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Abstract—Network-constrained economic dispatch 

(NCED) problem, which takes into account the random 

mobility of electric vehicles (EV) and additional variables 

corresponding to each EV’s charge/discharge cycles, is large 

scale, complex and computationally expensive. To reduce the 

computational burden associated with this optimization 

problem, distributed optimization is introduced. Since EVs 

randomly move from one bus to another bus, this paper 

proposes a temporal, rather than a geographical, 

decomposition approach to divide a ramp-constrained NCED. 

Thousands of EVs are considered over the scheduling horizon 

in order to take advantage of parallel computing and achieve 

reduced solution time. A ramp-constrained NCED is 

formulated for each sub-horizon while the connections 

between subproblems are modeled as shared 

variables/constraints.  In order to coordinate the subproblems 

and find the optimal solution for the entire operation horizon, 

distributed auxiliary problem principle (APP) is proposed. 

Further, an efficient initialization strategy is presented to 

enhance the convergence time of the solution algorithm. The 

proposed method is employed to solve a week-ahead NCED 

on a 6-bus and IEEE 118-bus test systems. The results are 

compared with those of a centralized approach and 

effectiveness of the proposed method in reducing the solution 

time is verified.  

Keywords—Time decomposition, distributed optimization, 

overlapping time intervals, security-constrained economic 

dispatch, accelerated auxiliary problem principle, electrical 

vehicles, batteries, energy management. 

I. INTRODUCTION  

The ever increasing popularity of plug-in electric and 
fully electric vehicles (EV) is creating new challenges for 
power system operation and planning. The unique economic 
and environmental incentives from EV use is driving deep 
market penetration while leaving a gap in economic 
dispatch modeling capabilities. [1] The future of EVs 
extends past being a load on the system; vehicle-to-grid 
(V2G) integration enables bi-directional power flow, 
allowing the vehicle to either absorb/inject power from/into 
the grid. Bi-directional power flow, when coupled with 
other complicating factors, such as random charging 
behavior, usage patterns, energy requirements, topological 
grid interconnections, create a multiplex based situation. 
Limited by various operation constraints, nonlinearities, and 
uncertainties, several optimization goals must be pursued. 
EVs can be represented as “movable” energy storage units; 
however, due to the individual behavior of each EV, this 
requires representing each EV with a unique variable. In 
power systems with thousands or even millions of EVs, the 

total number of variables and constraints increase in 
lockstep with system size, consequently increasing 
computational burdens. Solving large optimization 
problems with a centralized method within an acceptable 
time period quickly becomes problematic [2], [3]. 

Several studies focus on energy management of 
networks which include EVs. Possible impacts of 
widespread hybrid electrical vehicles (HEVs) on the grid is 
investigated in [4]. In [5], an energy management strategy 
for vehicles with a fuel cell power source and two energy 
storage devices, i.e., batteries and ultracapacitors, is 
introduced. A hybrid artificial intelligence technique is 
presented in [6] to solve a complex energy management 
problem with a large number of resources, including EVs 
connected to the electric network. In [7], methods to store 
power at the most efficient times of the driving cycle are 
discussed. Various control and optimization issues for both 
charging and scheduling of HEV’s in a bidirectional V2G 
network are surveyed in [8]. Unit commitment in a V2G 
infrastructure, while considering operating expenses and 
environmental impact is studied in [9]. In [2], centralized 
control of HEV charging cycles to reduce grid demand and 
costs, and increase efficiency of the overall network is 
demonstrated. A short-term unit commitment problem is 
introduced in [10] with the utilization of grid-tied EVs and 
considering Gridable Vehicles (GVs) of V2G. Energy 
scheduling is addressed in [11] by using different resources 
and emphasizing distributed generation coupled with 
V2G. A methodology is presented in [12] to solve the 
energy management problem with high penetration of 
distributed generation and EVs with gridable capability. 
Joint scheduling of HEVs and renewable energy sources 
through economic dispatch is examined in [13] via 
dispatching mode, modeling, and algorithms. In [14], it is 
shown that the economic dispatch control of grid-connected 
HEVs can possibly result in lower energy costs via fuel 
shifting and fuel discharging. In [15], a method is proposed 
for a day-ahead stochastic security-constrained unit 
commitment problem in the presence of wind power 
generation and EVs. In [16], coordinated integration of 
aggregated plug-in electric vehicle (PEV) fleets and 
renewable energy sources (wind energy) is studied. 
Stochastic security-constrained unit commitment 
(Stochastic SCUC) model, which minimizes the expected 
grid operation cost while considering the random behavior 
of PEVs is employed. 

Several methods are introduced to reduce computational 
burden of energy management and scheduling problems 



through distributed optimization algorithms, which take 
advantage of parallel computing. Geographical 
decomposition approaches have been presented in the 
literature [17-19], to solve large operation and planning 
problems for power systems. However, since EVs are 
randomly moving from one bus to another, the problem 
cannot easily be decomposed over geographical areas.  

This paper proposes a temporal decomposition approach 
to divide a network-constrained economic dispatch 
(NCED). Thousands of EVs are considered over the 
scheduling horizon in order to take advantage of parallel 
computing and achieve reduced solution time. Since the 
sub-problems are not isolated, the consistency constraints 
between subproblems, such as ramping limitations, must be 
modeled. To this end, a ramp-constrained NCED is 
formulated for each sub-horizon while the connections 
between subproblems are modeled as shared 
variables/constraints. In order to coordinate the 
subproblems and find the optimal solution for the entire 
operation horizon, distributed auxiliary problem principle 
(APP) is proposed. Further, an efficient initialization 
strategy is presented to enhance the convergence time of the 
solution algorithm. The proposed method is applied to solve 
a week-ahead NCED on a 6-bus and IEEE 118-bus test 
systems and promising results are obtained.    

II. PROBLEM DESCRIPTION  

A. Economic Dispatching including Electrical Vehicles 

The goal is to determine the hourly ramp-constrained 
NCED along with the dispatch of generating units, while 
considering the charge/discharge states of EV fleets. The 
objective function given in (1) is to minimize cost. This 
includes generation cost, operational costs of EV fleets for 
the base case, and availability cost for providing spinning 
reserve for each scenario, plus the expected cost of 
corrective actions in scenarios to compensate for 
uncertainties. The proposed formulation is a stochastic 
optimization problem with load forecast errors, power 
system component outages, number of EVs in a fleet, and 
their energy requirements considered as variables.  

The Monte Carlo simulation method is utilized in the 
proposed stochastic model. Random outages in power 
systems are represented by incorporating probability 
distribution functions and forced outage rates. Load forecast 
errors, EV energy consumption patterns, and the number of 
EVs in a fleet are represented by truncated normal 
distribution functions. [16] The mean values are the 
forecasts, and the standard deviations are percentages of the 
mean values. Forward and backward algorithms are 
developed to reduce the number of scenarios with an 
acceptable accuracy [20]. The convex operation cost of 
aggregated EVs depends on the number of vehicles and 
charging/discharging cycles [21]. 

 

min [∑ ∑(𝑝𝑏 × 𝑓(𝑝𝑢𝑡)) + ∑ ∑ 𝑝𝑏 ∙ 𝐶𝑣,𝑡

𝑣𝑡𝑢𝑡

]

+ ∑ 𝑝𝑠  [∑ ∑ 𝑓(𝑃𝑢𝑡
𝑠 ) + ∑ ∑ 𝐶𝑣,𝑡

𝑠

𝑣𝑡𝑢𝑡

]

𝑠

+ [∑ ∑(𝑓𝑎(∆𝑢,𝑡
𝑚𝑎𝑥))

𝑢𝑡

]                      (1) 

𝑓(𝑝𝑢𝑡) = 𝑎𝑢 ⋅ 𝑝𝑢𝑡
2 +  𝑏𝑢 ⋅ 𝑝𝑢𝑡 + 𝑐𝑢                                   (2)

where 𝑎𝑢 ,  𝑏𝑢, and 𝑐𝑢 are cost coefficients for generating 

unit 𝑢, 𝑡 refers to time interval, 𝑢 refers to generating units, 

𝑓 is the generation cost function,  𝑝𝑢𝑡 is power generated 

by unit 𝑢 at time 𝑡, 𝑝𝑏 defines the probability of the base 

case solution. ∆𝑢,𝑡
𝑚𝑎𝑥  maximum permissible power 

adjustment of a unit, 𝐶𝑣,𝑡 represents opperational cost of EV 

fleet. 

𝑠. 𝑡. 

Constraints for the base case:   

∑ 𝑃𝑢𝑡

𝑢

+ ∑ 𝑃𝑣,𝑡

𝑣

− ∑ 𝑃𝐷,𝑡
𝑑

𝑑

= ∑
𝛿𝑖𝑡 − 𝛿𝑗𝑡

𝑋𝑖𝑗

                              ∀𝑢, 𝑡, 𝑣, 𝑖, 𝑗              (3)

  

𝑁

𝑖=1,𝑖≠𝑗

 

𝑝𝑖𝑗𝑡 =
𝛿𝑖𝑡 − 𝛿𝑗𝑡

𝑋𝑖𝑗

                       ∀𝑖𝑗, ∀𝑡                 (4) 

𝛿𝑟𝑒𝑓,𝑡 = 0                                  ∀𝑡                        (5) 

𝑃𝑢 ≤ 𝑝𝑢𝑡 ≤ 𝑃𝑢                           ∀𝑢, ∀𝑡                 (6) 

𝑝𝑢𝑡 − 𝑝𝑢(𝑡−1) ≤ UR𝑢               ∀𝑢, ∀𝑡                 (7) 

𝑝𝑢(𝑡−1) − 𝑝𝑢𝑡 ≤ DR𝑢              ∀𝑢, ∀𝑡                 (8) 

𝑃𝑖𝑗 ≤ 𝑝𝑖𝑗𝑡 ≤ 𝑃𝑖𝑗                        ∀𝑖𝑗, ∀𝑡                 (9) 

𝛿𝑖 ≤ 𝛿𝑖𝑡 ≤ 𝛿𝑖                        ∀𝑖, ∀𝑡                   (10) 

𝐸𝑣,𝑡
𝑛𝑒𝑡 = 𝑃𝑑𝑐,𝑣,𝑡 − 𝜂𝑣 ∙ 𝑃𝑐,𝑣,𝑡                                  (11) 

𝑃𝑣,𝑡 = 𝑃𝑑𝑐,𝑣,𝑡 − 𝑃𝑐,𝑣,𝑡                                           (12) 

𝐼𝑑𝑐,𝑣,𝑡 + 𝐼𝑐,𝑣,𝑡 + 𝐼𝑖,𝑣,𝑡 = 𝑁𝑣,𝑡                             (13) 

𝐼𝑐,𝑣,𝑡 ∙ 𝑃𝑐,𝑣
𝑚𝑖𝑛 ≤ 𝑃𝑐,𝑣,𝑡 ≤ 𝐼𝑐,𝑣,𝑡 ∙ 𝑃𝑐,𝑣

𝑚𝑎𝑥                    (14) 

𝐼𝑑𝑐,𝑣,𝑡 ∙ 𝑃𝑑𝑐,𝑣
𝑚𝑖𝑛 ≤ 𝑃𝑑𝑐,𝑣,𝑡 ≤ 𝐼𝑑𝑐,𝑣,𝑡 ∙ 𝑃𝑑𝑐,𝑣

𝑚𝑎𝑥            (15) 

𝐸𝑣,𝑡 = 𝐸𝑣,𝑡−1 − 𝐸𝑣,𝑡
𝑛𝑒𝑡 − (1 − 𝑁𝑣,𝑡) ∙ 𝐷𝑅𝑣,𝑡       (16) 

𝐸𝑣
𝑚𝑖𝑛 ≤ 𝐸𝑣,𝑡 ≤ 𝐸𝑣

𝑚𝑎𝑥                                          (17) 

𝐸𝑣,0 = 𝐸𝑣,𝑁𝑇                                                          (18) 

𝐶𝑣,𝑡 = 𝑁𝑣,𝑡 ∙ (𝑎 ⋅ 𝑝𝑣,𝑡
2 + 𝑏 ⋅ 𝑃𝑣,𝑡 + 𝑐)            (19)  

where 𝑖 and 𝑗 are indices for buses, 𝑖𝑗 is the index for lines, 
𝑝𝑖𝑗  denotes power flow in line 𝑖𝑗, 𝛿𝑖  is the voltage angle of 

bus 𝑖, 𝑋𝑖𝑗 is the reactance of line 𝑖𝑗, 𝑃𝑢 and  𝑃𝑢 refer to the 

maximum and minimum limits of generating unit 𝑢, 𝑃𝑖𝑗  and 

𝑃𝑖𝑗  refer to the maximum and minimum limits of line 𝑖𝑗, 

𝑈𝑅𝑢 and 𝐷𝑅𝑢 show the ramping up and ramping down 
limits of unit 𝑢, 𝐸𝑣,𝑡

𝑛𝑒𝑡  is the Net discharged energy of EV 

fleet at time 𝑡, 𝑃𝑑𝑐,𝑣,𝑡 and 𝑃𝑐,𝑣,𝑡 represent discharge/charge 

power of EV fleet, 𝜂𝑣 is the cycle charging efficiency of 
PEV fleet, 𝐼𝑑𝑐,𝑣,𝑡 , 𝐼𝑐,𝑣,𝑡  , 𝐼𝑖,𝑣,𝑡 represent discharge/charge and 

idle mode of EV fleets, 𝑁𝑣,𝑡 Status of grid connection of 

fleet at time 𝑡, 𝐸𝑣
𝑚𝑖𝑛 , 𝐸𝑣

𝑚𝑎𝑥min/max energy stored in 
batteries of EV fleet v, and 𝐸𝑣,0 and 𝐸𝑣,𝑁𝑇 refer to the initial 

and terminal stored energy in EV fleet v.  



The base constraints (3)-(20) are deterministic and 

include NCED constraints (3)-(10) and EV constraints 

(11)-(20). The EV constraints include the hourly 

injected/consumed energy and power to/from the network 

by EVs (11)-(12). The hourly charge/discharge/idle modes 

of fleets are presented in (13). Charge/discharge power 

limitations are presented in (14)-(15). The hourly energy 

balance of EV batteries is considered in (16). The energy 

limitation of each fleet is given in (17)-(18). The 

charge/discharge cost curve of EV batteries is provided in 

(19). This represents the depth of discharge and cycles to 

failure of the battery required for calculating the cost of 

charged/discharged energy to/from EV batteries. In the 

consumer-controlled scheme, the aggregated state of 

charge (SOC) of EVs is set to be fixed at specific operation 

periods (11). It is assumed that the SOC is at 100% when 

an EV fleet is leaving the station [16]. 

 

 Constraints for each scenario:   

∑ 𝑃𝑠
𝑢𝑡

𝑢

+ ∑ 𝑃𝑠
𝑣,𝑡

𝑣

− ∑ 𝑃𝐷,𝑡
𝑑,𝑠

𝑑

= ∑
𝛿𝑠

𝑖𝑡 − 𝛿𝑠
𝑗𝑡

𝑋𝑖𝑗

                            ∀𝑢, 𝑡, 𝑣, 𝑖, 𝑗, 𝑠          (20)

  

𝑁

𝑖=1,𝑖≠𝑗

 

𝑝𝑠
𝑖𝑗𝑡

=
𝛿𝑠

𝑖𝑡 − 𝛿𝑠
𝑗𝑡

𝑋𝑖𝑗

                     ∀𝑖𝑗, ∀𝑡, ∀𝑠                   (21) 

𝛿𝑠
𝑟𝑒𝑓,𝑡 = 0                                  ∀𝑡                        (22) 

𝑃𝑢 ≤ 𝑝𝑠
𝑢𝑡

≤ 𝑃𝑢                           ∀𝑢, ∀𝑡                 (23) 

𝑃𝑖𝑗 ≤ 𝑝𝑠
𝑖𝑗𝑡

≤ 𝑃𝑖𝑗                        ∀𝑖𝑗, ∀𝑡                 (24) 

𝛿𝑖 ≤ 𝛿𝑠
𝑖𝑡 ≤ 𝛿𝑖                        ∀𝑖, ∀𝑡                   (25) 

𝐸𝑣,𝑡
𝑛𝑒𝑡,𝑠 = 𝑃𝑑𝑐,𝑣,𝑡

𝑠 − 𝜂𝑣 ∙ 𝑃𝑐,𝑣,𝑡        
𝑠                          (26) 

𝑃𝑣,𝑡
𝑠 = 𝑃𝑑𝑐,𝑣,𝑡

𝑠 − 𝑃𝑐,𝑣,𝑡
𝑠                                           (27) 

𝐼𝑑𝑐,𝑣,𝑡
𝑠 + 𝐼𝑐,𝑣,𝑡

𝑠 + 𝐼𝑖,𝑣,𝑡
𝑠 = 𝑁𝑣,𝑡                              (28) 

𝑁𝑣,𝑡 ∙ 𝐼𝑐,𝑣,𝑡
𝑠 𝑃𝑐,𝑣

𝑚𝑖𝑛 ∙ 𝑁𝐸𝑣
𝑠 ≤ 𝑃𝑐,𝑣,𝑡

𝑠

≤ 𝑁𝑣,𝑡 ∙ 𝐼𝑐,𝑣,𝑡
𝑠 𝑃𝑐,𝑣

𝑚𝑎𝑥 ∙ 𝑁𝐸𝑣
𝑠   (29) 

𝑁𝑣,𝑡 ∙ 𝐼𝑑𝑐,𝑣,𝑡
𝑠 𝑃𝑑𝑐,𝑣

𝑚𝑖𝑛 ∙ 𝑁𝐸𝑣
𝑠 ≤ 𝑃𝑑𝑐,𝑣,𝑡

𝑠

≤ 𝑁𝑣,𝑡 ∙ 𝐼𝑑𝑐,𝑣,𝑡
𝑠 𝑃𝑑𝑐,𝑣

𝑚𝑎𝑥 ∙ 𝑁𝐸𝑣
𝑠  (30) 

𝐸𝑣,𝑡
𝑠 = 𝐸𝑣,𝑡−1

𝑠 − 𝐸𝑣,𝑡
𝑛𝑒𝑡,𝑠 − (1 − 𝑁𝑣,𝑡) ∙ 𝐷𝑅𝑣,𝑡

𝑠

∙ 𝑁𝐸𝑣
𝑠                                    (31) 

𝐸𝑣
𝑚𝑖𝑛 ∙ 𝑁𝐸𝑣

𝑠 ≤ 𝐸𝑣,𝑡
𝑠 ≤ 𝐸𝑣

𝑚𝑎𝑥 ∙ 𝑁𝐸𝑣
𝑠                (32) 

𝐸𝑣,0
𝑠 = 𝐸𝑣,𝑁𝑇

𝑠 = 𝐸𝑣0 ∙ 𝑁𝐸𝑣
𝑠                             (33) 

𝐶𝑣,𝑡
𝑠 = 𝑁𝑣,𝑡 ∙ (𝑎. 𝑃𝑣,𝑡

𝑠 2
+ 𝑏. 𝑃𝑣,𝑡

𝑠 + 𝑐)            (34) 

−∆𝑢,𝑡
𝑚𝑎𝑥≤ 𝑃𝑢,𝑡

𝑠 − 𝑃𝑢,𝑡 ≤ ∆𝑢,𝑡
𝑚𝑎𝑥                       (36) 

𝑃𝑢
𝑚𝑖𝑛 ∙ 𝐼𝑢,𝑡 ≤ 𝑃𝑢,𝑡

𝑠 ≤ 𝑃𝑢
𝑚𝑎𝑥 ∙ 𝐼𝑢,𝑡                     (37) 

The EV fleet scenario constraints are given in (20)–(37). 
Equations (20)–(25) represent NCED constraints for each 
Monte Carlo scenario. The parameter 𝑁𝐸𝑣

𝑠 is an uncertain 

input that shows the ratio of the number of EVs in the 
scenario to the number of base case EVs. The scenario 
corrective action is enforced by (36)-(37) where the hourly 
cost of corrective action 𝑓𝑎(∆𝑢,𝑡

𝑚𝑎𝑥), is included in objective 

function (1). 

Considering the grid complexity along with the 
stochastic nature and mobility of EVs, the optimization 
problem in (1)–(37) is large scale and nondeterministic. The 
solution to this problem (without decomposition) demands 
high computational capabilities. It is proposed in [16] to 
decompose such problems into a master mixed-integer 
programming (MIP) problem with several linear 
programming (LP) subproblems and use Benders cuts for 
scenario reduction. In this work, in order to further alleviate 
the computational burden and reduce the solution time, time 
decomposition is applied following Benders decomposition. 

B. Time Decomposition 

Solution time is affected by the number of variables and 

constraints. In order to speed up the solution algorithm of 

NCED, a time decomposition approach is proposed based 

on the authors’ previous work [3]. With this approach, the 

problem is divided into smaller sub-horizons, where each 

represents a subproblem that includes a subset of variables 

and constraints. Solving sub-horizons independently can 

result in two different values at the point in-between 

individual events. This calls for instant change of 

generating units outputs; however, this is not possible due 

to ramping limitations. Therefore, intervals must be able to 

coordinate with each other. An extra time interval of one 

hour is added at the end of each sub-horizon and treated as 

a shared variable that must be equal for neighboring 

problems. The main goal is time reduction by reducing the 

computational load through parallel computing. The 

distributed coordination algorithm allows parallel 

computing while reaching an optimal solution for the entire 

scheduled time horizon.  

III. COORDINATION ALGORITHM  

Utilizing auxiliary problem principle [22], which is a 

parallel based coordination strategy, the sub-horizons can 

be coordinated and suboptimal or infeasible results 

avoided. An iterative coordination algorithm is presented 

that provides a parallel solution for the NCED 

subproblems. Relaxing the consistency constraints in the 

objective function of each sub-horizon is possible through 

the concept of augmented Lagrangian relaxation. 

A. Auxiliary Problem Principle  

The proposed coordination algorithm is based on the 

auxiliary problem principle (APP). With roots in 

Lagrangian relaxation, APP is iterative and can find an 

optimal solution for coupled subproblems [22]. Special 

features allow for sequences of auxiliary problems to 

coordinate subproblems, creating a practical approach for 

parallel optimization through the approximation of shared 

variables for each iteration while being based on the 

iteration prior.  

Considering a one-week scheduling horizon that can be 

decomposed into 𝑁𝑆 subproblems, assume two consecutive 

subproblems, referred to as subproblems n and n+1. The 



output power of generating units in the final time interval 

of 𝑛 and the first time interval of 𝑛 + 1 must match. To 

meet this requirement, an overlapping time interval, 𝑡𝑐, is 

added to subproblem 𝑛. Time interval 𝑡𝑐 is shared between 

neighboring subproblems. For each generating unit, the 

optimal output power in overlapping time interval 𝑡𝑐 must 

be equal to the generated power in time interval 1 of 

subproblem n+1. Denoting the shared variables of 

subproblems 𝑛 and 𝑛 + 1 by 𝜙𝑛 and 𝜙𝑛+1, respectively, 

and remembering that 𝜙𝑛 and 𝜙𝑛+1 are essentially the 

same, the following consistency constraint must be 

satisfied for all the generating units 

 

 𝜙𝑛 − 𝜙𝑛+1 = 0                                    (38)  

 

The constraint in (38) is a hard constraint, which 

potentially can result in the sub-optimality of the solution. 

This is not desirable. Thus, using the concept of augmented 

Lagrangian relaxation, this hard constraint is relaxed by 

adding a penalty function to the objective function (1). This 

can be seen in the formulation (1-10) of subproblem 𝑛 at 

iteration 𝑘, as follows 

min
(𝑥𝑛

𝑘,Φ𝑛
𝑘)

∑ 𝑓(𝑝𝑢,𝑡
𝑘 )

𝑢,𝑡

                                                                     (39) 

+ (
𝜌

2
‖Φ𝑛

𝑘 − Φ𝑛
✽𝑘−1‖

2

+ 𝛾Φ𝑛
𝑘 † (Φ𝑛

✽𝑘−1 − Φ𝑛+1
✽𝑘−1)

+ 𝜆(𝑘−1) †Φ𝑛
𝑘) 

s.t. 

ℎ𝑛(𝑥𝑛
𝑘, Φ𝑛

𝑘) = 0 

𝑔𝑛(𝑥𝑛
𝑘, Φ𝑛

𝑘) ≤ 0 

𝑥𝑛
𝑘 = {𝑝𝑢,𝑡,𝑛

𝑘 , 𝑃𝑣,𝑡 , 𝐼𝑑𝑐,𝑣,𝑡 , 𝐼𝑐,𝑣,𝑡 , 𝐼𝑖,𝑣,𝑡}

Φ𝑛
𝑘 = {𝑝𝑢,𝑡𝑐,𝑛

𝑘 }Φ𝑛+1
✽𝑘−1 = {𝑝𝑢,𝑡𝑐,𝑛+1

✽𝑘−1 }

Here, † is a transpose operator, xn is the set of output power 

of generating units during sub-horizon n, 𝜙𝑛 is the set of 

output power of generating units in the overlapping time 

interval 𝑡𝑐, 𝜆𝑘 is the vector of Lagrange multipliers at 

iteration k, 𝜌 and 𝛾 are suitable positive constants. 

Φ𝑛
✽𝑘−1and Φ𝑛+1

✽𝑘−1  indicate the values of the shared 

variables of subproblems n and n+1 that are determined at 

iteration k-1, and Φ𝑛
𝑘 is the shared variable of subproblem 

n that needs to be determined in iteration 𝑘. In fact, 

Φ𝑛
✽𝑘−1and Φ𝑛+1

✽𝑘−1  in (39) are known values while Φ𝑛
𝑘 is a 

decision variable.  

A similar ramp-constrained NCED is formulated for 

subproblem n+1 in the following 

min
𝑥𝑛+1

𝑘 ,Φ𝑛+1
𝑘

∑ 𝑓(𝑝𝑢,𝑡
𝑘 )

𝑢,𝑡

                                                         (40) 

+ (
𝑝

2
‖Φ𝑛+1

𝑘 − Φ𝑛+1
✽𝑘−1‖

2

+ 𝛾Φ𝑛+1
𝑘 † (Φ𝑛+1

✽𝑘−1 − Φ𝑛
✽𝑘−1)

− 𝜆(𝑘−1) †Φ𝑛+1
𝑘 ) 

𝑠. 𝑡.  

ℎ𝑛+1(𝑥𝑛+1
𝑘 , Φ𝑛+1

𝑘 ) = 0 

𝑔𝑛+1(𝑥𝑛+1
𝑘 , Φ𝑛+1

𝑘 ) ≤ 0 

𝑥𝑛+1
𝑘 = {𝑝𝑢,𝑡,𝑛

𝑘 , 𝑃𝑣,𝑡 , 𝐼𝑑𝑐,𝑣,𝑡 , 𝐼𝑐,𝑣,𝑡 , 𝐼𝑖,𝑣,𝑡}

Φ𝑛+1
𝑘 = {𝑝𝑢,𝑡𝑐,𝑛+1

𝑘 }Φ𝑛
✽𝑘−1 = {𝑝𝑢,𝑡𝑐,𝑛

✽𝑘−1} 

where Φ𝑛
✽𝑘−1and Φ𝑛+1

✽𝑘−1  are known values while Φ𝑛+1
𝑘  is a 

decision variable. The NCED subproblems are solved 

iteratively. The penalty multiplier 𝜆 needs to be updated at 

the end of each iteration as follows 

 

𝜆𝑘 = 𝜆𝑘−1 + 𝛼 (Φ𝑛+1
✽𝑘 − Φ𝑛

✽𝑘)                                     (41) 

where 𝛼 is a suitable positive constant. Note that the value 

of the Lagrange multiplier 𝜆 in each iteration corresponds 

to the cost of maintaining the consistency constraint. 

B. Initialization 

The performance of distributed/decentralized 

optimization algorithms is heavily reliant on initial 

conditions. Convergence performance, or the number of 

iterations and the optimality gap, can vary based on initial 

conditions. Ideal initial conditions result in convergence of 

the proposed APP-based distributed NCED in fewer 

iterations compared to scenarios. Initial conditions are both 

problem and system dependent and research to set proper 

initial conditions is currently ongoing within the power 

systems and operations community. 

Computational time is the main focus of the proposed 

time decomposition framework. Thus, selection of a good 

starting point is imperative. Power system characteristics 

allow to propose a method for ideal shared variable 

initiation. Initializing variables start by ignoring the 

overlapping time intervals and shared variables, (to make 

the sub-horizons become independent), and then solving 

the NCED subproblems in parallel. Ignoring the ramping 

rates of the generators by removing the shared variables 

does not result in a large solution error. This is due to the 

demand characteristics in power systems. Although the 

results of isolated subproblems may not be feasible, they 

are of high potential for proper initial states. 

IV. CASE STUDY  

The proposed algorithm is employed to solve a week-
ahead NCED problem on a 6-bus and the IEEE 118-bus 
systems. EVs in various locations are categorized into fleets 
based on driving characteristics. The available energy, 
maximum/minimum capacity, and charge/discharge power 
of individual vehicles are aggregated in EV fleet 
characteristics, representing maximum/minimum 
capacities, SOC, and maximum/minimum 
charging/discharging capabilities.  

EV fleet characteristics include starting locations and 
destinations of EV fleets, departure and arrival times at 
designated locations, and EV charging locations and 
patterns which could be bundled into power system 
operations. A random number of EVs is assumed for each 
fleet. SOC, energy consumption, and maximum/minimum 
capacity of an EV fleet are a function of the number of EVs 
and their operating characteristics. SOC is the ratio of 
available energy to maximum storable energy in the battery. 
[23] The energy consumption in a fleet depends on the 
number of EVs and their energy requirements. The driving 
habits of a fleet would determine the charging/discharging 
patterns of the aggregated EVs [16]. Tables I lists the five 



fleets that are the results of benders decomposition in [16]. 
The charging efficiency of a fleet is 85% which is the ratio 
of energy stored in the battery to the energy drawn from the 
grid.  

TABLE I 

EV FLEET TRAVEL CHARACTERISTICS  [16] 
PEV 

Fleet 

No. 

Number 

of PEVs 

First Trip Second Trip 

Departure Arrival Departure Arrival 

Time Bus Time Bus Time Bus Time Bus 

1 3400 6:00 5 8:00 1 17:00 1 19:00 5 

2 2000 7:00 4 8:00 2 16:00 2 17:00 4 

3 1000 5:00 4 7:00 2 16:00 2 18:00 4 

4 1600 5:00 6 6:00 3 17:00 3 18:00 6 

5 2000 7:00 5 9:00 3 18:00 3 20:00 5 

 

The operation horizon is divided into seven equal sub-

horizons, each including 24 intervals. To have a fair 

comparison, 𝛽, 𝜌, 𝛾 = 0.2 and 𝜆 = 1 in all cases. 

Consistency constraints are modeled as shared variables to 

form the connections between subproblems in order to 

optimize the system over the entire time span. In this way, 

the overall optimal cost for the entire system is achieved. 

To evaluate the performance of the proposed distributed 

NCED algorithm, a convergence index is used to measure 

the relative difference between the total costs determined 

by the distributed NCED (𝑓𝑑) and the centralized NCED 

(𝑓∗), which is considered as the benchmark. 

𝑟𝑒𝑙 =
|𝑓∗ − 𝑓𝑑|

𝑓∗
                                    (42) 

The closer the convergence measure gets to zero, a more 

precise solution is obtained. All simulations are carried out 

in MATLAB using YALMIP [24] as a modeling software 

and Gurobi solver on a 3.7 GHz personal computer with 

16GB of RAM, virtually modelling parallel computing. 

A. 6-Bus System 

EVs in various locations are categorized into different 
fleets based on their driving characteristics. The available 
energy, maximum/minimum capacity and charge/discharge 
power of individual vehicles are aggregated into EV fleet 
characteristics representing maximum/minimum capacities, 
SOC, and maximum/minimum charging/discharging 
capabilities. Table II shows characteristics of the five fleets 
in the 6-bus system.  

TABLE II 

EV FLEET CHARACTERISTICS FOR 6-BUS  [16] 
PEV 

Fleet 

No. 

Min 

Cap. 

(MWh) 

Max 

Cap. 

(MWh) 

Min Charge 

/Discharge 

(kW) 

Max Charge 

/Discharge 

(MW) 

a 

($/MW2) 

b 

($/MW) 

c 

($/h) 

1 13.152 65.76 7.3/6.2 24.8/21.08 0.17 8.21 0 

2 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0 

3 5.48 27.4 7.3/6.2 7.29/6.2 0.41 8.21 0 

4 8.768 43.84 7.3/6.2 11.67/9.92 0.25 8.21 0 

5 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0 

The topology of the 6-bus system is shown in Fig. 1 and 

tables III-V summarize data of this system. 
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Fig. 1. Six-bus test system. 

TABLE III 

GENERATOR DATA FOR 6-BUS SYSTEM 

Unit Pmin 

(MW) 

Pmax 

(MW) 

a 

(MBtu) 

b 

(MBtu/MWh) 

c  

(MBtu/MW2h) 

1 40 220 100 7 0.03 

2 10 100 104 10 0.07 

3 0 25 110 8 0.05 

TABLE IV 

NETWORK INFORMATION FOR 6-BUS SYSTEM 

From Bus To Bus X(pu) Flow Limit 

(MW) 

1 2 0.170 200 

1 4 0.258 200 

2 3 0.037 190 

2 4 0.197 200 

3 6 0.018 180 

4 5 0.037 190 

5 6 0.140 180 

TABLE V 

HOURLY LOAD OVER A SAMPLE DAY HORIZON FOR 6-BUS SYSTEM 

Hour Pd 

(MW) 

Hour Pd 

(MW) 

Hour Pd 

(MW) 

Hour Pd 

(MW) 

1 175 7 173 13 242 19 246 

2 169 8 174 14 24 20 237 

3 165 9 185 15 249 21 237 

4 155 10 202 16 256 22 233 

5 155 11 228 17 256 23 210 

6 165 12 236 18 247 24 210 

 

Table VI shows the convergence time, number of 

iterations, and 𝑟𝑒𝑙 for the 6-bus system. The operation cost 

using both centralized and distributed methods is $486,900. 

The proposed distributed NCED converges to feasible and 

optimal results after one iteration plus the initialization. 

The computation time is 0.14 seconds which is a little less 

than that of the centralized method, 0.18 seconds. The 𝑟𝑒𝑙 
index is almost zero upon the algorithm convergence. The 

distributed NCED is 22% faster than the centralized 

NCED. 

TABLE VI 

RESULTS OF 6-BUS SYSTEM   

Algorithm Iteration 𝑟𝑒𝑙 Time (s) 

Centralized - - 0.18  

Distributed 1+1 1e-12 0.14 

B. IEEE 118-Bus System 

The proposed algorithm is employed to solve NCED of 

a larger system, i.e. IEEE 118-bus system. Table VII shows 

the fleet characteristics for this system. The fleet travel 

schedules are similar to those in the previous case study. 

EV fleet travel characteristics is the same as Table I. 

TABLE VII 

EV FLEET CHARACTERISTICS FOR IEEE 118-BUS SYSTEM [16] 
PEV 

Fleet 

No. 

Min 

Cap. 

(MWh) 

Max 

Cap. 

(MWh) 

Min Charge 

/Discharge 

(kW) 

Max Charge 

/Discharge 

(MW) 

a 

($/MW2) 

b 

($/MW) 

c 

($/h) 

1 131.52 986.4 7.3/6.2 24.8/21.08 0.57 27.35 0 

2 109.6 822 7.3/6.2 14.58/12.4 0.68 27.35 0 

3 54.8 411 7.3/6.2 7.29/6.2 1.36 27.35 0 

4 87.68 657.6 7.3/6.2 11.67/9.92 0.85 27.35 0 

5 109.6 822 7.3/6.2 14.58/12.4 0.68 27.35 0 

 

The operation cost using both centralized and 

distributed NCED algorithms is $11,083,000. Table VIII 

summarizes the simulation results for the IEEE 118-bus 

system. 



TABLE VIII 

RESULTS OF IEEE 118-BUS SYSTEM 

Algorithm Iteration 𝑟𝑒𝑙 Time (s) 

Centralized - - 3.08  

Distributed 3+1 1e-08 1.37 

 

Since a relative error of 1e-8 does not have any impact 

on the cost, the convergence measure 𝑟𝑒𝑙 is considered 

almost zero upon convergence. The centralized NCED 

takes around 3 seconds, but the distributed algorithm 

converges after 1.3 seconds. This is approximately 55% 

faster compared with the centralized algorithm. 

V. CONCLUSION  

The impact of integrating EV fleets into power systems 
is evaluated. A stochastic model, which incorporates EV 
fleets models along with the associated constraints and 
requirements, is proposed. A time decomposition algorithm 
is devised to divide a ramp-constrained NCED problem 
over the scheduling time horizon. NCED subproblems are 
formulated, with each sub-horizon taking into account 
thousands of EVs connected to the network. 
Interdependencies between the consecutive sub-horizons, 
which originate from intertemporal constraints of 
generating units, are modeled by introducing the concept of 
overlapping time intervals. APP is proposed to coordinate 
the NCED subproblems. An initialization strategy is 
proposed to enhance the convergence speed of the solution 
algorithm. The simulation results suggest that as the size of 
the problem (that depends on the size of the system and the 
number of EVs) increases, the proposed distributed 
algorithm outperforms the conventional centralized NCED 
in terms of computational time. 
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