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Abstract—The form of constraint coefficient matrix of an 

optimization problem significantly affects the solution procedure 

for finding the optimal results, especially when iterative 

algorithms are implemented. In power systems, the order of bus 

numbers affects the power system’s graph adjacency matrix and 

accordingly affects the optimal power flow (OPF) problem’s 

constraint coefficient matrix. Changing this constraint coefficient 

matrix might change the OPF solution time. In this paper, we show 

that the order of bus numbers affects the solution time of AC and 

DC OPF problems when an interior point method-based solver is 

used. We propose a partition-based bus renumbering algorithm to 

be implemented before solving the OPF problem. This algorithm 

constructs a well-patterned constraint coefficient matrix and 

speeds up the OPF solution procedure. Numerical results on the 

IEEE 118-bus system and the 13659-bus European transmission 

system show effectiveness of the proposed algorithm in reducing 

the OPF’s solution time. Implementation of the proposed method 

leads to about 65% of timesaving when Matpower is used to solve 

OPF. 

 
Index Terms— Interior point method, optimal power flow, 

system partitioning, bus numbering. 

I.  INTRODUCTION 

A.  Motivation 

O MATHEMATICALLY formulate and solve power 

system problems, each element of the system (e.g., buses, 

generating units, and lines) needs to be tagged with a specific 

name/number. Although a given power system has a specific 

topology, numerous options exist to name elements of the 

system. For instance, a bus in a specific location may be named 

either bus 𝑖 or bus 𝑗. One can say that a power system is a graph 

in which bus numbers (i.e., order of vertex numbers) are not 

necessary assigned based on the graph topology. That is, if the 

graph is partitioned into several subgraphs, neighboring buses 

that belong to the same subgraph are not necessary numbered 

consecutively. For instance, in the IEEE 118-bus system, buses 

17 and 113 are next to each other, while bus 112 is far from 

these two buses. The bus numbering does not change the 

solution of an optimization problem; however, we have found 

that it considerably changes the solution time. Random bus 

numbering leads to a scattered admittance matrix. 

Consequently, the system adjacency matrix and constraint 

coefficient matrix are not organized. 

B.  Literature Review 

The optimal power flow (OPF) problem aims to find an 

optimal operating point of a power system in which generation 

cost and/or transmission loss is minimized subject to specific 

constraints on power and voltage variables [1]. The OPF 

problem is highly nonconvex and NP-hard in the worst case [2]. 

Formulation of the complete OPF model (AC-OPF), and the 

simplified version (DC-OPF) can be found in [3]. The OPF is 

an online operational problem. Meaning, it must solve online to 

keep the optimality of the operating point (OPF is usually 

solved every 5 minutes) [4]. Therefore, improving the solution 

time of the OPF problem is valuable for large/medium-scale 

power systems.  

Various approaches have been presented in the literature to 

solve OPF. One of the most popular approaches, which has 

been widely used to solve OPF (and many other optimization 

problems), is the interior point method (IPM). Most of the open-

source and commercial solvers, such as IBM ILOG CPLEX, 

MOSEK, LINDO, Xpress Optimizer, BPMPD, MIPS, 

MATLAB quadprog function, MATLAB fmincon function, 

etc., utilize the concept of IPM to solve optimization problems, 

such as OPF. Reference [5] discusses the importance of sparsity 

pattern and structure of a constraint matrix on exploiting the 

optimal solution of an optimization problem in the IPM-based 

solvers. It is proved that the pattern of the constraint matrix, 

which relates to the topology of the network graph, has a 

considerable impact on the direction of IPM-based solvers for 

exploiting the optimal solution in both linear and nonlinear 

programming problems [6, 7]. Therefore, initial graph 

partitioning and reordering the node numbers to construct a 
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well-patterned constraint matrix potentially speeds up the 

solution procedure of a solver, when applied to the OPF 

problem. 

Traditionally, some efforts have been done for 

equations/variables reordering of the AC-OPF problem [8, 9]. 

Since the most time-consuming task in any iteration of IPM is 

the factorization of Hessian matrix that corresponds to the 

linearized KKT equations, some works have been done for the 

efficient solution of the linear system of equations to ensure the 

robustness of the factorization process and its speed-up [10, 11]. 

However, the idea of reordering bus numbers of a power system 

before constructing the mathematical model of the optimization 

problem to improving the IPM-based OPF solution time has not 

been considered in previous works. 

C.  Contribution 

In this paper, we demonstrate that the order of the bus 

numbers changes the OPF problem’s constraint coefficient 

matrix and considerably affects the solution time. We propose 

a partition-based bus renumbering (PBBR) algorithm to 

partition the power grid graph into several sub-graphs. We 

rename the bus numbers in a manner to have consecutive bus 

numbers in the same sub-graph. This algorithm is implemented 

before formulating and solving the OPF problem. Indeed the 

proposed algorithm is an offline procedure that helps us to 

construct a well-patterned constraint matrix. We do not change 

any physical constraints/objective of the OPF problem and any 

module of the interior point method. The proposed algorithm 

significantly reduces the solution time of DC-OPF and AC-

OPF, when an IPM-based solver is used. Simulation results on 

the IEEE 118-bus system and the European 13659-bus system 

show effectiveness of the proposed bus renumbering algorithm. 

More than 60% of timesaving is achieved with the 

implementation of PBBR. 

Note that changing the numbering order of buses only 

changes labels of the OPF inputs, not the results. However, the 

constraint coefficient matrix and the pattern of the feasibility 

region (i.e., feasible design space of the optimization problem) 

and hence exploiting path toward the optimal solution will 

change when the labels of the input parameters change (see 

reference [5-7]).  

D.  Paper Organization 

The remainder of the paper is organized as follows. The 

proposed PBBR algorithm is presented in Section II. The 

numerical results are discussed in Section III. Concluding 

remarks are provided in Section IV. 

II.  PARTITION-BASED BUS RENUMBERING ALGORITHM 

Consider the 13659-bus PEGASE system [12]. Figure 1(a) 

shows the location of nonzero elements of the system’s 

admittance matrix (Y-bus). Since the bus numbers are not 

organized, the admittance matrix has a random pattern. Such a 

random pattern will appear in Jacobian and the constraint 

coefficient matrices of the 13659-bus PEGASE system. Taking 

the inverse of the Jacobian matrix is time-consuming not only 

because of the size of the system but also because of the 

scattered pattern of this matrix. Intuitively, the same thing 

might happen for a solver when applying to solve OPF of the 

PEGASE system with such a scarred constraint coefficient 

matrix. We present an algorithm, which is based on a graph 

partitioning technique, to rearrange the bus numbers and, 

consequently, the admittance, Jacobian, and the constraint 

coefficient matrices. 
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Fig. 1. Location of nonzero elements of 13659-bus PEGASE system’s 

admittance matrix for (a) original bus numbering, (b) PBBR technique with 4 

partitions, and (c) PBBR technique with 5 partitions. 

 



 

In order to arrange a well-patterned admittance matrix, first, 

system partitions should be determined. Different partitioning 

methods have been proposed in the literature. K-means and 

spectral clustering are two popular partitioning method. We 

apply the spectral clustering method, which is proven to be 

advantageous for graph partitioning [13]. Reference [14] 

proposed a spectral clustering technique for large-scale graphs. 

A Matlab function (grPartition) is provided in [15] for efficient 

and fast partitioning of very large graphs using the spectral 

factorization method presented in reference [14]. The desired 

number of partitions and edge-weights matrix are inputs of 

grPartition, and as outputs, it returns the cost of partitioning 

and a vector with the cluster index for every node. By using this 

method, the graph might be decomposed from the nodes and/or 

edges. That is, the power grid can be decomposed from the 

perspective of buses and/or transmission lines. Partitioning the 

grid from the perspective of a bus leads to introducing two new 

buses to replace the original bus. Although it might be useful 

for few power system problems [16], in this paper, we only aim 

at reordering the bus numbers to reorganize the system Y-bus 

and constraint coefficient matrices. Thus, we need to avoid 

introducing new elements and rather focus on renumbering the 

existing elements. Hence, to prevent node slicing during the 

partitioning process, we set an arbitrary large cost (i.e., weight) 

to each bus.  

To determine the partitioning cost from the transmission 

lines’ perspective, dependency and closeness of the buses to 

each other need to be determined. Before partitioning, AC 

power flow is solved to obtain active and reactive power flow 

in each transmission line. We use the concept of apparent power 

to characterize dependency of the partitions. Indeed, if the 

apparent power exchanged between two neighboring partitions 

via the tie-lines is large, it indicates that the partitions are 

heavily dependent. It is not desirable to separate the buses 

which are strongly dependent and put them in different 

partitions. Such buses would be better to be in the same zone. 

Hence, we assign the apparent power of each line as the weight 

of the corresponding edge of the system graph. The partitioning 

cost from the perspective of transmission lines is the summation 

of apparent power flowing in the crossed branches (i.e., the 

branches that interconnect the partitions). Thus, we introduce 

index 𝜛 to determine dependency between the partitions. 

Where 𝑆𝑙𝑐  the apparent power of is crossed lines and 𝑆𝑙 is the 

total apparent power of all transmission lines. This index 

indicates the quality of the partitioning process. 

𝜛 = ∑𝑆𝑙𝑐 ×  𝑆𝑙
−1                                      (1) 

𝑙𝑐 ∈ {crossed lines} , 𝑙 ∈ {all lines of the system} 
 

We now form an edge-weights matrix 𝑪 as follows, which is 

an input for grPartition. 

 

𝑪 =

[
 
 
 
 
𝑀𝑏1     𝑆𝑙𝑏1−𝑏2    𝑆𝑙𝑏1−𝑏3    ….     𝑆𝑙𝑏1−𝑏𝑛

𝑆𝑙𝑏2−𝑏1    𝑀𝑏2    𝑆𝑙𝑏2−𝑏3    ….     𝑆𝑙𝑏2−𝑏𝑛

 
𝑆𝑙𝑏3−𝑏1     𝑆𝑙𝑏3−𝑏2    𝑀𝑏3     ….     𝑆𝑙𝑏3−𝑏𝑛

⋮
𝑆𝑙𝑏𝑛−𝑏1     𝑆𝑙𝑏𝑛−𝑏2    𝑆𝑙𝑏𝑛−𝑏3     ….     𝑀𝑏𝑛]

 
 
 
 

                      (2) 

 

The total cost of partitioning is the summation of costs of bus 

slicing and branch cutting. 

 

Λ = ∑ 𝜛

𝑖𝑗

+ ∑ Μ𝑏

𝑏

 

where M𝑏 is a big number that indicates the cost of slicing bus 

𝑏. The above process decomposes the power grid into multiple 

partitions and determine that each bus 𝑏 belongs to which 

partition. However, the system Y-bus and constraint coefficient 

matrices are not still well-parented. For instance, for the 13659-

bus system, the Y-bus matrix is still similar to Fig. 1 (a). To 

create a well-pattern matrix, we propose to renumber the buses. 

The buses that belong to a partition are renumbered 

consecutively. For instance, assume that a system is separated 

into two partitions and {𝑏1, 𝑏2, 𝑏5} ∈ Partition1 and 

{𝑏3, 𝑏4, 𝑏6} ∈ Partition2. The renumber process reorganized 

the bus number as {𝑏1
′  , 𝑏2

′ , 𝑏3
′ } ∈ Partition1 and {𝑏4

′ , 𝑏5
′ , 𝑏6

′ } ∈

Partition2. The partitioning and renumbering process modifies 

the disorganized Y-matrix of the 13659-bus system shown in 

Fig. 1 (a) and creates the well-patterned matrices shown in 

Figs. 1 (b) and (c). 

The steps of the proposed PBBR algorithm is summarized as 

follows: 

 

Algorithm 1. Steps of the proposed PBBR technique 

Step 1. 

 

Step 2. 

 

Step 3. 

 

 

 

 

Step 4. 

 

 

 

Step 5. 

 

 

 

Step 6. 

 

 

 

Step 7. 

Step 8. 

Initialization: Read system data and set k to the 

desired number of partitions 

Run Power Flow: Solve AC power flow 

equations 

Form C Matrix: Create an edge-weights matrix C 

in which off-diagonal elements are apparent power 

of corresponding edges (lines), and diagonal 

elements are equal to a big enough value (to avoid 

slicing a bus in partitioning procedure) 

Run Spectral Clustering Partitioner: Partition 

the graph using grPartition function in which k 

and C are inputs, and the cost of partitioning and 

the partitioned graph are outputs 

Form NR: Create a vector, called NR, based on 

partitioned graph, which includes new bus 

numberings (buses belong to the same partition 

have consecutive numbers in NR) 

Update System Data: Renumber buses according 

to NR, and reorganize sending/receiving terminals 

of lines and location of generating units and loads 

based on the new numbering 

Run OPF 

Reverting System Data: Use NR and revert bus 

numbers to the original bus numbering 

 

The proposed technique convert disorganized admittance 

and constraint coefficient matrices of a power system into well-

patterned matrices. Thus, the IPM-based solvers solve the OPF 

problem much faster compared with the case that the matrices 



 

are not partitioned and renumbered. Note that the proposed 

PBBR technique is an offline process in which AC power flow 

is solved for a sample power demand. Hence, obtaining the NR 

vector (see Step 5 of Algorithm 1) is an offline procedure. 

However, OPF is an online problem, which is solved every 5 

minutes as recommended by standards [4]. Therefore, 

performing the PBBR technique (an offline procedure) 

considerably reduces the solution time of the OPF problem (an 

online problem) in each interval. Moreover, it will be illustrated 

in the numerical results Section that decreasing or increasing 

the system demand has a negligible effect on the time-saving 

benefit that an operator gains by application of the proposed 

PBBR technique. 

III.  NUMERICAL RESULTS 

The IEEE 118-bus system and the European 13659-bus 

transmission system are used to evaluate the effectiveness of 

the PBBR algorithm in reducing the computational burden of 

the DC- and AC-OPF problems. All simulations are carried out 

on a personal computer with an Intel(R) Xeon(R) CPU @2.6 

GHz and 16 GB of RAM. To provide a fair comparison, 

MATPOWER 6.0 is used for all experiments in which 

Mathpower interior point solver (MIPS) is assigned for both 

DC-OPF and AC-OPF [17, 18].  

 

A. 118-Bus System 

The system has 118 buses, 54 generating units, 186 lines, 

and 91 load points. We study AC-OPF with ten scenarios. In 

the first scenario, AC-OPF is solved without graph partitioning 

and bus renumbering (i.e., the number of partitions 𝑘 = 1). In 

scenarios two to ten, the system is partitioned respectively into 

two to ten subgraphs (i.e., 𝑘 = 2,… , 10) and the bus 

renumbering algorithm is applied. The value of the objective 

function for all ten scenarios is $129.66K. This shows that the 

proposed PBBR algorithm has no impact on the optimal 

solution of the optimization problem.  

We analyze three different load levels to demonstrate the 

effectiveness of PBBR for various loading conditions. The base 

case uses the standard load values for the IEEE 118-bus system. 

We multiply the load on each bus to 0.8 and 1.2 to create two 

new load levels. The solver time with respect to 𝑘 is shown in 

Fig. 2. The solver time significantly decreases after bus 

renumbering. For instance, the solver time is 0.672 (Sec.) for 

the base case loading condition without bus renumbering (i.e., 

𝑘 = 1), while the time goes down to 0.219 (Sec.) if 𝑘 = 2. That 

is, 67.4% of time reduction. Increasing number of partitions 

from three to ten does not lead to a considerable change in the 

solver time. Not that we observed this behavior for many test 

cases; however, we do not generalize this for all systems. 

 

B. 13659-Bus System 

This is a large-scale realistic power system with 13659 

buses, 4092 generating units and 20467 lines. We study the DC-

OPF problem. We use shift factor values to formulate the power 

flow constraints. The PBBR algorithm is applied for ten 

scenarios as 𝑘 = 1, 2, … , 10. The same values of cost function 

and decision variables are obtained for all ten scenarios. The 

solver time versus 𝑘 is given in Fig. 3 for three loading 

conditions. The solver time reduces by 64.3% when the system 

is partitioned into two subgraphs and bus renumbering is 

applied compare with the scenario without graph partitioning. 

Note that the solver time for the scenario with 𝑘 = 5 is more 

than that for 𝑘 = 4. This is because of the differences in 

system’s connectivity graph and sparsity matrix. Figures 1(b) 

and 1(c) respectively show the sparsity matrices for 𝑘 = 4 and 

𝑘 = 5. Partitioning the system into four subgraphs leads to a 

more well-patterned sparsity matrix compared with that for the 

scenario with five subgraphs. It illustrates the influence of 

partitioning quality in the OPF solution time of the proposed 

PBBR method. That is, a higher quality in partitioning step 

leads to more saving in the OPF solution time step. 

 

   
Fig. 2. Solution time of the AC-OPF solver for the 118-bus system with respect 

to the number of partitions (k). 

 

 

 
Fig. 3. Solution time of the DC-OPF solver for the 13659-bus system with 

respect to the number of partitions (k). 

 

We analyze the shift factor (SF) matrix of the 13659-bus 

system. The SF matrix is used to model the network security 

constraints in the DC-OPF problem. Thus, the SF matrix 

constructs a large part of the constraint coefficient matrix of the 

optimization problem [19]. Locations and values of the SF 

matrix elements depend on the location of the reference bus and 

system topology. Therefore, changing bus numbering leads to 

changing in locations and values of the SF matrix elements. The 

effect of the PBBR algorithm on the SF matrix of the 

 



 

 
(a) 

 

 
(b) 

Fig. 4. Locations of dominant elements (larger than 1𝑒−3) of the shift factor 

matrix of the 13659-bus system for (a) the original bus numbering (i.e., 𝑘 = 1) 

and (b) with application of PBBR with four partitions (𝑘 = 4). 

 

13659-bus system is depicted in Fig. 4. Although the number of 

dominant elements slightly increases after bus renumbering, the 

neighboring non-zero elements of each subgraph are gathered 

together. The sparsity of the constraint matrix is enhanced and 

leads to constructing a more well-patterned constraint matrix. 

IPM-based solvers handle the constraint matrix of Figure 4(b) 

more efficient than the matrix of Figure 4(a). This significantly 

speeds up the solvers’ solution procedure. 

IV.  CONCLUSION 

The arrangement of bus numbers in power systems affects 

the OPF problem’s constraint coefficient matrix. This 

consequently affects the optimization solution time when an 

interior point method-based solver is used. In this paper, a bus 

renumbering algorithm is proposed to rearrange the number of 

buses of a power system. The proposed algorithm, which is a 

fast offline procedure, is based on a graph partitioning 

technique (i.e., spectral clustering). The numerical results on 

the IEEE 118-bus systems and the 13659-bus PEGASE system 

show that implementation of the proposed algorithm prior to 

solving OPF leads to about 65% of reduction in the solution 

time compared with the classical OPF without bus 

renumbering. 
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