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Abstract—The form of constraint coefficient matrix of an
optimization problem significantly affects the solution procedure
for finding the optimal results, especially when iterative
algorithms are implemented. In power systems, the order of bus
numbers affects the power system’s graph adjacency matrix and
accordingly affects the optimal power flow (OPF) problem’s
constraint coefficient matrix. Changing this constraint coefficient
matrix might change the OPF solution time. In this paper, we show
that the order of bus numbers affects the solution time of AC and
DC OPF problems when an interior point method-based solver is
used. We propose a partition-based bus renumbering algorithm to
be implemented before solving the OPF problem. This algorithm
constructs a well-patterned constraint coefficient matrix and
speeds up the OPF solution procedure. Numerical results on the
IEEE 118-bus system and the 13659-bus European transmission
system show effectiveness of the proposed algorithm in reducing
the OPF’s solution time. Implementation of the proposed method
leads to about 65% of timesaving when Matpower is used to solve
OPF.

Index Terms— Interior point method, optimal power flow,
system partitioning, bus numbering.

1. INTRODUCTION

A. Motivation

O MATHEMATICALLY formulate and solve power

system problems, each element of the system (e.g., buses,
generating units, and lines) needs to be tagged with a specific
name/number. Although a given power system has a specific
topology, numerous options exist to name elements of the
system. For instance, a bus in a specific location may be named
either bus i or bus j. One can say that a power system is a graph
in which bus numbers (i.e., order of vertex numbers) are not
necessary assigned based on the graph topology. That is, if the
graph is partitioned into several subgraphs, neighboring buses
that belong to the same subgraph are not necessary numbered
consecutively. For instance, in the IEEE 118-bus system, buses
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17 and 113 are next to each other, while bus 112 is far from
these two buses. The bus numbering does not change the
solution of an optimization problem; however, we have found
that it considerably changes the solution time. Random bus
numbering leads to a scattered admittance matrix.
Consequently, the system adjacency matrix and constraint
coefficient matrix are not organized.

B. Literature Review

The optimal power flow (OPF) problem aims to find an
optimal operating point of a power system in which generation
cost and/or transmission loss is minimized subject to specific
constraints on power and voltage variables [1]. The OPF
problem is highly nonconvex and NP-hard in the worst case [2].
Formulation of the complete OPF model (AC-OPF), and the
simplified version (DC-OPF) can be found in [3]. The OPF is
an online operational problem. Meaning, it must solve online to
keep the optimality of the operating point (OPF is usually
solved every 5 minutes) [4]. Therefore, improving the solution
time of the OPF problem is valuable for large/medium-scale
power systems.

Various approaches have been presented in the literature to
solve OPF. One of the most popular approaches, which has
been widely used to solve OPF (and many other optimization
problems), is the interior point method (IPM). Most of the open-
source and commercial solvers, such as IBM ILOG CPLEX,
MOSEK, LINDO, Xpress Optimizer, BPMPD, MIPS,
MATLAB quadprog function, MATLAB fmincon function,
etc., utilize the concept of IPM to solve optimization problems,
such as OPF. Reference [5] discusses the importance of sparsity
pattern and structure of a constraint matrix on exploiting the
optimal solution of an optimization problem in the IPM-based
solvers. It is proved that the pattern of the constraint matrix,
which relates to the topology of the network graph, has a
considerable impact on the direction of [IPM-based solvers for
exploiting the optimal solution in both linear and nonlinear
programming problems [6, 7]. Therefore, initial graph
partitioning and reordering the node numbers to construct a



well-patterned constraint matrix potentially speeds up the
solution procedure of a solver, when applied to the OPF
problem.

Traditionally, some efforts have been done for
equations/variables reordering of the AC-OPF problem [8, 9].
Since the most time-consuming task in any iteration of IPM is
the factorization of Hessian matrix that corresponds to the
linearized KKT equations, some works have been done for the
efficient solution of the linear system of equations to ensure the
robustness of the factorization process and its speed-up [10, 11].
However, the idea of reordering bus numbers of a power system
before constructing the mathematical model of the optimization
problem to improving the IPM-based OPF solution time has not
been considered in previous works.

C. Contribution

In this paper, we demonstrate that the order of the bus
numbers changes the OPF problem’s constraint coefficient
matrix and considerably affects the solution time. We propose
a partition-based bus renumbering (PBBR) algorithm to
partition the power grid graph into several sub-graphs. We
rename the bus numbers in a manner to have consecutive bus
numbers in the same sub-graph. This algorithm is implemented
before formulating and solving the OPF problem. Indeed the
proposed algorithm is an offline procedure that helps us to
construct a well-patterned constraint matrix. We do not change
any physical constraints/objective of the OPF problem and any
module of the interior point method. The proposed algorithm
significantly reduces the solution time of DC-OPF and AC-
OPF, when an IPM-based solver is used. Simulation results on
the IEEE 118-bus system and the European 13659-bus system
show effectiveness of the proposed bus renumbering algorithm.
More than 60% of timesaving is achieved with the
implementation of PBBR.

Note that changing the numbering order of buses only
changes labels of the OPF inputs, not the results. However, the
constraint coefficient matrix and the pattern of the feasibility
region (i.e., feasible design space of the optimization problem)
and hence exploiting path toward the optimal solution will
change when the labels of the input parameters change (see
reference [5-7]).

D. Paper Organization

The remainder of the paper is organized as follows. The
proposed PBBR algorithm is presented in Section II. The
numerical results are discussed in Section III. Concluding
remarks are provided in Section I'V.

II. PARTITION-BASED BUS RENUMBERING ALGORITHM

Consider the 13659-bus PEGASE system [12]. Figure 1(a)
shows the location of nonzero elements of the system’s
admittance matrix (Y-bus). Since the bus numbers are not
organized, the admittance matrix has a random pattern. Such a
random pattern will appear in Jacobian and the constraint
coefficient matrices of the 13659-bus PEGASE system. Taking
the inverse of the Jacobian matrix is time-consuming not only
because of the size of the system but also because of the

scattered pattern of this matrix. Intuitively, the same thing
might happen for a solver when applying to solve OPF of the
PEGASE system with such a scarred constraint coefficient
matrix. We present an algorithm, which is based on a graph
partitioning technique, to rearrange the bus numbers and,
consequently, the admittance, Jacobian, and the constraint
coefficient matrices.
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Fig. 1. Location of nonzero elements of 13659-bus PEGASE system’s
admittance matrix for (a) original bus numbering, (b) PBBR technique with 4
partitions, and (c) PBBR technique with 5 partitions.



In order to arrange a well-patterned admittance matrix, first,
system partitions should be determined. Different partitioning
methods have been proposed in the literature. K-means and
spectral clustering are two popular partitioning method. We
apply the spectral clustering method, which is proven to be
advantageous for graph partitioning [13]. Reference [14]
proposed a spectral clustering technique for large-scale graphs.
A Matlab function (grPartition) is provided in [15] for efficient
and fast partitioning of very large graphs using the spectral
factorization method presented in reference [14]. The desired
number of partitions and edge-weights matrix are inputs of
grPartition, and as outputs, it returns the cost of partitioning
and a vector with the cluster index for every node. By using this
method, the graph might be decomposed from the nodes and/or
edges. That is, the power grid can be decomposed from the
perspective of buses and/or transmission lines. Partitioning the
grid from the perspective of a bus leads to introducing two new
buses to replace the original bus. Although it might be useful
for few power system problems [16], in this paper, we only aim
at reordering the bus numbers to reorganize the system Y -bus
and constraint coefficient matrices. Thus, we need to avoid
introducing new elements and rather focus on renumbering the
existing elements. Hence, to prevent node slicing during the
partitioning process, we set an arbitrary large cost (i.e., weight)
to each bus.

To determine the partitioning cost from the transmission
lines’ perspective, dependency and closeness of the buses to
each other need to be determined. Before partitioning, AC
power flow is solved to obtain active and reactive power flow
in each transmission line. We use the concept of apparent power
to characterize dependency of the partitions. Indeed, if the
apparent power exchanged between two neighboring partitions
via the tie-lines is large, it indicates that the partitions are
heavily dependent. It is not desirable to separate the buses
which are strongly dependent and put them in different
partitions. Such buses would be better to be in the same zone.
Hence, we assign the apparent power of each line as the weight
of the corresponding edge of the system graph. The partitioning
cost from the perspective of transmission lines is the summation
of apparent power flowing in the crossed branches (i.e., the
branches that interconnect the partitions). Thus, we introduce
index @w to determine dependency between the partitions.
Where S;. the apparent power of is crossed lines and S; is the
total apparent power of all transmission lines. This index
indicates the quality of the partitioning process.

w =

M

Z Siex St

lc € {crossed lines}, I € {all lines of the system}

We now form an edge-weights matrix C as follows, which is
an input for grPartition.

Mp1  Swi-b2 Sib1-b3 Sib1-bn
Sib2-b1 Mp2 Sip2-p3 Sib2-bn

C=|Swz-b1 Swz-pz Mps Sib3-bn )
lSlbn—bl Sibn-b2  Sibn-b3 Mth

The total cost of partitioning is the summation of costs of bus
slicing and branch cutting.

ij b

where M, is a big number that indicates the cost of slicing bus
b. The above process decomposes the power grid into multiple
partitions and determine that each bus b belongs to which
partition. However, the system Y-bus and constraint coefficient
matrices are not still well-parented. For instance, for the 13659-
bus system, the Y-bus matrix is still similar to Fig. 1 (a). To
create a well-pattern matrix, we propose to renumber the buses.
The buses that belong to a partition are renumbered
consecutively. For instance, assume that a system is separated
into two partitions and {by, by, bs} € Partition; and
{bs, by, bg} € Partition,. The renumber process reorganized
the bus number as {b{ , by, b5} € Partition; and {by, bs, b¢} €
Partition,. The partitioning and renumbering process modifies
the disorganized Y-matrix of the 13659-bus system shown in
Fig. 1 (a) and creates the well-patterned matrices shown in
Figs. 1 (b) and (c).

The steps of the proposed PBBR algorithm is summarized as
follows:

Algorithm 1. Steps of the proposed PBBR technique
Step 1.  Initialization: Read system data and set & to the
desired number of partitions

Step2. Run Power Flow: Solve AC power flow

equations

Step 3. Form C Matrix: Create an edge-weights matrix C
in which off-diagonal elements are apparent power
of corresponding edges (lines), and diagonal
elements are equal to a big enough value (to avoid

slicing a bus in partitioning procedure)

Step 4. Run Spectral Clustering Partitioner: Partition
the graph using grPartition function in which &
and C are inputs, and the cost of partitioning and

the partitioned graph are outputs

Step 5.  Form NVR: Create a vector, called NR, based on
partitioned graph, which includes new bus
numberings (buses belong to the same partition

have consecutive numbers in /VR)

Step 6. Update System Data: Renumber buses according
to /VR, and reorganize sending/receiving terminals
of lines and location of generating units and loads

based on the new numbering
Run OPF

Reverting System Data: Use VR and revert bus
numbers to the original bus numbering

Step 7.
Step 8.

The proposed technique convert disorganized admittance
and constraint coefficient matrices of a power system into well-
patterned matrices. Thus, the IPM-based solvers solve the OPF
problem much faster compared with the case that the matrices



are not partitioned and renumbered. Note that the proposed
PBBR technique is an offline process in which AC power flow
is solved for a sample power demand. Hence, obtaining the VR
vector (see Step 5 of Algorithm 1) is an offline procedure.
However, OPF is an online problem, which is solved every 5
minutes as recommended by standards [4]. Therefore,
performing the PBBR technique (an offline procedure)
considerably reduces the solution time of the OPF problem (an
online problem) in each interval. Moreover, it will be illustrated
in the numerical results Section that decreasing or increasing
the system demand has a negligible effect on the time-saving
benefit that an operator gains by application of the proposed
PBBR technique.

III. NUMERICAL RESULTS

The IEEE 118-bus system and the European 13659-bus
transmission system are used to evaluate the effectiveness of
the PBBR algorithm in reducing the computational burden of
the DC- and AC-OPF problems. All simulations are carried out
on a personal computer with an Intel(R) Xeon(R) CPU @2.6
GHz and 16 GB of RAM. To provide a fair comparison,
MATPOWER 6.0 is used for all experiments in which
Mathpower interior point solver (MIPS) is assigned for both
DC-OPF and AC-OPF [17, 18].

A. 118-Bus System

The system has 118 buses, 54 generating units, 186 lines,
and 91 load points. We study AC-OPF with ten scenarios. In
the first scenario, AC-OPF is solved without graph partitioning
and bus renumbering (i.e., the number of partitions k = 1). In
scenarios two to ten, the system is partitioned respectively into
two to ten subgraphs (i.e., k=2,..,10) and the bus
renumbering algorithm is applied. The value of the objective
function for all ten scenarios is $129.66K. This shows that the
proposed PBBR algorithm has no impact on the optimal
solution of the optimization problem.

We analyze three different load levels to demonstrate the
effectiveness of PBBR for various loading conditions. The base
case uses the standard load values for the IEEE 118-bus system.
We multiply the load on each bus to 0.8 and 1.2 to create two
new load levels. The solver time with respect to k is shown in
Fig. 2. The solver time significantly decreases after bus
renumbering. For instance, the solver time is 0.672 (Sec.) for
the base case loading condition without bus renumbering (i.e.,
k = 1), while the time goes down to 0.219 (Sec.) if k = 2. That
is, 67.4% of time reduction. Increasing number of partitions
from three to ten does not lead to a considerable change in the
solver time. Not that we observed this behavior for many test
cases; however, we do not generalize this for all systems.

B. 13659-Bus System

This is a large-scale realistic power system with 13659
buses, 4092 generating units and 20467 lines. We study the DC-
OPF problem. We use shift factor values to formulate the power
flow constraints. The PBBR algorithm is applied for ten

scenarios as k = 1,2, ...,10. The same values of cost function
and decision variables are obtained for all ten scenarios. The
solver time versus k is given in Fig. 3 for three loading
conditions. The solver time reduces by 64.3% when the system
is partitioned into two subgraphs and bus renumbering is
applied compare with the scenario without graph partitioning.
Note that the solver time for the scenario with k = 5 is more
than that for k = 4. This is because of the differences in
system’s connectivity graph and sparsity matrix. Figures 1(b)
and 1(c) respectively show the sparsity matrices for k = 4 and
k = 5. Partitioning the system into four subgraphs leads to a
more well-patterned sparsity matrix compared with that for the
scenario with five subgraphs. It illustrates the influence of
partitioning quality in the OPF solution time of the proposed
PBBR method. That is, a higher quality in partitioning step
leads to more saving in the OPF solution time step.
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Fig. 2. Solution time of the AC-OPF solver for the 118-bus system with respect
to the number of partitions (k).
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Fig. 3. Solution time of the DC-OPF solver for the 13659-bus system with
respect to the number of partitions (k).

We analyze the shift factor (SF) matrix of the 13659-bus
system. The SF matrix is used to model the network security
constraints in the DC-OPF problem. Thus, the SF matrix
constructs a large part of the constraint coefficient matrix of the
optimization problem [19]. Locations and values of the SF
matrix elements depend on the location of the reference bus and
system topology. Therefore, changing bus numbering leads to
changing in locations and values of the SF matrix elements. The
effect of the PBBR algorithm on the SF matrix of the
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Fig. 4. Locations of dominant elements (larger than 1e~3) of the shift factor
matrix of the 13659-bus system for (a) the original bus numbering (i.e., k = 1)
and (b) with application of PBBR with four partitions (k = 4).

10000

13659-bus system is depicted in Fig. 4. Although the number of
dominant elements slightly increases after bus renumbering, the
neighboring non-zero elements of each subgraph are gathered
together. The sparsity of the constraint matrix is enhanced and
leads to constructing a more well-patterned constraint matrix.
IPM-based solvers handle the constraint matrix of Figure 4(b)
more efficient than the matrix of Figure 4(a). This significantly
speeds up the solvers’ solution procedure.

IV. CONCLUSION

The arrangement of bus numbers in power systems affects
the OPF problem’s constraint coefficient matrix. This
consequently affects the optimization solution time when an
interior point method-based solver is used. In this paper, a bus
renumbering algorithm is proposed to rearrange the number of

buses of a power system. The proposed algorithm, which is a
fast offline procedure, is based on a graph partitioning
technique (i.e., spectral clustering). The numerical results on
the IEEE 118-bus systems and the 13659-bus PEGASE system
show that implementation of the proposed algorithm prior to
solving OPF leads to about 65% of reduction in the solution
time compared with the classical OPF without bus
renumbering.
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