1

=t .
Here, r* = ®(£ )w't! —e; € RV denotes the residual,
G! € RN2rXd jg the Jacobian matrix of r! with respect to .

C. Implementation Details

A good initial guess for the quadrature nodes is important
to ensure the success of our nonlinear least-square solver.
Therefore, we first generate some candidate nodes via a Monte
Carlo method, and then cluster them via a complete-linkage
clustering method [15].

In general, we do not know the optimal number of quadra-
ture nodes a priori. Our algorithm consists of two phases:
firstly we increase the number of quadrature nodes until the
condition (5) holds with high accuracy. Then, we decrease the
number of nodes by deleting the node with the least weight
and refine them by solving (6), until the number of nodes is
too small to achieve a required integration accuracy.

V. NUMERICAL RESULTS
A. Three-Stage CMOS Ring Oscillator

We first use our method to simulate the 3-stage CMOS ring
oscillator in Fig. 2. This oscillator has a Gaussian mixture
model describing the correlated non-Gaussian threshold volt-
ages of 6 transistors. We aim to obtain a 2nd-order expansion
for its frequency by calling a periodic steady-state simulator
repeatedly. The obtained results in Fig. 3 shows the obtained
coefficients for all basis functions. The obtained density func-
tion using only 34 quadrature samples is almost identical with
that from 10° Monte Carlo simulations.
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Fig. 2. Schematic of a 3-stage CMOS ring oscillator.
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Fig. 3. Numerical results of the CMOS ring oscillator. (a) obtained coeffi-
cients/weights of our basis functions; (b) probability density functions of the
oscillator frequency obtained by our proposed method and Monte Carlo (MC).

B. Coupled Ring Resonator Optical Filter

We further consider the filter designed with bus-coupled
micro-ring resonators' shown in Fig. 4 (a). Coupled ring res-
onator are widely used for wavelength filtering and modulation
in photonic integrated circuits. Here we consider a filter with
3 stages of ring resonators, and we use a Gaussian mixture
model to describe the correlated non-Gaussian uncertainties
in waveguide lengths L1s, La1, Los and Ljs.

A 2nd-order expansion is built to approximate the
frequency-dependent power transmission function: y(f,&) =
ZIOLI* Ca(f)¥s(€). The computed mean value and standard
derivation are shown in Fig. 5. Our method only uses 16
quadrature samples for simulation, and it is able to achieve the
similar level of accuracy compared with Monte Carlo method
using 10° simulation samples.

VI. CONCLUSION

This paper has proposed a stochastic collocation approach
to solve the challenging non-Gaussian correlated uncertainty
quantification problems. We have proposed an optimization
method to calculate the quadrature rule used in the projection
step. Our method has achieved 3000x speedup than Monte
Carlo on a CMOS ring oscillator and an optical resonator.
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Fig. 4. (a) Schematic of a 3-stage parallel-coupled ring resonator optical filter.
(b) The black line shows the nominal transmission function, and the thin grey
lines show the effect of fabrication uncertainties on the waveguide lengths.
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power transmission rate; (b) standard deviation of the transmission rate.
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