A Measurement Study on Linux Container Security: Attacks and

Countermeasures
Xin Lin*™ Lingguang Leif+ Yuewu Wang*
School of Cyber Security, University — Institute of Information Engineering, Institute of Information Engineering,
of Chinese Academy of Sciences CAS CAS

Beijing, China
linxin@iie.ac.cn

Beijing, China
leilingguang@iie.ac.cn

Beijing, China
wangyuewu@iie.ac.cn

Jiwu]ingT Kun Sun Quan Zhou'
Institute of Information Engineering, George Mason University Institute of Information Engineering,
CAS Fairfax, USA CAS
Beijing, China ksun3@gmu.edu Beijing, China
jingjiwu@iie.ac.cn zhouquan@iie.ac.cn
ABSTRACT CCS CONCEPTS

Linux container mechanism has attracted a lot of attention and
is increasingly utilized to deploy industry applications. Though it
is a consensus that the container mechanism is not secure due to
the kernel-sharing property, it lacks a concrete and systematical
evaluation on its security using real world exploits. In this paper, we
collect an attack dataset including 223 exploits that are effective on
the container platform, and classify them into different categories
using a two-dimensional attack taxonomy. Then we evaluate the
security of existing Linux container mechanism using 88 typical
exploits filtered out from the dataset. We find 50 (56.82%) exploits
can successfully launch attacks from inside the container with the
default configuration. Since the privilege escalation exploits can
completely disable the container protection mechanism, we conduct
an in-depth analysis on these exploits. We find the kernel security
mechanisms such as Capability, Seccomp, and MAC play a more
important role in preventing privilege escalation than the container
isolation mechanisms (i.e., Namespace and Cgroup). However, the
interdependence and mutual-influence relationship among these
kernel security mechanisms may make them fall into the "short
board effect” and impair their protection capability. By studying the
11 exploits that still can successfully break the isolation provided by
container and achieve privilege escalation, we identify a common
4-step attack model followed by all 11 exploits. Finally, we propose
a defense mechanism to effectively defeat those identified privilege
escalation attacks.

*Also with Institute of Information Engineering, CAS, Beijing, China.

T Also with Data Assurance and Communication Security Research Center, CAS, Bei-
jing, China.

* Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC ’18, December 37, 2018, San Juan, PR, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6569-7/18/12...$15.00
https://doi.org/10.1145/3274694.3274720

418

« Security and privacy — Operating systems security; Virtu-
alization and security;

KEYWORDS

Container, Privilege Escalation, Kernel Security Mechanisms

ACM Reference Format:

Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou.
2018. A Measurement Study on Linux Container Security: Attacks and
Countermeasures. In 2018 Annual Computer Security Applications Conference
(ACSAC ’18), December 3—7, 2018, San Juan, PR, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3274694.3274720

1 INTRODUCTION

Container technology is increasingly adopted by the industrial
community due to two major advantages. First, the container or-
chestration tools such as Docker [31] and Kubernetes [2] facilitate
the deployment, scaling, and management of the containerized
applications. Therefore, containers are increasingly used in the pro-
duction environment [64]. Also, the cloud vendors begin to provide
container services, e.g., Amazon Fargate [11], Microsoft Azure Ku-
bernetes Service [54], etc. Second, as an OS-level virtualization tech-
nology, container mechanism is lightweight thus more attractive to
the resource-constraint mobile platform. Several container-based
Bring Your Own Device (BYOD) solutions [33, 44, 63] have been
proposed and deployed.

Meanwhile, security concerns have become the major barrier
for further adoption of container mechanism. Particularly, since
all containers running on one host share the same Linux kernel,
the isolation provided by the container mechanism will become
completely invalidated once the kernel is compromised. Therefore,
it is necessary to give a systematic evaluation and analysis on the
security of the container mechanism. Most existing studies evaluate
container security from the system architecture or design princi-
ple level. For example, M. Ali Babar et al. [3] give a comparative
analysis on the isolation mechanisms provided by three container
engines, i.e., Docker, LXD, and Rkt. Thanh Bui et al. [6] briefly
compare the security of hardware-based virtualization technology

https://doi.org/10.1145/3274694.3274720
https://doi.org/10.1145/3274694.3274720
Ali Tamimi

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

(e.g., XEN) and OS-level virtualization technology (i.e., container
mechanism) from system architecture level. Reshetova et al. [62]
theoretically analyze the security of several OS-level virtualization
solutions including FreeBSD Jails, Linux-VServer, Solaris Zones,
OpenVZ, LxC and Cells etc. Some researchers [46, 56] also evaluate
the container security using potential vulnerabilities against spe-
cific container mechanisms such as Docker. However, due to the
lack of a measurement study of container security using real ex-
ploits, it is hard to know the security of containers in the real world.
Particularly, due to the small number of exploits reported in the
vulnerability databases such as CVE [12] and NVD [58], it is chal-
lenging to provide a persuasive security evaluation on container
mechanism.

In this paper, we perform a measurement study on Linux con-
tainer security using real exploits that may be launched to attack
containers. First, we manually collect an attack dataset including
223 exploits that may be misused to attack the container platform.
The exploit collection is based on one key observation that since
container is mainly protected by the security mechanisms that have
been integrated in the Linux kernel, many exploits that work on the
Linux platform may be theoretically effective on attacking the con-
tainer platform too. We select the exploits from the Exploit-db [15].
To facilitate the security analysis, we propose a two-dimensional
attack taxonomy to classify these potential exploits. On the first
dimension, the exploits are classified into four types according to
the consequences of the attacks, i.e., sensitive information leakage,
remote control, denial of service and privilege escalation. On the
second dimension, the exploits are classified into four categories
based on the layers the vulnerable programs reside at (or the influ-
ence range of the attacks), which include web app layer, server layer,
lib layer and kernel layer. After classification, we find the "web app
layer" exploits make up the majority of exploits (59.19%), though
they introduce minimum influence. Almost all "lib layer" exploits
aim at conducting denial of service attacks. Moreover, 76.09% "ker-
nel layer" exploits can cause privilege escalation, and most (68.63%)
of privilege escalation attacks are caused by "kernel layer" exploits.

Then we evaluate the security of container mechanism by man-
ually executing the exploits on both the container platform and the
original Linux platform. Specifically, we select 88 typical exploits
(covering all types mentioned above) from the 223 exploits after
removing the exploits that fail on the original Linux platform and
redundant exploits in each category of the two-dimensional taxon-
omy. In total, we find 50 (56.82%) exploits are still effective on the
container platform with the default configuration set by Docker.
Moreover, we perform some further analysis on the privilege es-
calation attacks (the total number is 37), which can completely
invalidate the security protection provided by container mecha-
nisms after obtaining the root privilege. Particularly, we conduct a
more detailed analysis on the effectiveness of the kernel security
mechanisms (i.e., Capability [48], Seccomp [29] and MAC [24, 52]),
container mechanisms (i.e., Namespace [49] and Cgroup [47]) and
CPU protection mechanisms (i.e., KASLR [16], SMAP&SMEP [36])
on preventing privilege escalation on the container platform. The re-
sults show that kernel security mechanisms play a more important
role on blocking the privilege escalation attacks than the container
mechanisms, and the CPU protection mechanisms usually could
be bypassed from inside the container. We observe that the kernel

419

Xin Lin, Lingguang Lei, Yuewu Wang et al.

security mechanisms do not always work independently, and they
are sometimes interdependent and may mutually affect one another.
Improper configuration of these kernel security mechanisms may
impair their protective capability. For example, a loose Capabil-
ity (i.e., assigning many capabilities) policy might disable a strict
Seccomp configuration (i.e., allowing only a few system calls).

Finally, we develop a new defense mechanism based on enforcing
a fine-grained control of the Linux kernel Credential and Names-
pace mechanisms to defeat the 11 exploits that can break the exist-
ing isolation provided by container and thus obtain the root privi-
lege. After a close analysis of the 11 privilege escalation exploits, we
discover that they all follow a 4-step attack model consisting of (1)
bypassing (or manually disabling) the KASLR mechanism, (2) over-
writing certain kernel function pointers via kernel vulnerabilities
such as UAF, race condition, improper verification, buffer overflow
etc., (3) disabling SMEP&SMAP mechanisms, and (4) invoking the
kernel function commit_creds() to acquire the ROOT credential with
all capabilities. We propose a simple but effective defense mecha-
nism to defeat all these root privilege attacks by constraining the
calling of kernel function commit_creds(). Our experimental results
show that it can effectively defeat all 11 exploits with negligible
overhead.

In summary, we make the following contributions.

e We manually create an exploit dataset containing 223
exploits against container solutions. We develop a two-
dimensional attack taxonomy to classify the collected ex-
ploits.

e We study the effectiveness of existing container security by
manually executing 88 typical exploits on original Linux
platform and on the container platform. We find more than
half (56.82%) of the exploits are still effective on the container
platform.

e We provide an in-depth analysis on the privilege escalation
attacks, especially the effectiveness of kernel security mech-
anisms (i.e., Capability, Seccomp, and MAC), container mech-
anisms (i.e., Namespace and Cgroup) and CPU protection
mechanisms (i.e., KASLR, SMAP and SMEP) on preventing
privilege escalation against the container platform.

e We extract a kernel privilege escalation attack model by ana-
lyzing the 11 exploits that could escape container boundary
and gain ROOT privilege, and then propose a defense solu-
tion to defeat all these expoits. Experiment results show that
the defense solution can block the exploits effectively with
negligible overhead.

The remaining of the paper is organized as follows. Section 2
introduces necessary background knowledge. Section 3 describes
exploit dataset and the double-dimensional taxonomy of these ex-
ploits. Section 4 details the quantitative evaluation and analysis
of container security. Section 5 describes the privilege escalation
attack model and the defense system. Section 6 discusses the limita-
tions on the defense system. We describe related works in Section 7.
Finally, we conclude the paper in Section 8.

A Measurement Study on Linux Container Security: Attacks and Countermeasures

2 BACKGROUND
2.1 Linux Container

Linux container [30, 35, 45] is a lightweight OS level virtualization
technology that provides isolation and containment for one or
more processes. The processes inside a container feel like they own
the entire system, though several containers share the same Linux
kernel. The isolation is majorly achieved by two kernel mechanisms,
i.e., Namespace [49] and Cgroup [47]. There are seven types of
namespaces, i.e., user, uts, net, pid, mnt, ipc and cgroup, and each
namespace constructs a specific isolated kernel resources for the
containers. For example, mnt namespace provides an isolated file
system for a container by isolating the file system mount points.
After isolation, the files in different mnt namespaces are not visible
to each other and cannot affect each other. In another example,
net namespace ensures the isolation of network resources, such
as IPv4 and IPv6 protocol stacks, socket ports, etc. Compared to
the Namespace mechanism that concerns kernel data isolation,
the Cgroup mechanism focuses more on performance isolation by
limiting the amount of resources (e.g., CPU, memory, devices, etc.)
that a container can use. Docker [25, 31, 34, 53] is a pervasively used
container engine that facilitates the management of the containers,
such as container creating, deleting, starting and stopping, etc. All
namespaces except "cgroup” and "user" are supported by Docker,
and the Cgroup mechanism is also well supported by Docker. For
example, users can limit the CPU, memory and devices resources a
container can use by setting the —cpu, —memory and —device options,
respectively.

2.2 Linux Kernel Security Mechanisms

One critical security risk of the container mechanism is that all
containers running on the same host share the same Linux kernel.
If a process inside the container compromises the Linux kernel, the
isolation provided by the container mechanism becomes invalid.
Therefore, several Linux kernel security mechanisms are adopted
to constrain the capability of the processes inside the containers,
such as Capability [48], Seccomp [29] and Mandatory Access Con-
trol (MAC) mechanisms. Through Capability mechanism, the su-
peruser privilege (i.e., ROOT privilege) is divided into 38 distinct
units, known as capabilities. Each capability represents a permis-
sion to process some specific kernel resources. For example, the
CAP_NET_ADMIN capability denotes the permissions to perform
network-related operations. By default, the containers created by
Docker own 14 capabilities [21]. The Seccomp mechanism con-
strains the system calls a process can invoke. Docker defines the
available system calls for a container through a Seccomp profile file,
which by default includes more than 300 system calls [26]. Both
Capability and Seccomp are Discretionary Access Control (DAC)
mechanisms, and SELinux [52] and AppArmor [24] are two MAC
mechanisms adopted by containers. SELinux has been integrated in
CentOS / RHEL / Fedora distros, and AppArmor has been integrated
in Debian/Ubuntu distros. AppArmor utilizes a path-based enforce-
ment model [5], while SELinux adopts a label-based enforcement
model [52].

420

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

2.3 CPU Protection Mechanisms

Three CPU protection mechanisms are also commonly used to pre-
vent the attacks to the Linux kernel, i.e., Kernel Address Space
Layout Randomization (KASLR) [16], Supervisor Mode Access
Prevention (SMAP) and Supervisor Mode Execution Prevention
(SMEP) [36]. KASLR is a well-known technique to make exploit
harder by adding a random slide to the kernel base address at boot
time, rather than using a fixed base address all the time. SMAP
prevents supervisor-mode programs from reading and writing user-
space memory, while SMEP prevents supervisor-mode code from
unintentionally executing user-space code. SMAP and SMEP could
be enabled by setting the 21th and 20th bits of the CR4 register,
respectively.

3 ATTACK DATASET DESCRIPTION

We first describe how we collect the exploits that might be effec-
tive on the container platform. Next, we adopt a two-dimensional
method to classify those potential container attacks. First, we clas-
sify the attacks into four categories (i.e., sensitive information leak-
age, remote control, denial of service, and privilege escalation) accord-
ing to their consequences. Second, we classify them into four layers
(i.e., web app, server, lib, and kernel) based on the attacks’ influence
ranges. We then present the construction of the final exploit dataset
using the two-dimensional method.

3.1 Exploit Collection

Currently, there are no existing exploit datasets specifically target-
ing at the container platform. It is a challenge to create an attack
dataset that consists of real exploits that may successfully attack the
containers. One key observation is that since container is mainly
protected by the security mechanisms that have been integrated in
the Linux kernel, many exploits that work on the Linux platform
may be theoretically effective on attacking the container platform
too. As such, we collect the exploits from the Exploit-db [15], which
is a public exploit database containing comprehensive exploits of
various platforms such as Windows, Linux, i0S, Android etc. Specif-
ically, Exploit-db divides the exploits into four categories, namely,
web application, remote, local & privilege escalation, and denial of
service & poc (Proof of Concept). On October 20, 2017, we collect
the latest 100 exploits of each category whose targeting platform is
Linux. All 400 exploits are published in 2016 and 2017, where 274
CVEs used by the exploits are published in 2016-2017 and only 24
CVEs are published between 2013 and 2015.

Since container is generally used to deploy the background ser-
vices such as web server, database server etc. [68], we then filter out
the exploits which will probably fail on the container platform, such
as the ones attacking the Graphical User Interface (GUI) related
programs (e.g., browsers, adobe-flash plugins). Finally, we obtain
223 exploits out of 400 which might be effective on the container
platforms. For each exploit, we collect its unique EDB-ID (Exploit
Database IDentifier), exploit codes to carry out the attack, publish-
ing date, type information on the Exploit-db, and CVE-ID (Common
Vulnerabilities and Exposures IDentifier). For some exploits, we
also collect the vulnerable programs, for example, the vulnerable
web applications.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

3.2 Attack Taxonomy

The Exploit-db classifies the exploits into four categories, i.e., web
application, remote, local & privilege escalation, and denial of ser-
vice & poc. However, it uses a mixed classification method. For
example, "web application" denotes the attacking object (or the vul-
nerable programs), while "denial of service" represents the attacking
consequence. To give a more intuitive illustration, we choose to
classify the exploits from two aspects.

First, we classify the exploits into four layers based on the influ-
ence ranges of the attacks, i.e., web application layer, server layer,
library layer, and kernel layer. The container is generally used for
the development and deployment of underlying background ser-
vices (e.g., web service, database service) that provide support for
multiple upper applications (e.g., web applications) [68]. Therefore,
the programs in the container platform have a similar hierarchy
structure like in the general operating systems, and compromising
the programs in different layers will cause different influence ranges.
For example, attacking of the web applications usually causes self-
damage with only minimum influence. In contrast, compromising
of the Linux kernel has maximum influence, since it will lead to
damages to all containers running on the same kernel. The attacks
on the server programs (e.g., apache, nginx) and libs (e.g., glibc,
libgig) have medium influence, which could impact all applications
depending on them.

Second, we divide the exploits into four categories based on
the consequences of the attacks, i.e., sensitive information leakage,
remote control, denial of service, and kernel privilege escalation.
In the following, we summarize the primary attacking methods
in each category by manually analyzing the attack principle, text
description of CVE [12], and the type of CWE (Common Weakness
Enumeration) [13] obtained from NVD [58].

Sensitive Information Leakage. Three attack methods could
be adopted in the exploits to steal the sensitive information, i.e.,
crafting malicious request/response, triggering race condition, and
bypassing access control mechanisms. The first method is primarily
used to attack the vulnerable programs in the "web application
layer" and "server layer". Specifically, the attackers can send a mali-
cious http request/response with crafted parameters to the web app
or web server to disclose sensitive files, directories, and informa-
tion. Second, the attackers can stealthily access sensitive directories
and data by triggering race condition (e.g., the exploit with EDB-
ID 39771 utilizes race condition in the perf event_open() kernel
function to gain the sensitive data in the "/etc/shadow" file). Third,
the attackers can utilize the design flaw in the functions or ac-
cess control mechanisms for illegal access (e.g., CVE-2017-15014,
CVE-2017-9150).

Remote Control. Most "remote control" exploits target at vul-
nerable web applications or servers. Injection is the most com-
mon way to control the victims remotely. There are totally three
types of injections, which are object injection (e.g., XML Exter-
nal Entity (XEE) injection [37], Hypertext Preprocessor (PHP) files
injection), code injection (e.g., Cross Site Script (XSS) injection,
Structured Query Language (SQL) injection, Object-Graph Naviga-
tion Language (OGNL) injection) and command injection (e.g., OS
command injection [14]). In the "injection" method, the attacker
usually utilizes improper input validation of the victims to execute

421

Xin Lin, Lingguang Lei, Yuewu Wang et al.

arbitrary injected object such as SQL, HTML (Hypertext Markup
Language) page, JS (Java Script), PHP file, Python code, OS com-
mand etc. "Crafting request/response” is another important method.
Specifically, the attackers send malicious http request (e.g., CSRF
(Cross-Site Request Forgery) [43] and SSRF [57] (Server-Side Re-
quest Forgery)) with crafted fields (e.g., evil cookie) to cheat the
victim into bypassing the authentication, opening redirect url, up-
loading files, or executing commands remotely. Crafting response
is rarely used, where the attackers impersonate the server to send
crafted response with malicious fields to cheat the requester into
executing arbitrary codes, opening redirect url, or uploading files.

Denial of Service. There are two types of denial of service,
i.e., resource exhaustion and disability. The attackers either overly
consume resources like CPU and memory by infinitely looping
the calculation or constantly allocating the memory, or cause ker-
nel panic or application crashing through triggering buffer/heap
overflow or crafting illegal input data.

Privilege Escalation. The most severe consequence of the at-
tacks is privilege escalation, through which the attackers obtain the
kernel root privilege. Two methods are utilized in the exploits to
achieve privilege escalation, i.e., memory modification and file mod-
ification. "Memory modification" means that the attackers change
the control flow by overwriting certain data structure in the mem-
ory, or execute malicious privileged-binaries by modifying the stack
memory. "File modification” means the adversaries modify privi-
leged files (e.g., "/etc/passwd", "/etc/crontab") to change the supe-
ruser’s password or modify the file attributes controlling privileges
(e.g., ACL xattr data) to execute malicious programs with root priv-
ilege. For example, the attackers first symlink a malicious object to
a privileged directory, or inject a malicious command to the com-
ponent which is in the privileged context. Then, they can achieve
privilege escalation by executing setuid(0) in the privileged context
or directory.

3.3 Exploit Dataset

Table 1 shows the exploit dataset, containing the exploits that might
be effective in the container platform. We depict the number of
the exploits using the two-dimensional taxonomy described in Sec-
tion 3.2. In total, there are 223 exploits and 148 vulnerabilities (or
CVEs) involved. One exploit might involve several vulnerabilities,
and one vulnerability might be utilized in many exploits (e.g., CVE-
2017-1000366 is utilized in exploits with EDB-ID 42276, 42275 and
42274). Therefore, the exploit number is not equal to the vulnera-
bility number. In some columns, the total number is less than the
sum of all rows in the column. This is because some exploits cause
two or more different consequences (e.g., the exploit with EDB-ID
43015 causes "sensitive information leakage" and "remote control”).
Although compromising web applications introduces minimum
influence, the "web app layer" exploits make up the majority of
exploits (59.19%). Almost all "lib layer" exploits are aiming at de-
nial of service attacks. Moreover, 76.09% "kernel layer" exploits can
cause privilege escalation, and most (68.63%) of privilege escalation
attacks are caused by "kernel layer" exploits.

A Measurement Study on Linux Container Security: Attacks and Countermeasures

Table 1: Exploit Dataset

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Original Linux Platform Container Platform

Total number is less than the sum of all rows in the column when some exploits
cause two or more different consequences.

4 SECURITY EVALUATION OF CONTAINER

We utilize the exploit dataset collected in Section 3 (Table 1) to
evaluate the security of container mechanism, including the security
enhancement provided by container to the programs inside it and
the isolation strength provided by the container on protecting the
Linux kernel.

4.1 Experiment Setup

We evaluate the security of container mechanism by comparing the
execution results of exploits on original Linux platform and on the
container platform. As shown in Figure 1 a), for the exploits com-
promising user space programs, including "web app layer", "server
layer" and "lib layer" exploits, we deploy vulnerable programs inside
the container and run the exploits from outside the container (i.e.,
control host), to evaluate whether container provides extra secu-
rity enhancement for the programs inside it. As shown in Figure 1
b), for the exploits attacking Linux kernel, we deploy the vulner-
able kernel and execute the exploits from inside the container, to
evaluate whether container provides enough isolation. Specifically,
Docker 17.09.1-ce which supports Linux kernel security mecha-
nisms including Seccomp, Capability and MAC, is used to construct
the containers. Some exploits require lower version Linux distros
which are not by default shipped with Docker 17.09.1-ce. On these
distros we install the Docker 17.09.1-ce via static Docker Linux bi-
nary [27] manually. When one exploit works well on several Linux
distros, we choose to utilize the Linux distro that supports more
Linux security mechanisms (e.g., the exploit with EDB-ID 41762
is effective on both Ubuntu 14.04 and 15.10, while only Docker
installed on Ubuntu 14.04 supports the Seccomp mechanism [29].
Thus we choose to use Ubuntu 14.04.).

In total, 88, instead of 223, exploits are utilized in the evaluation.
First, we remove 41 exploits that fail on the original Linux platform.
The primary reasons for those failures are two-fold. One is because
the vulnerable old version programs are no longer available (e.g., the
exploit with EDB-ID 43015 aims at the vulnerable FileRun program
of version 2017.03.18, however, only the latest version could be
downloaded from the vendor’s webpage). The other reason is that
the exploit codes could not execute successfully (e.g., some exploit
codes are inconsistent with their descriptions on the Exploit-db).
Second, for exploits in the same layer (except the privilege escala-
tion exploits) with similar attack principles, we choose only one

0 I Exploits | Container
_AVEES | Web App | Server | Lib | Kernel | Total - r—° FExploits L{—attack—y{ YuIneraple
Categorie Attack L= Programs
o 4
Sensitive
Information 10 5 \ 2 17 Vulnerable Programs Docker Engine
Leakage
Remote Control | 115 16 1 \ 132 Linux Kernel Linux Kernel
Denial of Service | \ 3 15 |9 27
Privil Lib L. E i
rivi ege 10 6 \ 35 51 a) Web App, Server and Lib Layer Exploits
Escalation — - -
Total 132 29" 6 | 46 223 Original Linux Platform Container Platform

422

Container| ——
| Explots|
|

. Attack
Docker Engine

Exploits :

Attack

.

Vulnerable Kernel Vulnerable Kernel

b) Kernel Layer Exploits

Figure 1: Experiment Setup

exploit as the representative in order to avoid redundant exploits
(e.g., all exploits with EDB-ID from 42667 to 42689 achieve remote
control on the web apps through SQL injection by using different
URLSs).

4.2 Result Overview

Table 2 shows the preliminary results of our experiment. Results
on the container platform are obtained with the default security
configuration set by Docker. "Lin" means the number of exploits
execute successfully on the original Linux platform, and "Con"
denotes the number on the container platform. In total, 56.82% of
the 88 exploits are still effective on the container platform. Most
exploits (except the ones causing privilege escalation) in the "web
app layer", "server layer" and "lib layer" remain effective, which
means container does not provide much security enhancement for
the programs inside it.

Sensitive Information Leakage. The exploits in the "web app
layer" and "server layer" obtain the sensitive information through
crafting HT TP request (e.g., CSRF) or response (e.g., the exploit with
EDB-ID 41783 which utilizes CVE-2016-6816), and are not blocked
by the container mechanisms. Reason for the failure of the exploit
in the "kernel layer" is that it needs to utilize the vulnerable eBPF
AP, invocation of which requires the CAP_SYS_ADMIN capability.
And this capability is by default removed for the processes inside
container.

Remote Control. Container mechanism fails in blocking the
"remote control" attacks via both injection (e.g., XSS, XEE, SQL,
OGNL, and command injection etc.) and crafting request (e.g., CSRF)
or response (e.g., the exploit with EDB-ID 40920 which utilizes CVE-
2016-9565).

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Table 2: Security Evaluation Result Overview

Layers

Web App | Server | Lib | Kernel | Total
Categories Con/Lin' | Con/Lin' | Con/Lin'| Con/Lin'| Con/Lin!
Sensitive
Information 3/3 2/2 |\ 0/1 5/6
Leakage
Remote 23/23 | 7/7 | 1/1 |\ 31/31
Control
Denial of | 2/2 | 7/7 | 2/6 |11/15
Service
Privilege
Eecalation 0/4 0/3 |\ 4/30 | 4/37
Total 25/29 | 11/14| 8/8 | 6/37 | 50788

! "Lin" means the number of exploits execute successfully on the original Linux
platform, and "Con"denotes the number on the container platform.

" Total number is less than the sum of all rows in the column. This is because some
exploits cause two or more different consequences.

Denial of Service. Most "denial of service" attacks on the
servers and libs are not blocked by the container mechanism. How-
ever, we find this is because Docker does not constrain the amount
of resource a container could use through Cgroup mechanism by
default. After limiting the CPU and memory resource through —
cpu and —memory options, 5 extra attacks are blocked, where 1 in
"server layer" and 4 in "lib layer". The rest "denial of service" attacks
in the "server layer" and "lib layer” that are not prevented by Cgroup
can cause two main damages. One is kernel panic, and the other
is app crashing. We see 4 "denial of service" exploits in the kernel
layer are blocked because of the Namespace isolation, unsufficient
capabilities, and vulnerable APIs prohibited by Seccomp. For ex-
ample, net namespace can successfully block CVE-2017-14489 and
CVE-2017-16939, which require NETLINK to communicate with
Linux kernel.

Privilege Escalation. The main reason for the failure of the
"privilege escalation" attacks is the capability constraints enforced
by Docker. As described in Section 2.2, Docker gives only 14 capa-
bilities to the processes inside the containers by default. Therefore,
most "privilege escalation” attacks inside containers can only obtain
14 capabilities, rather than all 38 capabilities (i.e., ROOT privilege).
We will give a more detail analysis on the "privilege escalation”
exploits in the next section.

4.3 Analysis of Privilege Escalation Attacks

The biggest security weakness of the container mechanism is shar-
ing Linux kernel. And the "privilege escalation" attacks could com-
pletely disable the isolation provided by container. In this section,
we give a more detail analysis on the security mechanisms (i.e.,
Namespace, Cgroup, Capability, Seccomp, MAC, KASLR, SMAP,
and SMEP) associated with the "privilege escalation" exploits, to
illustrate the reasons for the success and failure of the exploits
on the container platform. Specifically, we first analyze the attack
principles of each exploit by studying the exploit description on
Exploit-db, CVE, CWE, blogs written by the authors and so on.

423

Xin Lin, Lingguang Lei, Yuewu Wang et al.

Table 3: Function of Security Mechanisms in Preventing
Privilege Escalation Attacks

EDB-ID | CVE-ID Security Mec.]'llanisms
Namespace [Cgroup [Capability [Seccomp MAC

Web App Layer
43002 CVE-2017-15276 o
40921 CVE-2016-9566 °
42305 CVE-2017-6970 o
40938 CVE-2014-6271 o
Server Layer
40768 CVE-2016-1247 o
40678 CVE-2016-6663 [
40450 CVE-2016-1240 [
Kernel Layer
41994 CVE-2017-7308
43127
43029° CVE-2017-5123
40871 CVE-2016-8655
40489
40435
44300 CVE-2016-4997 ® NET_ADMIN!
40049
41458 CVE-2017-6074 ® NET ADMIN!
43418 CVE-2017-1000112 ® NET ADMIN!
41995 CVE-2016-9793 ® NET_ADMIN!
42887 CVE-2017-1000253 o
42274 CVE-2017-1000366
s | Cmm -
42276

CVE-2017-1000370
40003
39277 CVE-2016-0728 °
39992 CVE-2016-1583 [] [] [
41762 CVE-2017-1575 o o o
41763 CVE-2017-1576 o o o
39166
39230 CVE-2015-8660 o o o
40847
40616 ° °
40611 CVE-2016-5195
40839
40838 * * *
40759
39772 CVE-2016-4557 o o o
41999 CVE-2016-2384 o o

* Security mechanism blocks the exploit.

: Exploit bypasses all 5 security mechanisms.

! Exploit can achieve privilege escalation when the "NET_ADMIN" capability is
included in the cap_bset of the caller process. Other exploits marked "e" in "Capa-
bility" column can only be successful when all 38 capabilities are included in the
cap_bset. The "cap_bset" defines the highest privilege a process could reach.

Then, we perform static analysis and dynamic debugging on the
source codes of the vulnerable apps and exploits. Finally, we figure
out the attack preconditions (e.g., required capabilities, associated
APIs/commands/files, CPU protection mechanisms that need to be
bypassed etc.) and the methods to bypass the security mechanisms
for each exploit.

CPU Protection Mechanisms. CPU protection mechanisms
are the first line of defense to protect the Linux kernel, however
they usually could be bypassed from inside the container. First,
most exploits require to bypass the KASLR mechanism. For ex-
ample, commit_creds(), prepare_kernel_cred() are two important
methods leveraged by the exploits to elevate the privilege, and

A Measurement Study on Linux Container Security: Attacks and Countermeasures

native_write_cr4() is the method commonly used to disable the
SMAP&SMEP protection. In order to obtain the addresses of these
static functions whose offset to the kernel base address is constant,
exploits need to bypass the KASLR mechanism and obtain the ker-
nel base address. A feasible method is as follows. Generally, the
dmesg command used to print kernel syslog is by default available
in the container. When the system boots up, the kernel text address
will be recorded in the kernel syslog, and could be obtained by
searching the key words such as "Freeing SMP" or "Freeing un-
used". However, this way of figuring out the kernel text address
works only for some time after booting, as syslog only stores a fixed
number of lines and starts dropping them at some point.

Second, in order to access user space data and execute user
space code from kernel, exploits usually need to bypass the
SMAP&SMEP [1] mechanisms. Generally, there are two methods.
The first one is to use the vulnerabilities such as buffer overflow,
race condition, UAF (Use After Free) etc., to generate the condition
where certain kernel data structure can be covered. By overwrit-
ing a pointer and its parameter in this structure, making it point
to the address of native_write_cr4() and assigning zero to the pa-
rameter, the CR4 register will be set to 0 and SMAP&SMEP will
be disabled. The second method is finding the exploitable gadgets
which could be used to set the CR4 register, and concatenating
them into a malicious invocation chain via ROP (Return-oriented
Programming) [71] attack.

Container Mechanisms. The container specific security mech-
anisms, i.e., Namespace and Cgroup, block about 21.62% "privilege
escalation” attacks. For example, mnt namespace blocks exploits
utilizing CVE-2016-5195 [69] and CVE-2016-4557. These exploits
escalate privilege by modifying the read-only files associated with
the superuser account (e.g., "/etc/passwd", "/etc/crontab"). But pro-
cesses isolated by the mnt namespace can only modify the files
inside the namespace, thus are not able to modify the real target
files on the host or change the password of the host’s ROOT. It
also blocks exploits utilizing CVE-2016-2384, which leverages the
vulnerability on the USB midi device and requires the device to be
visiable inside the container. Exploits utilizing CVE-2016-2384 can
also be blocked by the Cgroup mechanism, as the USB midi device
is usually not mounted in the container by default.

Kernel Security Mechanisms. Other Linux kernel security
mechanisms including Capability, Seccomp and MAC, block about
86.49% attacks with the default configuration enforced by Docker.
However, if we loose the constrain by giving the CAP_NET_ADMIN
capability to the processes inside container, only 67.57% attacks
could be blocked. Since "CAP_NET_ADMIN" controls the operations
such as configuring the IP address, routing table, firewall etc., it is
sometimes necessary for the processes running inside the container.

e Capability The exploits are blocked by the Capability mech-
anism in two cases. First, the vulnerable API invoked in the
exploit can execute successfully only when the attacking
process owns specific capability, while the capability is by
default not given to the processes inside the container. For
example, the exploits utilizing CVE-2017-6074 need to in-
voke the vulnerable API setsockopt() with the parameter set
as "IPV6_RECVPKTINFO'", while execution of it requires the
"CAP_NET _ADMIN" capability.

424

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Second, each process is associated with a "cap_bset" struc-
ture which defines the highest privileges the process could
reach. Normally, the process on the control host is assigned
with a "cap_bset" containing full 38 capabilities. Therefore,
the exploits could obtain ROOT privilege on the original
Linux platform. However, the process inside the container
is only assigned with a "cap_bset" including only 14 capabil-
ities by default. Therefore, the privilege escalation attacks
inside the container can only obtain 14 capabilities rather
than ROOT privilege (i.e., 38 capabilities).

For example, exploits associated with CVE-2016-5195,
CVE-2016-4557 achieve privilege escalation by first modify-
ing the files related to superuser account and then executing
the privileged programs such as SU, SUDO etc. Since the
privileged programs in the container have only 14 capabili-
ties by default, the exploits can not gain real ROOT privilege.
Exploits attacking through "stack clash" [23] are similar (e.g.,
CVE-2017-1000366, CVE-2017-1000371, CVE-2017-1000379,
CVE-2017-1000370). They leverage the feature that shared
libraries of the privileged binaries will be also executed with
privileges. As privileged binaries inside container own only
14 capabilities, the crafted ".so" can neither be executed under
real ROOT. Exploits utilizing design flaw of overlayfs (e.g.,
CVE-2017-1576, CVE-2017-1575) to enable the SUID attribute
of unprivileged program and change the program’s owner
to "ROOT" can also be blocked, as the "ROOT" user inside
container owns only 14 capabilities. Exploits attacking via
modifying the file with a symlink to the privileged file (e.g.,
CVE-2016-1247), or injecting files to a privileged directories
(e.g., CVE-2014-6271) are the same. As the privileged files
and directories in the container do not have full capabilities,
malicious command injected or linked can not be executed
under ROOT privileged context.

e Seccomp Exploits are blocked by the Seccomp mechanism,
as some system calls required for the attacks are prohibited
by the Seccomp policy, such as the mount() system call in
CVE-2016-8660, the keyctl() system call in CVE-2016-0728,
and the ptrace() system call in EDB-ID 40839 and 40838 as-
sociated with CVE-2016-5195.

o MAC The Selinux and AppArmor mechanisms mainly pre-
vent the attacks (e.g., CVE-2016-1583, CVE-2017-1575, CVE-
2017-1576 and CVE-2015-8660) that require to mount certain
file systems.

Relationships Among the Security Mechanisms. The secu-
rity mechanisms (i.e., Namespace, Cgroup, Seccomp, Capabilities
and MAC) do not always work independently, they may mutually
affect one another at sometime. First, some exploits could only be
blocked when both the Namespace and Capability policies are con-
figured properly. A loose Namespace policy might disable a strict
Capability policy, and vice versa. For example, the exploits with
EDB-ID 40847, 40616 and 40611 in Table 3 can be used to obtain
ROOT privilege by either loosing the Namespace policy (e.g., al-
lowing the control host’s "/etc/passwd" file to be visible inside the
container) and meanwhile modifying the files associated with the
superuser’s privileges (e.g. "/etc/passwd"), or loosing the Capabil-
ity policy (i.e., assigning the processes’ cap_bset with the full 38

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

capabilities) and executing the privileged programs (e.g., SU) inside
the container. Functions of the Namespace or Capability mecha-
nisms on the exploits with EDB-ID 40839, 40838, 40759 and 39772
are similar. One difference is these four exploits require also some
specific system calls to be allowed through Seccomp mechanism.
For example, the ptrace() system call is necessary for the exploits
with EDB-ID 40839 and 40838, and the bpf{) system call is required
by exploits with EDB-ID 40759 and 39772.

Second, a kernel function sometime could be enabled by set-
ting either Capability or Seccomp mechanism. For example, the
exploits with EDB-ID 40839, 40838 need to invoke the ptrace() sys-
tem call, and ptrace() can execute successfully by either remov-
ing the CAP_SYS_PTRACE requirement in the Seccomp policy or
adding CAP_SYS_PTRACE capability through Capability mecha-
nism. Similarly, the bpf{) system call invoked by the exploits with
EDB-ID 40759, 39772 can execute normally by either removing the
CAP_SYS_ADMIN requirement in the Seccomp policy or adding
CAP_SYS_ADMIN capability through Capability mechanism.

Third, some exploits can be blocked when either Seccomp mecha-
nism or MAC mechanism are set properly. For example, one primary
reason for the failure of CVE-2017-1575 inside container is that the
exploit can not mount overlayfs in the container. By default, the
mount operations are forbidden by both AppArmor policy and Sec-
comp policy. However, we find the exploit could only work well
when both policies allow the mount operations.

Fourth, some exploits can only be blocked when both Namespace
and Cgroup mechanisms are configured correctly. For example, the
CVE-2016-2384 requires to access malicious USB midi device, which
could be allowed through mnt namespace (e.g., mount the device
in the container) or Cgroup mechanism (e.g., use —device option
when starts the container). Two mechanisms should work together
to protect the container, if Cgroup mechanism adds the device in
container, the Namespace blocking is invalid, and vice versa.

4.4 A Brief Summary

We can draw following conclusions based on the above analysis.
First, container does not provide much security enhancement for the
programs inside it, except the exploits aiming to achieve privilege
escalation. Second, Cgroup mechanism is not effectively utilized
by default in defending against the DoS attacks. Third, the kernel
security mechanisms such as Capability, Seccomp and MAC play a
more important role in preventing privilege escalation attacks than
the container isolating mechanisms (i.e., Namespace and Cgroup).
The former blocks 67.57% privilege escalation attacks while the
later blocks only 21.62%. Fourth, each kernel security mechanism
(including Namespace, Cgroup, Seccomp, Capabilities and MAC)
restricts kernel permissions from different angles in a fragmented
way, while the the relationships among them are intricate and
complicate. Improper configuration of these security mechanisms
might lower their protective capability.

5 DEFEATING KERNEL PRIVILEGE
ESCALATION ATTACKS
We first derive a general attack model by analyzing the privilege es-

calation exploits which are still effective on the container platform,
and then propose a defense system.

425

Xin Lin, Lingguang Lei, Yuewu Wang et al.

5.1 Kernel Privilege Escalation Attack Model

As illustrated in Table 3, with the default security mechanisms
enforced by Docker, only 4 "privilege escalation" exploits work
well inside the container. Another 7 exploits are blocked as the
"CAP_NET_ADMIN" capability is by default not available inside the
container. However, the "CAP_NET_ADMIN" capability controls
the operations such as configuring the IP address, routing table,
firewall etc., thus is likely to be allowed in practice. Therefore, we
consider all the 11 exploits as the successful ones on the container
platform.

By analyzing the 11 exploits, we find they follow a common
4-step attack model as depicted in Figure 2. First, they bypass (or
manually disable) the KASLR mechanism to obtain the address
of critical kernel static functions whose offset to the kernel base
address is constant such as native_write_cr4(), commit_creds() and
prepare_kernel_cred() etc. Second, they exploit the kernel vulnera-
bilities such as UAF, race condition, improper verification, buffer
overflow etc., to enable the overwriting of the pointers of some
kernel functions which could be easily triggered to execute. For
example, the exploit with EDB-ID 41994 utilizes the "improper veri-
fication" vulnerability of the setsockopt() system call (i.e., CVE-2017-
7308) to substitute the content of "retir_blk_timer->func" pointer
with the address of native_write_cr4(). And the function addressed
by "retir_blk_timer->func" will be triggered when the package is
received too slowly. Third, they overwrite these kernel functions’
pointers so that they point to the addresses of the critical kernel
static functions (e.g., native_write_cr4()) or the kernel address of the
first gadget of the crafted ROP chain. As such, the SMEP&SMAP
mechanisms will be disabled when these kernel functions are in-
voked. This step could be omitted if the SMEP&SMAP mechanisms
are manually disabled. Finally, they repeat the second step and
overwrite the pointer of the kernel function to point to a malicious
user space function or shellcode, which invokes the kernel function
commit_creds() to apply for ROOT credential (i.e., ROOT privilege
with 38 capabilities). As the SMEP&SMAP is disabled, the user space
function or shellcode could be executed in supervisor mode.

In general, all "privilege escalation" exploits share the same at-
tack goal, i.e., obtaining the full 38 capabilities. Theoretically, the
attackers could achieve this by directly overwriting the kernel data
associated with a process’s capabilities. However, it is nearly im-
possible. First, it is difficult for the exploit codes in the user space
to locate specific kernel data structures, as they are in different
address space. Second, the user programs can only access kernel
data through specified system calls, rather than write any kernel
data directly. Therefore, almost all "privilege escalation" exploits
need to find a vulnerable system call to enable the overwriting of
some specific kernel data (i.e., step 2 in Figure 2), and rely on the
supervisor-mode executed user space codes (i.e., step 3) to invoke
the privilege-elevating kernel codes (i.e., step 4).

5.2 Countermeasures

According to the attack model, four actions are involved to elevate
the privilege, which are bypassing the KASLR mechanism, bypass-
ing the SMEP&SMAP mechanisms, overwriting pointers of some
kernel functions which are easy to be invoked, and invoking the

A Measurement Study on Linux Container Security: Attacks and Countermeasures

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Inside Container

@ Bypass KASLR @—2 Trigger Execution of Kernel Function A

[Result: Disable SMEP & SMAP]

@-4 Trigger Execution of Kernel Function B
Payload

[Result: Execute Payload and Gain ROOT Privilege]

User Space
@ Generate Overwrite Condition

Kernel Space

@—1 Generate Overwrite Condition

y

@-2 Overwrite Pointer of Kernel Function B

[Result: Point to the Malicious User Space Payload]

Kernel Data STructure A

Kernel Data Structure B

@-3 Invoke Kernel Functions
in the Payload Code

Pointer of Kernel
Function A

Pointer of Kernel
Function B

@»l.a Overwrite Pointer of Kernel Function A @-1.b Overwrite Pointer of Kernel Function A

[Result: Point to NATIVE_WRITE_CR4()] [Result: Point to Start Address of the Malicious ROP Chain]

NATIVE_WRITE_CR4(0) First ROP Gadget

y
| COMMIT_CREDS (PREPARE_KERNEL_CRED (0))

Figure 2: Kernel Privilege Escalation Attack Model

commit_creds() kernel function. Therefore, the "privilege escala-
tion" attacks could be blocked by disabling any one of the four
actions. However, it is difficult to find a general and comprehensive
approach to prevent the attackers from bypassing the KASLR mech-
anism and overwriting kernel data. The KASLR mechanism has
been proclaimed dead by many researchers, as current implemen-
tations of KASLR have fatal flaws [19]. Overwriting of the specific
kernel functions’ pointers is achieved by exploiting the vulnera-
bilities in the Linux kernel, such as UAF, race condition, improper
verify, buffer overflow etc. And it is pretty unlikely to patch all
vulnerabilities considering the large code size of Linux kernel. The
CPU mechanisms SMAP&SMEP are easy to be disabled if the at-
tackers compromise the KASLR mechanism and gain the ability
to overwrite the pointers of some kernel functions. Therefore, we
propose a defense system by forbidding the commit_creds() to be
utilized to elevate the privilege inside the container.

1 | |
A"FTCK‘"E | | start to Execute Process P : : ﬂ»:aﬂp.epave,kemel,aed(ml—'—:{) Call commit_creds(struct cred *new)
low
|

struct task_struct(struct task_struct(

"
struct cred *real_cred; T — — Struct cred *real_cred; — — — —
struct cred *cred;— — - — ROOT Privileges

struct cred(

}

kuidt GLOBAL_ROOT_UID;
kgid_t GLOBAL_ROOT_GID;
kernel_cap_t CAP_FULL_SET;

Current Privileges of P
struct cred(

Kernel

|

|

|

|

|

|

|

|

|

!)
Memory | |

|

|

|

|

|

|

|

|

|

|

|

I
I
i
I
I
I
i
I
it Cuid; |
kgid_t Cgid; -
kernel_cap_t Ccap_bset;|_

of Process
Pinside
Container

}

1

i

i

1

Highest Privileges of P |

struct cred(|

1

kuid_t Ruid; :
kgidt Reid; -
kernel_cap_t Rcap_bset;

1
B I —————..S
x
1
1
1
1
1
1
1
|
1
1
1
|
1
G _____i_TT—x

Figure 3: Privilege
mit_creds()

Escalation Procedure through com-

426

Privilege Escalation Procedure through commit_creds().
The procedure to elevate privilege through the commit_creds() is
illustrated in Figure 3, which is also the detail of the fourth step in
Figure 2. In Linux kernel, the credential associated with a process
is stored as two fields inside the task_struct structure, i.e., cred and
real_cred. The cred field represents the current privileges (including
capabilities, GID, UID etc.) of the process, and could be temporarily
modified during execution of the process. The real_cred field rep-
resents the highest privileges a process could reach, and normally
could not be changed. Generally, two static kernel functions whose
offset to the kernel base address is constant, are used to achieve
the privilege escalation. First, the prepare_kernel_cred(0) function
is invoked to construct a credential with ROOT privilege (i.e.,
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, and CAP_FULL_SET).
Then, the commit_creds() function takes the return of the pre-
pare_kernel_cred(0) as the parameter, and is invoked to update
the real_cred and cred of current process with the parameter (i.e.,
ROOT privilege). Normally, invocation of commit_creds() by a non-
privileged process will fail. However, in the attack model illustrated
in Figure 2, commit_creds() can be executed successfully as the
SMEP&SMAP mechanisms are disabled (step 3) and the user space
program invoking the commit_creds() is triggered in the kernel
mode (step 2 & step 4).

Defense System. We observe that the processes inside the con-
tainer usually do not need ROOT privilege (By default, only portions
of capabilities are assigned to the container tenants. For example, 14
capabilities are assigned to the Amazon container tenants [11], and
9 capabilities are assigned by the OpenShift container service [32].
And a normal container tenant is not allowed to apply for a con-
tainer with more capabilities.). However, the privilege escalation
attacks inside a container will misuse the commit_creds() to apply
for the ROOT privilege (i.e., 38 capabilities). Therefore, we modify
the implementation of the commit_creds() function, and enforce
a check before updating the real cred and cred of the caller pro-
cess. Specifically, we first check whether the caller process is inside
a container or on the control host. The process is described as a

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Table 4: Performance of the Defense System

1 Parallel Copy 4 Parallel Copies

Benchmarks Original _Modified Overhead | Original Modified Overhead

3586.3
800.9
726.7
3379.1
2341.8
4930.0
2261.3
71.7
686.1
2498.7
6570.0
3161.3
1681.1

3558.6 0.77%
826.3 -3.17%
738.0 -1.55%
3392.2 -0.39%
2329.2 0.54%
4893.3 0.74%
2264.5 -0.14%
719 -0.26%
681.2 0.71%
2540.5 -1.67%
6627.4 -0.87%
3184.8 -0.74%
1689.3 -0.49%

13308.0 13399.1 -0.68%
3369.8 3371.7 -0.06%
4346.2 4450.2 -2.39%
3857.3 3729.8 3.31%
2390.8 2416.7 -1.08%
6279.1 6204.6 1.19%
8339.2 8489.1 -1.80%
4143.1 4163.9 -0.50%
22113 2312.9 -4.59%
8947.2 9197.0 -2.79%
7683.3 8232.6 -7.15%
6345.5 6517.9 -2.72%
5183.4 5240.1 -1.09%

Dhrystone 2 using register variables
Double-Precision Whetstone

Execl Throughput

File Copy 1024 bufsize 2000 maxblocks
File Copy 256 bufsize 500 maxblocks
File Copy 4096 bufsize 8000 maxblocks
Pipe Throughput

Pipe-based Context Switching

Process Creation

Shell Scripts (1 concurrent)

Shell Scripts (8 concurrent)

System Call Overhead

System Benchmarks Index Score

task_struct structure in Linux kernel which contains a nsproxy field
storing the process’s namespaces information (e.g., namespace ID).
The processes on the Linux control host (e.g., the init process) are
also associated with a nsproxy field whose value is however con-
stant, i.e., init_nsproxy. Therefore, we can judge whether a process
is inside a container or not, by comparing whether its nsproxy is
equal to init_nsproxy. If the commit_creds() is invoked from inside a
container, we will further check whether it is a privilege escalation
operation, and stop modifying the real_cred and cred if it is. We
determine whether it is a privilege escalation operation by compar-
ing the input parameter (i.e., new credential) of the commit_creds()
method and the real_cred of current process. If the uid/gid in the
new credential is smaller or the cap_bset in the new credential
is larger, it may be a privilege escalation operation. In total, our
defense solution needs to add less than 10 lines of codes.

5.3 Effectiveness and Performance

We enable the "CAP_NET _ADMIN" capability for the processes
inside the container, besides the default 14 capabilities assigned by
Docker. We find all 11 exploits could obtain the ROOT privilege
from inside the container before deploying the defense system, and
fail to achieve privilege escalation after the deployment. The results
prove that our defense system can effectively block the privilege
escalation attacks on container platform.

We also evaluate the overhead of the defense system on a
VMWare virtual machine with Ubuntu 16.04 LTS AMD 64 OS
installed (Linux kernel 4.8.0#1), and configured with quad-core
2.80GHz CPU and 2GB memory. The host machine is Dell Precision
5520 with 8GB memory and quad-core 2.80GHz CPU. The results
are illustrated in Table 4 and obtained through the UnixBench
tool [66], which show that the defense system introduces negligible
overhead.

6 DISCUSSION ON LIMITATION

We propose a simple but effective defense mechanism by hardening
the commit_creds method, which is misused by existing privilege
escalation exploits to modify the credentials bound to a process.
However, it is not a complete solution against all potential priv-
ilege escalation exploits. First, after completing the third step in
Figure 2 (i.e., bypassing the SMEP&SMAP mechanisms), the attack-
ers may directly modify the kernel data related to real_cred. Since
real_cred is stored at a fixed offset to the task_struct data struc-
ture, it could be modified once the task_struct is located. Second,

427

Xin Lin, Lingguang Lei, Yuewu Wang et al.

armored attackers might launch ROP attacks that utilize the gad-
gets of kernel codes to modify the real_cred without first bypassing
the SMEP&SMAP mechanisms. Furthermore, attackers may misuse
other kernel functions besides commit_creds to launch other types
of attacks such as container escape. For instance, the attackers might
invoke the switch_task_namespaces() method to achieve container
escape. Though our defense system can be extended to avoid the
misuse of these kernel functions (e.g., forbidding the processes in-
side the containers to invoke the switch_task_namespaces() method
for container switch), it is challenging to identify a complete list of
all potential kernel functions that might be misused.

To defeat those potential attacks, a defense solution is better to
be implemented outside Linux kernel. For instance, as a hypervisor-
based kernel data protection mechanisms, Sentry [67] partitions
the kernel memory into regions with different access control poli-
cies, which detail when the sensitive data in each region could be
accessed by the kernel. AllMemPro [40] configures the read, write,
and execution permissions on a memory page through the Extended
Page Tables (EPT), and controls the EPT in the hypervisor. Alterna-
tively, hardware-based kernel protection solutions are promising
to prevent those attacks too. For example, PrivWatcher [9] uti-
lizes ARM TrustZone mechanism to protect the process credentials
against memory corruption attacks. We leave it as one future work
to develop a more comprehensive defense solution.

7 RELATED WORK

7.1 Container Security

Existing research work on container security mainly focuses on
three aspects, i.e., security of the container images [20, 60, 61, 65],
security of the container orchestration tools like Docker [10, 28],
and security of Linux container mechanism [7, 72]. Some researches
also work on evaluating the security of container mechanism. For
example, M. Ali Babar et al. [3] give a comparative analysis on
the isolation mechanisms provided by three container engines, i.e.,
Docker, LXD, and Rkt. Thanh Bui et al. [6] briefly compare the
security of hardware-based virtualization technology (e.g., XEN)
and OS-level virtualization technology (i.e., container mechanism)
from system architecture level. Reshetova et al. [62] theoretically
analyze the security of several OS-level virtualization solutions
including FreeBSD Jails, Linux-VServer, Solaris Zones, OpenVZ,
LxC and Cells etc. However, these works mostly evaluate container
security from the system architecture or design principle level,
while we evaluate with a measurement approach.

Some researchers [46, 56] also evaluate the container security us-
ing potential vulnerabilities against specific container mechanisms
such as Docker. For example, A. Martin et al. [50] do a vulnerability-
oriented risk analysis of the container, classify the vulnerabilities
into five categories and perform a vulnerability assessment accord-
ing to the security architecture and use cases of Docker. A Mouat
et al. [56] sort the vulnerabilities of container platform into kernel
exploits, DoS, container breakouts, poisoned images, compromising
secrets. Z. Jian et al. [38] summarize two models to achieve Docker
container escape, propose a defense tool by inspecting the status
of namespaces, and evaluate the tool with 11 CVE vulnerabilities.
Due to the small number of exploits reported in the vulnerability

A Measurement Study on Linux Container Security: Attacks and Countermeasures

databases such as CVE [12] and NVD [58], it is challenging to pro-
vide a persuasive security evaluation on container mechanism. In
this paper, we evaluate security of container in real world using an
attack dataset containing 223 exploits.

There are also some studies on enhancing the security of con-
tainer mechanism through the Linux kernel security mechanisms
(e.g., Capability, Seccomp, MAC etc.) [41, 51] DockerPolicyMod-
ules [4, 8]. Our defense system is proposed based on analysis of the
privilege escalation exploits.

7.2 Attack Taxonomy

Some researchers work on taxonomy of certain types of Linux
attacks or vulnerabilities. For example, L. Yi et al. [42, 70] pro-
pose a two-dimensional taxonomy of network vulnerabilities in
Unix/Linux Systems. S. Hansman et al. [22] propose a taxonomy
that consists of four dimensions in the computer and network attack
field. R. Sanchez-Fraga et al. [17] and J. Mirkovic et al. [55] make
taxonomy for DDoS attacks based on highlight commonalities and
important characteristics. N. Gruschka et al. [18] focus on taxon-
omy on cloud services attacks. D. Papp et al. [59] derive a taxonomy
for attacks on embedded systems. Some researchers just analyze or
classify the attacks without making a clear taxonomy. For example,
K. Ko et al. [39] present the coarse characteristic classification and
correlation analysis of source-level vulnerabilities in Linux kernel.
In this paper, we propose a two-dimensional taxonomy for the
attacks specifically for the container platform.

8 CONCLUSION

Linux container is increasingly utilized by the industrial commu-
nity. Although it is a consensus that container mechanism is not
secure, a concrete and systematical evaluation is absent. In this pa-
per, we perform a measurement study on container security using
an attack dataset containing 223 exploits. We first make a taxon-
omy from two dimensions. Then we evaluate the security of the
container with the experiment results of 88 typical exploits filtered
out from the dataset. Since we find the privilege escalation exploits
can successfully escape outside the container and compromise the
host, we give an in-depth analysis on them. Under the protection
of security mechanisms, there are still 11 exploits can break the
container isolation. Fortunately, we find a common attack model
that all 11 exploits follows. Further more, we propose a defense
mechanism to defeat all 11 exploits. In general, we prove that the
security of container mechanism depends on the security of the
kernel, while the interdependence and mutual-influence relation-
ship requires careful configurations to effectively defeat privilege
escalation attacks.

ACKNOWLEDGMENTS

We would like to thank our shepherd Zhiqiang Lin and our anony-
mous reviewers for their valuable comments and suggestions.
This work is supported by the National Key Research and De-
velopment Program of China under Grant No.2016YFB0800102,
the National Natural Science Foundation of China under Grant
No.61802398, the National Cryptography Development Fund under
Award No.MM]JJ20180222, the U.S. ONR grants N00014-16-1-3214
and N00014-16-1-3216, and the NSF grants CNS-1815650.

428

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

REFERENCES

[1] Aaron Adams. 2015. Xen SMEP (and SMAP) bypass.
/[www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/
april/xen-smep-and-smap-bypass/

The Kubernetes Authors. 2018. Production-Grade Container Orchestration. https:
//kubernetes.io/

M Ali Babar and Ben Ramsey. 2017. Understanding Container Isolation Mech-
anisms for Building Security-Sensitive Private Cloud. Technical Report, CREST,
University of Adelaide, Adelaide, Australia (2017).

Enrico Bacis, Simone Mutti, Steven Capelli, and Stefano Paraboschi. 2015. Dock-
erPolicyModules: Mandatory Access Control for Docker containers. In 2015 IEEE
Conference on Communications and Network Security, CNS 2015, Florence, Italy,
September 28-30, 2015. IEEE, 749-750. https://doi.org/10.1109/CNS.2015.7346917
Mick Bauer. 2006. Paranoid penguin: an introduction to Novell AppArmor. Linux
Journal 2006, 148 (2006), 13.

Thanh Bui. 2015. Analysis of Docker Security. CoRR abs/1501.02967 (2015).
arXiv:1501.02967 http://arxiv.org/abs/1501.02967

Ramaswamy Chandramouli. 2017. Security Assurance Requirements for Linux
Application Container Deployments. US Department of Commerce, National
Institute of Standards and Technology.

Jeeva Chelladhurai, Pethuru Raj Chelliah, and Sathish Alampalayam Kumar.
2016. Securing Docker Containers from Denial of Service (DoS) Attacks. In IEEE
International Conference on Services Computing, SCC 2016, San Francisco, CA, USA,
June 27 - July 2, 2016. IEEE, 856-859. https://doi.org/10.1109/SCC.2016.123
Quan Chen, Ahmed M. Azab, Guruprasad Ganesh, and Peng Ning. 2017.
PrivWatcher: Non-bypassable Monitoring and Protection of Process Credentials
from Memory Corruption Attacks. In Proceedings of the 2017 ACM on Asia Confer-
ence on Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United
Arab Emirates, April 2-6, 2017. 167-178. https://doi.org/10.1145/3052973.3053029
Théo Combe, Antony Martin, and Roberto Di Pietro. 2016. To Docker or Not
to Docker: A Security Perspective. IEEE Cloud Computing 3, 5 (2016), 54-62.
https://doi.org/10.1109/MCC.2016.100

Amazon Company. 2018. AWS Fargate. https://aws.amazon.com/fargate/?ncl=
h_ls

MITRE Corporation. 2018. About CVE. https://cve.mitre.org/about/index.html
MITRE Corporation. 2018. About CWE. https://cwe.mitre.org/about/index.html
MITRE Corporation. 2018. CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’). https://cwe.mitre.org/data/
definitions/78 html

Exploit Database. 2018. About The Exploit Database. https://www.exploit-db.
com/about-exploit-db/

Jake Edge. 2013. Kernel address space layout randomization. https://lwn.net/
Articles/569635/

Rolando Sanchez Fraga, Eleazar Aguirre Anaya, and Raul Acosta Bermejo. 2014.
Taxonomy for Denial-of-Service Vulnerabilities in the Linux Kernel. (2014).
Nils Gruschka and Meiko Jensen. 2010. Attack Surfaces: A Taxonomy for Attacks
on Cloud Services. In IEEE International Conference on Cloud Computing, CLOUD
2010, Miami, FL, USA, 5-10 July, 2010. IEEE, 276-279. https://doi.org/10.1109/
CLOUD.2010.23

Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clementine Maurice,
and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. (2017), 161-176.
Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner. 2015. Over 30% of official
images in docker hub contain high priority security vulnerabilities.

Serge E Hallyn and Andrew G Morgan. 2008. Linux capabilities: Making them
work. In Linux Symposium, Vol. 8.

Simon Hansman and Ray Hunt. 2005. A taxonomy of network and computer
attacks. Computers & Security 24, 1 (2005), 31-43. https://doi.org/10.1016/j.cose.
2004.06.011

Qualys Research Team in Security Labs. 2017. The Stack Clash. https://www.
qualys.com/2017/06/19/stack-clash/stack-clash.txt

Docker Inc. 2018. AppArmor security profiles for Docker. https://docs.docker.
com/engine/security/apparmor/

Docker Inc. 2018. Docker overview.
docker-overview/

Docker Inc. 2018. Docker Seccomp Profile.
blob/master/profiles/seccomp/default.json
Docker Inc. 2018. Install Docker CE from binaries.
install/linux/docker-ce/binaries/

Docker Inc. 2018. Protect the Docker daemon socket. https://docs.docker.com/
engine/security/https/

Docker Inc. 2018. Seccomp security profiles for Docker.
com/engine/security/seccomp/

Docker Inc. 2018. WHAT IS A CONTAINER.
what-container

Docker Inc. 2018. WHAT IS DOCKER. https://www.docker.com/what-docker
Red Hat Inc. 2018. Red Hat OpenShift Online. https://www.openshift.com/
products/online/

https:

[9]

)
=

~
=

https://docs.docker.com/engine/
https://github.com/moby/moby/

https://docs.docker.com/

https://docs.docker.

https://www.docker.com/

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/april/xen-smep-and-smap-bypass/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/april/xen-smep-and-smap-bypass/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/april/xen-smep-and-smap-bypass/
https://kubernetes.io/
https://kubernetes.io/
https://doi.org/10.1109/CNS.2015.7346917
http://arxiv.org/abs/1501.02967
http://arxiv.org/abs/1501.02967
https://doi.org/10.1109/SCC.2016.123
https://doi.org/10.1145/3052973.3053029
https://doi.org/10.1109/MCC.2016.100
https://aws.amazon.com/fargate/?nc1=h_ls
https://aws.amazon.com/fargate/?nc1=h_ls
https://cve.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
https://www.exploit-db.com/about-exploit-db/
https://www.exploit-db.com/about-exploit-db/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://doi.org/10.1109/CLOUD.2010.23
https://doi.org/10.1109/CLOUD.2010.23
https://doi.org/10.1016/j.cose.2004.06.011
https://doi.org/10.1016/j.cose.2004.06.011
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://docs.docker.com/engine/security/apparmor/
https://docs.docker.com/engine/security/apparmor/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://docs.docker.com/install/linux/docker-ce/binaries/
https://docs.docker.com/install/linux/docker-ce/binaries/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-docker
https://www.openshift.com/products/online/
https://www.openshift.com/products/online/

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

[33]
[34]

[35]
[36]

[37]

[38

[39]

[40

[41]

[42]

[43]

[44
[45]

[50]

[51

[52

[53]

[54

[55]

VMware Inc. 2018. VMWare Airwatch BYOD. http://acestandard.org/zh-hans/
solutions/bring-your-own-device-byod

Wikimedia Foundation Inc. 2018. Docker (software). https://en.wikipedia.org/
wiki/Docker_(software)

Wikimedia Foundation Inc. 2018. LXC. https://en.wikipedia.org/wiki/LXC
Wikimedia Foundation Inc. 2018. Supervisor Mode Access Prevention. https:
//en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
Wikimedia Foundation Inc. 2018. XML external entity attack.
wikipedia.org/wiki/XML_external_entity_attack

Zhiqiang Jian and Long Chen. 2017. A Defense Method against Docker Escape
Attack. In Proceedings of the 2017 International Conference on Cryptography, Secu-
rity and Privacy, ICCSP 2017, Wuhan, China, March 17 - 19, 2017. ACM, 142-146.
https://doi.org/10.1145/3058060.3058085

Kwangsun Ko, Insook Jang, Yong-hyeog Kang, Jinseok Lee, and Young Ik Eom.
2005. Characteristic Classification and Correlation Analysis of Source-Level
Vulnerabilities in the Linux Kernel. In Computational Intelligence and Security,
International Conference, CIS 2005, Xi’an, China, December 15-19, 2005, Proceedings,
Part II. 1149-1156. https://doi.org/10.1007/11596981_172

Igor Korkin. 2018. Hypervisor-Based Active Data Protection for Integrity and
Confidentiality of Dynamically Allocated Memory in Windows Kernel. CoRR
abs/1805.11847 (2018). arXiv:1805.11847 http://arxiv.org/abs/1805.11847
Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang,
and Qi Li. 2017. SPEAKER: Split-Phase Execution of Application Containers.
In Detection of Intrusions and Malware, and Vulnerability Assessment - 14th In-
ternational Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings.
Springer, 230-251. https://doi.org/10.1007/978-3-319-60876-1_11

Yi Li and Xin-Ming Li. 2006. A New Taxonomy of Linux/Unix Operating System
and Network Vulnerabilities. Journal of Communication and Computer 3, 8 (2006),
16-19.

Xiaoli Lin, Pavol Zavarsky, Ron Ruhl, and Dale Lindskog. 2009. Threat Modeling
for CSRF Attacks. In Proceedings of the 12th IEEE International Conference on
Computational Science and Engineering, CSE 2009, Vancouver, BC, Canada, August
29-31, 2009. 486-491. https://doi.org/10.1109/CSE.2009.372

Cellrox Itd. 2015. Cellrox Mobile Virtualization. http://www.cellrox.com/
Canonical Ltd. 2018. LXC Introduction. https://linuxcontainers.org/Ixc/
introduction/#

Tao Lu and Jie Chen. 2017. Research of Penetration Testing Technology in Docker
Environment. (2017).

Linux Man. 2017. Cgroup_namespaces-overview of Linux cgroup namespaces.
http://www.man7.org/linux/man-pages/man7/cgroup_namespaces.7.html
Linux Man. 2018. Capabilities - overview of Linux capabilities. http://man7.org/
linux/man-pages/man7/capabilities.7.html

Linux Man. 2018. Namespaces-overview of Linux namespaces. http://man7.org/
linux/man-pages/man7/namespaces.7.html

Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro. 2018. Docker
ecosystem - Vulnerability Analysis. Computer Communications 122 (2018), 30-43.
https://doi.org/10.1016/j.comcom.2018.03.011

Massimiliano Mattetti, Alexandra Shulman-Peleg, Yair Allouche, Antonio Corradi,
Shlomi Dolev, and Luca Foschini. 2015. Securing the infrastructure and the
workloads of linux containers. In 2015 IEEE Conference on Communications and
Network Security, CNS 2015, Florence, Italy, September 28-30, 2015. IEEE, 559-567.
https://doi.org/10.1109/CNS.2015.7346869

Bill McCarty. 2005. Selinux: Nsa’s open source security enhanced linux. Vol. 238.
O’Reilly. http://www.oreilly.de/catalog/selinux/index.html

Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

Microsoft. 2018. Azure Kubernetes Service. https://azure.microsoft.com/en-us/
services/kubernetes-service/

Jelena Mirkovic and Peter L. Reiher. 2004. A taxonomy of DDoS attack and
DDoS defense mechanisms. Computer Communication Review 34, 2 (2004), 39-53.
https://doi.org/10.1145/997150.997156

A Mouat. 2015. Docker Security Using Containers Safely in Production.

IAN MUSCAT. 2017. What is Server Side Request Forgery (SSRF). https:
//www.acunetix.com/blog/articles/server-side-request-forgery-vulnerability/
NIST U.S. Department of Commerce. 2018. NVD. https://nvd.nist.gov/
Dorottya Papp, Zhendong Ma, and Levente Buttyan. 2015. Embedded systems
security: Threats, vulnerabilities, and attack taxonomy. In 13th Annual Conference
on Privacy, Security and Trust, PST 2015, Izmir, Turkey, July 21-23, 2015. IEEE, 145-
152. https://doi.org/10.1109/PST.2015.7232966

K. C. Quest. 2018. docker-slim: Lean and mean docker containers.
//github.com/docker-slim/docker-slim

Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick D.
McDaniel. 2016. Towards Least Privilege Containers with Cimplifier. CoRR
abs/1602.08410 (2016). arXiv:1602.08410 http://arxiv.org/abs/1602.08410

Elena Reshetova, Janne Karhunen, Thomas Nyman, and N. Asokan. 2014. Secu-
rity of OS-Level Virtualization Technologies. In Secure IT Systems - 19th Nordic
Conference, NordSec 2014, Tromsg, Norway, October 15-17, 2014, Proceedings. 77-93.
https://doi.org/10.1007/978-3-319-11599-3_5

https://en.

https:

429

(63

[64

[65

(66

(68
[69
(70
[71

[72

]

]
]

Xin Lin, Lingguang Lei, Yuewu Wang et al.

Samsung. 2018. Samsung Knox Workspace. https://www.samsungknox.com/en/
solutions/it-solutions/knox-workspace

Sconway. 2017. Kubernetes Continues to Move from Devel-
opment to Production. https://www.cncf.io/blog/2017/12/06/
cloud-native-technologies-scaling- production-applications/

Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabilities
on Docker Hub. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24,
2017. ACM, 269-280. https://doi.org/10.1145/3029806.3029832

Ben Smith, Rick Grehan, Tom Yager, and DC Niemi. 2011. Byte-unixbench: A
Unix benchmark suite. Technical report (2011).

Abhinav Srivastava and Jonathon T. Giffin. 2012. Efficient protection of kernel
data structures via object partitioning. In 28th Annual Computer Security Appli-
cations Conference, ACSAC 2012, Orlando, FL, USA, 3-7 December 2012. 429-438.
https://doi.org/10.1145/2420950.2421012

James Turnbull. 2014. The Docker Book: Containerization is the new virtualization.
James Turnbull.

Nick Wilfahrt. 2016. Dirtycow vulnerability Details.
dirtycow/dirtycow.github.io/wiki/VulnerabilityDetails
L. L Yi, L. I. Xinming, and Xianggang Jiang. 2005. A Taxonomy of Software
Vulnerabilities in Unix/Linux Systems. Computer Engineering 31, 6 (2005), 4-6.
QIAN Yi, WANG Yi-jun, and XUE Zhi. 2012. ROP Attack and Defense Technology
based on ARM. Information Security & Communications Privacy (2012).
Xiaowei Zhao, Hong Yan, and Jiantong Zhang. 2017. A critical review of container
security operations. Maritime Policy & Management 44, 2 (2017), 170-186.

https://github.com/

http://acestandard.org/zh-hans/solutions/bring-your-own-device-byod
http://acestandard.org/zh-hans/solutions/bring-your-own-device-byod
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://en.wikipedia.org/wiki/XML_external_entity_attack
https://en.wikipedia.org/wiki/XML_external_entity_attack
https://doi.org/10.1145/3058060.3058085
https://doi.org/10.1007/11596981_172
http://arxiv.org/abs/1805.11847
http://arxiv.org/abs/1805.11847
https://doi.org/10.1007/978-3-319-60876-1_11
https://doi.org/10.1109/CSE.2009.372
http://www.cellrox.com/
https://linuxcontainers.org/lxc/introduction/#
https://linuxcontainers.org/lxc/introduction/#
http://www.man7.org/linux/man-pages/man7/cgroup_namespaces.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://doi.org/10.1016/j.comcom.2018.03.011
https://doi.org/10.1109/CNS.2015.7346869
http://www.oreilly.de/catalog/selinux/index.html
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://doi.org/10.1145/997150.997156
https://www.acunetix.com/blog/articles/server-side-request-forgery-vulnerability/
https://www.acunetix.com/blog/articles/server-side-request-forgery-vulnerability/
https://nvd.nist.gov/
https://doi.org/10.1109/PST.2015.7232966
https://github.com/docker-slim/docker-slim
https://github.com/docker-slim/docker-slim
http://arxiv.org/abs/1602.08410
http://arxiv.org/abs/1602.08410
https://doi.org/10.1007/978-3-319-11599-3_5
https://www.samsungknox.com/en/solutions/it-solutions/knox-workspace
https://www.samsungknox.com/en/solutions/it-solutions/knox-workspace
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1145/2420950.2421012
https://github.com/dirtycow/dirtycow.github.io/wiki/VulnerabilityDetails
https://github.com/dirtycow/dirtycow.github.io/wiki/VulnerabilityDetails

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

