
Detecting Suspicious Package Updates
Kalil Garrett

Georgia State University
Gabriel Ferreira, Limin Jia, Joshua Sunshine, Christian Kästner

Carnegie Mellon University

Abstract—With an increased level of automation provided by
package managers, which sometimes allow updates to be installed
automatically, malicious package updates are becoming a real
threat in software ecosystems. To address this issue, we propose
an approach based on anomaly detection, to identify suspicious
updates based on security-relevant features that attackers could
use in an attack. We evaluate our approach in the context
of Node.js/npm ecosystem, to show its feasibility in terms of
reduced review effort and the correct identification of a confirmed
malicious update attack. Although we do not expect it to be
a complete solution in isolation, we believe it is an important
security building block for software ecosystems.

Index Terms—malicious update attacks, anomaly detection,
clustering, Node.js, npm

I. INTRODUCTION

Malicious package updates are becoming a real threat in the
Node.js/npm ecosystem [1] [2]. According to Adam Baldwin,
npm’s Head of Security, they have found at least 6 packages
with simple attempts to open reverse shells on npm until 2016.
These attacks, however, have received little attention from both
open source and research communities. Recently, in July 2018,
an attacker stole the npm credentials from a contributor of
the eslint-scope package and published a malicious version
of the package. The malicious version contained code that
would steal the npm credentials of all user machines that run
applications that depend directly and indirectly on the eslint-
scope package [2]. Fortunately, an user quickly identified the
attack and reported it to the community which remedied the
attack after a few hours. Interestingly, the malicious version
of the package contained certain suspicious characteristics that
had not been observed in previous versions of the package. In
Figure 1, we can observe that the update resulted in a new
hookup script entry that spawn a new instance of the Node.js
runtime and the use of eval and other potentially dangerous
libraries, such as fs and https, being used in the attack. eval
and the mentioned libraries have not been used by the package
until that version. In this work, we build an anomaly detection
approach for suspicious updates based on such characteristics.

In current practice, developers often rely on many untrusted
packages from several third-parties to speed up their devel-
opment time, prioritizing functionality and popularity over
security, often trusting the reputation of package authors and
trusting that the community will review updates and quickly
find issues as they arise [3]. Unfortunately, these practices are
not sufficient to address the security challenges faced by the
Node.js/npm ecosystem:

1 ...
2 "scripts": {
3 "postinstall": "node ./lib/build.js",
4 },
5 ...

(a) postinstall hookup script entry added int the malicious version.

1 try {
2 var https = require("https");
3 https.get({
4 hostname: "pastebin.com",
5 path: "/pathControlledByAttacker",
6 headers: { ... }
7 }, r => {
8 r.on("data", c => {
9 eval(c);
10 });
11 r.on("error", () => {});
12 }).on("error", () => {});
13 } catch(e) {}

(b) Malicious file (./lib/build.js) added by the attacker: it downloads
and evaluates an script published on pastebin.com that is also
controlled by the attacker.

Figure 1: eslint-scope@3.7.2 attack.

• the community favors a model of small packages and use
third-party packages even for simple tasks such as string
manipulation (increasing the opportunities for attacks),

• updates are frequent (increasing the opportunities for
attacks),

• updates are automatically installed (facilitating the suc-
cessful execution of attacks), and

• through the use of native libraries, packages have access
to powerful OS-level capabilities (increasing the impact
that attacks can cause)

Currently, npm has over 700,000 published packages, with
each package having, on average, a total of 90 direct and
indirect dependencies. As the number of packages and the
frequency of updates increase in the ecosystem, it becomes
impractical for the community to review all package updates
that are released on npm.

This year alone, there have been approximately 4,900
updates per week (29 per hour), making it unrealistic to
assume that the community can manually review all of them.
Our approach based on anomaly detection notifies developers
about suspicious dependencies updates, complementing other
community practices such as using automated tools to scan the
package for known vulnerabilities [4] and lightweight analysis
tools (e.g., linters) to search for common issues.

We propose an approach based on anomaly detection, an
automated machine learning technique used to identify abnor-
mal data being commonly used in other domains to detect
credit card fraud, network intrusion, and other applications

[5]. We conjecture this technique can be successfully applied
to detecting suspicious updates in npm.

We present a preliminary evaluation for our approach,
aiming to demonstrate its feasibility. We analyze the review
effort reduction that developers could get from it and test our
model against a confirmed malicious update attack. Our results
show that even a simple and fairly inexpensive automated
approach can detect a confirmed attack and reduce the review
effort by 89 percent from 701 updates per day to 77 suspicious
updates only, even considering the worst case scenario where
all notifications we raise are false positives, and has great
potential to detect suspicious updates in real-time.

We do not expect this to be a complete solution to malicious
updates in isolation, and acknowledge the limitations of our
technical approach and preliminary evaluation results. How-
ever, we believe this is an important security building block
for software ecosystems that need solutions for the increasing
number of issues created with the current automated (and often
unsecure) dependency management mechanisms.

In this paper, we make the following contributions:

• we raise awareness about malicious updates; an important
(and so far ignored) issue in software ecosystems,

• we show that anomaly detection can be used in a new
context (i.e., package updates) to support the identifica-
tion of suspicious updates,

• we identify relevant features to be used by anomaly
detection techniques on package updates, and

• we provide a preliminary evaluation showing the feasi-
bility of our approach based on anomaly detection.

II. BACKGROUND AND RELATED WORK

Node.js, a runtime engine for JavaScript, has gained popu-
larity in recent years because it allows JavaScript applications
to be executed outside a browser. The non-blocking behav-
ior of JavaScript makes it attractive to the development of
robust server-side applications, making Node.js an incredibly
powerful platform for developers. With over 700,000 packages
available for developers to build their applications, npm, the
package manager for Node.js), is currently the largest package
manager1. Both Node.js and npm contribute to being the largest
and most active open source ecosystem with an average of 4
contributors per package for over 700,000 packages.

There is a natural friction on the decision about updating
packages or not. The inherent costs attached to updates, such
as modify client code due to breaking changes, re-test your
application, and review updates, causes developers to not up-
date their dependencies, even after serious vulnerabilities are
reported and patches for them are made available. There are
several works that discuss the security of package managers [6]
[7], but also how developers from and outside the Node.js/npm
community react to updates [8] [9] [10] [11].

To reduce costs with updates, developers rely on automa-
tion, sometimes allowing updates to be installed automatically.

1www.npmjs.com

Unfortunately, increased automation comes at a cost: applica-
tions (and its dependencies) are more susceptible to malicious
update attacks. Our paper aims to raise awareness about this
issue and start a discussion about update attacks.

We use anomaly detection to detect suspicious package
updates, extending its use beyond known cases such as intru-
sion detection, fraud detection, industrial damage detection,
image processing, commit reviewing prioritization, and traffic
monitoring [5] [12]. Anomaly detection can be implemented
with several techniques, including machine learning for classi-
fication and clustering as well as various statistical approaches,
as explained in detail by Chandola et al. in their comprehensive
overview of the anomaly detection [5].

Given that most of the updates on npm are not malicious,
we use an unsupervised learning strategy based on clustering.
Clustering techniques have long been studied and applied to
many partitioning problems [13]. The goal of a clustering
techniques is to group similar objects in a way that each
cluster have objects that are more similar among themselves
than when compared to other objects in other clusters. We
create clusters for normal package updates data across multiple
packages and detect anomalies by checking the distance of
new data points to the center of each cluster. If the distance
of a new data point (i.e., new package update) is greater than
the cluster threshold, we tag the new data point as suspicious.

III. ANOMALY DETECTION APPROACH

We propose an automated approach based on anomaly
detection that can detect suspicious updates on npm. Our
solution builds upon the assumption that normal updates occur
more frequently than suspicious ones, and this normal behavior
can be characterized to create a normal behavior model. New
updates can then be classified as suspicious or non-suspicious
using this assumed normal behavior model. Suspicious updates
can then be reviewed for malicious intent.

A. Features

To characterize package updates, we extract features from
packages’ metadata (i.e. package.json) and from packages’
source code. For each package and version, we collect features
that characterize the version of the package.

We conjecture that a malicious update attacks would en-
hance a packages’ capabilities to exploit users systems. In our
process to discover features, we focused on features that could
be used to attack a given packages. Adding more and more
features to the model can actually be harmful (e.g., can add
noise to the model or affect the performance of the detection
model). Therefore, it is important to identify important features
because clustering techniques are still not sufficiently fast for
datasets with many features [14].

Table I shows the selected features. Node.js provides appli-
cations (and its dependencies) unlimited access to powerful
native libraries. These libraries can be used to exploit a
package users computer system, since they provide access to
OS-level functionality. For instance, the selected libraries (http,
http2, https, net, fs, child process) can enable applications

Features Description

http, http2, https Send/receive HTTP requests.
net Open/listen/write to sockets.
fs Create/read/write to file system.
child process Spawn child processes in the OS.
eval, Function Evaluate code (strings) at runtime.
new JS files added Add new code (directly).
new package dependencies added Add new code (indirectly).
new hookup script entries added Run arbitrary user commands.

Table I: Description of the features selected for anomaly
detection and a short description of how each can be used
by attackers.

700,000+  
packages

214,540 
recent packages

1518 updates

2288 updates

M

m

p

train

filter
sample

test
notifications  
of suspicious 

updates
models

Figure 2: Overview of our data collection and anomaly detec-
tion model development process.

to access the network, the file system, and operating system
processes, respectively. In addition to the Node.js libraries,
Javascripts eval and Function method allow malicious code to
be evaluated at runtime. While evaluating new code at runtime
is not inherently malicious, it allows developers to evade our
anomaly detection approach, since the features used in code
evaluated at runtime would not be statically detectable.

Hence, we extract the use and emergence of the selected,
exploitable libraries, eval, and Function by statically analyzing
all package’s JavaScript source files. Additionally, we identify
if new files, new dependencies, and new hookup script entries
are present in the package directory and manifest file, respec-
tively. We use a binary representation of each feature, since
we want to examine if a feature is present or if a change in
the feature has happened from one version to another.

B. Detection Model

In order to build an anomaly detection model and establish a
normal behavior model, we need to collect data from packages
and package updates. In February 2018, we collected meta
information for all the 703,457 packages available on npm,
which includes information of packages, such as name, depen-
dencies, contributors, and versions (which includes links to the
zipped source code files). We build our normal behavior model
based on the history of several packages, instead of tailoring
one customized model for each package. Figure 2 shows an
overview of our data collection and modeling process.

Package Exclusion criteria. From the entire population of
packages on npm, we only examine packages with two or
more versions, so there is update history for each package.
In addition, we only collect packages that have had recent
activity, excluding packages that have not been updated within

a year of the collection date. After excluding the packages that
do not comply with our criteria, we have a total of 214,540
remaining packages.

Clustering After collecting the features data from packages
and packages updates, we need to cluster them. We use the
k-means technique to cluster our data [13], since it fits our
technical problem: there are few, known attacks and updates
are not labeled as suspicious or normal in the npm ecosystem.
Unsupervised learning does not require a labeled dataset,
and related work has shown that clustering is an effective
unsupervised learning technique [5]. It accommodates our
need to detect suspicious updates without having a ground
truth for a normal or suspicious update. As common practice
with unsupervised learning, we need to define the number of
clusters in our model. To define it, we use the elbow method,
which uses an heuristic to identify the optimal number of
clusters before running the k-means algorithm. We examine
the second derivative of the elbow curve and identify the
earliest point where the this derivative approaches zero. This
point indicates the optimal number of clusters where the error
begins to change at a constant rate. Each cluster has its own
centroid. The best possible centroids, data points that represent
the center of each cluster, are determined, and the clusters
are then formed. We create an outlier threshold based on the
distance from the centroid to the furthest cluster point, so new
data points are anomalies if their distance to their assigned
centroid is greater than the threshold.

In this paper, we cluster 1,518 randomly selected package
updates on npm to establish normal behavior. We split package
update data by the type of change signaled by the new version
number published by a contributor and create distinct detection
models for patch, minor, and major updates. Each model is
assigned its optimal number of clusters: 10, 1, and 1 for patch,
minor, and major releases respectively.

Implementation We utilize the scikit-learn python library to
train and analyze our model. Before creating the model, we
need to take several steps to process our data:

1) the data needs to be normalized so features with different
scales are comparable.

2) the number of clusters must be defined beforehand.

We create distinct models for patch, minor, and major
updates by clustering the training data with the optimal number
of clusters. Every point in the training dataset is included in
a cluster. An assumption is made that normal behavior occurs
in compact, large clusters, so loose and small clusters are
investigated to ensure they represent normal behavior.

To test the model, we use package updates from the testing
dataset and assign each of them to an existing cluster. Since
we assume that normal updates are the norm in the training
dataset, an update is considered suspicious if it is not contained
within the boundary of the cluster. Thus, the distance from the
cluster center to the furthest data point is used as the threshold.
If a new update from the testing dataset is assigned to a cluster

0
0 1

1

0
0 1

1

Create Clusters

0

1

Detect Anomalous
Data Points

Add New  
Data Points

Feature X

F
ea

tu
re

 Y

Feature X

F
ea

tu
re

 Y
F

ea
tu

re
 Y

0

1

F
ea

tu
re

 Y

Outliers

0 10 1Feature X Feature X

1

4

2

3

Figure 3: Our approach based on anomaly detection with
unsupervised clustering.

and is further than the furthest data point, it will be considered
suspicious as shown in Figure 3.

IV. PRELIMINARY EVALUATION

We now explain how we test our detection model against
recent updates and against a confirmed malicious update.

A. Review Effort Reduction

To provide an estimate about precision, we have tested our
model against 2,288 recent package updates. For that we only
tested package updates that occurred after our training dataset
collection date. We use the ratio between number of updates
per week and the number of suspicious updates alarms our
approach raises as a proxy for precision. The intuition behind
it is to estimate the reduction in manual review effort to
developers after the prioritization of suspicious updates.

Result. Our model reports 539 suspicious updates per week
(almost 3 per hour). Even considering the worst case scenario
where all updates are not malicious, if one trust these results,
our approach could reducing the review effort by 89 percent.

B. Assessing Confirmed Malicious Update

In addition to the evaluation of recent package updates,
we also examined whether our model could detect the eslint-
scope attack. We only have this case being evaluated because
the attacks using automatic updates are silently addressed.
We however have anecdotal evidence that their occurrence is
not rare (see Section I). To reduce biases in our evaluation,
we checked that the updates from the eslint-scope have not
been added to our training dataset. After we created detection
models for patch, minor, and major updates for 1,518 ran-
domly selected package updates on npm to establish normal
behavior, we then tested the six eslint-scope updates, including
the attacked version, against our model.

Result. Our results show that the patch model labeled the
malicious version of eslint-scope as suspicious and labeled
the other patch releases as normal.

V. DISCUSSION AND CONCLUSION

We showed in an preliminary evaluation that our approach
based on anomaly detection can be useful to the Node.js/npm
ecosystem, but more investigation is necessary. From both
technical and research perspectives, there is still a need for:

• evaluate our model on the entire npm ecosystem, to show
usefulness on a large scale,

• examine alternative designs for our detection model, such
as examining per project, per developer, or by package
size, to improve precision,

• create an explanation mechanism for suspicion, to pro-
vide shortcuts for developers to make decisions about
suspicious updates,

• create a dashboard with most suspicious packages per
day, to raise the awareness about potentially malicious
updates.

• propose automated and social approaches, to support de-
velopers in addressing issues with automated updates,

• investigate design alternatives for package managers, aim-
ing at creating a secure package manager.

VI. ACKNOWLEDGEMENTS

This work was supported through NSF Grant 1717022.

REFERENCES

[1] S. Saccone, “npm hydra worm disclosure,” Google, Tech. Rep., 2016.
[2] ESLint. (2018) Postmortem for Malicious Packages Published on July

12th. [Online]. Available: https://eslint.org/blog/2018/07/postmortem-
for-malicious-package-publishes

[3] E. S. Raymond, The Cathedral and The Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates,
Inc., 2001.

[4] Greenkeeper. (2018) Automated Dependency Management. [Online].
Available: https://greenkeeper.io/

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys (CSUR), vol. 41, no. 3, pp. 15:1–
15:58, 2009.

[6] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A Look in the
Mirror: Attacks on Package Managers,” in Proc. Conf. on Computer
and Communications Security (CCS), 2008, pp. 565–574.

[7] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
Key Compromise in Software Update Systems,” in Proc. Conf. on
Computer and Communications Security (CCS), 2010, pp. 61–72.

[8] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep Me Updated:
An Empirical Study of Third-Party Library Updatability on Android,” in
Proc. Conf. on Computer and Communications Security (CCS), 2017,
pp. 2187–2200.

[9] S. Mirhosseini and C. Parnin, “Can Automated Pull Requests Encourage
Software Developers to Upgrade Out-of-date Dependencies?” in Proc.
Int’l Conf. Automated Software Engineering (ASE), 2017, pp. 84–94.

[10] R. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do Developers
Update Their Library Dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[11] A. Decan, T. Mens, and M. Claes, “An Empirical Comparison of
Dependency Issues in OSS Packaging Ecosystems,” in Proc. Int’l Conf.
on Software Analysis, Evolution and Reengineering (SANER), 2017, pp.
2–12.

[12] R. Goyal, G. Ferreira, C. K”astner, and J. Herbsleb, “Identifying unusual
commits on GitHub,” Journal of Software: Evolution and Process,
vol. 30, no. 1, 2017.

[13] P. Flach, Machine Learning: The Art and Science of Algorithms That
Make Sense of Data. Cambridge University Press, 2012.

[14] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion Detection with Unlabeled
Data Using Clustering,” in Proc. CSS Workshop on Data Mining Applied
to Security (DMSA, 2001, pp. 5–8.

