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Abstract—Network-constrained  economic  dispatch
(NCED) problem, which takes into account the random
mobility of electric vehicles (EV) and additional variables
corresponding to each EV’s charge/discharge cycles, is large
scale, complex and computationally expensive. To reduce the
computational burden associated with this optimization
problem, distributed optimization is introduced. Since EVs
randomly move from one bus to another bus, this paper
proposes a temporal, rather than a geographical,
decomposition approach to divide a ramp-constrained NCED.
Thousands of EVs are considered over the scheduling horizon
in order to take advantage of parallel computing and achieve
reduced solution time. A ramp-constrained NCED is
formulated for each sub-horizon while the connections
between  subproblems are modeled as  shared
variables/constraints. In order to coordinate the subproblems
and find the optimal solution for the entire operation horizon,
distributed auxiliary problem principle (APP) is proposed.
Further, an efficient initialization strategy is presented to
enhance the convergence time of the solution algorithm. The
proposed method is employed to solve a week-ahead NCED
on a 6-bus and IEEE 118-bus test systems. The results are
compared with those of a centralized approach and
effectiveness of the proposed method in reducing the solution
time is verified.

Keywords—Time decomposition, distributed optimization,
overlapping time intervals, security-constrained economic
dispatch, accelerated auxiliary problem principle, electrical
vehicles, batteries, energy management.

I. INTRODUCTION

The ever increasing popularity of plug-in electric and
fully electric vehicles (EV) is creating new challenges for
power system operation and planning. The unique economic
and environmental incentives from EV use is driving deep
market penetration while leaving a gap in economic
dispatch modeling capabilities. [1] The future of EVs
extends past being a load on the system; vehicle-to-grid
(V2G) integration enables bi-directional power flow,
allowing the vehicle to either absorb/inject power from/into
the grid. Bi-directional power flow, when coupled with
other complicating factors, such as random charging
behavior, usage patterns, energy requirements, topological
grid interconnections, create a multiplex based situation.
Limited by various operation constraints, nonlinearities, and
uncertainties, several optimization goals must be pursued.
EVs can be represented as “movable” energy storage units;
however, due to the individual behavior of each EV, this
requires representing each EV with a unique variable. In
power systems with thousands or even millions of EVs, the

total number of variables and constraints increase in
lockstep with system size, consequently increasing
computational burdens. Solving large optimization
problems with a centralized method within an acceptable
time period quickly becomes problematic [2], [3].

Several studies focus on energy management of
networks which include EVs. Possible impacts of
widespread hybrid electrical vehicles (HEVs) on the grid is
investigated in [4]. In [5], an energy management strategy
for vehicles with a fuel cell power source and two energy
storage devices, i.e., batteries and ultracapacitors, is
introduced. A hybrid artificial intelligence technique is
presented in [6] to solve a complex energy management
problem with a large number of resources, including EVs
connected to the electric network. In [7], methods to store
power at the most efficient times of the driving cycle are
discussed. Various control and optimization issues for both
charging and scheduling of HEV’s in a bidirectional V2G
network are surveyed in [8]. Unit commitment in a V2G
infrastructure, while considering operating expenses and
environmental impact is studied in [9]. In [2], centralized
control of HEV charging cycles to reduce grid demand and
costs, and increase efficiency of the overall network is
demonstrated. A short-term unit commitment problem is
introduced in [10] with the utilization of grid-tied EVs and
considering Gridable Vehicles (GVs) of V2G. Energy
scheduling is addressed in [11] by using different resources
and emphasizing distributed generation coupled with
V2G. A methodology is presented in [12] to solve the
energy management problem with high penetration of
distributed generation and EVs with gridable capability.
Joint scheduling of HEVs and renewable energy sources
through economic dispatch is examined in [13] via
dispatching mode, modeling, and algorithms. In [14], it is
shown that the economic dispatch control of grid-connected
HEVs can possibly result in lower energy costs via fuel
shifting and fuel discharging. In [15], a method is proposed
for a day-ahead stochastic security-constrained unit
commitment problem in the presence of wind power
generation and EVs. In [16], coordinated integration of
aggregated plug-in electric vehicle (PEV) fleets and
renewable energy sources (wind energy) is studied.
Stochastic ~ security-constrained  unit ~ commitment
(Stochastic SCUC) model, which minimizes the expected
grid operation cost while considering the random behavior
of PEVs is employed.

Several methods are introduced to reduce computational
burden of energy management and scheduling problems



through distributed optimization algorithms, which take
advantage of parallel computing.  Geographical
decomposition approaches have been presented in the
literature [17-19], to solve large operation and planning
problems for power systems. However, since EVs are
randomly moving from one bus to another, the problem
cannot easily be decomposed over geographical areas.

This paper proposes a temporal decomposition approach
to divide a network-constrained economic dispatch
(NCED). Thousands of EVs are considered over the
scheduling horizon in order to take advantage of parallel
computing and achieve reduced solution time. Since the
sub-problems are not isolated, the consistency constraints
between subproblems, such as ramping limitations, must be
modeled. To this end, a ramp-constrained NCED is
formulated for each sub-horizon while the connections
between subproblems are modeled as shared
variables/constraints. In order to coordinate the
subproblems and find the optimal solution for the entire
operation horizon, distributed auxiliary problem principle
(APP) is proposed. Further, an efficient initialization
strategy is presented to enhance the convergence time of the
solution algorithm. The proposed method is applied to solve
a week-ahead NCED on a 6-bus and IEEE 118-bus test
systems and promising results are obtained.

II.  PROBLEM DESCRIPTION

A. Economic Dispatching including Electrical Vehicles

The goal is to determine the hourly ramp-constrained
NCED along with the dispatch of generating units, while
considering the charge/discharge states of EV fleets. The
objective function given in (1) is to minimize cost. This
includes generation cost, operational costs of EV fleets for
the base case, and availability cost for providing spinning
reserve for each scenario, plus the expected cost of
corrective actions in scenarios to compensate for
uncertainties. The proposed formulation is a stochastic
optimization problem with load forecast errors, power
system component outages, number of EVs in a fleet, and
their energy requirements considered as variables.

The Monte Carlo simulation method is utilized in the
proposed stochastic model. Random outages in power
systems are represented by incorporating probability
distribution functions and forced outage rates. Load forecast
errors, EV energy consumption patterns, and the number of
EVs in a fleet are represented by truncated normal
distribution functions. [16] The mean values are the
forecasts, and the standard deviations are percentages of the
mean values. Forward and backward algorithms are
developed to reduce the number of scenarios with an
acceptable accuracy [20]. The convex operation cost of
aggregated EVs depends on the number of vehicles and
charging/discharging cycles [21].
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where a,, by, and ¢, are cost coefficients for generating
unit u, t refers to time interval, u refers to generating units,
f is the generation cost function, p,; is power generated
by unit u at time t, p? defines the probability of the base
case solution. AJ* maximum permissible power
adjustment of a unit, C, . represents opperational cost of EV
fleet.
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where i and j are indices for buses, ij is the index for lines,
p;j denotes power flow in line ij, §; is the voltage angle of

bus i, X;; is the reactance of line ij, P, and P, refer to the

maximum and minimum limits of generating unit u, P;; and
P;; refer to the maximum and minimum limits of line ij,

UR, and DR, show the ramping up and ramping down
limits of unit u, EJ¢¢ is the Net discharged energy of EV
fleet at time ¢, Py. ., and P.,,, represent discharge/charge
power of EV fleet, n,, is the cycle charging efficiency of
PEV fleet, Iyc ) Ic vt » Ii e T€present discharge/charge and
idle mode of EV fleets, N, Status of grid connection of
fleet at time t, EM" EM**min/max energy stored in
batteries of EV fleet v, and E,, o and E;, yr refer to the initial
and terminal stored energy in EV fleet v.



The base constraints (3)-(20) are deterministic and
include NCED constraints (3)-(10) and EV constraints
(11)-(20). The EV constraints include the hourly
injected/consumed energy and power to/from the network
by EVs (11)-(12). The hourly charge/discharge/idle modes
of fleets are presented in (13). Charge/discharge power
limitations are presented in (14)-(15). The hourly energy
balance of EV batteries is considered in (16). The energy
limitation of each fleet is given in (17)-(18). The
charge/discharge cost curve of EV batteries is provided in
(19). This represents the depth of discharge and cycles to
failure of the battery required for calculating the cost of
charged/discharged energy to/from EV batteries. In the
consumer-controlled scheme, the aggregated state of
charge (SOC) of EVs is set to be fixed at specific operation
periods (11). It is assumed that the SOC is at 100% when
an EV fleet is leaving the station [16].

Constraints for each scenario:
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The EV fleet scenario constraints are given in (20)—~(37).
Equations (20)—(25) represent NCED constraints for each
Monte Carlo scenario. The parameter NE; is an uncertain

input that shows the ratio of the number of EVs in the
scenario to the number of base case EVs. The scenario
corrective action is enforced by (36)-(37) where the hourly
cost of corrective action f%(AJ{*), is included in objective

function (1).

Considering the grid complexity along with the
stochastic nature and mobility of EVs, the optimization
problem in (1)—(37) is large scale and nondeterministic. The
solution to this problem (without decomposition) demands
high computational capabilities. It is proposed in [16] to
decompose such problems into a master mixed-integer
programming (MIP) problem with several linear
programming (LP) subproblems and use Benders cuts for
scenario reduction. In this work, in order to further alleviate
the computational burden and reduce the solution time, time
decomposition is applied following Benders decomposition.

B. Time Decomposition

Solution time is affected by the number of variables and
constraints. In order to speed up the solution algorithm of
NCED, a time decomposition approach is proposed based
on the authors’ previous work [3]. With this approach, the
problem is divided into smaller sub-horizons, where each
represents a subproblem that includes a subset of variables
and constraints. Solving sub-horizons independently can
result in two different values at the point in-between
individual events. This calls for instant change of
generating units outputs; however, this is not possible due
to ramping limitations. Therefore, intervals must be able to
coordinate with each other. An extra time interval of one
hour is added at the end of each sub-horizon and treated as
a shared variable that must be equal for neighboring
problems. The main goal is time reduction by reducing the
computational load through parallel computing. The
distributed coordination algorithm allows parallel
computing while reaching an optimal solution for the entire
scheduled time horizon.

III.  COORDINATION ALGORITHM

Utilizing auxiliary problem principle [22], which is a
parallel based coordination strategy, the sub-horizons can
be coordinated and suboptimal or infeasible results
avoided. An iterative coordination algorithm is presented
that provides a parallel solution for the NCED
subproblems. Relaxing the consistency constraints in the
objective function of each sub-horizon is possible through
the concept of augmented Lagrangian relaxation.

A. Auxiliary Problem Principle

The proposed coordination algorithm is based on the
auxiliary problem principle (APP). With roots in
Lagrangian relaxation, APP is iterative and can find an
optimal solution for coupled subproblems [22]. Special
features allow for sequences of auxiliary problems to
coordinate subproblems, creating a practical approach for
parallel optimization through the approximation of shared
variables for each iteration while being based on the
iteration prior.

Considering a one-week scheduling horizon that can be
decomposed into NS subproblems, assume two consecutive
subproblems, referred to as subproblems n and n+1. The



output power of generating units in the final time interval
of n and the first time interval of n + 1 must match. To
meet this requirement, an overlapping time interval, tc, is
added to subproblem n. Time interval tc is shared between
neighboring subproblems. For each generating unit, the
optimal output power in overlapping time interval tc must
be equal to the generated power in time interval 1 of
subproblem #n+1. Denoting the shared variables of
subproblems n and n + 1 by ¢, and ¢,,,4, respectively,
and remembering that ¢, and ¢, ., are essentially the
same, the following consistency constraint must be
satisfied for all the generating units

$n—Pnt1 =0 (38)

The constraint in (38) is a hard constraint, which
potentially can result in the sub-optimality of the solution.
This is not desirable. Thus, using the concept of augmented
Lagrangian relaxation, this hard constraint is relaxed by
adding a penalty function to the objective function (1). This
can be seen in the formulation (1-10) of subproblem n at
iteration k, as follows
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Here, T is a transpose operator, x, is the set of output power
of generating units during sub-horizon n, ¢, is the set of
output power of generating units in the overlapping time
interval tc, A¥ is the vector of Lagrange multipliers at
iteration k, p and y are suitable positive constants.

de *“tand Qf " indicate the values of the shared
variables of subproblems »n and n+1 that are determined at
iteration k-1, and ®F is the shared variable of subproblem

n that needs to be determined in iteration k. In fact,
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A similar ramp-constrained NCED is formulated for

subproblem #+1 in the following
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decision variable. The NCED subproblems are solved
iteratively. The penalty multiplier A needs to be updated at
the end of each iteration as follows
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n+1
where « is a suitable positive constant. Note that the value
of the Lagrange multiplier A in each iteration corresponds
to the cost of maintaining the consistency constraint.

B. Initialization

The  performance of  distributed/decentralized
optimization algorithms is heavily reliant on initial
conditions. Convergence performance, or the number of
iterations and the optimality gap, can vary based on initial
conditions. Ideal initial conditions result in convergence of
the proposed APP-based distributed NCED in fewer
iterations compared to scenarios. Initial conditions are both
problem and system dependent and research to set proper
initial conditions is currently ongoing within the power
systems and operations community.

Computational time is the main focus of the proposed
time decomposition framework. Thus, selection of a good
starting point is imperative. Power system characteristics
allow to propose a method for ideal shared variable
initiation. Initializing variables start by ignoring the
overlapping time intervals and shared variables, (to make
the sub-horizons become independent), and then solving
the NCED subproblems in parallel. Ignoring the ramping
rates of the generators by removing the shared variables
does not result in a large solution error. This is due to the
demand characteristics in power systems. Although the
results of isolated subproblems may not be feasible, they
are of high potential for proper initial states.

IV. CASE STUDY

The proposed algorithm is employed to solve a week-
ahead NCED problem on a 6-bus and the IEEE 118-bus
systems. EVs in various locations are categorized into fleets
based on driving characteristics. The available energy,
maximum/minimum capacity, and charge/discharge power
of individual vehicles are aggregated in EV fleet
characteristics, representing maximum/minimum
capacities, SOC, and maximum/minimum
charging/discharging capabilities.

EV fleet characteristics include starting locations and
destinations of EV fleets, departure and arrival times at
designated locations, and EV charging locations and
patterns which could be bundled into power system
operations. A random number of EVs is assumed for each
fleet. SOC, energy consumption, and maximum/minimum
capacity of an EV fleet are a function of the number of EVs
and their operating characteristics. SOC is the ratio of
available energy to maximum storable energy in the battery.
[23] The energy consumption in a fleet depends on the
number of EVs and their energy requirements. The driving
habits of a fleet would determine the charging/discharging
patterns of the aggregated EVs [16]. Tables I lists the five



fleets that are the results of benders decomposition in [16]. TABLE III
The charging efficiency of a fleet is 85% which is the ratio GENERATOR DATA FOR 6-BUS SYSTEM
of energy stored in the battery to the energy drawn from the Unit | Pmin | Pmax a b c
grid. MW) | MW) | (MBtu) | (MBtw/MWh) | (MBtu/MW?h)
1 40 220 100 7 0.03
TABLET 2 10 | 100 | 104 10 0.07
EV FLEET TRAVEL CHARACTERISTICS [16] 3 0 25 110 8 0.05
PEV Number First Trip Second Trip
Fleet of PEVs Departure Arrival Departure Arrival TABLE IV
No. Time Bus Time Bus Time Bus Time Bus
1 3400 6:00 5 8:00 1 17:00 1 19:00 5 NETWORK INFORMATION FOR 6-BUS SYSTEM
2 2000 7:00 4 8:00 2 16:00 2 17:00 4 From Bus To Bus X(pu) Flow Limit
3 1000 5:00 4 7:00 2 16:00 2 18:00 4 (MW)
4 1600 5:00 6 6:00 3 17:00 3 18:00 6
5 2000 7:00 5 9:00 3 18:00 3 20:00 5 1 2 0.170 200
1 4 0.258 200
. . . g . 2 3 0.037 190
The operation horizon is divided into seven equal sub- 2 1 0197 200
horizon§, each including 24 intervals. T.o have a fair 3 5 0018 180
comparison, B,p,y=02 and A=1 in all -cases. 4 5 0.037 190
Consistency constraints are modeled as shared variables to 5 6 0.140 180
form the connections between subproblems in order to TABLE V
optimize the system over the entire time span. In this way,
. . p . HOURLY LOAD OVER A SAMPLE DAY HORIZON FOR 6-BUS SYSTEM
the overall optimal cost for the entire system is achieved.
.. Hour Py Hour Py Hour Py Hour Py
To evaluate .the performance of ‘the prqposed distributed (MW) (MW) (MW) (MW)
NCED algorithm, a convergence index is used to measure 1 175 7 173 13 242 19 246
the relative difference between the total costs determined 2 169 8 174 14 24 20 237
by the distributed NCED (f¢) and the centralized NCED 3 165 9 185 15 249 21 237
(f*), which is considered as the benchmark. 4 155 10 202 16 256 22 233
|f* _ fdl 5 155 11 228 17 256 23 210
=27 (42) 6 165 12 236 18 247 24 210
f*

The closer the convergence measure gets to zero, a more
precise solution is obtained. All simulations are carried out
in MATLAB using YALMIP [24] as a modeling software
and Gurobi solver on a 3.7 GHz personal computer with
16GB of RAM, virtually modelling parallel computing.

A. 6-Bus System

EVs in various locations are categorized into different
fleets based on their driving characteristics. The available
energy, maximum/minimum capacity and charge/discharge
power of individual vehicles are aggregated into EV fleet
characteristics representing maximum/minimum capacities,
SOC, and maximum/minimum charging/discharging
capabilities. Table II shows characteristics of the five fleets
in the 6-bus system.

TABLE 11
EV FLEET CHARACTERISTICS FOR 6-BUS [16]
PEV Min Max Min Charge Max Charge a b c
Fleet Cap. Cap. /Discharge /Discharge ($/MW2) ($/MW) ($/h)
No. | (MWh) | (MWh) (kW) (MW)
1 13.152 65.76 7.3/6.2 24.8/21.08 0.17 8.21 0
2 10.96 54.8 7.3/6.2 14.58/12.4 0.20 821 0
3 5.48 27.4 7.3/6.2 7.29/6.2 0.41 8.21 0
4 8.768 43.84 7.3/6.2 11.67/9.92 0.25 8.21 0
5 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0

The topology of the 6-bus system is shown in Fig. 1 and
tables III-V summarize data of this system.
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Fig. 1. Six-bus test system.

Table VI shows the convergence time, number of
iterations, and rel for the 6-bus system. The operation cost
using both centralized and distributed methods is $486,900.
The proposed distributed NCED converges to feasible and
optimal results after one iteration plus the initialization.
The computation time is 0.14 seconds which is a little less
than that of the centralized method, 0.18 seconds. The rel
index is almost zero upon the algorithm convergence. The
distributed NCED is 22% faster than the centralized
NCED.

TABLE VI
RESULTS OF 6-BUS SYSTEM
Algorithm Iteration rel Time (s)
Centralized - - 0.18
Distributed 1+1 le-12 0.14

B. IEEE 118-Bus System

The proposed algorithm is employed to solve NCED of
a larger system, i.e. IEEE 118-bus system. Table VII shows
the fleet characteristics for this system. The fleet travel
schedules are similar to those in the previous case study.
EV fleet travel characteristics is the same as Table I.

TABLE VII
EV FLEET CHARACTERISTICS FOR IEEE 118-BUS SYSTEM [16
PEV Min Max Min Charge Max Charge a b c
Fleet Cap. Cap. /Discharge /Discharge ($/MW2) ($/MW) ($/h)
No. (MWh) | (MWh) (kW) (MW)
1 131.52 986.4 7.3/6.2 24.8/21.08 0.57 27.35 0
2 109.6 822 7.3/6.2 14.58/12.4 0.68 27.35 0
3 54.8 411 7.3/6.2 7.29/6.2 1.36 27.35 0
4 87.68 657.6 7.3/6.2 11.67/9.92 0.85 2735 0
5 109.6 822 7.3/6.2 14.58/12.4 0.68 27.35 0

The operation cost using both centralized and
distributed NCED algorithms is $11,083,000. Table VIII
summarizes the simulation results for the IEEE 118-bus
system.




TABLE VIII

RESULTS OF IEEE 118-BUS SYSTEM

Algorithm Iteration rel Time (s)
Centralized - - 3.08
Distributed 3+1 le-08 1.37

Since a relative error of 1e-8 does not have any impact
on the cost, the convergence measure rel is considered
almost zero upon convergence. The centralized NCED
takes around 3 seconds, but the distributed algorithm
converges after 1.3 seconds. This is approximately 55%
faster compared with the centralized algorithm.

V. CONCLUSION

The impact of integrating EV fleets into power systems
is evaluated. A stochastic model, which incorporates EV
fleets models along with the associated constraints and
requirements, is proposed. A time decomposition algorithm
is devised to divide a ramp-constrained NCED problem
over the scheduling time horizon. NCED subproblems are
formulated, with each sub-horizon taking into account
thousands of EVs connected to the network.
Interdependencies between the consecutive sub-horizons,
which originate from intertemporal constraints of
generating units, are modeled by introducing the concept of
overlapping time intervals. APP is proposed to coordinate
the NCED subproblems. An initialization strategy is
proposed to enhance the convergence speed of the solution
algorithm. The simulation results suggest that as the size of
the problem (that depends on the size of the system and the
number of EVs) increases, the proposed distributed
algorithm outperforms the conventional centralized NCED
in terms of computational time.
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