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Abstract- Collaborative operation of electricity transmission and
distribution systems improves the economy and reliability of the entire
power system. However, this is a challenging problem given that
transmission system operators (TSOs) and distribution system
operators (DSOs) are autonomous entities that are unwilling to reveal
their commercially sensitive information. This paper presents a
decentralized decision-making algorithm for collaborative TSO+DSO
optimal power flow (OPF) implementation. The proposed algorithm is
based on analytical target cascading (ATC) for multilevel hierarchical
optimization in complex engineering systems. A local OPF is
formulated for each TSO/DSO taking into consideration interactions
between the transmission and distribution systems while respecting
autonomy and information privacy of TSO and DSOs. The local OPF
of TSO is solved in the upper-level of hierarchy, and the local OPFs of
DSOs are handled in the lower-level. A diagonal quadratic
approximation (DQA) and a truncated diagonal quadratic
approximation (TDQA) are presented to develop iterative
coordination strategies in which all local OPFs are solved in a parallel
manner with no need for a central coordinator. This parallel
implementation significantly enhances computations efficiency of the
algorithm. The proposed collaborative TSO+DSO OPF is evaluated
using a 6-bus and the IEEE 118-bus test systems, and promising results
are obtained.

Index Terms- Collaborative transmission and distribution
operation, analytical target cascading, diagonal quadratic
approximation, decentralized optimization, parallel algorithm.

NOMENCLATURE

A. Indices, Sets, and Parameters

a,b Index for border buses in TSO side.

a',b' Index for border buses in DSOs side.

i,j Index for subproblem j in level i.

k Outer loop iteration index.

l Inner loop iteration index.

* Operating cost determined by the centralize algorithm.

i Operating cost determined by the decentralized
algorithm.

fiy Operating cost function of subproblem j located in level
i

gij Set of inequality constraints of subproblem j located in
level i.

hij Set of equality constraints of subproblem j located in
level i.
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N, Number of DSO in level two.
Py Power mismatch in tie-line [ determined by the centralize
algorithm.
pATC Power mismatch in tie-line [ determined by the

decentralized algorithm.
X Set of variables.

m(.) Penalty function.
Pris Relative power mismatch in a tie-line.
rel Relative distance of the operating cost.

B. Variables

Ty Response of subproblemyj in level i.

ti; Targets of subproblemj in level i.

U, Voltage magnitude at bus a.

8, Voltage angle at bus a.

26 Voltage phasor corresponding to response variables.

vsLd Voltage phasor corresponding to target variables.
a,f EPF penalty multipliers.
&kt Voltage angle in outer loop k and in inner loop L.

r Step size.

ALw AL BCD’s penalty multipliers.

Aileg, w;j s DQA’s penalty multipliers related to the voltage angle of
subproblemj in level i.

A% jwWijy DQA’s penalty multipliers related to the voltage
magnitude of subproblem j in level i.

T Tuning parameter.

1. INTRODUCTION

MERGING active distribution grids (ADGs), which include

distributed energy resources, is reshaping power systems
paradigm. Unlike passive distribution grids, an ADG is capable of
locally supplying power for end-users with its distributed
generators (DGs). Incorporation of ADGs into power system
management potentially enhances the overall system performance
in terms of economic and security [1, 2]. This has motivated the
recent interests in collaborative management of transmission and
distribution grids [3-5].

The transmission system is operated by a transmission system
operator (TSO), and the distribution system is controlled by a
distribution system operator (DSO). Since the transmission and
distribution grids are parts of an interconnected system, any
decisions made by TSO (DSOs) affects the DSOs’ (TSO’s)
operation and decisions. On the other hand, TSO and DSOs are
autonomous control entities with their own rules, policies, and
objectives. While one entity aims at minimizing its own costs, the
objective of another entity might be reliability maximization with
respect to its local operational constraints. Furthermore, TSO and
DSOs might compete with each other to achieve their objectives.



Thus, although TSO and DSOs are parts of an interconnected
system, they are unwilling to share their commercially sensitive
data with each other. This is, preserving the privacy of TSO and
DSOs’ is critical. Hence, a central scheduling framework, in which
TSO and DSOs need to share all their information with a central
control authority, may not be appropriate for the entire power
system operation [6]. Even if TSO and DSOs share their
information with a central control authority and allow this entity to
perform the decision-making, solving the resulting integrated large-
scale optimization problem is challenging. In addition, failures and
cyber-attacks could have a devastating impact on the functionality
of a centralized control approach.

Transmission and distribution systems collaboration have seen
increased interest recently [7, 8]. Active distribution system can
provide various services for the transmission system. These two
systems can cooperate to achieve a better grid performance in terms
of, for instance, voltage security, operation, planning, etc. our main
focus in this paper is one short-term operation. We aim at finding a
distributed solution for optimal power flow (OPF) problem for a
power system that potentially includes multiple DSOs and a TSO.
Here, we briefly review several papers in the field of distributed
power system management and TSO+DSO operation.

Iterative approached have been presented in [9-19] to solve OPF
in a distributed fashion. Alternating direction method of multipliers
(ADMM) [20], heterogeneous decomposition algorithm [21],
auxiliary problem principle (APP) [22, 23], optimality condition
decomposition [14, 24], consensus+innovations technique [6, 25],
proximal message passing [26], and analytical target cascading
(ATC) [27-29] are among the most popular approaches to solve
OPF in a distributed manner. Most of the existing papers focus on
multi-area power transmission systems or microgrid clusters.
However, few papers exist that focus on collaborative TSO and
DSOs optimal power flow. An iterative master-slave algorithm is
presented in [30-32] to manage power transmission and distribution
systems in a collaborative manner. In [30], a heterogencous
decomposition is presented to solve a collaborative ACOPF for

transmission and distribution systems. This decomposition
approach, which works similar to optimality condition
decomposition, solves first-order KKT conditions in a

decentralized manner. This is a sequential solution procedure in
which DSO is solved first, and then TSO is solved. In [27-29], we
presented a decentralized algorithm for collaborative day-ahead
scheduling of TSO and DSOs. The coordination strategy is based
on ATC, which is for multilevel distributed optimization of
hierarchical complex engineering systems. References [27, 28]
apply augmented Lagrangian block coordinate descent (AL-BCD)
while [29] utilizes an exponential penalty function (EPF)
formulation. Although AL-BCD and EPF formulations effectively
coordinate TSO and DSOs, their main drawback is their sequential
solution procedure. In other words, at each iteration, TSO (DSOs)
needs the updated values of the shared variables received from
DSOs (TSO) at the same iteration. This degrades the computational
efficiency of the decentralized algorithm, as the computation time
is a summation of the subproblems’ solution time. The main goal
of'this paper is to address the drawback of collaborative ATC-based
TSO+DSO operation by enabling a parallel execution of
subproblems’ optimization.

In this paper, we present a decentralized collaborative two-level
TSO+DSO optimal power flow solution. The proposed algorithm is
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based on analytical target cascading (ATC) method and allows a
fully parallel implementation TSO+DSO OPF. A local OPF
problem is formulated for TSO and each DSO which accounts for
interactions between the transmission and distribution systems. A
limited amount of information is exchanged among TSO and DSOs
which is in line with respecting the information privacy of the
autonomous control entities. While the transmission OPF problem
is formulated and solved in the upper-level of hierarchy, the
distribution OPF is handled in the lower-level. Two coordination
strategies, namely diagonal quadratic approximation (DQA) and
truncated diagonal quadratic approximation (TDQA), are presented
to coordinate the local OPF problems in a parallel manner. While
DQA needs two loops, one inner loop, and one outer loop, TDQA
follows an iterative procedure with one loop. A 22-bus test system
and the IEEE 118-bus transmission system are used for simulation
studies.

The contributions of the paper are summarized as follows:

o The power system is modeled as a system of systems (SoS) in
which TSO and DSOs are autonomous entities with their local
policies and rules. A collaborate two-level OPF is presented
with respect to a) interdependencies of transmission and
distribution systems and b) the information privacy of TSO and
DSO.

o Interdependencies between TSO and DSOs are modeled by a
set of hard constraints. Quadratic penalty terms are utilized to
relax the hard constraints in the local objective of each entity.
A technique is presented to make non-separable quadratic
terms of augmented Lagrangian penalty functions separable.

o A fully parallel solution algorithm is presented which has two
loops: an inner loop to enhance the accuracy of the solution and
outer loop to force the algorithm to converge. At each iteration
of the proposed parallel procedure, TSO (DSOs) needs the
updated values of the shared variables received from DSOs
(TSO) obtained at the previous iteration. Hence, compared
with the sequential algorithm, the computation time of each
iteration decreases. This can significantly improve the
convergence speed as the number of levels increases.

The main differences between this paper and [28] are as follows

- We dealt with a unit commitment problem in [28]; however, in
this paper, we deal with the OPF problem.

- In [28], the concept of shift factor is used to formulate DC
power flow for transmission and distribution systems;
however, in this paper, AC-OPF is formulated using voltage
magnitudes and angles.

- In [28], pseudo generations and loads are used to model energy
exchange between TSO and DSOs; however, in this paper,
voltage magnitudes and angles of border buses are modeled as
shared variables. This shared variable modeling paradigm
enables a user to handle cases with a loop between TSO and
DSO without degrading information privacy. However, if a
loop exists between TSO and DSO, a coordinator is needed that
gathers information from the whole network to calculate the
shift factor values. This degrades the information privacy.

- The solution algorithm presented in [28] is a sequential
procedure in which while TSO (DSOs) is solving its
subproblem, DSOs (TSO) should stay idle. However, the
solution procedure presented in this paper is a fully parallel



approach that allows parallel (and simultaneous) solution of all
OPF subproblems. This parallel approach reduces the
computational time of each iteration.

TSO level
(level 1)

DSO level
(level 2)

Fig.1. Interdependency of TSO and DSOs with coupling variables.

The remainder of the paper is organized as follows. The
decentralized ATC-based optimal power flow is presented in
Section II. The proposed decentralized decision-making framework
as well as DQA and TDQA solution algorithms are presented in
Section III. Numerical results are discussed in Section IV.
Concluding remarks are provided in Section V.

II. DECENTRALIZED ATC-BASED OPF IMPLEMENTATION

A. Dependency of TSO and DSO

Assume that the transmission network is not connected to the
active distribution grids. In this case (isolated mode), TSO and
DSOs are capable of solving their local OPF problems completely
independent from one another. However, this is not the case in
reality since distribution grids are interconnected to transmission
networks via one or more connection points. Consider the system
shown in Fig. 1, which includes one TSO and two DSOs. The
system has two levels. TSO is on the first level (upper-level), and
DSOs are in the second level (lower-level). Control variables of
buses a and a’ (i.e., voltage magnitudes and angles) couple TSO
and DSOL1. Both TSO and DSO1 are interested in controlling these
coupling variables to improve their grid performance. Likewise,
TSO and DSO2 are coupled via control variables of buses b and b'.
The coupling variables, i.e., {V 2684,V 1£8,1,Vy2L8y, Uy L8y},
make decisions of TSO, DSO1, and DSO2 interdependent (note that
active and reactive power flows in a tie-line are by-products of the
voltage magnitudes and angles of ending terminals of the tie-line).
Thus, coordination of the aforementioned coupling variables is in
great interest of TSO and DSOs.

B. Characterization of Analytical Target Cascading

The general concept of analytical target cascading (ATC) is
similar to the auxiliary problem principle (APP) and alternating
direction method of multipliers (ADMM) [20, 23, 33-35]. The ATC
procedure (which is suitable for multilevel management of complex
engineering systems) first decomposes the system into a multilevel
hierarchical structure (as shown in Fig. 2) and recognizes parents
and children. At the next step, penalty functions are introduced to
model subproblems’ interdependencies. Whereas in APP and
ADMM, the duality concept is applied and penalty functions are
introduced, and then the system is decomposed into several
subproblems. As shown in Fig.l, TSO in the upper-level is
hierarchically connected to DSOs in the lower-level. Thus, ATC is
a suitable method to solve the collaborative TSO+DSO operation
in a decentralized manner. In ATC, subproblems (also called
elements or autonomous systems) in the upper-levels are parents of
subproblems in the lower-levels. By the same token, subproblems
in the lower-levels are children of subproblems in the upper-levels.
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Although a child has only one parent, a parent could have multiple
children. This hierarchical interconnection means that there is no
loop in the ATC structure. This further implies that subproblems at
the same level do not share any connection/information with each
other. If we assume the ATC structure as a graph, subproblems and
tie-lines are respectively nodes and edges of the graph.

By decomposing the system into parents/children,
dimensionality of each subproblem reduces. An iterative solution
procedure can be applied to coordinate TSO and DSOs and
determine the optimal solution of the SoS-based power system. In
ATC, the coupling variables between two connected elements
appear in the form of target variables and response copiers. TSO
solves its OPF subproblem and propagates the target values down
toward its children (i.e., DSOs). Then, DSOs use the updated target
values, solve their local OPF problems, and send the updated values
of the response copiers back to TSO. The responses determined by
the children define how close they are to the parent’s targets [33].

To enforce the decentralized optimization problem to converge,
a proper coordination strategy is required. Several methods have
been proposed in literature with different options to penalize the
coupling variables into the objective functions. These options for
selection of penalty terms and coordination strategies make ATC
more flexible than ADMM and APP. Augmented Lagrangian block
coordinate descent (AL-BCD) and exponential penalty function
(EPF) are two popular ATC formulations that use coordination
strategies with two loops, inner loop and outer loop. The penalty
terms in these two methods are not separable, and thus the solution
algorithm is a sequential procedure as shown in Fig. 3. It should be
noted that if no direct link exists among the subproblems in each
level i, the subproblems (only those is level i) can be solved in
parallel.

The ATC structure converges to first order optimality
conditions, if the problem is convex[35]. Thus, ATC provides the
optimal solution for a convex problem. As shown in the literature,
ATC shows good performance for non-convex problems, such as
ACOPF presented in this paper [27-29, 36]. In addition, as
explained in the following sections, a set of convex penalty
functions, such as a quadratic function, are added to the objective
function. These convex penalty functions act as local convexifiers
for the subproblems and mitigate the non-convexity of the parents’
and children’ subproblems. The convergence and optimality of the
decentralized algorithm, when applied to the studied problem, are
demonstrated through several numerical simulations.
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Fig. 2. Decomposing a system into a multilevel hierarchical structure.
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Fig. 3. Solution procedure of AL-BCD and EPF algorithms.

C. Hierarchical Two-Level TSO+DSO Operation

In this section, we formulate the collaborative TSO+DSO OPF
within the ATC framework. Consider that optimization (1)
expresses a centralized OPF problem for the entire power
transmission and distribution systems.

min F(X) (D

s.t. glX) <0, hX)=0

where X denotes all variables of the entire power system, F is the
overall objective function, and g and h represent all inequality and
equality constraints. The power system has a two-level hierarchical
structure (a simplified version of Fig. 2). Thus, within the ATC
framework, we can rewrite (1) as follows:

Ng+1

min f11(x11't2j) + Z ij(xzj"tZi) )
=2

(xijitzj)

s.t. gij(xij,t) <0 hyj(xij, tz) = 0

where subscript ij indicates subproblem j* in level i, X =
{xij, t2;}, x;; is local variables of subproblem j in level i, and t,;
represents the target variables. Note that in ATC, the shared
variables that couple TSO to DSOs (i.e., voltage of border buses as
discussed in Section II. A) appear in form of target variables.
Parameter N; is number of DSO in level 2, f;; is the objective
function of TSO, f; is the objective function of DSO j in level 2,
and g;; and h;; are compact representations of inequality and
equality constraints of subproblem j in level i. If t is an empty set
(t = {}), TSO and DSOs are isolated and can solve their local OPF
subproblems completely separate from each other. However, if t is
non-empty (t # {}), which is the case in the power systems,
subproblems that share t (an element of t) need to achieve an
agreement on its value.

To separate the TSO’s and DSOs’ OPF subproblems as well as
the variables that are governed by each subproblem, response
copiers are introduced. The response copiers are duplicates of the
target variables. We consider that the target variables are the shared
variables (voltage of border buses) that are handled by TSO and the
response copiers are the shared variables that are governed by
DSOs. We can include the response variables, denoted generically
by vector 7, in (2) by enforcing a set of consistency constraints as:

C:tzj'—7hj =0

3)

One consistency constraint is required for each target-response pair.
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We relax the consistency constraints in the objective function
using a penalty term.

Ng+1 Ng+1
min _fi1 (%11, 655) + Z foj(x2j,t25) + Z n(ty —1ay) (4)
@Ulyfﬁ) = =

Now, we can completely separate the local OPF subproblems of
TSO and DSOs. Let us represent the target variables (i.e., voltage
of border buses) by their common notations in power system
communities, i.e., vz8. Also, 746 represents the response
variables. The local OPF subproblem of TSO is:

Ng+1

« rl(’s_lll'lv N fll(x11,62j,v2j) + Z 7'[(62]' - 52]) + T[(UZ]' - 172]) (5)
11,02,V2j

j=2

s.t. gll(xll, 62/-, vzj') S 0 hll(xll, 52]-, Uzl-) = 0

And the local OPF subproblem of DSO j is:
min

(x2,62,72;

s.t. gzj(xzj'SZJ' ’721) =0

)fzj(xzj' 82, Uyy) + (825 — 837) + (w2 — Uz5) (6)

haj(x2), 82, 7)) = 0

The OPF subproblem (5) ((6)) is formulated using the local
information of TSO (DSO j) as well as its shared variables with
DSOs (TSO). The generation cost function of each subproblem
(i.e., f) is a quadratic function as f(p) = a+ bp + cp?. The
equality constraints h and the inequality constraints g of TSO and
DSOs are as follows:

{ Nodal power balance equations
Voltage angle of the reference bus = 0

Generation capacity limits
g: {Bus voltage limits
Line flow limits

While TSO is allowed to decide about its local and target
variables v£6, each DSO j determines its local and corresponding
response variables ¥28. This is, while v£§ is constant in the DSOs’
OPF subproblems, #2£4 is constant in the TSO’s OPF subproblem.
In the ATC framework, TSO sends the target values v£6 down to
DSOs, and each DSO sends its response values 728 back upward
TSO.

An iterative procedure needs to be implemented to enforce the
difference between v — ¥ and & — § to zero and find the optimal
solution of the entire two-level power system. Depending on the
choice of the penalty function i (+), the iterative solution procedure
could be implemented in a sequential or a parallel fashion. An
algorithm in which the TSO and DSOs OPF subproblems are
sequentially and iteratively solved is called block coordinate
descent. The convergence of the algorithm is guaranteed in [35, 37].
This is independent of the choice of the penalty function since the
constraint sets of TSO and DSOs are completely independent.

In [28, 29], we have applied AL-BCD and EPF methods to
model the penalty function (rr). In AL-BCD, the penalty term is



AE=r)+lwe-nl t={Wsr={Fds ()
And in EPF, the penalty term is
a(e®) — 1)+ (™D —1) t={v,6)r={58 (8

where A, w, «, and 8 are penalty multipliers, and “o”” denotes the
Hadamard product. Setting the penalty factor w to a small value
enhances the accuracy of the distributed algorithm but it increases
the number of iterations. A large w potentially reduces the number
of iterations but it may degrade the accuracy of the results. Indeed
w should be set to a large enough value (this value is problem
dependent) to balance the cost function f and the penalty function
and make a trade-off between the accuracy and speed [38]. The
penalty multipliers A, a, and § should be initialized close to their
optimal values. A user may utilize historical data (e.g., a hot start
strategy) or its experience to initialize the penalty multipliers.

Penalty functions (7) and (8) include non-separable terms. Thus,
a sequential solution procedure (hierarchical and level by level
similar to Fig. 3) is required to solve the collaborative ATC-based
TSO+DSO OPF. That is, in each iteration k, TSO (DSOs) needs to
know the response (target) values of DSOs (TSO) in that iteration,
i.e., v (t*). Hence, when the TSO’s (DSOs’) OPF subproblem is
being solved, the DSOs’ (TSO’s) OPF subproblems should stay idle
(see[28] for more details). This degrades computational efficiency
of the decentralized solution procedure.

III. DIAGONAL QUADRATIC APPROXIMATION METHOD FOR
PARALLEL SOLUTION

It is highly desirable to solve the OPF subproblems in a parallel
manner as shown in Fig. 4, especially when multiple levels of
hierarchy (e.g., TSO, DSO, and microgrid levels) and many
subproblems exist. In this paper, diagonal quadratic approximation
(DQA) and truncated diagonal quadratic approximation (TDQA)
are presented to parallelize the solution procedure of the
collaborative ATC-based TSO+DSO OPF. In these two algorithms,
a subproblem with the longest solution time determines the
algorithms’ solution time in each iteration. In contrast, in a
sequential algorithm, such as AL-BCD, the summation of TSO’s
solution time and the longest solution time of DSOs determines the
overall solution time of the algorithm.
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Fig. 4. Solution of OPF subproblems with parallel ATC coordination strategy.

A. Diagonal Quadratic Approximation (DQA)

The objective functions f, i.e., the generation cost functions, in
TSO and DSO subproblems are convex functions. In addition, the
local equality and inequality constraints of each subproblem are
fully separable. In ATC, we have the flexibility to select the penalty
term 7 (+) to relax the consistency constrains in the local objective
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functions. We have followed the concept of augmented
Lagrangian and selected a combination of linear and quadratic
penalty functions as in (7). The augmented term, i.e., the quadratic
term, improves the convergence performance compared with the
ordinary Lagrangian function. In addition, this penalty term acts as
a local convexifier and enhances behavior of the subproblems.
However, this quadratic term of the augmented Lagrangian penalty
function is not separable. We apply the diagonal quadratic
approximation (DQA) method to make the augmented Lagrangian
terms separable[39, 40]. Consider the penalty function
corresponding to the voltage angle. We expand its quadratic term
as:

165 = 8ull; = 1181 © 84 + 85 © 5y = 28 2 Sl 9
We use the first order Taylor expansion for multiple variable scalar
functions to linearize the cross term §;; o 5; ; at the point (51-""]-_1,

5571 34,351,

6ij o 61—} = Sikj_l o (SU + 6,:’;-_1 OSl’j - (S-k-_l ° S-I;-_l

(10)

where 657" and /5" are respectively targets and responses
determined in the previous iteration k — 1 and are constant in the
current iteration k. Thus, we can approximate the quadratic penalty
term (9) as:

x 2 Sk—1 2

18 = 8411, = llsk™ = 8yl +ll65; — &7, + ¢ an
where C is a constant. The same Taylor expansion is implemented
on the quadratic penalty term corresponding to voltage magnitudes.
Now, the OPF problem of the entire two-level power system can
reformulate as:

("u 51; 617) Z Z fij (x”, S+ 17(L+1)1)
+ Z Z(Aij,g(c?,-,- = &) +|wijs o (657~

IENy 21 ]
= 2
+ |5 0 (85 — 55_1)”2)

£ vy = ) +wge e 0l = 9

LENp g ]

+ i o (v = 257)13)

where N; denotes number of levels which is two in this paper. This
optimization problem is subject to all-in-once constraints, i.e., all
constraints of TSO and DSOs. We now decompose (12). The local
OPF subproblem of TSO in iteration k of the ATC procedure is as
follows:

= \112
),

(12)

(xmlglv) fi1 (x11’ 822, V22, 023, V23, vens 52(Nd+1)! 172(1\1d+1)) (13)
Ng+1
2
+ZM@ﬁMm@Jamz
Nd+1

+Z%MMWW%%4FM



subject to the local constraints of TSO (e.g., nodal power balance,
line flow limits, etc.). The penalty term depends on the target
variables v,;£8,; while using the response values 5285
determined by DSOs in the previous iteration k — 1. TSO solves its
local OPF problem and find the target values. Likewise, the local
OPF subproblem of each DSO j is reformulated as:

min.
(x2,62j,02

Hlwajs o (657 = 521‘)”2 +||wa o (V35" - ﬁn)”i

)f 2(%2), 62, U2j) + 23;,5(=62)) + 23;,(=2;)

(14)

subject to the local constraints of DSO j. The penalty term depends
on the response variables ¥, jASZ ; while using the target values

vt 2685;" determined by TSO in the previous iteration k — 1.
Formulations (13) and (14) allow a parallel solution of the TSO’s
and DSOs’ OPF subproblems since each subproblem needs the
target/response values determined by other subproblems in iteration
k — 1. The DQA coordination strategy is proven to converge and
its convergence rate is discussed in [39] and [40].

A.1. Parallel Solution Procedure of DQA

Figure 5 illustrates the solution procedure of DQA to coordinate
the OPF subproblems of TSO and DSOs. Although the problem’s
structure has a hierarchical two-level form, the presented
coordination strategy is a parallel procedure that allows a
simultaneous solution of TSO’s and DSOs’ subproblems. The DQA
solution strategy includes two loops, inner loop and outer loop. The
inner loop updates the target and response values while the penalty
multipliers are fixed. This improves the linearization. The inner
loop stops when the difference between each target (response)
determined in two consecutive iterations are less than a threshold.
Indeed, the inner loop seeks to find the best targets and responses
for a given set of multipliers. If the targets and responses are
determined more precise, the penalty multipliers are updated more
accurate in the outer loop. If the penalty multipliers are updated
more accurate, the algorithm takes less iterations to update the
multipliers. Thus, although the inner loop increases the
computational cost (corresponding to the inner loop iterations), it
might reduce the number of outer loop iterations in which the
multipliers are updated (i.e., the method of multipliers). The steps
are discussed in details as follows:

Step1: Set the initial value of local variables x of each subproblem,
target values {8, v}, response copiers {§, #}, penalty multipliers A
and w, and parameters I' and 7. Set the outer loop iteration index
k = 1 and the inner loop iteration index [ = 0.

Step2: Increase the inner loop iteration by one, i.e., | = [ + 1. Solve
TSO’s and DSOs’ local OPF subproblems in parallel using targets
and responses that are determined in the previous inner loop
iteration ( [ — 1), i.e., 6¥ '~ and §*¥~1!~1. Note that in the first
iteration, the subproblems are solved using the initial values.

Step3: Check the following inner loop convergence criterion

max(llS"'l _ (Sk'l_lll: ”Sk,l _ Sk,l—l”) ||Uk'l _ Uk'l_1”: ”ﬁk,l

- ﬁkl_l”) < €inner

(15)

where €;,ner 1S the stopping threshold of the inner loop. If the
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difference between the target (and response) values determined in
the current and previous iterations are less than the acceptable
threshold, then we should stop the inner loop, set X* = X*! (where
X=[x6v, S, 7]), and go to Step 4; otherwise:

Xk,l — Xk,l—l + F(Xk'l _ Xk,l—l) (16)
where I' is the step size, which determines a value among the current
solution and the previous one (i.e., if I' = 0, the algorithm uses with
the previous solution, and if I' = 1 the algorithm uses with the

current solution), and then go to Step 2. Note that we update the
initial values of all local and shared variables.

Step4: If max{||6% — &%), Iv* — P¥II} < €outer (e, if the
difference between each target-response pair is less than the
criterion), where €., is the outer loop stopping threshold,
TSO+DSO OPF has converged and the optimal values are X* = X*
, otherwise increase the outer loop iteration index by one (i.e., k =
k + 1) and set the inner loop index to zero (i.e., [ = 0) and update
the penalty multipliers as follows:

Ay =25 +wf e (5K =6 (17)
A= k=1 4 k1o (pk1 — k-1 (18)
wk = tswk? (19)
wk = ,wkt (20)

and then go to Step 2 (note that multipliers will be updated for every
outer loop iteration). Parameter t should be equal or large than one,
ie, T7=1 [41]. Depending on the optimization problem
characteristics, a wide range of t can be selected to reduce the
computational cost and/or enhance the solution accuracy. Based on
our experience, setting T close to one provides an accurate solution
while the computational burden is reasonable.

e (0,1) is the step size that affects accuracy of the
linearization of the second-order penalty term. A small I' leads to
more accurate results, but it decreases the convergence speed.
Parameters €,,te and €5, should be significantly smaller than T';
otherwise, the obtained solution might not be optimal.

The ATC method is proven to converge to an accumulation point
(i.e., the shared variables converge to a unique point) that satisfies
the first-order optimality conditions of the local optimization
problems. This accumulation point also satisfies the first-order
optimality conditions of the original problem [35]. In addition, [39]
provides the convergence proof and convergence rate of the
diagonal quadratic approximation method when applied to separate
subproblems of the augmented Lagrangian approach. It is worth to
mention that the quadratic penalty terms act as local convexifiers
and improves the performance of ATC when applied to non-convex
problems.

B. Truncated Diagonal Quadratic Approximation (TDQA)

The collaborative ATC-based TSO+DSO optimal power flow
converges when the optimal values of Lagrange multipliers are
found. As explained in the DQA solution procedure, the multipliers
are not updated in the inner loop. The inner loop helps to improve
the linearization. Each iteration of the outer loop, in which the
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Fig. 5. DQA solution algorithm.

multipliers are updated, might take many inner loops. Thus, the
inner loop increases the computational effort. Obtaining high
accurate solution of the OPF subproblems in the inner loop is not
necessary as the inner loop solution might not be the overall optimal
solution. If we only solve the outer loop and update the Lagrange
multipliers after every iteration, the multipliers move quickly
toward the optimal values. Thus, we omit the inner loop and only
consider the outer loop and update the Lagrange multipliers after
every iteration. This single-loop coordination strategy is called
truncated diagonal quadratic approximation (TDQA) [39, 40]. Note
that one can consider the inner loop, but limiting its iterations with
any extra criterion (in addition to DQA criterion) rather than
allowing it to be able to go to infinity. This procedure is also TDQA
as the inner loop is truncated compared with DQA.

The solution procedure of the TSO+DSO operation with TDQA
is summarized in the following pseud code. It has a similar structure
as DQA except that DQA has inner loop to decrease the gap
between targets and responses and then update multipliers while
TDQA performs this only by the outer loop. In the case study
section, we show that TDQA provides promising results for the
collaborative TSO+DSO operation.

Although inner loop enhances accuracy of the targets and
responses over the course of iterations, it is not necessary for
convergence. Indeed, updating penalty multipliers in the outer loop
(which is based the method of multipliers) guarantees the
convergence of the ATC-based algorithm to the first optimality
conditions. That is, TDQA might slightly increase error; however,
its convergence is still ensured.

IV. NUMERICAL RESULTS

We implement the DQA and TDQA coordination strategies on
a 6-bus and the IEEE 118-bus test systems. The numerical
simulations show efficiency and convergence of the ATC-based
collaborative TSO+DSO algorithm even for the non-convex OPF
problems. All computations are carried out using quadratic
programming solver of Matlab on a 2.6GHz personal computer
with 16GB of RAM.

' A user may deploy a linearized model of ACOPF. Since OPF is solved
continually, in each time interval, the user can deploy results of the previous interval
(i.e., a hot start) to linearize OPF around the operating point. Also, the user may

Solution Algorithm of TDQA

1: initialize X = [x, 5, v, §, 7], A, w,and T

2: while max(||6% — 8|, [v* — T*||) < €puter - k =k + 1 do
3: Solve (13) and (14) in a parallel manner and determine X*
4: Update X: Xk = X*1 + r(x* — xk1)

5: Update multiplier A* and w¥* using (17)-(20)

6: end while
Gl G2
_ bl b2 b3

>
9
Q
IS}

I
I
I
I
I
I
I
I
I
I
I

S

=y

I

ol

=1

>

I

I

I

I

I

I

|

clq

919 L19

Fig. 6. Six-bus test system.

A. 6-Bus Test System

The system topology is shown in Fig. 6. The transmission
system includes six buses, seven transmission lines, and three
generators. Two active distribution grids are connected to the
transmission system. Active distribution grid one consists of nine
buses, five loads, and two DGs. Active distribution grid two
includes seven buses, four loads, and two DGs. The total load is
256MW. The resistance of each distribution line is 40% of the line’s
reactance. The reactive power limit of each generating unit is
considered to be 60% of its active power limit. The reactive power
consumption of each load is assumed to be 30% of its active power
demand. The rest of the information is given in [28]. We study and
analyze the following four cases:

Case 1: Centralized OPF implementation considering a single
operator for transmission and distribution networks

Case 2: The proposed decentralized decision-making with respect
to autonomy of TSO and DSOs

Case 3: Sensitivity of the proposed collaborative TSO+DSO OPF
to variation of input parameters

Cases 4: Comparison between TDQA, APP, ADMM, and ALAD

Case 1: We ignore autonomy and information privacy of TSO
and DSOs and consider that the transmission and distribution
networks are operated by the same operator using the centralized
OPF method. Although this is not a realistic case since TSO and
DSOs are autonomous, the centralized method provides the
references results that can be used to evaluate the performance of
the decentralized decision-making. Since the ratio of lines reactance
to resistance is large in the transmission system, DC-OPF is a
reasonable approximation of AC-OPF. Thus, DC-OPF is used for
TSO, whereas AC-OPF is used for DSOs!. To model the reactive
mismatch at border buses between TSO and DSOs, we consider
voltage magnitude at transmission terminals equal to one, while the
voltage magnitude at the distribution terminals can vary between

convexify ACOPF using techniques such as semidefinite programing or second
order cone programing [42, 43]



0.95 and 1.05 (note that since the voltage at the transmission
terminal is close to one, the reactive mismatch in the tie-line is not
significant compare with the case that AC-OPF is considered for
TSO). The total operating cost of the system is $3,396. The
operating costs of TSO, DSO1, and DSO2 are respectively $2,375,
$351.7, and $669.3. The voltage phasors of buses that connect TSO
to DSO1 are 12 — 0.0293 and 0.9982 — 0.0385, and the voltage
phasors of buses that connect TSO to DSO2 are 12 — 0.0459and
1.00182 — 0.0797.

Case 2: In this case, autonomy and information privacy of the
three systems (i.e., TSO, DSOI, and DSO2) are taken into account,
and each system is operated by an independent operator. We have
considered the same operation horizon for TSO and DSOs, e.g., 5-
minute interval. The OPF problems are run for one snapshot, and it
is assumed that the entities start solving their subproblems
simultaneously. Note that even if the operation intervals of TSO and
DSOs are not the same, to allow a collaborative operation, we can
consider the operation horizon equal to the longest interval. TSO is
the parent, and its children are DSOs 1 and 2. A tie-line connects
the border bus b3 of the transmission system to the border bus b7
of ADG1, and another tie-line links the border bus b4 of the
transmission system to the border bus b16 of ADG2. Thus, voltage
of buses b3 and b7 are the shared variables between TSO and
DSOL, and voltage of buses b4 and b16 are the shared variables
between TSO and DSO2. TSO includes four target variables, and
each DSO has two response variables. We analyze cold start and
hot start conditions.

Cold start: The initial values for targets/responses are set to zero,
and the initial values of penalty multipliers/parameters are
2°=1000, wg=1500, w; 4pg1 = 30, Wois.apcz = 10, I'=0. 9, and
T = 1. For DQA, the inner and outer loops’ convergence thresholds
are €jpmer = 0.004 and €,,40r = 1.4 X 1074, respectively. Note
that TDQA has only the outer loop with the convergence threshold
of €gyter = 1.4 X 107*. The DQA coordination strategy converges
after 33 outer loop iterations and the total number of executed inner
loops is 40, whereas TDQA converges after 34 iterations. Figure
7(a) shows wupdating process of the target-response pair
corresponding to the voltage angles of bus 3 of TSO and bus 1 of
DSOI1 over the course of iterations (note that for DQA, we show
the updating process over the course of overall iterations, i.e., inner
and outer loops). The difference between each pair of target-
response becomes smaller and it is less that the convergence
threshold in iteration 40 (34) of DQA (TDQA). Although in several
iterations (e.g., iteration 18 in TDQA) a target and its corresponding
response value might differ less than the stopping threshold, the
algorithms stop when the differences between every pair of target-
response become less than the stopping threshold. Although TDQA
takes more (outer loop) iterations than DQA, it does not need the
inner loop. In overall, DQA needs 40 iterations (sum of inner and
outer loops iterations) which is 6 iterations more than that in TDQA.
Although DQA needs more iterations than TDQA, it finds the
solution more precisely especially when lower € is chosen. Figure
7(b) shows the average difference between the target-response
values over the course of iterations. Note that for DQA, the
updating process is shown over the course of overall iterations. The
error decays faster in TDQA than DQA because while DQA tries
to enhance the solution by repeating the inner loop with the fixed
multipliers, TDQA seeks to improve the solution by updating the
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multipliers. This reduces the overall number of function
evaluations and the computation time of TDQA (DQA and TDQA
take respectively 3.97 and 3.62 seconds to converge); however, it
might slightly increase the overall error. Table 1 shows the
generation dispatch for the three systems. Since the stopping
threshold is not zero, the dispatch results obtained the centralized
and decentralized algorithms are slightly different. However, as
shown in Table II, the operating costs determined by the
decentralized and decentralized algorithms are similar. The
operating costs of TSO, DSO1, and DSO2 determined by DQA are
$2,379.8, $ 350.8, and $669.3, and they are $2,378.3, $351.7, and $
669.3 when using TDQA. The total power system operating costs
determined by DQA and TDQA are $3,399.9 and $3,399.3 that are
almost the same as the cost obtained by the centralized OPF (i.e.,
$3,396). Note that the sensitivity of the solver and solution to
changes in power generated by TSO’s and DSOs’ generators might
be difference since the cost functions and geographical locations of
the units are different. Thus, although power dispatch of DSOs’ and
TSO’s units are slightly different from the centralized results, both
algorithms yield almost the same operating cost.

To evaluate the performance of the proposed ATC-based
TSO+DSO OPF in more details, we formulate two convergence
indices. The first index is Euclidean norm of mismatch between the
power flow in tie-lines connecting transmission system to active
distribution grids (PAT¢) and the optimal value obtained by the
centralized OPF (P;"):
p;-pTC¢
P

(19)

Pmis -

The second index is the relative distance of the total cost determined
by ATC (f4T¢) from the optimal value determined by the
centralized OPF (f™):

|f*_fATC|

rel = -
f

(20)

The values of the two convergence measures are zero at the
optimal point. Hence, the closer these convergence measures get to
zero, the better solution is obtained. Figure 8 shows P,,;s and rel
values over the course of iterations. The values of the convergence
measures decrease when more iterations are carried out. They are
small enough upon the algorithm convergence.

TABLE I. POWER OUTPUT OF GENERATING UNITS

TSO DSO1 DSO2
Algorithm Gl G2 G3 DGl DZG DIG DG2
Centralize 12941 3403 25 15 18 25 13.17
Dec. (DQA) 12665 3707 25 1491 18 25 13.17
Dec. (TDQA) 12793 3572 25 15 18 25 13.17

TABLE II. OPERATING COST OBTAINED BY DIFFERENT ALGORITHMS

Algorithm TSO DSO1 DSO2 Total cost
Centralize $2,375 $351.7 $669.3 $3,396
Dec. (DQA) $2,379.8 $350.8 $669.3 $3,399.9
Dec. (TDQA) $2,378.3 $351.7 $669.3 $3,399.3
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Fig. 7. a) Target and response values corresponding to b3 of TSO and b7 of DSO1
and b) the average difference between targets and responses.

Hot start: In practice, we usually have good initial values for the
variables and penalty multipliers. For example, when we solve the
OPF problem for interval w, we have the optimal results of interval
w — 1. We know that, in the most cases, the OPF input parameters,
e.g., power demand, vary slightly from interval w — 1 to interval
w. Thus, the solution of interval w — 1 can be utilized to initialized
the problem in interval w. This is called hot start. We can solve the
problem faster and more precise by selecting appropriate initial
values. We assume that the load changes 5% between intervals w —
1 and w and use the solution obtained in interval w — 1 to
initialized the variables and penalty multipliers in interval w. Figure
8 shows the convergence measure for the hot start and cold start
cases. While DQA and TDQA take 40 and 34 iterations using the
cold start, they take 16 and 17 iterations using the hot start,
respectively. The rel index of cold start is 9 X 10™%, whereas it is
1.06 x 10™* using the hot start. Note that since we have good initial
conditions (i.e., good guesses for target/response and penalty
multipliers), DQA and TDQA behaviors are similar.
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Fig. 8. Convergence property of DQA- and TDQA-based collaborative OPF.
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A Full ACOPF: We have tested the proposed algorithm on a

full ACOPF (i.e., ACOPF for TSO and ACOPF for DSOs). The
initial values for targets/responses and multipliers are the same as
the cold start strategy. We stop the algorithm after 60 iterations. The
rel indices obtained from both approaches are shown in Fig. 9. The
decentralized algorithm provides acceptable rel indices. Note that
the combination of DCOPF and ACOPF provides good results in
the first few iterations; however, the rel index gradually goes down
for the case of the full ACOPF (a user may run the algorithm more
than 60 iterations to get a smaller rel index). The DCOPF
approximation for TSO slightly increases the error (because of
linearization of ACOPF) but it enhances the performance of the
decentralized optimization algorithm. The user may prefer to use
such an approximation to get faster results from the decentralized
algorithm. Note that using DCOPF for TSO and ACOPF for DSOs
is aligned with the power industry.

Fig. 9. The rel index for DCOPF+ACOPF and a full ACOPF.

Case 3: To evaluate the convergence behavior of the proposed
collaborative TSO+DSO OPF with respect to variations of
DQA/TDQA parameters, we perform multiple sensitivity analysis.
This provides a user with insights on how to initialize the
algorithms’ parameters. We initialize 1°=1000, wg2=1500,
W7 ape1 = 30, Wi apcz = 10 and I'=0.9. We select various
stopping thresholds as 5 X 107%, 1 x 10™*, 5x 1075, 1 x 107>
and 5 X 107° and demonstrate the relative error and number of
iterations in Fig. 10(a). By decreasing the stopping criteria, the
relative error decreases generally, but the number of iterations
increases. One can select a small enough stopping threshold to
make a trade-off between the stepped and error. When the stopping
threshold is large, DQA’s error is slightly smaller than that for
TDQA. However, for the small thresholds, the relative errors of
TDQA and DQA are almost the same. In overall, comparing the
error and number of iterations shows that TDQA has better
performance than DQA.

We set €,yrer = 1.4 x 1074, 2°=1000, wg=1500, w2, 4ps1 =
30, Wy16.4pc2 = 10, and evaluate the convergence behaviors with
respect to the step size I'. Parameter I' reflects the level of
dependency of the target-response variables in each iteration to
their values obtained in the previous iteration. We vary I in the
range of {0.6, 0.7 ..., 0.8, 0.99}. Figure 10(b) shows that, in
general, increasing I' decreases the number of iterations and
computation time. For DQA and TDQA, the least number of
iterations is obtained by setting I'= 0.9. DQA has more stability to
variation of I'. This is because of the existence of the inner loop in
which the algorithm seeks to reduce the error between the target and
response values without updating the penalty multipliers.
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Fig. 10. a) Iteration and rel index vs. stopping criterion, and b) iterations vs. I'.

Setting different initial values for the penalty multipliers changes
the speed of the algorithms and accuracy of the obtained results. We
select different initial values for multipliers A and w and the step
size I" and calculate the rel index. Figure 11 shows a contour plot
of the rel index versus variations of initial values of A, w, and I. If
A°=1000 and wg=1000, setting the step size I to 0.6 provides the
least error (rel = 2.48 x 107*) after and 51 iterations. If the user
selects the parameter badly (e.g., 1°=2500, wi=2500), T equal to
0.5 yields the relative error of 0.0054 within 75iterations. Note that
although we get the least rel with T' = 0.6, 1°=1000, and w=1000,
it takes a relatively long time to converge.

Case 4: We consider a full ACOPF and implement the proposed
algorithm and three other methods, namely ADMM[20], APP[22],
and ALAD (that is based on ATC)[33]. We compare the TDQA-
based TSO+DSO optimal power flow to OPF solved by the other
three methods [3]. Although all these four methods are based on the
augmented Lagrangian relaxation, TDQA and APP solve the
problem in a fully parallel manner while ADMM and ALAD are
sequential solution algorithms. This means that in iteration k of
ADMM and ALAD, DSOs cannot solve their subproblems without
having the TSO’s shared variable values in iteration k, whereas in
TDQA and APP, TSO and DSOs solve their subproblems in parallel
as they need their neighbors’ shared variable values determined in
iteration k — 1. Each iteration of TDQA and APP takes around 0.1
seconds while it is 0.16 seconds for ADMM and ALAD. That is,
each iteration of TDQA (and APP) is generally faster than that in
ALAD and ADMM. Figure 12 shows the rel index after 100
iterations. All four methods converge to acceptable rel indices.
APP takes many iterations for the rel index to go below an
acceptable threshold, whereas the other three methods reach to an
acceptable threshold after the first few iterations. Since ALAD and
ADMM are sequential algorithms and TDQA is a parallel one, the
solution time of TDQA, in each iteration, is faster than that for
ALAD and ADMM. In the simulations, we have tried to provide
reasonable and fair conditions to compare the four algorithms.
Although the TDQA algorithm shows a good performance for the
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considered TSO+DSO OPF in this paper, we cannot make a solid
conclusion that which algorithm has a better overall performance.
The performance of the algorithms depends on the type of the
problem and initial values of variables and penalty
multipliers/factors (refer to [3] for more details).

It should be noted that the considered OPF problem in this paper
has two levels. For problems with several levels of hierarchy, for
instance, if TSO (level 1), DSOs (level 2), and microgrids (level 3)
want to solve a collaborative OPF, the parallel solution algorithm,
such as TDQA, is expected to be faster than the sequential one..

"

Fig. 11. Convergence measure rel versus initial values of multipliers and I'.

“““““““

Fig. 12. Comparison between TDQA, APP, ADMM, and ALAD.

B. IEEE 118-bus system

Cold start: This test system comprises 31 autonomous systems:
one TSO and 30 DSOs. The transmission system includes 118
buses, 186 lines, and 54 generators. Each active distribution grid
consists of two generating units. We use a cold start, i.e., the initial
values of the local variables of TSO and DSOs as well as
targets/responses (i.e., shared variables) are set to zero. The initial
values for penalty multipliers are selected as A° =100, w°=100,
I'=0.6, and the stopping thresholds are €;ppor = 0.2 and €,y ¢er =
0.002. As shown in Table III, the collaborative ATC-based
TSO+DSO operation with the DQA coordination strategy
converges after 66 outer loop and 122 inner loop iterations (around
2 seconds). If we use the TDQA coordination strategy, the
algorithm takes 99 iterations (only outer loop) to converge after less
than 2 seconds). The overall operating cost of the system
determined by DQA and DTQA is $5,115.6 and $5,120.6,
respectively. In order to evaluate accuracy of the results, we ignore
autonomy and information privacy of TSO and DSOs and solve the
centralized OPF. The overall operating cost is $5,098.6. Although
error of DQA and TDQA is negligible, DQA is slightly more
accurate.



Hot start: Since in practice we can use a hot start scenario, we
are potentially capable of speeding up the convergence process. We
choose appropriate initial points and run a hot start scenario. The
results show that TDQA and DQA respectively take 11 and nine
iterations to converge, which is much faster (almost ten times) than
the cold start scenario. Figure 13 shows the rel index over the
course of iterations.

Fig. 13. rel index for the IEEE 118-bus system (cold and hot start scenarios).

TABLE III. TSO+DSO OPF FoR THE IEEE 118-BUS

Algorithm Total cost Iteration
Centralized TSO+DSO OPF $5,098.6 -
Decentralized TSO+DSO OPF cold DQA $5,116.5 92
start TDQA $5,120.6 98
Decentralized TSO+DSO OPF hot DQA $5,117.4 9
start TDQA $5,116.8 11

V. CONCLUSION

Power systems are being transformed to distributed energy
infrastructures in which electricity is generated in both transmission
and distribution levels. This paper presents a decentralized OPF
algorithm for collaborative management of transmission and
distribution systems. The proposed algorithm is based on analytical
target cascading (ATC) for multilevel hierarchical optimization.
The OPF problem associated with TSO is formulated in the upper
level of the hierarchy while OPFs of DSOs are assigned to the lower
level. As TSO and DSOs are autonomous systems, the information
privacy plays a critical role in their joint management decisions. In
the proposed framework, TSO and DSOs exchange only limited
information namely target and response (shared) variables, and they
are not required to reveal their commercially sensitive information
to other parties. Two coordination strategies namely DQA and
TDQA are presented to coordinate TSO and DSOs in a
decentralized manner. DQA and TDQA allow parallel execution of
local OPF problems (associated with TSO and DSOs).

The numerical tests on a 6-bus and the IEEE 118-bus systems
show the accuracy and convergence performance of our proposed
ATC-based collaborative TSO+DSO OPF method. Although both
DQA and TDQA coordination strategies provide promising results,
the collaborative TSO+DSO operation with TDQA wusually
determines optimal results with almost the same accuracy as DQA
while usually taking less iterations. Using a hot start scenario to
initialize the target/response pairs and multipliers significantly
enhances the solution speed of the proposed TSO+DSO operation
algorithm, especially for the large-scale system.
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