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1. Introduction

For a complex semisimple Lie group G and a Borel subgroup B < G with its unipotent
radical N, the category of N -equivariant perverse sheaves on B = G/B corresponds to
the principal block of the BGG Category O. The indecomposable tilting perverse sheaves
form a natural basis for the category, and they are in bijection with the Schubert cells.
One can also view the tilting sheaves from other perspectives, i.e. as D-modules via
the Riemann—Hilbert correspondence or as Lagrangian branes in the Fukaya category
F (T*B) via the Nadler-Zaslow correspondence. There have been several constructions of
tilting objects as sheaves or D-modules, including certain averaging or limiting process
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(ctf. [7], [14], [3], [5])- In this paper, we construct the tilting object corresponding to the
open Schubert cell, often referred as the big tilting, as a holomorphic Lagrangian brane
in the Fukaya category F(T*B).

The construction is simple. Consider the moment map for the Hamiltonian N -action
on T*B, uy : T*B — n*, where n is the Lie algebra of N. Take a non-degenerate character
e of n in n*, then Lz = [.17\,1 (e) is a closed (smooth) holomorphic Lagrangian in T*B.
It is just an N-orbit and we can equip it with a canonical brane structure to make it
correspond to a perverse sheaf (cf. [10]).

Theorem 1.1. The brane Lg corresponds to the big tilting sheaf on B, via the Nadler—
Zaslow correspondence.

The construction fits into a more general setting as Morse branes in holomorphic
symplectic manifolds that we will introduce below, and the consideration of Morse branes
is largely motivated from the approach by Nadler [14] to construct tilting sheaves. We
remark that a notable application of the holomorphic brane approach to tilting sheaves is
that the branes come in a C*-family, and one can use it to give a geometric construction
of the mixed Hodge structures on the tilting sheaves (in the sense of [18]), and the
construction is in the forthcoming work [11].

1.1. Morse branes in holomorphic symplectic manifolds

We will work in the setting that an exact holomorphic symplectic manifold (M, wc)
is endowed with two commuting C*-actions: one is Hamiltonian and is denoted as G ,
and the other, denoted as C}, scales wc by a positive weight and it contracts M to
a compact core as t = 0. We also assume that the C¥ -action has finitely many fixed
points, and we will denote the union of their ascending (resp. descending) manifolds as
Ax (resp. Ag’(’p ). Both Ax and Agfp are holomorphic conical Lagrangians with respect
to the C%-action, by the commutativity condition of the two actions. We assume that
Ax and Agfp are disjoint away from the compact core of M.

Consider the Fukaya category Fa, (M), whose objects are (closed) Lagrangian branes
in M that are dilated towards Ax by C% as t = 0. We call a brane L € Fo, (M) a
Morse brane if it intersects Agfp uniquely and transversely at a point in the smooth
portion of Agfp . The name comes from the principle that it plays the role of calculating
the “microlocal stalk” in F A«;f(w(M ) at the intersection point (cf. [17] and [10]).

We give a natural construction of a class of Morse branes in the situation when M
is the cotangent bundle of a complex projective variety with a contracting CJ -action on
the fibers (of weight 1). The specialty of cotangent bundles is that if k; is the minimum
of the positive weights of the C% -action on the tangent spaces of the fixed points, then
we can use the flow of C*X—ko ~ to construct holomorphic Morse branes. Here C*X—koz
is the subgroup in C%, X C% which is the graph of the group homomorphism C% —
C%,t t— ~ko_ We expect the construction to be generalized to some other holomorphic
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symplectic manifolds (e.g. hypertoric varieties, the resolution of the Slodowy slices) with
more careful investigation of the weights of the two C*-actions, and we leave this for a
future work.

The construction goes as follows. Take a point x in the fixed loci of C*X—koZ’ and
take the ascending manifold of x with respect to the C*)(_ko z-action. By the weights
condition, this is a (not necessarily closed) holomorphic Lagrangian submanifold and we
denote it by L. The main theorem we get is the following.

Theorem 1.2. If x € (A%P)*™, then L is a holomorphic Morse brane in Fy , (M).
1.2. Application to the construction of tilting objects

In the case of a cotangent bundle, we have a C*c-action on the base K which induces
the Hamiltonian C% -action on T*K, and the Lagrangian Ax (resp. Ag;;p ) is the conormal
variety to the stratification S (resp. S~) defined by the ascending (resp. descending)
manifolds of the fixed points in K.

In good situations, S = {Sq} and S%P = {S%P} are transverse to each other, and
S9PP is simple (see Definition 2.4). Then Theorem 1.1 is a special case of a more general
result.

Theorem 1.3. If x € (AX")*™, then L, corresponds to a tilting sheaf on K under the
Nadler-Zaslow correspondence.

Once we have obtained Theorem 1.2, the proof of Theorem 1.3 follows from a similar
argument as in [14]. Namely, the stalk (resp. costalk) of the corresponding sheaf on S°PP
can be calculated by the microlocal stalk of the costandard (resp. standard) sheaf for
SRt x, therefore they are concentrated in the right degrees.

We expect Morse branes to give tilting objects in the Fukaya category of a wide
class of holomorphic symplectic manifolds. In the case of symplectic resolutions, the
Fukaya categories are expected to be equivalent to the category of modules over certain
quantizations of the manifolds. Therefore the tilting branes are expected to correspond
to tilting objects in certain representation categories.

1.3. Organization

The paper is organized as follows. In Section 2, we recall some basic definitions and
facts about constructible sheaves, perverse sheaves and tilting sheaves. In Section 3, we
make the basic set-up for the Fukaya category of a holomorphic symplectic manifolds,
and we also briefly review the definition of Fukaya categories and the Nadler—Zaslow
correspondence. Next, we give the construction of a class of holomorphic Morse branes
and the proof of Theorem 1.2 in Section 4. The proof is based on the analysis of the
Morse—Bott flow of some combinations of the C%, and C¥%-actions. Lastly, we give the
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big tilting brane in T*B and prove Theorem 1.1 in Section 5. The exactly same proof
applies to Theorem 1.3.
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The project of understanding tilting sheaves via holomorphic branes started from my
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me to this direction, and for his inspirations and help. I also wanted to thank Prof. Ivan
Losev, David Treumann, Geordie Williamson, Zhiwei Yun, Eric Zaslow and Dr. Justin
Hilburn for useful conversations and feedbacks on this work. This work is supported in
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2. Tilting perverse sheaves
2.1. Constructible sheaves

This subsection reviews some basic definitions and properties of constructible sheaves
with the main purpose of introducing notations. We recommend [13] for an introduction
to the theory of constructible sheaves. We will keep working in the subanalytic setting.

Let M be a real analytic manifold. Fix a Whitney stratification S = {Sg} on M.
A sheaf F of C-vector spaces on M is said to be constructible with respect to S, if its
pull-back to each stratum i*SaF is locally constant. Let Ds (M) (resp. D(M)) be the
bounded derived category of complexes of sheaves whose cohomology sheaves are all
constructible with respect to S (resp. with respect to some stratification). Let Shs(M)
(resp. Sh(M)) be the natural dg-enhancement of Ds (M) (resp. D(M )). We will always
refer to an object in SA(M) a sheaf rather than a complex of sheaves.

For any map F : M; = M, between two analytic manifolds, there are standard
operations £, fi : Sh(M;) - Sh(M,), ¥, f' : Sh(M,) -» Sh(M,), where all of our
functors have been derived and we always omit the derived notation. There is also the
Verdier duality D : Sh(M) > Sh(M)°P, which intertwines the %, ! functors, i.e. i = D#D
and £ = DF*D.

For any open embedding 7 : U = M and closed embedding of the complement J :
Z > M, there are the standard triangles

iiF = F - jJj*F, jj'F > F - ixi*F,

from which it is not hard to deduce that Shs(M) is generated by is_«Ls,, Sq € S, where
Ls, ranges in the set of irreducible local systems on Sg.
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2.2. Perverse sheaves and tilting sheaves

Here we recall the basic definitions and properties of perverse sheaves and tilting
sheaves. We refer the reader to [8], [12] for more discussions on perverse sheaves and [2]
on tilting sheaves.

2.2.1. Perverse sheaves

The most natural definition of perverse sheaves may be through the Riemann—Hilbert
correspondence. For a complex analytic manifold M, the Riemann—Hilbert correspon-
dence gives an equivalence between the bounded derived category of regular holonomic
D-modules and D(M ). The obvious f-structure on the D-module side induces an in-
teresting f-structure on D(M ), which is called the perverse t-structure. The perverse
Sheaves are the objects in the heart of the f-structure. In other words, a perverse sheaf
corresponds to a single regular holonomic D-module.

There are other characterizations of perverse sheaves. A commonly used one is the
following definition through the degrees of cohomological (co)stalks of sheaves. Let F be
a sheaf that is constructible with respect to a complex stratification S = {Sq}.

Definition 2.1. A sheaf F is perverse if the followings hold for all Sq € S:
(1) H*(7§ _F) = 0 for all * > —dimc Sq;
(2) H*(is F) =0 for all * < —dimc Sq.

There is another natural characterization of perverse sheaves through microlocal stalks
(also called local Morse groups or vanishing cycles). Let’s first briefly review the definition
of microlocal stalks. Microlocal stalks are well defined in the real setting (cf. [8]), however,
we will restrict ourselves to the complex setting for simplicity. For any covector (x, ) €
AZ", we choose a generic germ of holomorphic function F near x such that F(x) =0
and dFy= €. Here the genericity condition can be interpreted as that the graph of dF
as a germ of Lagrangian in T*M is transverse to As at (X, ).

Definition 2.2. The microlocal stalk of F € Shs(M) at (x, §), denoted as M, g(F ) is
defined to be

My e(F ) = T(Bc (x), Be(x) n {ReF <0} F),
for £ > 0 sufficiently small.

Now we can define the singular support of a sheaf F € Shs(M) to be

SS(F)={(x,&) € AZ" : My £(F ) jrv 0}.

One important feature about microlocal stalk is that it is perverse f-exact. Moreover,
we have the following microlocal characterization of perverse sheaves.
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Proposition 2.3. A sheaf F is perverse if and only if all of its microlocal stalks are
concentrated in degree 0.

2.2.2. Tilting sheaves

Tilting sheaves form a special kind of perverse sheaves. Under some natural assump-
tions on the stratification S, the indecomposable tilting sheaves form a natural basis for
the category of perverse sheaves.

Definition 2.4. A complex stratification S = {Sg} is called simple if the frontier of each
stratum S, — Sy is a Cartier divisor in Sq.

It is a standard fact that the Schubert stratification on a flag variety B = G/B is
simple. This is because each stratum is isomorphic to a unipotent subgroup of G, so it
is affine, hence the inclusion from each stratum to G/B is affine. If S is simple, then the
standard and costandard sheaves iyl s, [—dim Sq], /1L s, [— dim S4] are both perverse
sheaves, for any local system Lg_ on Sg.

Definition 2.5. A sheaf F € Shs(M) is tilting if for all Sy € S, we have
(1) H*(i§ _F) =0 for all *j= —dimc Sq;
(2) H*(fs F) =0 for all * j= —dimc Sq.

Proposition 2.6. If S is simple and m,(Sq) = M (Sq) = 0 for every Sy € S, then there
is a unique indecomposable tilting perverse sheaf supported on each Sg, and this gives a
bijection between indecomposable tilting perverse sheaves and the strata in S.

3. Fukaya categories on holomorphic symplectic varieties

Let M be a (quasi-projective) holomorphic symplectic variety with an exact holomor-
phic symplectic form wc.

3.1. Two C*-actions

We assume that M is equipped with two commuting (algebraic) C*-actions: C%, and
C%, where X and Z denote for the integral vector fields of the corresponding U(1)-actions
respectively. Similarly for any integral combination of the vector fields of X and Z we
can define the corresponding C*-action.

The C§< -action should be Hamiltonian with respect to wc, and it should have finitely
many fixed points. We index the fixed points by Xq,a € [/, and use Sx(Xg) (resp.
Ux(Xq)) to denote the ascending manifold (resp. descending manifold) of Xq. There is a
natural partial ordering on the fixed point set /, namely x4 < Xg if Xq €S x(xg). The
ascending manifold of each fixed point is a holomorphic Lagrangian manifold in M, and
we will denote the union of them by Ax.
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The C%-action contracts M to a compact core, denoted as Core(M ), and it acts on
wc by weight k, for some integer k = 1. By the commutativity assumption, Ax is conical

with respect to the Ck-action.
3.2. Examples

A class of interesting examples of holomorphic symplectic manifolds are the conical
symplectic resolutions. We refer the readers to the definition and a list of examples in
Section 2 of [4].

In this paper we will mostly focus on the case when M = T*K is the cotangent bundle
of a complex projective variety K, the C%.-action will be the induced Hamiltonian action
from a given C¥ -action on K (with isolated fixed points), and the C%-action will be the
contraction on the cotangent fibers. In particular, we have k= 1.

3.3. The Fukaya category Fx,.(M)

3.3.1. A brief review of the Fukaya category in the real setting

For any real exact symplectic manifold (M, w) with a conical end with respect to
the Liouville flow for a preferred primitive of w (such a manifold is called a Liouville
manifold), one can define its infinitesimal Fukaya category,! denoted by F(M). The
definition is originated from [16] in the cotangent bundle case and can be generalized to
Liouville manifolds. The book [19] treats the case of Lefschetz fibrations. For an expanded
review of infinitesimal Fukaya categories, see [10, Appendix C]. Roughly speaking, an
object in the Fukaya category is a (complex of) Lagrangian brane(s) (L, ®, P) consisting
of the data” of a properly embedded Lagrangian submanifold L, a grading ® : L - R,
and a relative Pin-structure on L. In the following, to make the notations simple, we
usually denote a brane only by its underlying Lagrangian submanifold when there is no
cause of confusion. Moreover, one compactifies M by the conical structure on the ends
to M =M UM =, where M = is the contact boundary of M which is also referred as the
infinity of M. We also require that L is well-behaved near the infinity of M in the sense
that L® =L nM * is a Legendrian subset of M ®, which can be equivalently described
as lim f-L is contained in a conical Lagrangian.

t—0"
The morphism b%tgveen two objects (L, @1, Py) and (L,, @,, P;) is the Floer complex
CF(L,Ly) = ( C - p[—deg p], 1), where p; is defined by counting pseudo-

peLinl,
holomorphic discs bounded by the two Lagrangians. The degree of p, denoted as deg p,

depends on the gradings ®@; and ®,. The relative Pin-structures also enter into the story
because these are needed to give an orientation of the (0-dimensional) moduli spaces of
pseudo-holomorphic strips, so that one can count the points. Of course, implicit in the

I We always assume the Fukaya category to be triangulated.
2 The brane structure also includes a local system (equivalently, a vector bundle with a flat connection)
on L. For simplicity, in this paper, we will assume that the local system is always trivial of rank 1.
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definition is the transversality between L; and L, and certain standard treatment of L T
and L3 if they overlap.
The composition of morphisms

M2 :CF(Lz,L3)®CF(L1,L2) - CF(LI,L3)

is defined by counting pseudo-holomorphic triangles bounded by the three Lagrangians.
There are also higher compositions ,, N = 3 which are defined by counting pseudo-
holomorphic polygons. The sequence {Un}p=; satisfies the As-relation, which makes
the Fukaya category into an A.-category.

Since we will only use a short list of theorems or facts about the Fukaya categories,
we find it not necessary to go through the long story of the subject. We will review the
statements we need in the next subsection and refer the reader to [19], [1] and [16] for
more details on the definition of Fukaya categories.

3.3.2. The subcategory Fx(M )

Continuing on the real setting, for any conical Lagrangian A € M, we define the
full subcategory F, (M )"2¥e to be generated by objects L with L™ < A®. We put the
superscript “naive” because the actual definition of FA(M ) is defined microlocally, which
corresponds to Sha(K) when M = T*K. Given an L € F(M), for any & € (L), one
can construct a Lagrangian disc L¢ (which is also an object in F(M)) whose infinity is
disjoint from L* and which intersects the cone over L* transversely at a unique point
in the ray pointing to ¢. For more details of the construction of L¢, we refer the reader
to Section 3.7 in [17] and Section 4 in [10] (in the cotangent bundle case). Once such
a brane L¢ can be constructed for every ¢, we can define the microlocal support of a
brane L, which is a conical Lagrangian. Then F, (M) is the full subcategory generated
by branes whose microlocal support is contained in A®.

In this paper, we will be mostly interested in the objects in Fy(M )™V, so it is not
harmful to keep that as an intuitive replacement of FA(M ).

3.3.3. F(M, wc) and Fa, (M)

In the holomorphic symplectic setting, as we started with, we take the real part of
wc and the R, -factor in C*Z to serve as the Liouville flow, then these fit into the real
setting, and give us the Fukaya category F(M, wc). Similarly, we can define Fa, (M) to
be the subcategory of F(M, wc) in the real setting.

There are some special features about the Fukaya category of a holomorphic symplec-
tic manifold. For example, one can do a projective compactification M¢c =M U M & of
M using the C%-action, so that M * = (M — Core(M ))/C% (we will omit the subscript
C from now on) is a divisor in M. Moreover, there is a specific class of Lagrangians—the
holomorphic Lagrangians. In [10], it is proved that any holomorphic Lagrangian brane in
M = T*K represents a perverse sheaf on K, under the Nadler—Zaslow correspondence.
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Hence one could roughly think of the class of the holomorphic branes as the heart of a
t-structure on the Fukaya category.?

3.4. The Nadler-Zaslow correspondence

Given a compact real analytic manifold K, the Nadler—Zaslow correspondence gives
a quasi-equivalence between the Fukaya category F(T*K) and the dg-category Sh(K)
of constructible sheaves on K. The theorem also holds for a given microlocal support
condition, i.e. given a conical Lagrangian A € T*K (containing the zero-section), we
have Fpo(T*K) rv Shy(K), where Shs(K) denotes for the full subcategory consisting of
sheaves whose singular support is contained in A.

We will collect some of the results involved in the Nadler—Zaslow correspondence that
we will use in later sections without proof. We refer the interested reader to [16] and
[15] for more details. In the following, we will fix a Whitney stratification S = {Sg} on
K such that each stratum is connected and is a cell, and we will always work in the
subanalytic setting.

= (Co)Standard branes.
For each stratum Sy € S, one can define a standard brane on it, denoted as Ls,_
as follows. Pick a function my : K = R such that mg > 0 on S; and mg = 0 on
K — Sq. Now define Ls, to be Lgiog m, + TE_K. It is shown in [16] that Ls, can
be equipped with a canonical grading and a canonical Pin-structure, so we will refer
Ls, as the standard brane on S,. Note that Lg_ as an object in F(T*K) doesn’t
depend on the choices of mgy. The involution on T*K that negates the cotangent
vectors correspond to the Verdier duality on Sh(K). We will call the involution of
Ls, a costandard brane.

= Generators of Fx ((T*K).
Under the Nadler—Zaslow correspondence, each standard brane Lg_ goes to the stan-
dard sheaf is_xCs,, and the involution of Lg_ goes to the costandard sheaf /s, Cs,,
where is, : Sq = K is the embedding. If we put a standard or costandard sheaf
(resp. brane) for each stratum, then they will generate Sh (K) (resp. Fao(T*K))
by taking shifts and iterated cones.

4. Holomorphic Morse branes in Fx, (M)

We will continue on the set-up for the Fukaya category of a holomorphic symplectic
manifold in Section 3.

3 This is not a precise statement, since not every perverse sheaf can be represented by a holomoprhic
brane.
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4.1. Definition of Morse branes in Fa, (M)

Let ASY" be the union of the descending manifolds of C%. We assume that Ax and
ASPP are disjoint away from the compact core of M.

Definition 4.1. A Lagrangian brane L in F, (M) is called a Morse brane, if it satisfies
that L intersects A3 in a single point that is contained in the smooth part of A%, and
the intersection is transverse.

The consideration of Morse branes is largely motivated by the results in [14], in which
the author constructed tilting perverse sheaves on the flag variety B by means of Morse
theory. We will see the applications of the notion of Morse branes in the construction
of big tilting sheaves in Section 5. We also remark that there is an intimate relation
between the Morse brane here and the so called local Morse branes in [10]. In [10], local
Morse branes are introduced to represent the Morse kernel (vanishing cycle functor)
in the Fukaya category at a given smooth point of a holomorphic conical Lagrangian
in the cotangent bundle of a complex manifold. One can generalize the construction
to a holomorphic symplectic manifold M (with conical ends) since the construction is
completely local. In our current situation, a (holomorphic) Morse brane is definitely a
local Morse brane, but it is more rigid and relies on the global geometry of M, for it
satisfies additional microlocal condition from Ax.

4.2. Construction of a class of holomorphic Morse branes in cotangent bundles

In this section, we assume that M is the cotangent bundle of a smooth projective
variety. The action by C% is dilating the fibers with weight 1, and we assume that

the minimum of the positive weights of C%, on the tangent spaces “.1)

at the fixed points is K.

We will use ax, az, ax-—k,z : C* = Aut(M) to denote the action of C*, C*, and
C;(—kOZ on M, respectively. Again, we index the fixed points of C5, by Xq, a € /. We
will denote each fixed locus of C”‘X_k0 ~ containing a Ck-fixed point Xq by Eq.

Lemma 4.2. For any x in the fixed loci of C%._, -, the ascending manifold S x—,z(X)
is a holomorphic Lagrangian submanifold (not necessarily closed).

Proof. First, X must lie in the descending manifold of the C*Xfixed point
y= I;Lnoaz(t) X = ?H})aX(t) "X,

therefore it belongs to E4 for some a € /.
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Since the action of CX,_ Koz 18 Morse—Bott, the decomposition of the tangent space at
X into weight spaces is the same as that at Xq. By the assumption (4.1), we know that the
ascending manifold of X4 with respect to Ct(—koZ is the same as the ascending manifold
with respect to C%, thus the negative weight space of Cﬁ(—kOZ has the dimension of a
Lagrangian. Now at X, we only need to show that in a small neighborhood, the ascending
manifold Sx—k,z(X) is isotropic, since C’g(_ko ~ scales wc with weight —k = —kj. First,
the tangent space at X is isotropic by a similar reason of weights: the negative weights
for X — Z are at most —2ky. To show that near x we have Sx_x,z(X) locally be a
Lagrangian, we identify a neighborhood of 0 in T,M with a neighborhood of x in M
by an ax-k,z(R)-equivariant diffeomorphism, and use the equivariant version of Moser’s
argument to modify the diffeomorphism into a local equivariant symplectomorphism. *

Remark 4.3. It is easy to see that C(L) := }i_r)l(l)az(t) -L is both C% and C-invariant.

However, we cannot conclude that C(L) is contained in the conical Lagrangian Ax.

We will denote every Lagrangian constructed in Lemma 4.2 by L x, for x € E4. Now
we work with the projective compactification of M with respect to the action of C%,
defined by

M = (M x C — Core(M ) x {0})/C%.

Since our M is the cotangent bundle of a projective variety, M is again projective. The
action of C% and C% both extend to M by keeping their actions on M and acting trivially
on the extra factor C. In particular, they will preserve M =M — M. We will denote
the projectivization of a conical line C% v in M by [v] EM *=.

Now by basic properties of algebraic C*-actions on smooth projective varieties and its
relations to Morse theory (cf. [6] Section 2.4), we can deduce the following.

u _ u _
Theorem 4.4. If E, jC Ux(xg), then for any x € E4 — Ux(Xg), Lax is a

X <Xa Xg<Xa
Morse brane in Fa, (M) with Ly x n AP = {x}.

Proof. First, we have TJX(XB) =zj—k0 z(Ep) by Assumption (4.1). Next, we claim that
the boundary of L, x consists of points in M that can be connected to x by piecewise
flow lines, which are usually called broken flow lines. This follows from the properties
of finite volume flow in [9], and can be argued in the same way as Lemma 3.4 in [9].
More explicitly, one can construct a Kahler metric on M and a Morse-Bott function
whose gradient flow gives the Ry < C*X—koZ action (cf. [6, Section 2.4] or [9, Section
9]). Then for any sequence y; € Sy, because the flow lines from y; to x are of bounded
lengths, up to passing to a subsequence, the flow lines converge to a broken flow line,
i.e. there is Yoo = Ill)ngo yi and a finite sequence of critical points py, - -+, px such that the

flow connects Yo to py, then pjto pj+1,1 <Fi <k —1 and lastly pg to x.
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Now by the assumption that E, jc v Ux(xg ), there is no flow line of X —kyZ that
Xg<Xa

travels from Eg to x. Therefore, for an[; broken flow line ending on x, the last portion
must start from a point [v] on a critical manifold inside M . We claim that [v] is lying
in Ag. Note that the critical manifolds in M * are exactly the projectivization of the
conical lines in M that are fixed (pointwise) by C%, ,, for some nonzero integer K. In
particular, this says that [v] € AY if and only if the conical line corresponding to [V] is
fixed by Ck ko Z for some positive integer K,;. Suppose the contrary, we have kp,; < 0,
this would imply the descending manifold of[V] under the flow of C*X_ko ~ 1s contained in
M =, which cannot be true, so the claim follows. Since A}n(Ag’ép * = () by assumption,
we can conclude that the broken line is contained in M *° except for the last portion.

Now we can model the piece of flow line in M = ending at [v] by a flow of C%, ki Z
ending at a point Vo € C% - v in M, which means that the projectivization of the latter
flow line in M = will be equal to that piece of flow line (here we have used again that
C% Sl Z gives rise to a Morse—Bott flow on M). If the starting point of the flow line
modeled on is away from the zero section, then by rescaling it with a_x,z(f) with respect
to some parametrization (so that we get a flow line of C} ), it is clear that the whole flow
line at infinity lies in A%. On the other hand, if the flow line starts at some fixed point
X of C%, then there are two cases after rescaling the flow line of C%¢ hy,z M by
a—fq,,z(D): one is at 0 the flow line approaches something away from the compact core,
the other is at 0 it remains to be at Xg. The first case directly implies that the flow line
in M * is contained in Ay, and the second implies that Ag n (Ag;;p ) j= 0, which is a
contradiction. By induction on the pieces of the broken flow line (from o to 0), we get
that the whole broken line is lying in Ay except for the first piece. This completes the
proof that L, x satisfies the geometric conditions in Definition 4.1.

Lastly, we show the compactness of the moduli space of J-holomorphic discs bounding
L4 x and a finite collection of branes L, , - - -, Lx, which proves that L, x is a well defined
object in Fa,.(M). Here J is a Quwc-compatible almost complex structure that is also
compatible with the conical structure of M (cf. [19, (7b)]). We remark that in [16],
certain tameness conditions (and more generally a family of tame perturbations) are
imposed on the branes in the Fukaya category, but this is purely for the sake of ensuring
compactness of the moduli space of J-holomorphic discs.

Let ¢! (resp. R;_ko ) denote for the radial flow (resp. radial action) associated with
C;(_koz. Given Ly = Lg,x and (tame) branes L,;,---,Lx, which satisfy the generic
condition that they don’t intersect at infinity and their intersections are transverse (here
the order doesn’t really matter), since X is Hamiltonian, the calculation of Floer cochains
and the A, -maps are invariant under the flow of ¢}f. More precisely, one needs to first
modify X so that it becomes 0 outside a neighborhood of L4 x (but it remains the same
on a smaller neighborhood of L4 x), and in particular, it should be 0 in a neighborhood of
L. Let H be a contact hypersurface in M such that M = M, IL_JI([O, o) X H), where

=1
OMy= H and the Liouville vector field on M is corresponding to the vector field d, on
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the factor [0, ©) with coordinater. Choose K » 0 and let M—x=M — (K, ©) X H)
and Msk = (K, ®) X H).
Now we show that after replacing L; by @¢i(L;), i =1, k for t sufficiently large
(note that L, a,x is invariant under @!), any J-holomorphic polygon u : (S, 3S) —
g
(M, Ly u  L,) satisfies that u(6S) € M<k for a fixed sufficiently large K. Here S =
=1

Ci and u(Cj) < L,. Note that Lx 4 N M=k is tame in the sense of [20, Definition
=0
4.7.1], so we can apply [20, Proposition 4.7.2(ii)] using appropriate r;,, C4(Lo) on Ly 4N

M<—. Now fix a small neighborhood Uy of X in Lg . It is clear that if a curve on

L4 x has one end in Uy and the other outside Ly o N M<k, then there needs at least

N -balls of radius ry, to cover it, for a fixed Nk » 0. Since X is 0 in a neighborhood
(G] . .

of L7, by enlarging K and replacing ry, by a smaller one if needed (these choices

=1
can be made once for all), we can be sure that at least one of the balls does not intersect

( Y UT Y(L)) N Msyk_, for some (fixed) T > 0. It follows then from [20, Proposition

i=1t>

4.7.2(ii)], the area of a J-holomorphic disc u as above satisfying u(Cy) n Uy j= 0 and
u(Co) N M=k j= 0 has a uniform lower bound E > 0, which does not depend on ¢ for
t>T.

Since Ly  is the ascending manifold of x with respect to ¢!, again after replacing L; by
¢f (Lj), i=1,---, Kk for  sufficiently large, the intersection points Lg xNL; and Lx NLq x
are getting inside Uy. Since u(Cy) has boundary points contained in Lgx N (L; U Ly),
if u(Cy) N (Lx g N M=k) j= 0, then by the conclusion above, the area of u is at least E.
However, since Rﬁ(—koz scales the area of a J-holomorphic disc by weight —k; and the
area of any disc only depends on the intersection points of the Lagrangiansthat they
connect (this is a standard fact for exact Lagrangians), we can always make area(u) < E
for every u after a sufficient dilation by R;_ Kkoz> SO then u(Cy) € Ly o N M<k. By the
tameness condition imposed on Ly, -+, Ly, we have u(C;) € M<k,i =1, -,k for a
fixed large K as well. So we finish the proof that u(0S) € M<k. Lastly, by the maximum
principle (cf. [19, Lemma 7.4]), we also have u(S) € M<k. So the compactness of the
moduli space is established as desired. %

5. The big tilting branes in T*B

Let G be a semisimple Lie group over C, B © G be a Borel subgroup and B be
the flag variety G/B. Fix a maximal torus H < B. Let B~ be the opposite Borel
subgroup, and N < B (resp. N~ < B™) be the unipotent radical of B (resp. B7).
Let g,b,b™, n,n~, h be the Lie algebra of G, B, B~, N, N~, H respectively. For a general
Borel by, we will use ny, to denote its nilradical. Let A, @* and ®~ denote respectively
the set of simple, positive and negative roots. Let W = Ng(H )/H be the Weyl group
of G. Let S = {Sy}wew (resp. S~ = {S, }wew) be the Schubert stratification (resp.
opposite Schubert stratification) on B determined by the orbits of N (resp. N 7). Fixing
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the coweight in h whose pairing with the simple roots are all —1, usually called g, its
induced C*-action on B has fixed points naturally indexed by W, denoted as p,, w € W,
and the ascending (resp. descending) manifolds of each of the fix points p, coincide
with Sy (resp. S,). Let sy : Sy = B and s, : S;, = B (resp. /p, : pw = B) be the
embeddings of the strata (resp. fixed points).

The C*-action on B induces a Hamiltonian action on T*B, which we will use as the
Cc-action as in Seiﬁtion 3.1. It is easy to see that Ax coincides with the conormal variety

of S, ie. As = TS*WB . The transversality between the Schubert stratification and
SwES
the opposite one implies that A% N (A‘;F(’p )® = 0. The C*-action on T*B is the natural

C*-action on the cotangent fibers with weight 1. It is clear that ky = 1 in (4.1) for this
case.

Let wy be the longest element in W. Let z4, @ € Wy(A) be the linear coordinates
aroIJ_nd Pw, which correspond to the negative of the simlglle roots Wo(A) < h*. Let Fy, =

w

CaZq be a generic linear function on Sy, i.e. Cq j= 0. Then LWO,(dFWO)pW is
acwo(A) a€S 0
the same as the Lagrangian graph T'gr, . For any Lagrangian graph, there is a natural

brane structure one can put on it, similarly to the case of standard and costandard
branes, and this will be the default brane structure on I'gr, o EB

For any w € W, let b,, denote for the Borel Ad,gb, and n, = gq. Let N, be
aEW(®™)

the unipotent group whose Lie algebra isn™ Nny, , then each S, is the orbit of p,, under
EB w w at by is (0~ Nny )t Nnp, Vo NN, =

g4, with respect to the Killing form. Similarly, the conormal at any by € S,
acEw(@)Nd—
can be identified with n™ Nnp,, € Ady -(n™ Nny,,).

Lemma 5.1 (Lemma 5.17 [14]). For any sheaf F € Shs(B), we have
/;;Ws‘j‘vF rvDHom(F ,S§,,Cgs-[dim S, ]))[—dim S, ],
i SwF rvDHom(F ,$,,Cq-[dim S, ]))[~ dim S, ],

for all w e W.

Let N and N™¢ respectively be the nilpotent cone and the orbit of regular nilpotent
elements in g.

Lemma 5.2. For any w <wy, I'gr, N Ux(pw) = 0.

Proof. Consider the moment maps g : T*B — N (the Springer resolution) and uy :
T*B - n* rv n~ of the Hamiltonian G-action and N -action on T*B respectively, then
Tq4F,, is nothing but py/ (&) = N - ug'(e), where e is the image H6(dF g lp,,) whose

projection e is the character of n corresponding to the linear function CaZqg. It
aEwo(A)
follows from our assumptionthat e lies in N™¢. We only need to show that for any
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w <wp, n~ Nn,, are singular values of g, or in other words, (n™ Nny ) 111" =0,
because then pg(Ux(pw)) = Ady —(n~ N ny,,) will not intersect N ™€,

Note that N™¢ nn~ = Adg-e. Therefore, if we decompose any element in N ™8 nn~
with respect to the weight decomposition, it will have a nonzero component in each
negative simple root space. However, the elements in n™ Nnp,, cannot satisfy this property

for w < wy, hence we are done. %
Proposition 5.3. The Lagrangian graph Tq4r,, is a Morse brane in F,.(T*B).

Proof. This directly follows from Theorem 4.4 and Lemma 5.2. Alternatively, one can
directly use the fact that 'y, = p,_\,l(é) to deduce that the Lagrangian is closed. Also
from this one easily sees that }‘irr(l) az() Tgr,, © p,\TI(O) = Ax, so FC‘;‘,’:WO C Ay X

Theorem 5.4. The Lagrangian graph I g, [dimc B] corresponds to the big (indecompos-
able) tilting perverse sheaf.

Proof. We first show that the sheaf corresponding to I'gr, plays the role of a Morse
kernel on Shs—(B), i.e. calculating vanishing cycles.

Since the strata in >~ are all contractible, Fo __(T*B) is generated by the brane
T/;w(,B and the standard branes of the other strata. For any stratum S, € S~ other than
{Pw, }, the closure of its standard brane (after a sufficient dilation by the conical action)
doesn’t intersect l:de v for LaF,,, is a Morse brane and the standard brane of S, has its
infinity contained in T, B Then from HF (Tar,, [dimc B], T B) rv C by the general
fact about the gradlng of the transverse intersection of two holomorph1c Lagrangian
branes (cf. [10]), we see that I'gF,, [dimc B] represents the Morse kernel at dF, |Pw0‘

Now by Lemma 5.1, the stalk and costalk of the sheaf corresponding to I'gr, [dimc B]
on Sy, are concentrated in the right degrees for being a tilting sheaf. It is easy to see this
sheaf is exactly the tilting sheaf T, for some p, F introduced in [14].

Lastly, by the multiplicity formula multr, (Tpr) = dim M, £(IC%P) in [14], where
Ty is the minimal tilting sheaf on S, we see that CoF,,[dimc B] corresponds to the big
indecomposable tilting sheaf. *
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