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Abstract—The convergence performance of distributed 

optimization algorithms is of significant importance to solve 
optimal power flow (OPF) in a distributed fashion. In this 
paper, we aim to provide some insights on how to partition a 
power system to achieve a high convergence rate of distributed 
algorithms for the solution of an OPF problem. We analyzed 
several features of the power network to find a set of suitable 
partitions with the aim of convergence performance 
improvement. We model the grid as a graph and decompose it 
based on the edge betweenness graph clustering. This technique 
provides several partitions. To find an effective partitioning, we 
merge the partitions obtained by clustering technique and 
analyze them based on characteristics of tie-lines connecting 
neighboring partitions. The main goal is to find the best set of 
partitions with respect to the convergence speed. We deploy 
analytical target cascading (ATC) method to distributedly solve 
optimization subproblems. We test the proposed algorithm on 
the IEEE 118-bus system. The results show that the algorithm 
converges faster with a proper partitioning, whereas improper 
partitioning leads to a large number of iterations.  
 

Index Terms— Edge Betweenness clustering, decentralized 
algorithm, Feature extraction, optimal power flow. 

I.  INTRODUCTION 
MPLEMENTATION of distributed optimization 
algorithms is an alternative to the conventional centralized 
methods for power systems operation and planning[1]. 

This is incentivized by two main reasons, 1) information 
privacy in smart grids, and 2) distributing the computational 
burden on several processors. Moreover, distributed/ 
decentralized algorithms potentially increase power systems 
reliability against failures of components or communication 
links. 

Various distributed and decentralized optimization 
algorithms have been proposed in the literature to solve 
power system optimization problems. References[2]. 
provide a comprehensive literature review on the 
distributed/decentralized optimization algorithms and their 
applications on power systems. The main focus of this paper 
is on optimal power flow (OPF) that is a critical energy 
management function in a power system. Alternating 
direction method of multipliers (ADMM)[3, 4], auxiliary 
problem principle (APP)[4] [5], optimality condition 
decomposition (OCD)[6], consensus+innovation[7], and 
analytical target cascading (ATC)[8] are among the popular 
methods to solve OPF in a distributed/decentralized fashion.  
These methods coordinate a set of local OPF subproblems 
each of which is formulated for an area of the system. If the 
areas are known (based on the territory of a control entity), 
the coordination algorithms are applied to coordinate the 

local OPF problems. However, if the goal is to reduce the 
computational burden of the centralized OPF taking 
advantage of a distributed computing technique, the power 
system need to be decomposed into several small zones[9]. 
Then, a coordination strategy is applied to coordinate 
optimization subproblems of the zones.  

The way that the system is decomposed into a set of zones 
has a significant impact on the convergence performance of 
the distributed optimization[10]. One approach is to partition 
the system to equal subsystems to benefit from the parallel 
computing. Several techniques, such as tableau[11], genetic 
algorithm[12], dynamic programming [13], and harmony 
search[14], have been presented to partition the system to a 
set of equal-sized subsystems. Although having equal-sized 
subproblems balances the computational cost of processors, 
it might increase the required iterations to achieve the 
convergence. This, consequently, increases the overall 
computational time.  

Finding a proper partitioning that leads to a high 
convergence rate and accuracy is difficult. Indeed, not only 
the computational cost of each subproblem is important but 
also interdependencies of the subproblems and sensitivity of 
a zone to its neighboring zones play a critical role in the 
convergence rate and number required iterations. A proper 
partitioning depends on the system configuration, the 
number of buses in each zone, the number of tie-lines 
interconnecting the zones, the amount of power exchanged 
between the neighboring zones, the amount of load in each 
zone, etc. 

In this paper, we analyze the impact of power system 
partitioning on the distributed OPF algorithm. We also 
provide some insights on how to find proper partitions to 
speed up the convergence rate and reduce the number of 
iterations of the distributed OPF algorithm. The grid is 
modeled as a graph (buses act as nodes and lines are edges) 
and implement the edge betweenness graph clustering to 
decompose the system into a set of zones. We partition the 
system in a way that each zone includes a subset of nodes 
and edges that are strongly connected. The 118-bus test 
system is partitioned in the different ways. We analyze 
several possible partitioning forms based on features of tie-
lines interconnecting the zones and the convergence speed. 
Correlations between tie-lines’ characteristics and the 
convergence speed are studied to provide some useful 
insights on power system decomposition.  

II.  SYSTEM DECOMPOSITION WITH EDGE-BETWEENNESS 
To decompose the system into several subproblems, we 

use the optimal values from the centralized optimization. 
Then, the impact of different partitioning forms is 
investigated on the distributed algorithm. 

A.  The Classical Centralized DCOPF 
For the sake of explanation and simplicity, a DCOPF 
problem is considered. 
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min�𝑎𝑎𝑖𝑖 ⋅ 𝑝𝑝𝑖𝑖2 + 𝑏𝑏𝑖𝑖 ⋅ 𝑝𝑝𝑖𝑖 + 𝑐𝑐𝑖𝑖�������������
𝑓𝑓𝑖𝑖(𝑝𝑝)

𝑁𝑁𝑁𝑁

𝑖𝑖=1

                                (1) 

𝑠𝑠. 𝑡𝑡. 
 

ℎ(𝑥𝑥) = 0 ↔ �
𝑝𝑝𝑖𝑖 − 𝑑𝑑𝑖𝑖 = �

𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗
𝑋𝑋𝑖𝑖𝑖𝑖

     ∀𝑖𝑖                    (2)
𝑗𝑗∈𝜏𝜏𝑖𝑖

 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 0                                                    (3)
 

𝑔𝑔(𝑥𝑥) ≤ 0 ↔ �
𝑃𝑃𝐿𝐿𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝐿𝐿𝑖𝑖𝑖𝑖 =

𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗
𝑋𝑋𝑖𝑖𝑖𝑖

≤ 𝑃𝑃𝐿𝐿𝑖𝑖𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀              (4)

𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑝𝑝𝑖𝑖 ≤ 𝑃𝑃𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀              ∀𝑖𝑖                (5)
 

 
where 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 and 𝑐𝑐𝑖𝑖 are the cost coefficients of generator unit 
and 𝑝𝑝𝑖𝑖  and 𝑑𝑑𝑖𝑖 denotes the amount of generation and load of 
bus 𝑖𝑖 . 𝑁𝑁𝑁𝑁 is total number of generator. 𝜃𝜃 denote a bus 
voltage angle. ℎ:ℝ𝑜𝑜 → ℝ𝑞𝑞 and 𝑔𝑔:ℝ𝑜𝑜 → ℝ𝑞𝑞 are sets of 
equality and inequality constraints.  𝑃𝑃𝐿𝐿𝑖𝑖𝑖𝑖 indicates the amount 
of power flow between bus 𝑖𝑖 and 𝑗𝑗. 𝜏𝜏𝑖𝑖 is the set of indices of 
buses that are connected to bus 𝑖𝑖.  

B.  Interconnecting OPF Outputs to System Graph 
To find the proper partitions, we run the centralized 

DCOPF once to obtain the system information. We consider 
the grid as a graph model in which buses are considered as 
nodes and lines as edges (we interchangeably use the terms 
“node” and “bus” throughout the paper; similarly for “line” 
and edge”). Weights of the edges are needed to construct the 
graph. Three approaches can be selected. First, if two nodes 
are connected via a transmission line, the weight of the 
corresponding edge between these two nodes is one, else it 
is zero. Second, to assign the priority to each connection, the 
weight of each edge is defined based on the reactance of the 
corresponding transmission line as 1/𝑋𝑋. This is a good 
approach to segregate the strong and week connectivity 
between lines, while the impact of loads and generation are 
neglected. In the third approach, we define the weights 
according to line flows. A line with a large amount of flow, 
which may play a crucial role in the system, has more 
priority than a line with low flow. We select the third 
approach to define the weights of the edges. 

𝑤𝑤𝑖𝑖𝑖𝑖 = �
𝑃𝑃𝐿𝐿𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                  (6)

0
 

Since the amount of line flows may vary in a wide range, 
we normalize the weights by dividing them by the minimum 
line flow. This gives a more proper weight for a line. 

C.  Partitioning by Edge Betweenness  
Many approaches can be deployed to partition the graph 

in various ways. Our goal in the decentralized optimization 
is to decompose the DCOPF problem into a set of 
subproblems each for a partition. It is desirable that the 
subproblems are weakly connected. In other words, a region 
(subproblem) should be connected to other regions with a 
minimum number of tie-lines. In addition, the weights of tie-
lines need to be considered to account for their importance.  

The edge betweenness algorithm is matched with our 
purpose. In this algorithm, inspires from vertex 
betweenness[15],  the communities are detected based on the 
edges that are mostly between them. The centrality of a node 

                                                           
1 Note that, in this paper, we aim to study the impact of grid partitioning. 

Without loss of generality, we deploy ATC to coordinate OPF subproblems.  

and the impact of each node on the network are measured. 
To distinguish which edges are most between other nodes, 
the vertex betweenness is generalized. The edge 
betweenness for one edge is defined as the number of 
shortest paths between two nodes. If there is more than one 
minimal path between two vertices, an equal weight is 
assigned to each path while the total weight of all paths must 
be equal to one. Consider two communities, each of which 
is strongly connected (locally), whereas they have few inter-
group edges, and all of the paths pass through these 
intergroup edges. In this case, we have a high edge 
betweenness connection, and most flows go along these 
inter-group edges. By removing these edges, the network is 
decomposed into two smaller networks. For instance, in Fig. 
1, we determine the edge betweenness for a graph. The 
connected edge between nodes 4 and 5 has the maximum 
edge betweenness since a flow from nodes 1-4 need to pass 
edge 4-5 to reach nodes 5-8. This edge act as the bridge 
between the two subsets. To clarify more how this algorithm 
works the pseudocode for an unweighted graph is shown 
below: 
 

Algorithm of Edge-Betweenness 
1: while N partitions not obtained 
2:       Find all shortest paths between each pair of nodes 
3:        Divide shortest paths weights by 𝜒𝜒  that is number  
          of shortest paths for each pair of nodes 
4:       Remove the edge with the highest betweenness 
5:       Recalculate the edge betweenness, go to step 2 
6:   end while 

 

 
Fig. 1. Edge betweenness procedure. 
 

D.  Construct a Set of Similar Clusters 
Several partitions are obtained by implementing the edge 
betweenness graph clustering on the power network. The 
number of regions and coupling variables (i.e., the number 
of tie-lines) impact the distributed optimization. To have fair 
analysis and discussions, we merge the clusters obtained 
from the partitioning method in different ways to construct a 
set of new partitions in which the number of regions and tie-
lines would be the same. 

III.  ATC COORDINATION STRATEGY 
We implement the analytical target cascading (ATC) 

method to solve the OPF problems of the partitions in a 
distributed manner1. ATC works based on the concept of 
augmented Lagrangian relaxation and coordinates the 

However, one can use other distributed optimization algorithms, such as 
APP and ADMM instead of ATC.   
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subproblems sequentially. Subproblems are placed at 
different hierarchical levels. A subproblem in an upper level 
(𝑙𝑙) acts as a parent for the connected subproblems in the 
lower level 𝑙𝑙 + 1, while children in the lower level are not 
linked [16]. A parent is linked to its children through a set of 
shared variables, which are voltage angles of the buses 
placed at the boundaries of the partitions in the considered 
DC OPF problem. ATC iteratively solves the OPF problems 
of the partitions (one problem at a time) and updates the 
shared variables to achieve a feasible and optimal solution 
from the perspective of the whole grid. 

A.  ATC Formulation  
     We briefly explain the ATC method (see [16] for more 
details). Assume a compact form of the centralized OPF as 
follows: 

min
𝑿𝑿

𝑓𝑓(𝑿𝑿)                                               (7) 

𝑠𝑠. 𝑡𝑡.  𝒈𝒈(𝑿𝑿) ≤ 0,𝒉𝒉(𝑿𝑿) = 0                     (8) 

where 𝑿𝑿 is the set of all variables (i.e., 𝑝𝑝 and 𝛿𝛿) of the system. 
𝑓𝑓: ℝ𝑜𝑜 → ℝ is the objective function (see (1)). 𝒉𝒉: ℝ𝑜𝑜 → ℝ𝑞𝑞 
and 𝒈𝒈: ℝ𝑜𝑜 → ℝ𝑞𝑞 are the sets of equality (see (2) and (3)) and 
inequality (see (4) and (5)) constraints. The optimization can 
be rewritten as follows with respect to the local OPF 
subproblems of the partitions and their shared variables: 

min��𝑓𝑓𝑚𝑚𝑚𝑚 �𝒙𝒙𝑚𝑚𝑚𝑚 , 𝒕𝒕(𝑚𝑚+1)𝑑𝑑1 , … , 𝒕𝒕(𝑚𝑚+1)𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚
�           

∀𝑛𝑛∀𝑚𝑚

(9) 

𝑠𝑠. 𝑡𝑡.    𝒈𝒈𝑚𝑚𝑚𝑚 �𝒙𝒙𝒎𝒎𝒎𝒎, 𝒕𝒕(𝒎𝒎+𝟏𝟏)𝒅𝒅𝟏𝟏 , … , 𝒕𝒕(𝒎𝒎+𝟏𝟏)𝒅𝒅𝒊𝒊𝒎𝒎𝒎𝒎� ≤ 0        (10) 

                 𝒉𝒉𝑚𝑚𝑚𝑚 �𝒙𝒙𝒎𝒎𝒎𝒎, 𝒕𝒕(𝒎𝒎+𝟏𝟏)𝒅𝒅𝟏𝟏 , … , 𝒕𝒕(𝒎𝒎+𝟏𝟏)𝒅𝒅𝒊𝒊𝒎𝒎𝒎𝒎� = 0        (11)    

∀𝑛𝑛 ∈ 𝐸𝐸𝑚𝑚   𝑚𝑚 = {1, … ,𝑀𝑀} 

where subscript 𝑚𝑚𝑚𝑚 denotes subproblem 𝑛𝑛 in level 𝑚𝑚, 𝒙𝒙𝑚𝑚𝑚𝑚 
is the set of local variable of subproblem  𝑛𝑛  in level 𝑚𝑚. 𝒕𝒕𝑚𝑚𝑚𝑚 
is the set of shared variables (we call them target variables)  
defined in subproblem 𝑛𝑛 in level 𝑚𝑚. The target variables are 
determined by a parent and send down toward the 
corresponding children. 𝐸𝐸𝑚𝑚    is the set of subproblems in 
level 𝑚𝑚, and 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚 is the number of subproblems in level 𝑚𝑚, 
and 𝑀𝑀 denotes the number of levels.  

To separate the parents’ and children’s subproblems, a 
response copier 𝑟𝑟 is introduced for each targte variable 𝑡𝑡. The 
response variables are duplication of the targets. Targets and 
responses are shared variables between parents and children. 
The targets are controlled by parent, while the responses are 
handled with children. To enforce the decentralize algorithm 
to converge to the optimal (and feasible) point, the following 
set of consistency constraint must be satisfied: 

𝑪𝑪𝑚𝑚𝑚𝑚 = 𝒕𝒕𝑚𝑚𝑚𝑚 − 𝒓𝒓𝑚𝑚𝑚𝑚 = 0                         (12) 

where 𝑪𝑪𝑚𝑚𝑚𝑚 is the consistancy constriants of subproblem 𝑛𝑛 in 
level 𝑚𝑚. To relax the hard consistency constraints, the 
concept of augmented Lagrangian relaxation is deployed and 
a set of penalty functions are added to each subproblem’s 
objective function. We can rewrite the objective function (9) 
as:  
min ��𝑓𝑓𝑚𝑚𝑚𝑚(𝑥𝑥𝑚𝑚𝑚𝑚 , 𝑡𝑡(𝑚𝑚+1)𝑑𝑑1 , … , 𝑡𝑡(𝑚𝑚+1)𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚

)
∀𝑛𝑛∀𝑚𝑚

+ 𝜋𝜋𝑚𝑚𝑚𝑚 �𝑐𝑐(𝑚𝑚+1)𝑑𝑑1 , … , 𝑐𝑐(𝑚𝑚+1)𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚
�       (13) 

 

subject to (10) and (11). 𝜋𝜋𝑚𝑚𝑚𝑚 denotes the penalty term added 
to subproblem 𝑛𝑛 in level 𝑚𝑚. Several options exist to model 
the penalty terms, such as exponential and quadratic 
functions. With the above procedure, the partitions are 
placed in different levels and their OPF subproblems are 
separated. 

B.  AL-AD Coordination Strategy 
 Several algorithms can be deployed to coordinate the 

OPF subproblems. In this paper, we select a second-order 
penalty term and follow the alternating direction method of 
multipliers (AL-AD) coordination strategy[3]: 

𝝅𝝅𝑨𝑨𝑨𝑨−𝑨𝑨𝑨𝑨(𝒄𝒄) = 𝝀𝝀𝑇𝑇(𝒕𝒕 − 𝒓𝒓) + ‖𝝎𝝎 ∘ (𝒕𝒕 − 𝒓𝒓)‖22          (14) 

where 𝝀𝝀 and 𝝎𝝎 are penalty multipliers and “∘” denotes the 
Hadamard product. In the DC OPF, the target and response 
variables are the voltage angles of terminals of tie-lines that 
connect the partitions. For the sake of simplicity and 
explanation, we consider two partitions, and put partition 1 
in level 1 and partition 2 in level 2. In each iteration 𝑘𝑘 of AL-
AD (it is an iterative procedure), OPF subproblem 1 in level 
1 (i.e., the parent partition) is: 

min
(𝒙𝒙11,𝜽𝜽𝟐𝟐𝟐𝟐)

𝑓𝑓11(𝒙𝒙11,𝜽𝜽22) + 𝝀𝝀𝑇𝑇�𝜽𝜽𝟐𝟐𝟐𝟐 − 𝜽𝜽�𝟐𝟐𝟐𝟐𝒌𝒌−𝟏𝟏�

+ �𝝎𝝎 ∘ �𝜽𝜽𝟐𝟐𝟐𝟐 − 𝜽𝜽�𝟐𝟐𝟐𝟐𝒌𝒌−𝟏𝟏��2
2            (15) 

where 𝜽𝜽 denotes the target variables of the parent, and 𝜽𝜽� is 
the response variables of the child. And the OPF subproblem 
2 in level 2 (i.e., the child partition) is: 

min
(𝒙𝒙11,𝜽𝜽�𝟐𝟐𝟐𝟐)

𝑓𝑓22�𝒙𝒙11,𝜽𝜽�22� + 𝝀𝝀𝑇𝑇�𝜽𝜽𝟐𝟐𝟐𝟐𝒌𝒌−𝟏𝟏 − 𝜽𝜽�22�

+ �𝝎𝝎 ∘ �𝜽𝜽𝟐𝟐𝟐𝟐𝒌𝒌−𝟏𝟏 − 𝜽𝜽�𝟐𝟐𝟐𝟐��2
2            (16) 

Note that 𝜽𝜽 is constant in (16), wherase 𝜽𝜽� is constant in (15). 
The AL-AD ‘s steps are as follows:  
 

Step1: Initialize local variables 𝒙𝒙 of each subproblem, target 
values 𝒕𝒕, response 𝒓𝒓, penalty multipliers 𝝀𝝀 and 𝝎𝝎, and 
parameter 𝛽𝛽, and set the iteration index 𝑘𝑘 = 1. 
  

Step2: Solve OPF subproblems in level 𝑙𝑙, and update the 
target values. Solve subproblems in level 𝑙𝑙 + 1, update 
response (for levels< 𝑙𝑙 + 1) and target (for levels> 𝑙𝑙 + 1) 
values. Do that until all levels are solved. 
 

Step3: If max��𝜃𝜃𝑘𝑘 −  𝜃𝜃�𝑘𝑘�� ≤ 𝜖𝜖, where 𝜖𝜖 is a stopping 
threshold, the convergence is achieved. Otherwise, 𝑘𝑘 ←  𝑘𝑘 +
1 and update the penalty multipliers as follows: 

𝝀𝝀𝑘𝑘 = 𝝀𝝀𝑘𝑘−1 + 𝝎𝝎 ∘ (𝜽𝜽𝑘𝑘−1 − 𝜽𝜽𝑘𝑘−1)               (17)  

𝝎𝝎𝑘𝑘 = 𝛽𝛽𝝎𝝎𝑘𝑘−1                            (18) 
and then go to Step 2. 

We refer to[16] more details on the ATC method and the 
AL-AD coordination strategy.  

IV.  NUMERICAL RESULTS AND DISCUSSIONS 
The edge betweenness partitioning method is 

implemented on the IEEE 118-bus system, and the 
simulation results are discussed. We explain how the test 
system is decomposed into different clusters. We extract 
features of each cluster to understand which cluster is more 
efficient. The AL-AD coordination strategy is solved to 
analyze the accuracy of the clustering framework. To have a 
fair analysis and comparison, the convergence criterion and 
initial points are the same in all cases. All simulations are 
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carried out using R and MATLAB, on a personal 2.7 GHz 
computer with 16 GB RAM. 

A.  Decomposing 118-Bus System 
To partition the test system, the centralized DC OPF 

problem is solved to determine the line flows. Based on our 
experience, we cluster the system to eight zones. Figure 2 (a) 
shows the nodes in each zone. For the sake of analysis and 
discussions and to have a fair comparison between the 
partitions, we combine the partitions in different ways to 
create two zones that are connected through three tie-lines. 
We find four cases and, in Fig. 2 (b), show how clusters are 
connected. The weight of each edge denotes the number of 
tie-lines between two clusters. Each of the dash-line 
separates the graph into two parts (e.g., {3,5} are in the first 
group, and {1,2,4,6,7,8} are in the second group). The four 
cases are given in Table I.  

B.  Tie-line Features 
We find the edges placed between the clusters and define 

them as bridges. By removing the bridges, the clusters are 
completely isolated. Since each bridge is placed in a different 
part of the power grid and has different reactance, they have 
different features. We define two indies to characterize the 
features of each bridge. The first index is the bus voltage 
angles variations. This index indicates that if we change the 
voltage angles of two sides of a bridge, how other angles 
change. This measures the importance of each bridge. If the 
impact of this variation is high, it means that this bridge it is 
not a proper tie-lines, as a small change in this tie-line has a 
high impact on the rest of the system, and the distributed 
algorithm put more efforts to find the optimal point for both 
sides of this tie-line. To calculate this index, we solve the 
problem in a centralized manner. Knowing the optimal 
angles, we increase/decrease the two sides of the bridge by 
0.1%. We then solve the problem again to observe variations 
of the voltage angles in the rest of the system. The angle 
variation is formulated as: 

𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 =
�∑ 𝜃𝜃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − ∑ 𝜃𝜃𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖 �

�∑ 𝜃𝜃𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖 �
                    (19) 

where 𝜃𝜃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 denotes the voltage angle of bus 𝑖𝑖  when the 
angles of the bridge terminals vary.  𝜃𝜃𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 is the optimal value 
for the angle of bus 𝑖𝑖.  

The second index measures the impact of a bridge on the 
cost function. The procedure of calculation of the cost 
variation is the same as of 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 . This index measures how 
much the cost function vary. 

𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 =
�∑ 𝑓𝑓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − ∑ 𝑓𝑓𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖 �

�∑ 𝑓𝑓𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖 �
                  (20) 

where 𝑓𝑓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 are respectively the cost of generation 

unit 𝑖𝑖 after the angle modification and before that (i.e., the 
optimal angles). Note that in the four partitioning shown in 
Table I, the two zones are connected via four tie-lines. We 
add the defined indices of each tile-line to find two 
equivalent indices.  
To analyze the impact of power demand, we examine three 
tests with the normal load, 75% of the normal load (low 
load), and 125% of the normal load (high load). To provide 
a better sense, we normalize the result by dividing them by 
their average value. The results are shown in Tables II.   

C.  Impact of Partitioning on Distributed Algorithm 
AL-AD is applied to find DCOPF solution of the four 

possible partitioning cases under different loading 
conditions. To have a fair condition for all cases, the initial 
value for targets and responses are set to zero. The stopping 
criterion is 𝜖𝜖 = 5 × 10−4, and  𝑘𝑘 ≤ 100. The initial values 
for multipliers are 𝜆𝜆 = 500, 𝑤𝑤 = 500.  All cases converge 
after 100 iterations. 

We define two indices, to evaluate our results. The first 
index is the relative distance of the total cost determined by 
centralized OPF and the decentralized one. 

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
|𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑|

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
                       (21) 

where 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 are the optimal cost function obtained 
by the centralized and decentralized OPF. The second index, 
shows the average of 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  over the course of iterations. In 
several iterations, 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is precise but the performance of 
AL-AD in its previous iterations is not good. Hence, we 
formulate the  𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 as 

𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
∑ �𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘 �

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐾𝐾
𝑘𝑘=1

𝐾𝐾
                 (22) 

where 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘  is the value of the objective function of the 
distributed algorithm in iteration 𝑘𝑘. Table III shows the 
results of the four possible partitioning forms. The results 
demonstrate that a case with small  𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 and 𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 would lead 
to a better result. However, the impact of 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 is higher than 
𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓. We use a fuzzy logic to assign one value instead of 
using both 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 and 𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 [17]. If we consider Case 2 in the 
normal load, the 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃  and 𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 indices are less in comparison 
with other cases. The results prove that Case 2 has proper 
values in comparison with the three other cases. On the other 
hand, 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃  for Case 1 in the normal load is the worst. Thus, 
we expect that this case would be the worst case. 

To investigate the effect of  𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 and 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 the our results, 
we select various amount of load as {0.6, 0.7, 0.8, 0.9, 1, 1.1, 
1.2}, and test Case 2. The features of each partion are 
extracted and normalized (divide by the mean value). The 
results are ploted in Fig. 3 (a) based on 𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 and 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃, and 
the amount of 𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is depicted at each point. The result 
shows that the point with an small value of 𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 ad 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 has 
the least error, while the worst case has 𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 = 1.06 and 
𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 = 3.1. In Fig. 4 (b), 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   for the worst and best cases 
are drawn (logaritmic) over the course of iterations. 

V.  CONCLUSION 
In this paper, we studied the impact of power grid 

partitioning on the distributed OPF. We deployed the edge 
betweenness partitioning approach to decompose the system. 
Several possible partitioning forms could be selected. The 
main concern is “which partitioning form is suitable for the 
decentralized OPF algorithm?” We introduced several 
indices obtained from features of the tie-lines connecting the 
partitions to analyze the results of distributed OPF of each 
partitioning case. The simulation results on the 118-bus 
system showed that each partitioning case provides different 
convergence performance. A partitioning case with the least 
variation indices is potentially the best case from the 
perspective of the decentralized algorithm, i.e., AL-AD 
shows a good convergence performance for such a case. 
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TABLE I. SUBSETS OF EACH CASE  

Case ID subsets 
1 {35}, {1 2 4 6 7 8} 
2 {6}, {1 2 3 4 5 7 8} 
3 {4 6 8}, {1 2 3 5 7} 
4 {2 4 6 8}, {1 3 5 7} 

 
 

TABLE II. FEATURES OF EACH CLUSTER 

Case No 
Normal load Low load High load 

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

1 0.9052 2.0833 0.7854 0.3779 1.2733 2.7536 
2 0.4491 0.1164 2.9915 1.0350 1.1451 0.2144 
3 0.3793 0.3591 0.2108 2.3676 0.0620 0.0581 
4 2.2664 1.4411 0.0121 0.2192 1.5193 0.9737 

 
 

TABLE III. ERROR OF EACH CLUSTER 

Case No 
Normal load Low load High load 

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

𝑟𝑟𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 10−3 

1 3.2 7.1 0.09 2.8 5.4 8 
2 0.07 1.5 1.21 3.0 1.35 3.2 
3 0.01 3.2 0.01 3.4 0.004 3.1 
4 0.02 7.5 0.007 7 0.22 8.3 
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Fig. 2.a) nodes clustering and b) merge clusters. 

 
(a) 

 
(b) 

Fig. 3. a) Impact of 𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓 and 𝑟𝑟𝑟𝑟𝑙𝑙𝜃𝜃 on decentralized algorithm b) 𝑟𝑟𝑟𝑟𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 over 
the course of iterations. 
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