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ABSTRACT

It is extremely challenging to deploy computing-intensive convolu-
tional neural networks (CNNs) with rich parameters in mobile de-
vices because of their limited computing resources and low power
budgets. Although prior works build fast and energy-efficient CNN
accelerators by greatly sacrificing test accuracy, mobile devices
have to guarantee high CNN test accuracy for critical applications,
e.g., unlocking phones by face recognitions. In this paper, we pro-
pose a 3D XPoint ReRAM-based process-in-memory architecture,
3DICT, to provide various test accuracies to applications with dif-
ferent priorities by lookup-based CNN tests that dynamically ex-
ploit the trade-off between test accuracy and latency. Compared
to the state-of-the-art accelerators, on average, 3DICT improves
the CNN test performance per Watt by 13% ~ 61x and guarantees
9-year endurance under various CNN test accuracy requirements.
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1 INTRODUCTION

Deep CNNs emerge as one of the most effective solutions to a
wide range of problems, e.g., object recognition [19] and machine
translation. Deep CNN models trained by huge datasets such as
ImageNet are extremely relevant and critical to intelligent mobile
devices such as virtual reality equipments, smart surveillance sys-
tems and self-driving cars, since they have demonstrated high test
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accuracy. However, CNN tests involve both huge volumes of com-
putationally intensive convolutions and large amounts of memory
intensive weights. For example, even for a CNN created in 2012,
AlexNet [19], a test requires 724M floating point (FP) multiply-
accumulate (MAC) operations and 61 million parameters. The es-
sential computing effort of CNN tests prevents CPUs and GPUs
from achieving a high enough frame rate on mobile devices with
tight power budgets [14].

Although binary CNNis [9, 25, 26, 30] reduce weight and convo-
lution computing overhead by binarizing weights and inputs into
1s and -1s, they work well with only small databases, i.e., MNIST
and CIFAR-10, and degrade deep CNN accuracies by 22%~26% when
testing ImageNet. In near future, multiple workloads on a mobile
device will initiate multiple CNN tests on sensor streams such as
video, audio, location tracking and thermal video [14]. Delivering
highly accurate CNN tests for all simultaneous applications will ex-
haust available hardware and power resources of mobile devices.
Therefore, a mobile CNN accelerator must allow a graceful trade-
off between test accuracy, latency and energy consumption. It has
to guarantee highly accurate CNN tests for a small portion of crit-
ical tasks, e.g., secure logins by face recognitions, but adapt to a
large number of real-time tasks using less accurate CNN tests with
lower computing overhead. However, no existing mobile acceler-
ator can exploit such trade-off to dynamically control CNN test
quality-of-service (QoS).

Recently, Lookup-based CNN (LCNN) [2] is presented to reduce
the test convolution overhead by encoding convolutions through
few lookups to a small dictionary. By using different sizes of dic-
tionaries, a LCNN test costs different amounts of computing over-
head and achieves various accuracies. Moreover, recent hardware
works [5, 13, 16, 28] propose a ReRAM-based Dot-product Engine
(RDE) to improve the convolution computing efficiency by > 10°x
over traditional ASIC designs. A RDE efficiently executes convo-
lutions by analog signals and produces output digital results by
analog-to-digital converters (ADCs). However, it is challenging to
deploy LCNNs onto RDEs particularly in low power mobile devices.
Because of the tight mobile power budget, a mobile accelerator can
have only a limited number of power hungry ADCs and short en-
durance multi-level cell (MLC) ReRAM arrays. Since it is impossi-
ble to spread all dictionary entries of a LCNN into such few ReRAM
arrays, frequent writes updating dictionary entries in these arrays
are inevitable. As a result, the naive mobile LCNN accelerator de-
sign cannot obtain reasonable test performance. Moreover, with
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Figure 1: A convolutional layer example.

non-stop LCNN tests, all RDEs in the accelerator may be worn-
out within 5 days. In this paper, we propose a reliable and energy-
efficient 3D XPoint ReRAM-based Process-In-Memory (PIM) archi-
tecture, 3DICT, to deliver various test accuracies to different appli-
cations based on their QoS requirements. Our contributions are
summarized as follows:
e We create a QoS-capable mobile PIM accelerator, 3DICT, to
exploit the trade-off between CNN test accuracy and latency.
e We propose a 3D XPoint single level cell RDE to prolong the
endurance of 3DICT with trivial hardware and power over-
head. We further present two architectural optimizations in-
cluding hybrid convolution and lookup-discard-scale to fur-
ther accelerate LCNN tests.
e We evaluate and compare 3DICT against the state-of-the-
art accelerators. Our experimental results show 3DICT im-
proves the CNN test performance per Watt by 13% ~ 61X
with various accuracy requirements over its counterparts.
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dict [outn] [inn] *
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for (j=0; Jj<K;j++)
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input [inn] [SW*row+i] [SW*col+j] ,‘

Figure 2: The pseudo code of a (small) convolution.

2 BACKGROUND

2.1 Convolutional Neutral Network

The state-of-the-art CNNs [15, 19] are supervised learning algo-
rithms invoking a feedforward function during tests and a back-
propagation process for trainings. In mobile devices, image or ob-
ject recognitions are performed in real-time, and hence the CNN
test speed matters. In contrast, we can train CNNs through mul-
tiple powerful GPUs in the cloud. In this paper, we focus on ac-
celerating CNN tests in mobile devices. A typical CNN consists of
multiple types of layers including convolutional, activation, pool-
ing and fully-connected layers [18]. A convolutional layer example
is exhibited in Figure 1. The layer receives IN input channels, each
of which has INC columns and INR rows. Each input channel is
convolved by a shifting window with a K xK weight filter to gener-
ate an element in one OUTC X OUTR output channel. The stride of
the shifting window is SW (< K). Totally, OU output channels are
generated by the convolutional layer. The pseudo code of a convo-
lutional layer can be seen in Figure 2. The convolutional layers in
AlexNet cost > 90% of the test execution time [35].

2.2 ReRAM-based dot-product engine

2D RDE. Recent works [5, 13, 16, 28] propose a ReRAM-based Dot-
product Engine (RDE) to improve the performance per Watt of dot-
products by > 103x over traditional ASIC designs. A RDE example
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Figure 3: ReRAM-based dot-product engines.

is shown in Figure 3, where the array consists of wordlines (WLs),
bitlines (BLs) and cells. Each cell on a BL is programmed into a
certain resistance (R), e.g., cellzx on BLy is written to Ry, where
x = 0,1, 2. The cell conductance (G) is the inverse of the cell resis-
tance (1/R), e.g., cellzx has a conductance of Gax = 1/Rax. A volt-
age (Vy) can be applied to each WL, so that the current (e.g., Iox)
passing through a cell (cellzx) to the BL is the product of the volt-
age and the cell conductance (Vx - Gox). Based on the Kirchhoff’s
law, the total current (e.g., I>) on a BL (BL2) is the sum of currents
passing through each cell on the BL (BLy), so I = Zi:O(VX - Gax ).
All BLs in the array produce the current sums simultaneously with
the same voltage inputs along WLs. In this way, a vector-matrix
multiplication between the input vector V and the conductance ma-
trix G stored in the array is computed by a RDE each step. The con-
version between analog and digital signals is necessary for RDEs
to communicate with other digital circuits. A digital-analog con-
verter (DAC) unit converts digital inputs into corresponding volt-
ages that are applied to each WL. A sample-and-hold (S&H) circuit
captures the bitline current, converts the current to a voltage and
sends the voltage to an expensive ADC unit. The ADC costs 66.4%
of power consumption and 73.2% of area overhead in a RDE [28].
To accelerate CNN tests, prior works [5, 28] encode CNN weights
as cell conductances in a RDE and apply input voltages to all BLs,
so the BL currents can represent the elements in an output channel,
where the same inputs convolve with different weight filters.
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Figure 4: Lookup-scale-discard operations.

3D RDE. A RDE favors a long BL, since more (V - G)s can be
summed along one BL. However, a long BL introduces significant
parasitic resistance degrading the voltage integrity [13]. Recent
works [16, 28] connect only 128 cells to a BL to mitigate the par-
asitic resistance in a RDE. To increase the dot-product through-
put, as Figure 3 shows, a 3D XPoint ReRAM-based dot-product en-
gine [3] integrates multiple 2D RDEs into a 3D XPoint structure,
where each layer has an independent copy of BLs and WLs. Al-
though every S&H circuit accumulates currents on multiple BLs,
each of which is from one layer, to improve dot-product through-
put, the 3D RDE requires a ADC with larger resolution to prevent
overflows when converting the current to a digital value. However,
increasing ADC resolution significantly boosts its power consump-
tion and area overhead. For instance, compared to an 8-bit ADC,
a 10-bit counterpart [24] increases the area by 6x and the power
consumption by 10x. So existing 3D RDEs actually degrade the

dot-product performance per Watt per mm?.

discard




2.3 Lookup-based CNN

Basics. Lookup-based Convolution Neural Network [2] (LCNN) re-
duces the convolution overhead by encoding convolutions by few
lookups to a dictionary trained to cover the space of weights in
CNNs. LCNN has the same pooling and activation layers as full
precision CNNs. But for each convolutional or fully-connectedlayer
in LCNN, all weight filters are concentrated to three components:
a shared dictionary (dict), an index tensor (I) and a coefficient ten-
sor (C). The dict of a LCNN layer consists of DL row vectors of
length IN, where DL is the dictionary length. The size of the dictio-
nary (DL) varies for different LCNN layers, but it is always smaller
than the total number of vectors in weight filters of a CNN layer
(OUXK XK, where OU is the CNN output channel number and K is
the CNN weight kernel width). Both I and C consist of DL channels,
each of which has K XK elements. The computation of a LCNN con-
volutional layer consists of two steps: small convolution and lookup-
scale-discard. Figure 2 exhibits the small convolution pseudo code.
In a small convolution, the input is first convolved with the dictio-
nary dict. Different from the CNN convolution, the small convolu-
tion output semiD comprises DL channels of size INRXINC, where
INR and INC are the width and height of a input channel, and DL
indicates the dictionary size. Lookup-scale-discard operations are
described in Figure 4. A lookup-scale-discard fetches channels of
the small convolution output semiD based on its corresponding en-
try in I, e.g., [6, 13, 40]. Then, it scales the lookup results by their
factors in C, i.e., [0.2,0.7,0.1], and accumulates all scaled lookup
results into an intermediate matrix AA. Based on its corresponding
entry in I, some elements in the intermediate INRXINC matrix AA
are discarded, so that a smaller result matrix A with OUTRxOQUTC
is produced. At last, the element-wise sum of all result matrices is
the output of the LCNN layer. More details can be found in [2].

Advantages. By adjusting the dictionary size (DL), a LCNN en-
dows mobile devices the capability of dynamically tuning the test
latency and accuracy for multiple applications with different QoS
requirements. Moreover, LCNN also reduces the CNN training ef-
fort in cloud servers. First, the dictionary allows a network to learn
from very few training examples on novel categories [2]. The few-
shot learning ability is extremely important to mobile devices that
need to adapt to frequently changed user preferences. When a user
needs to classify a new set of categories, instead of reinitializing
all layers randomly, LCNN can inherit dictionaries of a previously
trained model and only learn the index tensor (I) and the coeffi-
cient tensor (C) from scratch by a few examples. Second, LCNN
accelerates the trainings by limiting the number of learnable pa-
rameters without changing the network architecture [2]. Training
deep neural networks is computationally expensive and requires
hundreds of thousands of iterations. However, LCNN can create a
network by training dictionaries on a shallow CNN and reusing it
in the deeper CNN. For the deeper CNN, LCNN needs to train only
the index tensor (I) and the coefficient tensor (C).

3 PRIOR ART AND MOTIVATION

The QoS support is critical for mobile devices to improve the over-
all performance and energy efficiency of multiple concurrent ap-
plications performing CNN tests. But state-of-the-art mobile CNN
accelerators [1, 4, 12, 18, 23, 28] cannot gracefully exploit the trade-
off between CNN test accuracy, latency and energy consumption.
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Figure 5: Comparison between various CNN models.
The first successful deep CNN, AlexNet, has attained 56.6% top-1
and 80.2% top-5 accuracies shown in Figure 5(a) when testing im-
ages from the ImageNet dataset by 16-bit MAC operations. How-
ever, as Figure 5(b) exhibits, one AlexNet test requires 122MB weights
and 724M MAC operations. Such huge computing overhead of Alex-
Net makes state-of-the-art mobile accelerators can barely support
multiple workloads with the minimal real-time requirement, 30
FPS. The ASIC-based mobile accelerator, Eyeriss [4], can achieve
only 13 FPS when processing full precision AlexNet tests. Although
deeper CNNs such as VGG-16 and ResNet-18 increase the test ac-
curacy, it is more difficult for mobile accelerators to execute these
models, since they requires either more memory-intensive weights
or computing-intensive MAC operations. For example, compared
to AlexNet, ResNet-18 increases the number of MAC operations by
1.6X. Therefore, storing and switching between multiple full pre-
cision CNN models online is not an attractive way to exploit the
trade-off between test accuracy, latency and energy consumption
on mobile devices, because of the tight power budget.

A recent mobile accelerator, ENVISION [23], can compute one
16-bit MAC, two 8-bit MACs, or four 4-bit MACs in a MAC unit
simultaneously. The computing overhead of two 8-bit MACs or
four 4-bit MACs is equivalent to that of a 16-bit MAC. Although
decreasing the bit-resolution in a MAC unit increases MAC com-
puting throughput, it degrades the CNN test accuracy a lot. In Fig-
ure 5(b), the MAC (in terms of 16-bit MAC #) and weight over-
heads of AlexNet with 4-bit weights, inputs and activations are
only 25% of those of full precision 16-bit AlexNet. As Figure 5(a)
shows, compared to original AlexNet, the top-1 test accuracy of
AlexNet-4bit is reduced by 30%. Prior accelerators, YodaNN [1]
and XNOR-POP [18], use simplified CNN models (e.g., BinaryCon-
nect [9] and XNOR-Net [26]) binarizing weights, inputs and acti-
vations to boost CNN test speed by performing only low hardware
overhead operations such as additions, subtractions, XNORs and
popcounts. Although the computing effort (in terms of 16-bit MAC
# in Figure 5(b)) and the weights are greatly reduced by the sim-
plified model XNOR-Alex, the test accuracy is also significantly
reduced by 21% for top-1 and 13.7% for top-5 (Figure 5(a)). For crit-
ical applications such as unlocking phones by face recognitions on
mobile devices, such large accuracy degradation is not acceptable.
Moreover, even combining full precision AlexNet and XNOR-Alex
models still cannot enable QoS in a mobile device, since only ex-

tremely high and low test accuracies can be expected.
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Figure 6: A hierarchical array architecture.



4 3DICT

In this section, we first formulate a mobile baseline configuration
with the existing RDE design. Then, we illustrate the naive imple-
mentation of LCNNs on our mobile baseline and identify the short
endurance reliability problem of the existing RDE design. To pro-
long the endurance of our mobile LCNN accelerator, we propose
a 3D XPoint RDE that uses SLC cells and 2-layer shared BLs to
conduct dot-product operations. We further present two architec-
tural optimizations, hybrid convolution and lookup-discard-scale,
to accelerate the LCNN test performance of our 3D XPoint ReRAM-
based PIM accelerator.

4.1 Constructing Baseline Configuration

Because of the limited battery lifetime of mobile devices, in this
paper, we adopt ~ 400mW peak power budget and an existing
RDE design [28] to construct our mobile baseline. With such small
peak power budget, there can be only 128 8-bit 1.28GSps ADCs
in our mobile baseline. As Figure 6 shows, we use the hierarchi-
cal array (HA) structure [31] to share an ADC, 128 1-bit DACs
(inverters), and 128 S&H circuitries among 8 2-layer 128 x 128 2-
bit MLC ReRAM 3D XPoint arrays by global bitlines and word-
lines. To correctly conduct dot-products, only 1 out of 8 arrays in
a HA can be activated and use one shared ADC, 128 DACs and
128 S&H circuitries. Instead of a 2D array, our baseline adopts 2-
layer 3D XPoint arrays to increase the array capacity but maintain
the same dot-product throughput that is decided by the BL length
and ADC for each array. During each dot-product, we treat each
3D XPoint array as a 2D array by using only one layer. The prior
study [28] has already proved that a 128 x 128 2-bit MLC array
balances the trade-off between the dot-product accuracy, power
consumption and ADC/DAC overhead. Our baseline also adopts
the 10MHz RDE pipeline [28], where each multiplication between
a 16-bit 128-entry vector and a 16-bit 128 X 128 matrix costs 22
cycles, i.e., 16-cycle for RDE do-products (1-bit input per cycle), 1-
cycle for ADC, 1-cycle for activation and 4-cycle for I/O operations.
To form a multiply-accumulate unit (MAU), 8 HAs share a shift-
add (S+A) unit and a ReRAM-based I/O buffer (IOB). Our baseline
has only 16 MAUs connected by a 128-bit bus. Furthermore, the
small peak power budget also limits the write bandwidth, i.e., only
16 128-bit writes can concurrently proceed. We also have a 64MB
ReRAM read-only array to store various sizes of dictionaries for
entire CNNs to provide different test accuracies. Each high den-
sity sub-array in the 64MB array is IMB, so we cannot use these
sub-array to perform dot-products. Otherwise, the summed cur-
rent along BLs will be destroyed by the large parasitic resistance
of these long BLs. Because of the non-volatility of ReRAM, array
peripheral power gating [36] is applied to eliminate the 64MB read-
only array power consumption during its idle period. The detailed
configuration and design overhead are shown in Section 4.8.

4.2 3DICT Naive Implementation

4.2.1  Small convolution. As Figure 7 shows, we can perform
small convolutions the same way as that computes normal con-
volutions in [5, 28]. The LCNN dictionaries dict are written into
RDEs, while the voltages representing input are applied on WLs.
At last, the summed currents are sampled, held and converted on
BLs by ADCs. Our baseline has only 1024 (2048) 128 X 128 ReRAM

arrays (layers), while the LCNN-AlexNet with the smallest dictio-
nary requires 3123 128 X 128 ReRAM layers to store all dictionary
entries. The full precision AlexNet requires more than 1 million
such ReRAM layers to record all weights. Therefore, it is impossi-
ble to conduct small convolutions without dictionary updates. We
store as many dictionary entries of last several fully-connected lay-
ers of each LCNN in RDEs of our baseline, and write dictionary en-
tries of every other layer into RDEs before the small convolution
of that layer happens. The dictionary updates take turn to occur in
all RDEs, so that all RDEs wear evenly.

DL @ sc_alg INR x INC @ lr{u{mp
Input[0][row][col] C[O][I.][J] i O T io](il0lth
Input[1][row][col] :
IN CIDLIII] i[DL[i]{jlth

Input[IN][row][col]
small convolution

Figure 7: 3DICT naive LCNN implementation.

lookup-scale-discard

4.2.2  Lookup-scale-discard operation. The small convolution pro-
duces DL channels of INR X INC semiD for each LCNN layer. All
lookup-scale-discard operations occur on semiD as shown in Fig-
ure 7. Each channel of INR X INC semiD is converted to an one-
dimensional vector and written to a row of an array. If INR X INC
is larger than the row size, a semiD channel spans across multiple
arrays. DL semiD channels occupy DL rows. The procedure of a
lookup-scale-discard can be summarized as: @ based on each ele-
ment of Index tensor I, the i[outn][i][j]th row is activated; @ the
voltage representing the corresponding element of coefficient ten-
sor C is applied on the WL of that row. The summed currents on
BLs indicate the intermediate matrix AA in Figure 4; and ® based
on I, only the currents indicating the elements in the result ma-
trix A are translated to digital signals by ADCs; other currents are
skipped by ADCs and hence discarded.
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Figure 8: Baseline performance and endurance.

4.2.3  Performance and endurance. Figure 8 exhibits the perfor-
mance and endurance of our baseline computing LCNN-AlexNet
tests. Our baseline can also directly execute full precision AlexNet
tests. However, it achieves only 5 FPS and lasts only 1 day when
constantly executing full precision tests, because of the short MLC
ReRAM cell endurance (107 writes) and frequent weight updates.
We define the endurance of our baseline accelerator as the inter-
val from its first test to the time when its first row is worn-out.
Our baseline with the naive LCNN implementation obtains 88 (60)
FPS and only about 6 (4) months lifetime when constantly testing
LCNN-AlexNet LCNN-F (LCNN-A) with the smallest (largest) dic-
tionary. The detailed dictionary configuration can be found in Sec-
tion 4.6. Compare to a mobile CPU or GPU, this naive implemen-
tation has better performance per Watt. The detailed comparison
is shown in Section 6. Although LCNN-AlexNet improves the test
performance by 10X ~ 16X on our baseline over original CNNs,
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Figure 9: 3Dict array structure.

the traditional RDE-based accelerator cannot guarantee reasonable
lifetime when testing both CNN models.

4.3 Long Endurance 3D XPoint SLC RDE

To extend the endurance of RDEs, we propose a 3D XPoint single
level cell (SLC) RDE using a ReRAM cell to record only 1 bit of a
weight/dictionary. The 3D XPoint SLC RDE is shown in Figure 9.
Compared to a MLC cell that can tolerate 107 writes, each SLC cell
can sustain for 1019 ~ 1012 writes [32]. Therefore, our SLC RDE
increases the lifetime by 103x ~ 103X over the traditional RDE
design [28]. However, compared to the 2-bit MLC RDE, our SLC
RDE has to occupy a doubled number of BLs, each of which is con-
nected to 128 cells, to perform the same task. Since our SLC RDE
also adopts the same 8-bit 12.8GSps ADC that translates only 128
BLs in each cycle, it reduces the dot-product computing through-
put by 50% over the traditional RDE. Because of the tight power
budget in mobile settings, doubling the ADC or/and array num-
ber in our baseline is not a practical solution to alleviate the dot-
product performance degradation.
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Figure 11: Optimization motivation in our naive baseline.

To mitigate the dot-product throughput degradation, our SLC
RDE adopts a 3D XPoint array structure shown in Figure 9. A prior
3D RDE [3] consists of multiple ReRAM layers, each of which has
an independent copy of WLs and BLs to separate the dot-product
results between each layer. However, in a conventional 3D XPoint
ReRAM chip [34], two vertically connected layers share a set of
WLs or BLs to improve the vertical integration scalability. Our 3D
XPoint SLC RDE shares one set of BLs between two 128 x 128
ReRAM layers. Totally, in the 3D XPoint array, 256 cells (128 cells
on a layer) are connected to a BL. Since a BL in this 3D structure has
the same length as that in the 2D counterpart [28], the 3D XPoint
BL resistance does not increase or degrade the summed current
signal on the BL. By applying two sets of 128 input voltages on the
WLs of the top and bottom layers respectively, each BL sums 256
1-bitx1-bit currents that can be translated to a digital value by our
baseline 8-bit ADC. On the contrary, to avoid overflows, the prior
3D RDE design [3] requires higher bit-resolution ADCs consuming
7% chip area and 11X power consumption [24], since it uses 2-bit
MLC cell in each layer and accumulates currents from multiple lay-
ers. With our long endurance 3D XPoint SLC RDEs, as Figure 8(b)
shows, constantly testing AlexNet (3D-AlexNet) still fails our base-
line within 1 year, while the nonstop execution of LCNN in our

lookup-discard-scale

baseline (3D-LCNN-F) can last for nearly 95 years even exceeding
the mobile device lifetime. Next, we will propose two architectural
optimizations to accelerate the execution of LCNNSs by sacrificing
the endurance of 3D XPoint SLC RDEs.

4.4 Hybrid Convolution

As Figure 2 exhibits, small convolutions happen between dict and
input. Since our baseline has too few RDE arrays to store all dictio-
nary entries of a LCNN, at least for the first several layers, dict en-
tries have to be written into RDE arrays before small convolutions
happen. So the total latency of small convolutions of a LCNN layer
includes the latency of writing dict entries and the RDE convolu-
tion latency. Although the size of dict is only IN X DL, INRXINC
convolution iterations are required to produce semiD. On the con-
trary, if we write input with the size of INC X INR x IN into 3D
RDE arrays shown in Figure 10, semiD can be calculated through
DL convolution iterations. We convert each input[inn] into an one-
dimensional vector with INC X INR elements and write it to a row
in an array or spanning across multiple arrays. The entire input
may occupy IN rows. Figure 11(a) highlights the convolution it-
eration number comparison between writing dict and input for
each layer of LCNN-AlexNet. For 5 convolution (3 fully-connected)
layers, writing input (dict) needs more writes but introduces less
convolution iterations. Therefore, we propose Hybrid Convolution
(HC) to write input for convolution layers but write dict for fully-
connected layers to reduce the iteration number and the convo-
lution latency. Our HC increases the LCNN-AlexNet performance
with the smallest (largest) dictionary, HC-LCNN-F (HC-LCNN-A),
to 100 (74) FPS (Figure 8(a)) and obtains 92 (75) years lifetime (Fig-
ure 8(b)) on our baseline with 3D XPoint SLC RDEs.

4.5 Lookup-Discard-Scale

Figure 7 shows the procedure of lookup-scale-discard operations.
Although DL channels of semiD occupy DL rows, most lookup-
scale-discard operations access, scale and accumulate only few chan-
nels of semiD. As Figure 11(b) shows, 82% lookup-scale-discards
of the first layer of LCNN-AlexNet access and scale only 1 semiD
channel. On average, only 8% lookup-scale-discards access, scale
and accumulate more than 4 channels of semiD. Since each BL in
our 3D XPoint SLC RDEs connects to 256 rows and can accumu-
late at most 256 currents during each lookup-scale-discard, most
lookup, scaling and accumulation capability on a BL is wasted. We
propose Lookup-Discard-Scale (LDS) to fully exploit the lookup,
scaling and accumulation capability of BLs. The procedure of a
LDS operation can be viewed in Figure 10 and described as: @
based on each element of Index tensor I, a channel of semiD (the
intermediate matrix AA) is found; @ based on the element of I,
only OUTR x OUTC out of INR X INC elements in an intermedi-
ate matrix AA are selected to form a result matrix A and written



into a row of a RDE array. All other elements in the intermediate
matrix AA are discarded; and ® after all result matrix As of Index
tensor I are written into RDEs, the voltages representing the corre-
sponding elements of coefficient tensor C are applied on the WLs
of the corresponding rows. The summed currents on BLs are con-
vert to the digital outputs of this LCNN layer by ADCs. Our LDS
and HC improve the LCNN-AlexNet performance with the small-
est (largest) dictionary, LDS-LCNN-F (LDS-LCNN-A), to 273 (121)
FPS (Figure 8(a)) and achieves 11 (9) years endurance (Figure 8(b))
in our baseline with 3D XPoint SLC RDEs.

4.6 QoS Support

To enable the capability of QoS control, 3DICT stores 7 dictionaries
with various sizes for a CNN, e.g., AlexNet, in a 64MB ReRAM read-
only array. The mobile host platform such as a CPU controlled by
programmers can actively inform our 3DICT to use a particular dic-
tionary to perform LCNN tests. Each dictionary deliveries a LCNN
test accuracy expectation and a performance guarantee. The per-
formance and LCNN test accuracy achieved by these 7 dictionaries
can be found in Figure 12. Our 3DICT is the first CNN accelera-
tor that enables a graceful trade-off between LCNN test accuracy
and latency. With the smallest dictionary (4.3MB), 3DICT provides
68% top-5 test accuracy and 273 FPS test performance. In contrast,
3DICT having the largest dictionary (9.6MB) achieves 78% top-5
test accuracy and 121 FPS test throughput.
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Figure 12: 3DICT QoS Support on AlexNet.

When constantly using one dictionary, the dictionary entries of
the last several full-connected layers are left in our 3D XPoint SLC
RDEs. So, before computing full-connected layers, a LCNN test
needs to update only the RDEs that are modified by first several
convolutional layers. However, if the host CPU decides to change
to another dictionary different from that are used in the previous
LCNN test, 3DICT requires 246us to update all 1024 (2048) RDE ar-
rays (layers). On average, the performance of 3DICT with various
dictionaries reduces 1 FPS, because of this extra updating latency.

4.7 Variations on Array Latency and Endurance

Previous works [31, 33] observe that particularly during RESETs,

ReRAM arrays suffer from serious sneak path currents that sig-

nificantly prolong the RESET latency. The amount of sneak path

current is decided by the writing cell position in the array and how

many low resistance state (LRS) cells along its BL and WL. How-

ever, our 3D XPoint SLC arrays do not have the sneak path current

problem, since they adopt Ag/Hafnia-based access devices [22] with
1019 ON/OFF current ratio to suppress the sneak path current. More-
over, the size of our arrays is only 128 X 128. Based on the evalu-

ation in [31], such small array size is immune to sneak path cur-

rents. We also adopted the fine-grained RESET/SET current provi-

sion scheme [17] to eliminate over-RESETs and over-SETs in our

small arrays. Therefore, we assume each SLC cell in our arrays can

tolerate at least 1010 writes.

4.8 Design Overhead

The power and area overhead of 3DICT is shown in Table 1. To
compare against ISAAC [28], we adopt its ADC, DAC, S&H, S&A,
pooling, activation logic design and the same 32nm process tech-
nology. The router and bus are modeled and estimated through
Cadence Virtuoso with 32nm PTM technology. Instead of eDRAMs,
we used ReRAMs as I/O buffers and the dictionary storage. We used
NVSim [10] to estimate the latency, power and area of ReRAM ar-
rays. To support our 3D XPoint SLC RDE design, 256 1-bit DACs
(inverters) are required in each HA. We adopted a ReRAM cell
model from [31], where a RESET costs 26.4pyW and 10ns while a
SET requires 11.3yW and 15ns. So with only ~ 400mW power bud-
get, at most 16 arrays with 128-bit rows can be written simultane-
ously. Since a 2-bit MLC write costs a RESET and multiple SETs,
we assume the MLC write latency is 100ns.

Table 1: DictR power and area

‘ Name ‘ ‘ Component ‘ Spec ‘ Power (mW) ‘ Area (mmz) ‘
ADCX1 8-bit 1.28GSps 2 0.0012
Hierarchical DACX256 1-bit, inverter 1 0.00025
Array (HA) S&HX128 sample & hold 0.0125 0.000005
ArrayXx8 128 X 128 2-layer 0.3 0.0002
Sub-total 3.3125 0.001655
Multiply HAX8 265 0.01324
Accumulate S&AX4 shift & add 0.2 0.00024
Unit (MAU) || ReRAM 1KB 1/0 buffer 0.15 0.0005
Sub-total 26.85 0.01398
MAUX16 429.6 0.224
Sigmoidx2 activation 0.52 0.0006
3DICT S&AX1 shift & add 0.4 0.00006
MaxPoolx1 pooling 0.31 0.00024
Router and bus connection 3 0.04
ReRAM 1K B 1/0 buffer 0.15 0.0005
dict storage || ReRAM 64MB power gating 3.6 (0) 0.16
Total 433.98 0.4254

Table 2: CNN benchmarks (C: convolutional; S: pooling; F: fully-connected; Orig:
original; LCN'N — A: LCNN accurate; LCN'N — F: LCNN fast; X NOR: XNOR-Net).

Top-5 Accuracy(%) ‘

‘ Name H DataBase | Topology } Orig [3DICT — A [3DICT —F[ XNOR]|
LeNet-5 MNIST 3C,2S,1F 99.1 98.8 97.2 97.2
MLP MNIST 5F 98.5 98.1 97.1 96.9
CNP MNIST 3C,25,1F | 97.0 96.8 96.2 96.1
SCNN MNIST 2C,2F 99.0 98.2 97.7 97.8
MCNN MNIST 3C,3S,3F 96.8 96.1 95.7 95.7
AlexNet ImageNet | 5C,3S,2F 80.2 78.1 68.7 69.2
ResNet-18 || ImageNet | 18C,25,1F | 89.2 84.6 76.8 73.2

Table 3: Simulated scheme comparison.

[ Name I Description [ Powerace | Powermem |

Envision [23] complex CNNs 62mW [23] 1.91W [18]

YodaNN [1] BinaryConnect 248mW [1] 1.91W [18]

Eyeriss [4] complex CNNs 278mW [4 1.91W [18]
TETRIS [12] HMC PIM 3.42W [12 0
XNOR-POP [18] || XNOR-NetPIM | 2.15W [18 0
mISAAC mobile ReRAM CNN | 435.58mW 0
3DICT ReRAM LCNN 435.58mW 0

5 EXPERIMENT METHODOLOGY

Workload. We studied six CNNs including LeNet-5 [20], CNP [11],
SCNN [29], MCDNN [7], AlexNet [19] and ResNet-18 [15], and a
Multilayer Perceptron(MLP) [20]. LeNet-5, CNP, MLP, SCNN, and
MCDNN were trained with MNIST to identify simple handwrit-
ten digits, while AlexNet and ResNet-18 were trained with Ima-
geNet to recognize complex objects. Compared to other deep CNNs
with more layers and weights, ResNet-18 obtains approximately



the same or even better test accuracy [15]. We trained all networks
by Torch7 [8]. More network details can be viewed in Table 2,
where besides the network topologies, we also show the test ac-
curacy of each network. Compared to full precision CNNs (Orig),
XNOR-Net [26] reduces the test accuracy (top-5) of AlexNet and
ResNet-18 by 13.7% and 17.9% respectively. By adopting different
dictionaries, LCNN can explore the trade-off between test accuracy
and speed. Therefore, we show 3DICT testing LCNNs with two dic-
tionary configurations: 3DICT-A achieves high test accuracy (only
1% ~ 5% degradation, compared to original CNNs) and slow test
speed by using the largest dictionary (9.6MB); and 3DICT-F attains
low test accuracy (similar to that of XNOR-Net) and fast test speed
through computing with the smallest dictionary (4.3MB). More de-
tails on the dictionary configuration can be viewed in Section 4.6.

Schemes. We compared 3DICT against 6 counterparts shown
in Table 3. We selected 4 mobile CNN accelerators including Envi-
sion, YodaNN, Eyeriss and XNOR-POP. Both Envision and Eyeriss
are designed for processing full precision CNNs, while YodaNN
takes advantage of BinaryConnect [9] to test CNNs with only addi-
tions and subtractions. XNOR-POP is a Wide-IO2-based PIM using
XNOR-Net [26] to test CNNs with XNORs and popcounts. We also
chose a 3D DRAM-based CNN PIM TETRIS [12] running full preci-
sion CNNs. We customized a mobile version of ReRAM PIMISAAC
to run full precision CNNs by using our baseline configuration in
Section 4.1. We also adopted a mobile SoC platform Jetson KT1
including a 4-core ARM-A57 CPU and a 256-CUDA-core NVIDIA
GPU. The mobile CPU consumes 1W, while the mobile GPU costs
7W. Since the 1GB Wide-IO2 DRAM is an indispensable compo-
nent of XNOR-POP, for a fair comparison, we assume the same
DRAM configuration for all other platforms (except PIMs) that re-
quire a main memory system to buffer weights.

Accelerator modeling. We used a heavily modified deep learn-
ing accelerator simulator FODLAM [27] to study the performance,
power and energy consumption of all accelerators. Based on a user-
defined accelerator configuration and a neutral network descrip-
tion, FODLAM can generate the performance, power and energy
details of the accelerator running that network. The FODLAM model
has been correlated and validated by real accelerator chips such as
Eyeriss [4]. We also implemented micro-architectural pipeline de-
tails of all accelerators into FODLAM. All neutral network descrip-
tions are obtained through Torch7 [8].

6 EVALUATION

Comparison against a CPU and a GPU. Figure 13 shows the per-
formance comparison between a CPU, a GPU and our 3DICT. Di-
rectly executing full precision AlexNet tests on the mobile CPU or
GPU cannot achieve competitive performance. When testing full
precision AlexNet, the ARM CPU only has 1 FPS, while the mo-
bile GPU attains 18 FPS, both of which are smaller than the min-
imal real-time performance requirement 30 FPS. Testing LCNN-
AlexNet cannot help the mobile ARM CPU reach 30 FPS neither.
However, the mobile GPU obtains 30 ~ 284 FPS when testing
LCNN-ALexNet with various sizes of dictionary. Our 3DICT achieves
273 (113) FPS when computing LCNN-AlexNet tests with the small-
est (largest) dictionary. Compared to the mobile GPU, our 3DICT
improves the performance per Watt of LCNN-AlexNet tests with
various sizes of dictionary by 21x ~ 85x.
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Figure 14: Performance per watt comparison.
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Performance per watt comparison against accelerators. The
performance per watt comparison of all accelerators is shown in
Figure 14. For complex CNNs like AlexNet and ResNet-18, only
XNOR-POP and 3DICT achieve all > 30 FPS per watt. Low power
ASIC-based mobile accelerators, e.g., Eyeriss, Envision and YodaNN,
has limited hardware resources and thereby failing to provide strong
enough CNN test processing power. Moreover, to buffer weights,
they also require an independent main memory system consum-
ing extra power. The mobile ISAAC cannot efficiently test full pre-
cision CNNs, since it has to frequently update weights into 2-bit
MLC ReRAMs. TETRIS fails to obtain high performance per Watt,
since it relies on power-hungry 3D DRAM structure and interface.
Compared to 3DICT-F, XNOR-POP increases the FPS per watt on
AlexNet by 137% and ResNet-18 by 130%. This is because large
WidelO2 rows can execute the most intensive operations in XNOR-
POP, XNORs, in huge throughput with low power consumption.
However, XNOR-POP does not have the ability to explore the trade-
off between CNN test speed and accuracy. It can only execute fast
CNN tests with low accuracy. Therefore, 3DICT-F wins the second
best performance per watt among all accelerators when process-
ing complex CNNs. For simple CNNs such as LeNet-5 and CNP, all
accelerators can obtain > 100 FPS per watt. Particularly, 3DICT-F
achieves the best performance per watt. XNOR-POP cannot com-
pete with 3DICT-F on simple CNNs, since the number of weights
in simple CNNs is too small to fully utilize the large DRAM row.
Compared to XNOR-POP, averagely 3DICT-F improves the test
performance per Watt by 13.7%. Compared to 3DICT-F, 3DICT-A
increases the test accuracy by 14.7% (to 78.1%) but reduces the FPS
per Watt by 41%.

Energy comparison against other accelerators. The energy
comparison of all accelerators is shown in Figure 15. Among all ac-
celerators, XNOR-POP and 3DICT spend the least energy in testing
an image, since their throughput is high and power consumption
is low. XNOR-POP costs less energy when testing complex CNNs
such as AlexNet and ResNet, while 3DICT-F consumes less energy
during tests of simple CNNs, e.g., Lenet-5 and CNP. On average,
3DICT-F reduces the CNN test energy by 12.1% over XNOR-POP.
Compared to 3DICT-F, 3DICT-A increases the test energy by 141%.

Endurance of 3DICT. As Figure 8(b) exhibits, with both archi-
tectural optimizations, 3DICT-F obtains 11-year endurance while
3DICT-A has 9-year lifetime when constantly testing AlexNet. In
LCNNSs, compared to convolution layers, fully-connected layers
have much larger dictionaries. AlexNet relies on three fully-connected
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Figure 16: Full system comparison against XNOR-POP.
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layers, but ResNet has only one fully-connected layer. Therefore,
when execute nonstop ResNet-18, 3DICT-F achieves 23-year en-
durance and 3DICT-A attains 19-year lifetime. For simple CNNs
and MLPs, the dictionary sizes are much smaller than those of com-
plex CNNs such as AlexNet. The endurance of 3DICT executing
simple CNNs and MLP exceeds 20 years averagely.

Full system comparison against XNOR-POP. Although XNOR-

POP has better FPS per Watt over 3DICT-F, it occupies all Wide-
102-based main memory banks during CNN tests. Recent works [6,
21] show that the main memory is a key hardware for mobile de-
vices to buffer and exchange the data from all components includ-
ing the CPU, GPU, display, audio and modem. Therefore, the main
memory frequently receives concurrent accesses from all compo-
nents [6]. However, when the open row in an XNOR-POP bank
serves memory requests, it is impossible to test CNNs in the bank,
since key peripherals such as TSVs, decoders, and sense amplifiers
are occupied by the accesses. Figure 16 exhibits the performance
per Watt degradation of XNOR-POP in a mobile system when sev-
eral banks are serving memory accesses from other components.
When four banks are occupied by the accesses from other com-
ponents, the FPS per Watt of XNOR-POP is reduced to 534 for
AlexNet and 218 for ResNet-18, both of which are worse than those
of 3DICT-F. In contrast, 3DICT can perform LCNN tests indepen-
dently and is not influenced by the main memory system.

7 CONCLUSION

In this paper, we present a reliable and QoS-capable 3D XPoint
ReRAM-based PIM design, 3DICT, to accelerate LCNN tests for low
power mobile devices by hybrid convolutions and lookup-dicard-
scale operations. With 3D XPoint SLC RDEs, 3DICT can guarantee
> 5 years lifetime in mobile devices. By adopting different sizes of
dictionary, 3DICT flexibly provides various QoS options on CNN
test latency and accuracy to all tasks involving CNN tests and run-
ning on the same mobile device. Compared to state-of-the-art ac-
celerators, 3DICT improves the CNN test performance per Watt by
13% ~ 61x under various CNN test accuracy requirements.
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