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Abstract- Collaborative operation of electricity transmission and 

distribution systems improves the economy and reliability of the entire 
power system. However, this is a challenging problem given that 
transmission system operators (TSOs) and distribution system 
operators (DSOs) are autonomous entities that are unwilling to reveal 
their commercially sensitive information. This paper presents a 
decentralized decision-making algorithm for collaborative TSO+DSO 
optimal power flow (OPF) implementation. The proposed algorithm is 
based on analytical target cascading (ATC) for multilevel hierarchical 
optimization in complex engineering systems. A local OPF is 
formulated for each TSO/DSO taking into consideration interactions 
between the transmission and distribution systems while respecting 
autonomy and information privacy of TSO and DSOs. The local OPF 
of TSO is solved in the upper-level of hierarchy, and the local OPFs of 
DSOs are handled in the lower-level. A diagonal quadratic 
approximation (DQA) and a truncated diagonal quadratic 
approximation (TDQA) are presented to develop iterative 
coordination strategies in which all local OPFs are solved in a parallel 
manner with no need for a central coordinator. This parallel 
implementation significantly enhances computations efficiency of the 
algorithm. The proposed collaborative TSO+DSO OPF is evaluated 
using a 6-bus and the IEEE 118-bus test systems, and promising results 
are obtained.  

Index Terms- Collaborative transmission and distribution 
operation, analytical target cascading, diagonal quadratic 
approximation, decentralized optimization, parallel algorithm. 

 

NOMENCLATURE 
A. Indices, Sets, and Parameters 
𝑎𝑎, 𝑏𝑏 Index for border buses in TSO side. 
𝑎𝑎′, 𝑏𝑏′ Index for border buses in DSOs side. 
𝑖𝑖, 𝑗𝑗 Index for subproblem 𝑗𝑗 in level 𝑖𝑖. 
𝑘𝑘 Outer loop iteration index. 
𝑙𝑙 Inner loop iteration index. 
𝑓𝑓∗ Operating cost determined by the centralize algorithm. 
𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴  Operating cost determined by the decentralized 

algorithm.  
𝑓𝑓𝑖𝑖𝑖𝑖 Operating cost function of subproblem 𝑗𝑗 located in level 

𝑖𝑖. 
𝑔𝑔𝑖𝑖𝑖𝑖 Set of inequality constraints of subproblem 𝑗𝑗 located in 

level 𝑖𝑖. 
ℎ𝑖𝑖𝑖𝑖 Set of equality constraints of subproblem 𝑗𝑗 located in 

level 𝑖𝑖. 

𝑁𝑁𝑑𝑑 Number of DSO in level two. 
𝑃𝑃𝑙𝑙∗ Power mismatch in tie-line 𝑙𝑙 determined by the centralize 

algorithm. 
𝑃𝑃𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴  Power mismatch in tie-line 𝑙𝑙 determined by the 

decentralized algorithm. 
𝑋𝑋 Set of variables. 
𝜋𝜋(. ) Penalty function. 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 Relative power mismatch in a tie-line. 
𝑟𝑟𝑟𝑟𝑟𝑟 Relative distance of the operating cost. 
 
B. Variables 
𝑟𝑟𝑖𝑖𝑖𝑖  Response of subproblem𝑗𝑗 in level 𝑖𝑖. 
𝑡𝑡𝑖𝑖𝑖𝑖 Targets of subproblem𝑗𝑗 in level 𝑖𝑖. 
𝑣𝑣𝑎𝑎 Voltage magnitude at bus 𝑎𝑎.  
𝛿𝛿𝑎𝑎 Voltage angle at bus 𝑎𝑎. 
𝑣𝑣�∠𝛿𝛿 Voltage phasor corresponding to response variables. 
𝑣𝑣∠𝛿𝛿 Voltage phasor corresponding to target variables. 
𝛼𝛼,𝛽𝛽 EPF penalty multipliers. 
𝛿𝛿𝑘𝑘,𝑙𝑙 Voltage angle in outer loop 𝑘𝑘 and in inner loop 𝑙𝑙. 
Г Step size. 
𝜆𝜆,𝑤𝑤 AL_BCD’s penalty multipliers.  
𝜆𝜆𝑖𝑖𝑖𝑖,𝛿𝛿
𝑇𝑇 ,𝑤𝑤𝑖𝑖𝑖𝑖,𝛿𝛿  DQA’s penalty multipliers related to the voltage angle of 

subproblem𝑗𝑗 in level 𝑖𝑖. 
𝜆𝜆2𝑗𝑗,𝑣𝑣
𝑇𝑇 ,𝑤𝑤𝑖𝑖𝑖𝑖 ,𝑣𝑣 DQA’s penalty multipliers related to the voltage 

magnitude of subproblem 𝑗𝑗 in level 𝑖𝑖. 
𝜏𝜏 Tuning parameter. 
 

I.  INTRODUCTION  
MERGING active distribution grids (ADGs), which include 
distributed energy resources, is reshaping power systems 

paradigm. Unlike passive distribution grids, an ADG is capable of 
locally supplying power for end-users with its distributed 
generators (DGs). Incorporation of ADGs into power system 
management potentially enhances the overall system performance 
in terms of economic and security [1, 2]. This has motivated the 
recent interests in collaborative management of transmission and 
distribution grids [3-5]. 

The transmission system is operated by a transmission system 
operator (TSO), and the distribution system is controlled by a 
distribution system operator (DSO). Since the transmission and 
distribution grids are parts of an interconnected system, any 
decisions made by TSO (DSOs) affects the DSOs’ (TSO’s) 
operation and decisions. On the other hand, TSO and DSOs are 
autonomous control entities with their own rules, policies, and 
objectives. While one entity aims at minimizing its own costs, the 
objective of another entity might be reliability maximization with 
respect to its local operational constraints. Furthermore, TSO and 
DSOs might compete with each other to achieve their objectives. 
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Thus, although TSO and DSOs are parts of an interconnected 
system, they are unwilling to share their commercially sensitive 
data with each other. This is, preserving the privacy of TSO and 
DSOs’ is critical. Hence, a central scheduling framework, in which 
TSO and DSOs need to share all their information with a central 
control authority, may not be appropriate for the entire power 
system operation [6]. Even if TSO and DSOs share their 
information with a central control authority and allow this entity to 
perform the decision-making, solving the resulting integrated large-
scale optimization problem is challenging.  In addition, failures and 
cyber-attacks could have a devastating impact on the functionality 
of a centralized control approach.  

Transmission and distribution systems collaboration have seen 
increased interest recently [7, 8]. Active distribution system can 
provide various services for the transmission system. These two 
systems can cooperate to achieve a better grid performance in terms 
of, for instance, voltage security, operation, planning, etc. our main 
focus in this paper is one short-term operation. We aim at finding a 
distributed solution for optimal power flow (OPF) problem for a 
power system that potentially includes multiple DSOs and a TSO. 
Here, we briefly review several papers in the field of distributed 
power system management and TSO+DSO operation.  

Iterative approached have been presented in [9-19] to solve OPF 
in a distributed fashion. Alternating direction method of multipliers 
(ADMM) [20], heterogeneous decomposition algorithm [21], 
auxiliary problem principle (APP) [22, 23], optimality condition 
decomposition [14, 24], consensus+innovations technique [6, 25], 
proximal message passing [26], and analytical target cascading 
(ATC) [27-29] are among the most popular approaches to solve 
OPF in a distributed manner. Most of the existing papers focus on 
multi-area power transmission systems or microgrid clusters. 
However, few papers exist that focus on collaborative TSO and 
DSOs optimal power flow. An iterative master-slave algorithm is 
presented in [30-32] to manage power transmission and distribution 
systems in a collaborative manner. In [30], a heterogeneous 
decomposition is presented to solve a collaborative ACOPF for 
transmission and distribution systems. This decomposition 
approach, which works similar to optimality condition 
decomposition, solves first-order KKT conditions in a 
decentralized manner. This is a sequential solution procedure in 
which DSO is solved first, and then TSO is solved. In [27-29], we 
presented a decentralized algorithm for collaborative day-ahead 
scheduling of TSO and DSOs. The coordination strategy is based 
on ATC, which is for multilevel distributed optimization of 
hierarchical complex engineering systems. References [27, 28] 
apply augmented Lagrangian block coordinate descent (AL-BCD) 
while [29] utilizes an exponential penalty function (EPF) 
formulation. Although AL-BCD and EPF formulations effectively 
coordinate TSO and DSOs, their main drawback is their sequential 
solution procedure. In other words, at each iteration, TSO (DSOs) 
needs the updated values of the shared variables received from 
DSOs (TSO) at the same iteration. This degrades the computational 
efficiency of the decentralized algorithm, as the computation time 
is a summation of the subproblems’ solution time. The main goal 
of this paper is to address the drawback of collaborative ATC-based 
TSO+DSO operation by enabling a parallel execution of 
subproblems’ optimization.  

In this paper, we present a decentralized collaborative two-level 
TSO+DSO optimal power flow solution. The proposed algorithm is 

based on analytical target cascading (ATC) method and allows a 
fully parallel implementation TSO+DSO OPF. A local OPF 
problem is formulated for TSO and each DSO which accounts for 
interactions between the transmission and distribution systems. A 
limited amount of information is exchanged among TSO and DSOs 
which is in line with respecting the information privacy of the 
autonomous control entities. While the transmission OPF problem 
is formulated and solved in the upper-level of hierarchy, the 
distribution OPF is handled in the lower-level. Two coordination 
strategies, namely diagonal quadratic approximation (DQA) and 
truncated diagonal quadratic approximation (TDQA), are presented 
to coordinate the local OPF problems in a parallel manner. While 
DQA needs two loops, one inner loop, and one outer loop, TDQA 
follows an iterative procedure with one loop. A 22-bus test system 
and the IEEE 118-bus transmission system are used for simulation 
studies.  

The contributions of the paper are summarized as follows: 

• The power system is modeled as a system of systems (SoS) in 
which TSO and DSOs are autonomous entities with their local 
policies and rules. A collaborate two-level OPF is presented 
with respect to a) interdependencies of transmission and 
distribution systems and b) the information privacy of TSO and 
DSO. 

• Interdependencies between TSO and DSOs are modeled by a 
set of hard constraints. Quadratic penalty terms are utilized to 
relax the hard constraints in the local objective of each entity. 
A technique is presented to make non-separable quadratic 
terms of augmented Lagrangian penalty functions separable.  

• A fully parallel solution algorithm is presented which has two 
loops: an inner loop to enhance the accuracy of the solution and 
outer loop to force the algorithm to converge. At each iteration 
of the proposed parallel procedure, TSO (DSOs) needs the 
updated values of the shared variables received from DSOs 
(TSO) obtained at the previous iteration. Hence, compared 
with the sequential algorithm, the computation time of each 
iteration decreases. This can significantly improve the 
convergence speed as the number of levels increases. 

The main differences between this paper and [28] are as follows 
- We dealt with a unit commitment problem in [28]; however, in 

this paper, we deal with the OPF problem. 
- In [28], the concept of shift factor is used to formulate DC 

power flow for transmission and distribution systems; 
however, in this paper, AC-OPF is formulated using voltage 
magnitudes and angles. 

- In [28], pseudo generations and loads are used to model energy 
exchange between TSO and DSOs; however, in this paper, 
voltage magnitudes and angles of border buses are modeled as 
shared variables. This shared variable modeling paradigm 
enables a user to handle cases with a loop between TSO and 
DSO without degrading information privacy. However, if a 
loop exists between TSO and DSO, a coordinator is needed that 
gathers information from the whole network to calculate the 
shift factor values. This degrades the information privacy. 

- The solution algorithm presented in [28] is a sequential 
procedure in which while TSO (DSOs) is solving its 
subproblem, DSOs (TSO) should stay idle. However, the 
solution procedure presented in this paper is a fully parallel 
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approach that allows parallel (and simultaneous) solution of all 
OPF subproblems. This parallel approach reduces the 
computational time of each iteration. 
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Fig.1. Interdependency of TSO and DSOs with coupling variables.  
 
The remainder of the paper is organized as follows. The 

decentralized ATC-based optimal power flow is presented in 
Section II. The proposed decentralized decision-making framework 
as well as DQA and TDQA solution algorithms are presented in 
Section III. Numerical results are discussed in Section IV. 
Concluding remarks are provided in Section V. 

II.  DECENTRALIZED ATC-BASED OPF IMPLEMENTATION  

A.  Dependency of TSO and DSO 
Assume that the transmission network is not connected to the 

active distribution grids. In this case (isolated mode), TSO and 
DSOs are capable of solving their local OPF problems completely 
independent from one another. However, this is not the case in 
reality since distribution grids are interconnected to transmission 
networks via one or more connection points. Consider the system 
shown in Fig. 1, which includes one TSO and two DSOs. The 
system has two levels. TSO is on the first level (upper-level), and 
DSOs are in the second level (lower-level). Control variables of 
buses 𝑎𝑎 and 𝑎𝑎′ (i.e., voltage magnitudes and angles) couple TSO 
and DSO1. Both TSO and DSO1 are interested in controlling these 
coupling variables to improve their grid performance. Likewise, 
TSO and DSO2 are coupled via control variables of buses 𝑏𝑏 and 𝑏𝑏′. 
The coupling variables, i.e., {𝑣𝑣𝑎𝑎∠𝛿𝛿𝑎𝑎, 𝑣𝑣𝑎𝑎′∠𝛿𝛿𝑎𝑎′ , 𝑣𝑣𝑏𝑏∠𝛿𝛿𝑏𝑏 ,𝑣𝑣𝑏𝑏′∠𝛿𝛿𝑏𝑏′}, 
make decisions of TSO, DSO1, and DSO2 interdependent (note that 
active and reactive power flows in a tie-line are by-products of the 
voltage magnitudes and angles of ending terminals of the tie-line). 
Thus, coordination of the aforementioned coupling variables is in 
great interest of TSO and DSOs. 

B.  Characterization of Analytical Target Cascading 
The general concept of analytical target cascading (ATC) is 

similar to the auxiliary problem principle (APP) and alternating 
direction method of multipliers (ADMM) [20, 23, 33-35]. The ATC 
procedure (which is suitable for multilevel management of complex 
engineering systems) first decomposes the system into a multilevel 
hierarchical structure (as shown in Fig. 2) and recognizes parents 
and children. At the next step, penalty functions are introduced to 
model subproblems’ interdependencies. Whereas in APP and 
ADMM, the duality concept is applied and penalty functions are 
introduced, and then the system is decomposed into several 
subproblems. As shown in Fig.1, TSO in the upper-level is 
hierarchically connected to DSOs in the lower-level. Thus, ATC is 
a suitable method to solve the collaborative TSO+DSO operation 
in a decentralized manner. In ATC, subproblems (also called 
elements or autonomous systems) in the upper-levels are parents of 
subproblems in the lower-levels. By the same token, subproblems 
in the lower-levels are children of subproblems in the upper-levels. 

Although a child has only one parent, a parent could have multiple 
children. This hierarchical interconnection means that there is no 
loop in the ATC structure. This further implies that subproblems at 
the same level do not share any connection/information with each 
other. If we assume the ATC structure as a graph, subproblems and 
tie-lines are respectively nodes and edges of the graph.  

By decomposing the system into parents/children, 
dimensionality of each subproblem reduces. An iterative solution 
procedure can be applied to coordinate TSO and DSOs and 
determine the optimal solution of the SoS-based power system. In 
ATC, the coupling variables between two connected elements 
appear in the form of target variables and response copiers. TSO 
solves its OPF subproblem and propagates the target values down 
toward its children (i.e., DSOs). Then, DSOs use the updated target 
values, solve their local OPF problems, and send the updated values 
of the response copiers back to TSO. The responses determined by 
the children define how close they are to the parent’s targets [33]. 

To enforce the decentralized optimization problem to converge, 
a proper coordination strategy is required. Several methods have 
been proposed in literature with different options to penalize the 
coupling variables into the objective functions. These options for 
selection of penalty terms and coordination strategies make ATC 
more flexible than ADMM and APP. Augmented Lagrangian block 
coordinate descent (AL-BCD) and exponential penalty function 
(EPF) are two popular ATC formulations that use coordination 
strategies with two loops, inner loop and outer loop. The penalty 
terms in these two methods are not separable, and thus the solution 
algorithm is a sequential procedure as shown in Fig. 3. It should be 
noted that if no direct link exists among the subproblems in each 
level 𝑖𝑖, the subproblems (only those is level 𝑖𝑖) can be solved in 
parallel.   

The ATC structure converges to first order optimality 
conditions, if the problem is convex[35]. Thus, ATC provides the 
optimal solution for a convex problem. As shown in the literature, 
ATC shows good performance for non-convex problems, such as 
ACOPF presented in this paper [27-29, 36]. In addition, as 
explained in the following sections, a set of convex penalty 
functions, such as a quadratic function, are added to the objective 
function. These convex penalty functions act as local convexifiers 
for the subproblems and mitigate the non-convexity of the parents’ 
and children’ subproblems.  The convergence and optimality of the 
decentralized algorithm, when applied to the studied problem, are 
demonstrated through several numerical simulations. 
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Fig. 2. Decomposing a system into a multilevel hierarchical structure. 
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Fig. 3. Solution procedure of AL-BCD and EPF algorithms. 
 

C.  Hierarchical Two-Level TSO+DSO Operation 
In this section, we formulate the collaborative TSO+DSO OPF 

within the ATC framework. Consider that optimization (1) 
expresses a centralized OPF problem for the entire power 
transmission and distribution systems. 

min
𝑋𝑋

𝐹𝐹(𝑋𝑋)                                                 (1) 

𝑠𝑠. 𝑡𝑡.  𝑔𝑔(𝑋𝑋) ≤ 0,      ℎ(𝑋𝑋) = 0 

where 𝑋𝑋 denotes all variables of the entire power system, 𝐹𝐹 is the 
overall objective function, and 𝑔𝑔 and ℎ represent all inequality and 
equality constraints. The power system has a two-level hierarchical 
structure (a simplified version of Fig. 2). Thus, within the ATC 
framework, we can rewrite (1) as follows: 
 

                   min
(𝑥𝑥𝑖𝑖𝑖𝑖,𝑡𝑡2𝑗𝑗)

𝑓𝑓11�𝑥𝑥11, 𝑡𝑡2𝑗𝑗� + � 𝑓𝑓2𝑗𝑗�𝑥𝑥2𝑗𝑗 , 𝑡𝑡2𝑗𝑗�
𝑁𝑁𝑑𝑑+1

𝑗𝑗=2

                (2) 

𝑠𝑠. 𝑡𝑡.    𝑔𝑔𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡2𝑗𝑗� ≤ 0                  ℎ𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡2𝑗𝑗� = 0               

 
where subscript 𝑖𝑖𝑖𝑖 indicates subproblem 𝑗𝑗𝑡𝑡ℎ in level 𝑖𝑖, 𝑋𝑋 =
{𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑡𝑡2𝑗𝑗}, 𝑥𝑥𝑖𝑖𝑖𝑖  is local variables of subproblem 𝑗𝑗 in level 𝑖𝑖, and 𝑡𝑡2𝑗𝑗 
represents the target variables. Note that in ATC, the shared 
variables that couple TSO to DSOs (i.e., voltage of border buses as 
discussed in Section II. A) appear in form of target variables. 
Parameter 𝑁𝑁𝑑𝑑 is number of DSO in level 2, 𝑓𝑓11 is the objective 
function of TSO, 𝑓𝑓2𝑗𝑗 is the objective function of DSO 𝑗𝑗 in level 2, 
and  𝑔𝑔𝑖𝑖𝑖𝑖 and ℎ𝑖𝑖𝑖𝑖 are compact representations of inequality and 
equality constraints of subproblem 𝑗𝑗 in level 𝑖𝑖. If 𝑡𝑡 is an empty set 
(𝑡𝑡 = {}), TSO and DSOs are isolated and can solve their local OPF 
subproblems completely separate from each other. However, if 𝑡𝑡 is 
non-empty (𝑡𝑡 ≠ {}), which is the case in the power systems, 
subproblems that share 𝑡𝑡 (an element of 𝑡𝑡) need to achieve an 
agreement on its value. 

To separate the TSO’s and DSOs’ OPF subproblems as well as 
the variables that are governed by each subproblem, response 
copiers are introduced. The response copiers are duplicates of the 
target variables. We consider that the target variables are the shared 
variables (voltage of border buses) that are handled by TSO and the 
response copiers are the shared variables that are governed by 
DSOs. We can include the response variables, denoted generically 
by vector r, in (2) by enforcing a set of consistency constraints as: 

 
C:  𝑡𝑡2𝑗𝑗 − 𝑟𝑟2𝑗𝑗 = 0                                           (3) 

 
One consistency constraint is required for each target-response pair. 

We relax the consistency constraints in the objective function 
using a penalty term.  

min
(𝑥𝑥𝑖𝑖𝑖𝑖,𝑡𝑡2𝑗𝑗,𝑟𝑟2𝑗𝑗)

𝑓𝑓11�𝑥𝑥11, 𝑡𝑡2𝑗𝑗� + � 𝑓𝑓2𝑗𝑗�𝑥𝑥2𝑗𝑗 , 𝑡𝑡2𝑗𝑗�
𝑁𝑁𝑑𝑑+1

𝑗𝑗=2

+ � 𝜋𝜋�𝑡𝑡2𝑗𝑗 − 𝑟𝑟2𝑗𝑗�
𝑁𝑁𝑑𝑑+1

𝑗𝑗=2

   (4) 

 
Now, we can completely separate the local OPF subproblems of 
TSO and DSOs. Let us represent the target variables (i.e., voltage 
of border buses) by their common notations in power system 
communities, i.e., 𝑣𝑣∠𝛿𝛿. Also, 𝑣𝑣�∠𝛿𝛿 represents the response 
variables. The local OPF subproblem of TSO is: 
 

min
(𝑥𝑥11,𝛿𝛿2𝑗𝑗,𝑣𝑣2𝑗𝑗)

𝑓𝑓11�𝑥𝑥11, 𝛿𝛿2𝑗𝑗 , 𝑣𝑣2𝑗𝑗� + � 𝜋𝜋�𝛿𝛿2𝑗𝑗 − 𝛿𝛿2𝑗𝑗� + 𝜋𝜋�𝑣𝑣2𝑗𝑗 − 𝑣𝑣�2𝑗𝑗�
𝑁𝑁𝑑𝑑+1

𝑗𝑗=2

(5) 

𝑠𝑠. 𝑡𝑡.    𝑔𝑔11�𝑥𝑥11, 𝛿𝛿2𝑗𝑗, 𝑣𝑣2𝑗𝑗� ≤ 0               ℎ11�𝑥𝑥11, 𝛿𝛿2𝑗𝑗, 𝑣𝑣2𝑗𝑗� = 0     

 
And the local OPF subproblem of DSO j is: 
 

min
(𝑥𝑥2𝑗𝑗,𝛿𝛿�2𝑗𝑗,𝑣𝑣�2𝑗𝑗)

𝑓𝑓2𝑗𝑗�𝑥𝑥2𝑗𝑗 , 𝛿𝛿�2𝑗𝑗, 𝑣𝑣�2𝑗𝑗� + 𝜋𝜋�𝛿𝛿2𝑗𝑗 − 𝛿𝛿2𝑗𝑗� + 𝜋𝜋�𝑣𝑣2𝑗𝑗 − 𝑣𝑣�2𝑗𝑗� (6) 

𝑠𝑠. 𝑡𝑡.    𝑔𝑔2𝑗𝑗�𝑥𝑥2𝑗𝑗 , 𝛿𝛿�2𝑗𝑗, 𝑣𝑣�2𝑗𝑗� ≤ 0               ℎ2𝑗𝑗�𝑥𝑥2𝑗𝑗 , 𝛿𝛿�2𝑗𝑗, 𝑣𝑣�2𝑗𝑗� = 0      

 
The OPF subproblem (5) ((6)) is formulated using the local 
information of TSO (DSO 𝑗𝑗) as well as its shared variables with 
DSOs (TSO). The generation cost function of each subproblem 
(i.e., 𝑓𝑓) is a quadratic function as 𝑓𝑓(𝑝𝑝)  =  𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑝𝑝2. The 
equality constraints ℎ and the inequality constraints 𝑔𝑔 of TSO and 
DSOs are as follows: 
 

ℎ: � Nodal power balance equations          
Voltage angle of the reference bus = 0 

 

𝑔𝑔: �
Generation capacity limits
Bus voltage limits                
Line flow limits                    

 

 
While TSO is allowed to decide about its local and target 

variables 𝑣𝑣∠𝛿𝛿, each DSO 𝑗𝑗 determines its local and  corresponding 
response variables 𝑣𝑣�∠𝛿𝛿. This is, while 𝑣𝑣∠𝛿𝛿 is constant in the DSOs’ 
OPF subproblems, 𝑣𝑣�∠𝛿𝛿 is constant in the TSO’s OPF subproblem. 
In the ATC framework, TSO sends the target values 𝑣𝑣∠𝛿𝛿 down to 
DSOs, and each DSO sends its response values 𝑣𝑣�∠𝛿𝛿 back upward 
TSO.  

An iterative procedure needs to be implemented to enforce the 
difference between 𝑣𝑣 − 𝑣𝑣� and  𝛿𝛿 − 𝛿𝛿 to zero and find the optimal 
solution of the entire two-level power system. Depending on the 
choice of the penalty function 𝜋𝜋(⋅), the iterative solution procedure 
could be implemented in a sequential or a parallel fashion. An 
algorithm in which the TSO and DSOs OPF subproblems are 
sequentially and iteratively solved is called block coordinate 
descent. The convergence of the algorithm is guaranteed in [35, 37]. 
This is independent of the choice of the penalty function since the 
constraint sets of TSO and DSOs are completely independent.  

In [28, 29], we have applied AL-BCD and EPF methods to 
model the penalty function (𝜋𝜋). In AL-BCD, the penalty term is 
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𝜆𝜆𝑇𝑇(𝑡𝑡 − 𝑟𝑟) + ‖𝑤𝑤 ∘ (𝑡𝑡 − 𝑟𝑟)‖22        𝑡𝑡 = {𝑣𝑣, 𝛿𝛿}, 𝑟𝑟 = {𝑣𝑣�, 𝛿𝛿}        (7) 

 
And in EPF, the penalty term is 
 

𝛼𝛼�e(𝑡𝑡−𝑟𝑟) − 1� + 𝛽𝛽�e(𝑟𝑟−𝑡𝑡) − 1�     𝑡𝑡 = {𝑣𝑣, 𝛿𝛿}, 𝑟𝑟 = {𝑣𝑣�, 𝛿𝛿}        (8) 
 
where 𝜆𝜆, 𝑤𝑤, 𝛼𝛼, and 𝛽𝛽 are penalty multipliers, and “∘” denotes the 
Hadamard product. Setting the penalty factor 𝑤𝑤 to a small value 
enhances the accuracy of the distributed algorithm but it increases 
the number of iterations. A large 𝑤𝑤 potentially reduces the number 
of iterations but it may degrade the accuracy of the results. Indeed 
𝑤𝑤 should be set to a large enough value (this value is problem 
dependent) to balance the cost function 𝑓𝑓 and the penalty function 
and make a trade-off between the accuracy and speed [38]. The 
penalty multipliers 𝜆𝜆, 𝛼𝛼, and 𝛽𝛽 should be initialized close to their 
optimal values. A user may utilize historical data (e.g., a hot start 
strategy) or its experience to initialize the penalty multipliers.  

Penalty functions (7) and (8) include non-separable terms. Thus, 
a sequential solution procedure (hierarchical and level by level 
similar to Fig. 3) is required to solve the collaborative ATC-based 
TSO+DSO OPF. That is, in each iteration 𝑘𝑘, TSO (DSOs) needs to 
know the response (target) values of DSOs (TSO) in that iteration, 
i.e., 𝑟𝑟𝑘𝑘  (𝑡𝑡𝑘𝑘). Hence, when the TSO’s (DSOs’) OPF subproblem is 
being solved, the DSOs’ (TSO’s) OPF subproblems should stay idle 
(see[28] for more details). This degrades computational efficiency 
of the decentralized solution procedure.  

III.  DIAGONAL QUADRATIC APPROXIMATION METHOD FOR 
PARALLEL SOLUTION  

It is highly desirable to solve the OPF subproblems in a parallel 
manner as shown in Fig. 4, especially when multiple levels of 
hierarchy (e.g., TSO, DSO, and microgrid levels) and many 
subproblems exist. In this paper, diagonal quadratic approximation 
(DQA) and truncated diagonal quadratic approximation (TDQA) 
are presented to parallelize the solution procedure of the 
collaborative ATC-based TSO+DSO OPF. In these two algorithms, 
a subproblem with the longest solution time determines the 
algorithms’ solution time in each iteration. In contrast, in a 
sequential algorithm, such as AL-BCD, the summation of TSO’s 
solution time and the longest solution time of DSOs determines the 
overall solution time of the algorithm. 
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Fig. 4. Solution of OPF subproblems with parallel ATC coordination strategy. 
 

A.  Diagonal Quadratic Approximation (DQA) 
The objective functions 𝑓𝑓, i.e., the generation cost functions, in 
TSO and DSO subproblems are convex functions. In addition, the 
local equality and inequality constraints of each subproblem are 
fully separable. In ATC, we have the flexibility to select the penalty 
term 𝜋𝜋(⋅) to relax the consistency constrains in the local objective 

functions. We have followed the concept of augmented 
Lagrangian and selected a combination of linear and quadratic 
penalty functions as in (7). The augmented term, i.e., the quadratic 
term, improves the convergence performance compared with the 
ordinary Lagrangian function. In addition, this penalty term acts as 
a local convexifier and enhances behavior of the subproblems. 
However, this quadratic term of the augmented Lagrangian penalty 
function is not separable. We apply the diagonal quadratic 
approximation (DQA) method to make the augmented Lagrangian 
terms separable[39, 40]. Consider the penalty function 
corresponding to the voltage angle. We expand its quadratic term 
as: 
 

�𝛿𝛿𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖�2
2 = �𝛿𝛿𝑖𝑖𝑖𝑖 ∘ 𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖 ∘ 𝛿𝛿𝑖𝑖𝑖𝑖 − 2(𝛿𝛿𝑖𝑖𝑖𝑖 ∘ 𝛿𝛿𝑖𝑖𝑖𝑖)�      (9) 

 
We use the first order Taylor expansion for multiple variable scalar 
functions to linearize the cross term 𝛿𝛿𝑖𝑖𝑖𝑖 ∘ 𝛿𝛿𝑖𝑖𝑖𝑖 at the point (𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1, 
𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1) [34, 35]. 
 

 𝛿𝛿𝑖𝑖𝑖𝑖 ∘ 𝛿𝛿𝑖𝑖𝑖𝑖 ≅ 𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1 ∘ 𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1 °𝛿𝛿𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1 ° 𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1       (10) 
 

where 𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1 and 𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1 are respectively targets and responses 
determined in the previous iteration 𝑘𝑘 − 1 and are constant in the 
current iteration 𝑘𝑘. Thus, we can approximate the quadratic penalty 
term (9) as: 
 

�𝛿𝛿𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖�2
2 = �𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1 − 𝛿𝛿𝑖𝑖𝑖𝑖�2

2 + �𝛿𝛿𝑖𝑖𝑖𝑖 −  𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1�2
2 + C     (11) 

 
where C is a constant. The same Taylor expansion is implemented 
on the quadratic penalty term corresponding to voltage magnitudes. 
Now, the OPF problem of the entire two-level power system can 
reformulate as: 

min
�𝑥𝑥𝑖𝑖𝑖𝑖,𝛿𝛿,𝑣𝑣,𝛿𝛿� ,𝑣𝑣��

��𝑓𝑓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝛿𝛿(𝑖𝑖+1)𝑗𝑗 ,𝑣𝑣(𝑖𝑖+1)𝑗𝑗�
𝑗𝑗

𝑁𝑁𝑙𝑙

𝑖𝑖=1

  

+ � ��𝜆𝜆𝑖𝑖𝑖𝑖,𝛿𝛿
𝑇𝑇 �𝛿𝛿𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖�

𝑗𝑗𝑖𝑖∈𝑁𝑁𝑙𝑙,𝑖𝑖≠1

+�𝑤𝑤𝑖𝑖𝑖𝑖,𝛿𝛿 ∘ �𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1 − 𝛿𝛿𝑖𝑖𝑖𝑖��2
2

+ �𝑤𝑤𝑖𝑖𝑖𝑖,𝛿𝛿 ∘ �𝛿𝛿𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘−1��2
2� 

+ � ��𝜆𝜆𝑖𝑖𝑖𝑖,𝑣𝑣
𝑇𝑇 �𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣�𝑖𝑖𝑖𝑖�

𝑗𝑗𝑖𝑖∈𝑁𝑁𝑙𝑙,𝑖𝑖≠1

+�𝑤𝑤𝑖𝑖𝑖𝑖,𝑣𝑣 ∘ �𝑣𝑣𝑖𝑖𝑖𝑖𝑘𝑘−1 − 𝑣𝑣�𝑖𝑖𝑖𝑖��2
2

+ �𝑤𝑤𝑖𝑖𝑖𝑖,𝑣𝑣 ∘ �𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣�𝑖𝑖𝑖𝑖𝑘𝑘−1��2
2�                             (12) 

 
where 𝑁𝑁𝑙𝑙 denotes number of levels which is two in this paper. This 
optimization problem is subject to all-in-once constraints, i.e., all 
constraints of TSO and DSOs.  We now decompose (12). The local 
OPF subproblem of TSO in iteration 𝑘𝑘 of the ATC procedure is as 
follows: 
 

min
(𝑥𝑥11,𝛿𝛿,𝑣𝑣)

𝑓𝑓11�𝑥𝑥11, 𝛿𝛿22,𝑣𝑣22, 𝛿𝛿23, 𝑣𝑣23, … , 𝛿𝛿2(𝑁𝑁𝑑𝑑+1),𝑣𝑣2(𝑁𝑁𝑑𝑑+1)�            (13)

+ � 𝜆𝜆2𝑗𝑗,𝛿𝛿
𝑇𝑇 𝛿𝛿2𝑗𝑗 + �𝑤𝑤2𝑗𝑗,𝛿𝛿 ∘ �𝛿𝛿2𝑗𝑗 − 𝛿𝛿2𝑗𝑗𝑘𝑘−1��2

2
𝑁𝑁𝑑𝑑+1

𝑗𝑗=2

+ � 𝜆𝜆2𝑗𝑗,𝑣𝑣
𝑇𝑇 𝑣𝑣2𝑗𝑗 + �𝑤𝑤2𝑗𝑗,𝑣𝑣 ∘ �𝑣𝑣2𝑗𝑗 − 𝑣𝑣�2𝑗𝑗𝑘𝑘−1��2

2
𝑁𝑁𝑑𝑑+1

𝑗𝑗=2
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subject to the local constraints of TSO (e.g., nodal power balance, 
line flow limits, etc.). The penalty term depends on the target 
variables 𝑣𝑣2𝑗𝑗∠𝛿𝛿2𝑗𝑗 while using the response values  𝑣𝑣�2𝑗𝑗𝑘𝑘−1∠𝛿𝛿2𝑗𝑗𝑘𝑘−1 
determined by DSOs in the previous iteration 𝑘𝑘 − 1. TSO solves its 
local OPF problem and find the target values. Likewise, the local 
OPF subproblem of each DSO 𝑗𝑗 is reformulated as: 
 

min
(𝑥𝑥2𝑗𝑗,𝛿𝛿�2𝑗𝑗,𝑣𝑣�2𝑗𝑗)

𝑓𝑓2𝑗𝑗�𝑥𝑥2𝑗𝑗 , 𝛿𝛿2𝑗𝑗 ,𝑣𝑣�2𝑗𝑗� + 𝜆𝜆2𝑗𝑗,𝛿𝛿
𝑇𝑇 �−𝛿𝛿2𝑗𝑗� + 𝜆𝜆2𝑗𝑗,𝑣𝑣

𝑇𝑇 �−𝑣𝑣�2𝑗𝑗� 

+�𝑤𝑤2𝑗𝑗,𝛿𝛿 ∘ �𝛿𝛿2𝑗𝑗𝑘𝑘−1 − 𝛿𝛿2𝑗𝑗��2
2 + �𝑤𝑤2𝑗𝑗  ,𝑣𝑣 ∘ �𝑣𝑣2𝑗𝑗𝑘𝑘−1 − 𝑣𝑣�2𝑗𝑗��2

2       (14) 

 
subject to the local constraints of DSO 𝑗𝑗. The penalty term depends 
on the response variables 𝑣𝑣�2𝑗𝑗∠𝛿𝛿2𝑗𝑗 while using the target values 
𝑣𝑣2𝑗𝑗𝑘𝑘−1∠𝛿𝛿2𝑗𝑗𝑘𝑘−1 determined by TSO in the previous iteration 𝑘𝑘 − 1. 
Formulations (13) and (14) allow a parallel solution of the TSO’s 
and DSOs’ OPF subproblems since each subproblem needs the 
target/response values determined by other subproblems in iteration 
𝑘𝑘 − 1. The DQA coordination strategy is proven to converge and 
its convergence rate is discussed in [39] and [40].  

A.1. Parallel Solution Procedure of DQA  
Figure 5 illustrates the solution procedure of DQA to coordinate 

the OPF subproblems of TSO and DSOs. Although the problem’s 
structure has a hierarchical two-level form, the presented 
coordination strategy is a parallel procedure that allows a 
simultaneous solution of TSO’s and DSOs’ subproblems. The DQA 
solution strategy includes two loops, inner loop and outer loop. The 
inner loop updates the target and response values while the penalty 
multipliers are fixed. This improves the linearization. The inner 
loop stops when the difference between each target (response) 
determined in two consecutive iterations are less than a threshold. 
Indeed, the inner loop seeks to find the best targets and responses 
for a given set of multipliers. If the targets and responses are 
determined more precise, the penalty multipliers are updated more 
accurate in the outer loop. If the penalty multipliers are updated 
more accurate, the algorithm takes less iterations to update the 
multipliers. Thus, although the inner loop increases the 
computational cost (corresponding to the inner loop iterations), it 
might reduce the number of outer loop iterations in which the 
multipliers are updated (i.e., the method of multipliers). The steps 
are discussed in details as follows:  

Step1: Set the initial value of local variables 𝑥𝑥 of each subproblem, 
target values {𝛿𝛿, 𝑣𝑣}, response copiers {𝛿𝛿, 𝑣𝑣�}, penalty multipliers 𝜆𝜆 
and 𝑤𝑤, and parameters Г and 𝜏𝜏. Set the outer loop iteration index 
𝑘𝑘 = 1 and the inner loop iteration index 𝑙𝑙 = 0. 

Step2: Increase the inner loop iteration by one, i.e., 𝑙𝑙 = 𝑙𝑙 + 1. Solve 
TSO’s and DSOs’ local OPF subproblems in parallel using targets 
and responses that are determined in the previous inner loop 
iteration ( 𝑙𝑙 − 1), i.e., 𝛿𝛿𝑘𝑘−1,𝑙𝑙−1 and 𝛿𝛿𝑘𝑘−1,𝑙𝑙−1. Note that in the first 
iteration, the subproblems are solved using the initial values. 

Step3: Check the following inner loop convergence criterion 
 
max�‖𝛿𝛿𝑘𝑘,𝑙𝑙 −  𝛿𝛿𝑘𝑘,𝑙𝑙−1‖, �𝛿𝛿𝑘𝑘,𝑙𝑙 −  𝛿𝛿𝑘𝑘,𝑙𝑙−1�, ‖𝑣𝑣𝑘𝑘,𝑙𝑙 −  𝑣𝑣𝑘𝑘,𝑙𝑙−1‖, ‖𝑣𝑣�𝑘𝑘,𝑙𝑙

−  𝑣𝑣�𝑘𝑘,𝑙𝑙−1‖� ≤ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                           (15) 
 

where 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the stopping threshold of the inner loop. If the 

difference between the target (and response) values determined in 
the current and previous iterations are less than the acceptable 
threshold, then we should stop the inner loop, set 𝑋𝑋𝑘𝑘 = 𝑋𝑋𝑘𝑘,𝑙𝑙 (where 
𝑋𝑋 = [𝑥𝑥, 𝛿𝛿, 𝑣𝑣, 𝛿𝛿, 𝑣𝑣�]), and go to Step 4; otherwise: 
 

𝑋𝑋𝑘𝑘,𝑙𝑙 = 𝑋𝑋𝑘𝑘,𝑙𝑙−1 + Г(𝑋𝑋𝑘𝑘,𝑙𝑙 − 𝑋𝑋𝑘𝑘,𝑙𝑙−1)                  (16) 
 

where Г is the step size, which determines a value among the current 
solution and the previous one (i.e., if Г ≅ 0, the algorithm uses with 
the previous solution, and if Г ≅ 1 the algorithm uses with the 
current solution), and then go to Step 2. Note that we update the 
initial values of all local and shared variables. 

Step4: If max {�𝛿𝛿𝑘𝑘 −  𝛿𝛿𝑘𝑘�, ‖𝑣𝑣𝑘𝑘 −  𝑣𝑣�𝑘𝑘‖} ≤ 𝜖𝜖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (i.e., if the 
difference between each target-response pair is less than the 
criterion), where 𝜖𝜖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is the outer loop stopping threshold, 
TSO+DSO OPF has converged and the optimal values are 𝑋𝑋�∗ =  𝑋𝑋�𝑘𝑘 
, otherwise increase the outer loop iteration index by one (i.e.,  𝑘𝑘 =
𝑘𝑘 + 1) and set the inner loop index to zero (i.e., 𝑙𝑙 = 0) and update 
the penalty multipliers as follows: 
 

 𝜆𝜆𝛿𝛿𝑘𝑘 = 𝜆𝜆𝛿𝛿𝑘𝑘−1 + 𝑤𝑤𝛿𝛿𝑘𝑘−1 ∘ (𝛿𝛿𝑘𝑘−1 − 𝛿𝛿𝑘𝑘−1)         (17) 

𝜆𝜆𝑣𝑣𝑘𝑘 = 𝜆𝜆𝑣𝑣𝑘𝑘−1 + 𝑤𝑤𝑣𝑣𝑘𝑘−1 ∘ (𝑣𝑣𝑘𝑘−1 − 𝑣𝑣�𝑘𝑘−1)         (18) 

𝑤𝑤𝛿𝛿𝑘𝑘 = 𝜏𝜏𝛿𝛿𝑤𝑤𝛿𝛿𝑘𝑘−1                                                   (19) 

𝑤𝑤𝑣𝑣𝑘𝑘 = 𝜏𝜏𝑣𝑣𝑤𝑤𝑣𝑣𝑘𝑘−1                                                    (20) 
 

and then go to Step 2 (note that multipliers will be updated for every 
outer loop iteration). Parameter 𝜏𝜏 should be equal or large than one, 
i.e., 𝜏𝜏 ≥ 1 [41]. Depending on the optimization problem 
characteristics, a wide range of 𝜏𝜏 can be selected to reduce the 
computational cost and/or enhance the solution accuracy. Based on 
our experience, setting 𝜏𝜏 close to one provides an accurate solution 
while the computational burden is reasonable. 
Г ∈ (0,1) is the step size that affects accuracy of the 

linearization of the second-order penalty term. A small Г leads to 
more accurate results, but it decreases the convergence speed. 
Parameters 𝜖𝜖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  and 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  should be significantly smaller than Г; 
otherwise, the obtained solution might not be optimal.  

The ATC method is proven to converge to an accumulation point 
(i.e., the shared variables converge to a unique point) that satisfies 
the first-order optimality conditions of the local optimization 
problems. This accumulation point also satisfies the first-order 
optimality conditions of the original problem [35]. In addition, [39] 
provides the convergence proof and convergence rate of the 
diagonal quadratic approximation method when applied to separate 
subproblems of the augmented Lagrangian approach. It is worth to 
mention that the quadratic penalty terms act as local convexifiers 
and improves the performance of ATC when applied to non-convex 
problems. 

B.  Truncated Diagonal Quadratic Approximation (TDQA) 
The collaborative ATC-based TSO+DSO optimal power flow 

converges when the optimal values of Lagrange multipliers are 
found. As explained in the DQA solution procedure, the multipliers 
are not updated in the inner loop. The inner loop helps to improve 
the  linearization.  Each  iteration of  the  outer  loop, in which  the 
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Fig. 5. DQA solution algorithm. 
 
multipliers are updated, might take many inner loops. Thus, the 
inner loop increases the computational effort. Obtaining high 
accurate solution of the OPF subproblems in the inner loop is not 
necessary as the inner loop solution might not be the overall optimal 
solution. If we only solve the outer loop and update the Lagrange 
multipliers after every iteration, the multipliers move quickly 
toward the optimal values. Thus, we omit the inner loop and only 
consider the outer loop and update the Lagrange multipliers after 
every iteration. This single-loop coordination strategy is called 
truncated diagonal quadratic approximation (TDQA) [39, 40]. Note 
that one can consider the inner loop, but limiting its iterations with 
any extra criterion (in addition to DQA criterion) rather than 
allowing it to be able to go to infinity. This procedure is also TDQA 
as the inner loop is truncated compared with DQA. 

The solution procedure of the TSO+DSO operation with TDQA 
is summarized in the following pseud code. It has a similar structure 
as DQA except that DQA has inner loop to decrease the gap 
between targets and responses and then update multipliers while 
TDQA performs this only by the outer loop. In the case study 
section, we show that TDQA provides promising results for the 
collaborative TSO+DSO operation.   

Although inner loop enhances accuracy of the targets and 
responses over the course of iterations, it is not necessary for 
convergence. Indeed, updating penalty multipliers in the outer loop 
(which is based the method of multipliers) guarantees the 
convergence of the ATC-based algorithm to the first optimality 
conditions. That is, TDQA might slightly increase error; however, 
its convergence is still ensured. 

IV.  NUMERICAL RESULTS 
We implement the DQA and TDQA coordination strategies on 

a 6-bus and the IEEE 118-bus test systems. The numerical 
simulations show efficiency and convergence of the ATC-based 
collaborative TSO+DSO algorithm even for the non-convex OPF 
problems. All computations are carried out using quadratic 
programming solver of Matlab on a 2.6GHz personal computer 
with 16GB of RAM. 

                                                           
1 A user may deploy a linearized model of ACOPF. Since OPF is solved 

continually, in each time interval, the user can deploy results of the previous interval 
(i.e., a hot start) to linearize OPF around the operating point. Also, the user may 

Solution Algorithm of TDQA 
1: initialize 𝑋𝑋 = [𝑥𝑥, 𝛿𝛿, 𝑣𝑣, 𝛿𝛿,𝑣𝑣�], 𝜆𝜆, 𝑤𝑤, and 𝜏𝜏 
2: while max (�𝜹𝜹𝑘𝑘 − 𝜹𝜹�𝑘𝑘�, ‖𝒗𝒗𝑘𝑘 − 𝒗𝒗�𝑘𝑘‖) ≤ 𝜖𝜖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑘𝑘 = 𝑘𝑘 + 1 do 
3:   Solve (13) and (14) in a parallel manner and determine 𝑋𝑋𝑘𝑘  
4:   Update 𝑋𝑋:  𝑋𝑋𝑘𝑘 = 𝑋𝑋𝑘𝑘−1 + Г(𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1) 
5:   Update multiplier 𝜆𝜆𝑘𝑘 and 𝑤𝑤𝑘𝑘 using (17)-(20) 
6: end while 
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Fig. 6. Six-bus test system. 
 

A.  6-Bus Test System 
The system topology is shown in Fig. 6. The transmission 

system includes six buses, seven transmission lines, and three 
generators. Two active distribution grids are connected to the 
transmission system. Active distribution grid one consists of nine 
buses, five loads, and two DGs. Active distribution grid two 
includes seven buses, four loads, and two DGs. The total load is 
256MW. The resistance of each distribution line is 40% of the line’s 
reactance.  The reactive power limit of each generating unit is 
considered to be 60% of its active power limit. The reactive power 
consumption of each load is assumed to be 30% of its active power 
demand. The rest of the information is given in [28]. We study and 
analyze the following four cases: 

 
Case 1: Centralized OPF implementation considering a single 

operator for transmission and distribution networks  
Case 2: The proposed decentralized decision-making with respect 

to autonomy of TSO and DSOs  
Case 3: Sensitivity of the proposed collaborative TSO+DSO OPF 

to variation of input parameters 
Cases 4: Comparison between TDQA, APP, ADMM, and ALAD 

Case 1: We ignore autonomy and information privacy of TSO 
and DSOs and consider that the transmission and distribution 
networks are operated by the same operator using the centralized 
OPF method. Although this is not a realistic case since TSO and 
DSOs are autonomous, the centralized method provides the 
references results that can be used to evaluate the performance of 
the decentralized decision-making. Since the ratio of lines reactance 
to resistance is large in the transmission system, DC-OPF is a 
reasonable approximation of AC-OPF. Thus, DC-OPF is used for 
TSO, whereas AC-OPF is used for DSOs1. To model the reactive 
mismatch at border buses between TSO and DSOs, we consider 
voltage magnitude at transmission terminals equal to one, while the 
voltage magnitude at the distribution terminals can vary between 

convexify ACOPF using techniques such as semidefinite programing or second 
order cone programing [42, 43]  
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0.95 and 1.05 (note that since the voltage at the transmission 
terminal is close to one, the reactive mismatch in the tie-line is not 
significant compare with the case that AC-OPF is considered for 
TSO). The total operating cost of the system is $3,396. The 
operating costs of TSO, DSO1, and DSO2 are respectively $2,375, 
$351.7, and $669.3. The voltage phasors of buses that connect TSO 
to DSO1 are 1∠ − 0.0293  and 0.998∠ − 0.0385, and the voltage 
phasors of buses that connect TSO to DSO2 are 1∠ − 0.0459and 
 1.0018∠ − 0.0797. 

Case 2: In this case, autonomy and information privacy of the 
three systems (i.e., TSO, DSO1, and DSO2) are taken into account, 
and each system is operated by an independent operator. We have 
considered the same operation horizon for TSO and DSOs, e.g., 5-
minute interval. The OPF problems are run for one snapshot, and it 
is assumed that the entities start solving their subproblems 
simultaneously. Note that even if the operation intervals of TSO and 
DSOs are not the same, to allow a collaborative operation, we can 
consider the operation horizon equal to the longest interval. TSO is 
the parent, and its children are DSOs 1 and 2. A tie-line connects 
the border bus b3 of the transmission system to the border bus b7 
of ADG1, and another tie-line links the border bus b4 of the 
transmission system to the border bus b16 of ADG2. Thus, voltage 
of buses b3 and b7 are the shared variables between TSO and 
DSO1, and voltage of buses b4 and b16 are the shared variables 
between TSO and DSO2. TSO includes four target variables, and 
each DSO has two response variables. We analyze cold start and 
hot start conditions.  

Cold start: The initial values for targets/responses are set to zero, 
and the initial values of penalty multipliers/parameters are 
𝜆𝜆0=1000, 𝑤𝑤𝛿𝛿0=1500, 𝑤𝑤𝑣𝑣7,𝐴𝐴𝐴𝐴𝐴𝐴1

0 = 30, 𝑤𝑤𝑣𝑣16,𝐴𝐴𝐴𝐴𝐴𝐴2
0 = 10,  Г=0. 9, and 

𝜏𝜏 = 1. For DQA, the inner and outer loops’ convergence thresholds 
are 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.004 and 𝜖𝜖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1.4 × 10−4, respectively. Note 
that TDQA has only the outer loop with the convergence threshold 
of 𝜖𝜖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1.4 × 10−4. The DQA coordination strategy converges 
after 33 outer loop iterations and the total number of executed inner 
loops is 40, whereas TDQA converges after 34 iterations. Figure 
7(a) shows updating process of the target-response pair 
corresponding to the voltage angles of bus 3 of TSO and bus 1 of 
DSO1 over the course of iterations (note that for DQA, we show 
the updating process over the course of overall iterations, i.e., inner 
and outer loops). The difference between each pair of target-
response becomes smaller and it is less that the convergence 
threshold in iteration 40 (34) of DQA (TDQA). Although in several 
iterations (e.g., iteration 18 in TDQA) a target and its corresponding 
response value might differ less than the stopping threshold, the 
algorithms stop when the differences between every pair of target-
response become less than the stopping threshold. Although TDQA 
takes more (outer loop) iterations than DQA, it does not need the 
inner loop. In overall, DQA needs 40 iterations (sum of inner and 
outer loops iterations) which is 6 iterations more than that in TDQA. 
Although DQA needs more iterations than TDQA, it finds the 
solution more precisely especially when lower 𝜖𝜖 is chosen. Figure 
7(b) shows the average difference between the target-response 
values over the course of iterations. Note that for DQA, the 
updating process is shown over the course of overall iterations. The 
error decays faster in TDQA than DQA because while DQA tries 
to enhance the solution by repeating the inner loop with the fixed 
multipliers, TDQA seeks to improve the solution by updating the 

multipliers. This reduces the overall number of function 
evaluations and the computation time of TDQA (DQA and TDQA 
take respectively 3.97 and 3.62 seconds to converge); however, it 
might slightly increase the overall error. Table I shows the 
generation dispatch for the three systems. Since the stopping 
threshold is not zero, the dispatch results obtained the centralized 
and decentralized algorithms are slightly different.  However, as 
shown in Table II, the operating costs determined by the 
decentralized and decentralized algorithms are similar. The 
operating costs of TSO, DSO1, and DSO2 determined by DQA are 
$2,379.8, $ 350.8, and $669.3, and they are $2,378.3, $351.7, and $ 
669.3 when using TDQA. The total power system operating costs 
determined by DQA and TDQA are $3,399.9 and $3,399.3 that are 
almost the same as the cost obtained by the centralized OPF (i.e., 
$3,396). Note that the sensitivity of the solver and solution to 
changes in power generated by TSO’s and DSOs’ generators might 
be difference since the cost functions and geographical locations of 
the units are different. Thus, although power dispatch of DSOs’ and 
TSO’s units are slightly different from the centralized results, both 
algorithms yield almost the same operating cost. 

To evaluate the performance of the proposed ATC-based 
TSO+DSO OPF in more details, we formulate two convergence 
indices. The first index is Euclidean norm of mismatch between the 
power flow in tie-lines connecting transmission system to active 
distribution grids (𝑃𝑃𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴) and the optimal value obtained by the 
centralized OPF (𝑃𝑃𝑙𝑙∗):  

 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑃𝑃𝑙𝑙
∗−𝑃𝑃𝑙𝑙

𝐴𝐴𝐴𝐴𝐴𝐴 
𝑃𝑃𝑙𝑙
∗ �                                    (19) 

 
The second index is the relative distance of the total cost determined 
by ATC (𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴) from the optimal value determined by the 
centralized OPF (𝑓𝑓∗): 
 

𝑟𝑟𝑟𝑟𝑟𝑟 = �𝑓𝑓∗−𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴�
𝑓𝑓∗

                                           (20) 
 

The values of the two convergence measures are zero at the 
optimal point. Hence, the closer these convergence measures get to 
zero, the better solution is obtained. Figure 8 shows 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑟𝑟𝑟𝑟𝑟𝑟 
values over the course of iterations. The values of the convergence 
measures decrease when more iterations are carried out. They are 
small enough upon the algorithm convergence.  

 
TABLE I. POWER OUTPUT OF GENERATING UNITS 

Algorithm 
TSO DSO1 DSO2 

G1 G2 G3 DG1 DG
2 

DG
1 DG2 

Centralize 129.41 34.03 25 15 18 25 13.17 
Dec. (DQA) 126.65  37.07  25  14.91 18 25 13.17 

Dec. (TDQA) 127.93 35.72 25 15 18 25 13.17 
 
 

TABLE II. OPERATING COST OBTAINED BY DIFFERENT ALGORITHMS 

Algorithm TSO DSO1 DSO2 Total cost 

Centralize $2,375 $351.7 $669.3 $3,396 
Dec. (DQA) $2,379.8 $350.8 $669.3 $3,399.9 

Dec. (TDQA) $2,378.3 $351.7 $ 669.3 $3,399.3 
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(a) 

  
(b) 

Fig. 7. a) Target and response values corresponding to b3 of TSO and b7 of DSO1 
and b) the average difference between targets and responses. 

Hot start: In practice, we usually have good initial values for the 
variables and penalty multipliers. For example, when we solve the 
OPF problem for interval 𝜔𝜔, we have the optimal results of interval 
𝜔𝜔 − 1. We know that, in the most cases, the OPF input parameters, 
e.g., power demand, vary slightly from interval 𝜔𝜔 − 1 to interval 
𝜔𝜔. Thus, the solution of interval 𝜔𝜔 − 1 can be utilized to initialized 
the problem in interval 𝜔𝜔. This is called hot start. We can solve the 
problem faster and more precise by selecting appropriate initial 
values. We assume that the load changes 5% between intervals 𝜔𝜔 −
1 and 𝜔𝜔 and use the solution obtained in interval 𝜔𝜔 − 1 to 
initialized the variables and penalty multipliers in interval 𝜔𝜔. Figure 
8 shows the convergence measure for the hot start and cold start 
cases. While DQA and TDQA take 40 and 34 iterations using the 
cold start, they take 16 and 17 iterations using the hot start, 
respectively. The 𝑟𝑟𝑟𝑟𝑟𝑟 index of cold start is 9 × 10−4, whereas it is 
1.06 × 10−4 using the hot start. Note that since we have good initial 
conditions (i.e., good guesses for target/response and penalty 
multipliers), DQA and TDQA behaviors are similar.  

 
Fig. 8. Convergence property of DQA- and TDQA-based collaborative OPF.  

 

A Full ACOPF: We have tested the proposed algorithm on a 
full ACOPF (i.e., ACOPF for TSO and ACOPF for DSOs). The 
initial values for targets/responses and multipliers are the same as 
the cold start strategy. We stop the algorithm after 60 iterations. The 
𝑟𝑟𝑟𝑟𝑟𝑟 indices obtained from both approaches are shown in Fig. 9. The 
decentralized algorithm provides acceptable 𝑟𝑟𝑟𝑟𝑟𝑟 indices. Note that 
the combination of DCOPF and ACOPF provides good results in 
the first few iterations; however, the 𝑟𝑟𝑟𝑟𝑟𝑟 index gradually goes down 
for the case of the full ACOPF (a user may run the algorithm more 
than 60 iterations to get a smaller 𝑟𝑟𝑟𝑟𝑟𝑟 index). The DCOPF 
approximation for TSO slightly increases the error (because of 
linearization of ACOPF) but it enhances the performance of the 
decentralized optimization algorithm. The user may prefer to use 
such an approximation to get faster results from the decentralized 
algorithm. Note that using DCOPF for TSO and ACOPF for DSOs 
is aligned with the power industry.  

  
Fig. 9. The 𝑟𝑟𝑟𝑟𝑟𝑟 index for DCOPF+ACOPF and a full ACOPF. 
 
Case 3: To evaluate the convergence behavior of the proposed 
collaborative TSO+DSO OPF with respect to variations of 
DQA/TDQA parameters, we perform multiple sensitivity analysis. 
This provides a user with insights on how to initialize the 
algorithms’ parameters. We initialize 𝜆𝜆0=1000, 𝑤𝑤𝛿𝛿0=1500, 
𝑤𝑤𝑣𝑣7,𝐴𝐴𝐴𝐴𝐴𝐴1
0 = 30, 𝑤𝑤𝑣𝑣16,𝐴𝐴𝐴𝐴𝐴𝐴2

0 = 10 and Г=0.9. We select various 
stopping thresholds as 5 × 10−4, 1 × 10−4, 5 × 10−5, 1 × 10−5 
and 5 × 10−6 and demonstrate the relative error and number of 
iterations in Fig. 10(a). By decreasing the stopping criteria, the 
relative error decreases generally, but the number of iterations 
increases. One can select a small enough stopping threshold to 
make a trade-off between the stepped and error. When the stopping 
threshold is large, DQA’s error is slightly smaller than that for 
TDQA. However, for the small thresholds, the relative errors of 
TDQA and DQA are almost the same. In overall, comparing the 
error and number of iterations shows that TDQA has better 
performance than DQA.   

We set 𝜖𝜖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1.4 × 10−4, 𝜆𝜆0=1000, 𝑤𝑤𝛿𝛿0=1500, 𝑤𝑤𝑣𝑣7,𝐴𝐴𝐴𝐴𝐴𝐴1
0 =

30, 𝑤𝑤𝑣𝑣16,𝐴𝐴𝐴𝐴𝐴𝐴2
0 = 10, and evaluate the convergence behaviors with 

respect to the step size Г. Parameter Г reflects the level of 
dependency of the target-response variables in each iteration to 
their values obtained in the previous iteration. We vary Г in the 
range of {0.6, 0.7 …, 0.8, 0.99}. Figure 10(b) shows that, in 
general, increasing Г decreases the number of iterations and 
computation time. For DQA and TDQA, the least number of 
iterations is obtained by setting Г= 0.9. DQA has more stability to 
variation of Г. This is because of the existence of the inner loop in 
which the algorithm seeks to reduce the error between the target and 
response values without updating the penalty multipliers.  
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(a) 

 
(b) 

Fig. 10. a) Iteration and rel index vs. stopping criterion, and b) iterations vs. Г. 
 
Setting different initial values for the penalty multipliers changes 

the speed of the algorithms and accuracy of the obtained results. We 
select different initial values for multipliers 𝜆𝜆 and 𝑤𝑤 and the step 
size Г and calculate the 𝑟𝑟𝑟𝑟𝑟𝑟 index. Figure 11 shows a contour plot 
of the 𝑟𝑟𝑟𝑟𝑟𝑟 index versus variations of initial values of 𝜆𝜆, 𝑤𝑤, and Г. If 
𝜆𝜆0=1000 and 𝑤𝑤𝛿𝛿0=1000, setting the step size Г to 0.6 provides the 
least error (𝑟𝑟𝑟𝑟𝑟𝑟 = 2.48 × 10−4) after and 51 iterations. If the user 
selects the parameter badly (e.g., 𝜆𝜆0=2500, 𝑤𝑤𝛿𝛿0=2500), Г equal to 
0.5 yields the relative error of 0.0054 within 75iterations. Note that 
although we get the least 𝑟𝑟𝑟𝑟𝑟𝑟 with Γ = 0.6, 𝜆𝜆0=1000, and 𝑤𝑤𝛿𝛿0=1000, 
it takes a relatively long time to converge.  

 
Case 4: We consider a full ACOPF and implement the proposed 
algorithm and three other methods, namely ADMM[20], APP[22], 
and ALAD (that is based on ATC)[33]. We compare the TDQA-
based TSO+DSO optimal power flow to OPF solved by the other 
three methods [3]. Although all these four methods are based on the 
augmented Lagrangian relaxation, TDQA and APP solve the 
problem in a fully parallel manner while ADMM and ALAD are 
sequential solution algorithms. This means that in iteration 𝑘𝑘 of 
ADMM and ALAD, DSOs cannot solve their subproblems without 
having the TSO’s shared variable values in iteration 𝑘𝑘, whereas in 
TDQA and APP, TSO and DSOs solve their subproblems in parallel 
as they need their neighbors’ shared variable values determined in 
iteration 𝑘𝑘 − 1. Each iteration of TDQA and APP takes around 0.1 
seconds while it is 0.16 seconds for ADMM and ALAD. That is, 
each iteration of TDQA (and APP) is generally faster than that in 
ALAD and ADMM. Figure 12 shows the 𝑟𝑟𝑟𝑟𝑟𝑟 index after 100 
iterations. All four methods converge to acceptable 𝑟𝑟𝑟𝑟𝑟𝑟 indices. 
APP takes many iterations for the 𝑟𝑟𝑟𝑟𝑟𝑟 index to go below an 
acceptable threshold, whereas the other three methods reach to an 
acceptable threshold after the first few iterations. Since ALAD and 
ADMM are sequential algorithms and TDQA is a parallel one, the 
solution time of TDQA, in each iteration, is faster than that for 
ALAD and ADMM. In the simulations, we have tried to provide 
reasonable and fair conditions to compare the four algorithms. 
Although the TDQA algorithm shows a good performance for the 

considered TSO+DSO OPF in this paper, we cannot make a solid 
conclusion that which algorithm has a better overall performance. 
The performance of the algorithms depends on the type of the 
problem and initial values of variables and penalty 
multipliers/factors (refer to [3] for more details).  

It should be noted that the considered OPF problem in this paper 
has two levels. For problems with several levels of hierarchy, for 
instance, if TSO (level 1), DSOs (level 2), and microgrids (level 3) 
want to solve a collaborative OPF, the parallel solution algorithm, 
such as TDQA, is expected to be faster than the sequential one.. 
 

 
Fig. 11. Convergence measure 𝑟𝑟𝑟𝑟𝑟𝑟 versus initial values of multipliers and Г.  
 
 

 
Fig. 12. Comparison between TDQA, APP, ADMM, and ALAD.  

 

B.  IEEE 118-bus system 
Cold start: This test system comprises 31 autonomous systems: 

one TSO and 30 DSOs. The transmission system includes 118 
buses, 186 lines, and 54 generators. Each active distribution grid 
consists of two generating units. We use a cold start, i.e., the initial 
values of the local variables of TSO and DSOs as well as 
targets/responses (i.e., shared variables) are set to zero. The initial 
values for penalty multipliers are selected as 𝜆𝜆0 =100, 𝑤𝑤0=100, 
Г=0.6, and the stopping thresholds are 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.2 and 𝜖𝜖𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟 =
0.002. As shown in Table III, the collaborative ATC-based 
TSO+DSO operation with the DQA coordination strategy 
converges after 66 outer loop and 122 inner loop iterations (around 
2 seconds). If we use the TDQA coordination strategy, the 
algorithm takes 99 iterations (only outer loop) to converge after less 
than 2 seconds). The overall operating cost of the system 
determined by DQA and DTQA is $5,115.6 and $5,120.6, 
respectively. In order to evaluate accuracy of the results, we ignore 
autonomy and information privacy of TSO and DSOs and solve the 
centralized OPF. The overall operating cost is $5,098.6. Although 
error of DQA and TDQA is negligible, DQA is slightly more 
accurate. 
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Hot start: Since in practice we can use a hot start scenario, we 

are potentially capable of speeding up the convergence process. We 
choose appropriate initial points and run a hot start scenario. The 
results show that TDQA and DQA respectively take 11 and nine 
iterations to converge, which is much faster (almost ten times) than 
the cold start scenario. Figure 13 shows the 𝑟𝑟𝑟𝑟𝑟𝑟 index over the 
course of iterations. 

 

 
Fig. 13. 𝑟𝑟𝑟𝑟𝑟𝑟 index for the IEEE 118-bus system (cold and hot start scenarios). 
 

 

TABLE III. TSO+DSO OPF FOR THE IEEE 118-BUS 
Algorithm Total cost Iteration 

Centralized TSO+DSO OPF $5,098.6 - 
Decentralized TSO+DSO OPF cold 

start 
DQA $5,116.5 92 

TDQA $5,120.6 98 
Decentralized TSO+DSO OPF hot 

start 
DQA $5,117.4 9 

TDQA $5,116.8 11 

V.  CONCLUSION 
Power systems are being transformed to distributed energy 
infrastructures in which electricity is generated in both transmission 
and distribution levels. This paper presents a decentralized OPF 
algorithm for collaborative management of transmission and 
distribution systems. The proposed algorithm is based on analytical 
target cascading (ATC) for multilevel hierarchical optimization. 
The OPF problem associated with TSO is formulated in the upper 
level of the hierarchy while OPFs of DSOs are assigned to the lower 
level. As TSO and DSOs are autonomous systems, the information 
privacy plays a critical role in their joint management decisions. In 
the proposed framework, TSO and DSOs exchange only limited 
information namely target and response (shared) variables, and they 
are not required to reveal their commercially sensitive information 
to other parties. Two coordination strategies namely DQA and 
TDQA are presented to coordinate TSO and DSOs in a 
decentralized manner. DQA and TDQA allow parallel execution of 
local OPF problems (associated with TSO and DSOs). 

The numerical tests on a 6-bus and the IEEE 118-bus systems 
show the accuracy and convergence performance of our proposed 
ATC-based collaborative TSO+DSO OPF method. Although both 
DQA and TDQA coordination strategies provide promising results, 
the collaborative TSO+DSO operation with TDQA usually 
determines optimal results with almost the same accuracy as DQA 
while usually taking less iterations. Using a hot start scenario to 
initialize the target/response pairs and multipliers significantly 
enhances the solution speed of the proposed TSO+DSO operation 
algorithm, especially for the large-scale system. 
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