
Advances in  Mathematics 345  (2019) 845–860 

 
 

Contents lists available at ScienceDirect 

 
Advances  in Mathematics 

 

 
www.elsevier.com/locate/aim 

 
 
 
 

Representing the Big tilting sheaves as holomorphic 

Morse Branes 
 
Xin Jin 

 
 
a r t i c l e  i n  f o a b  s  t r a c t 

 
Article history: 

Received 10  November 2016 

Received in  revised form 6 

September 2018 

Accepted 9 January  2019 

Available online 22  January  2019 

Communicated by Roman 

Bezrukavnikov 

We  introduce Morse  branes in the  Fukaya category of a holo- 

morphic symplectic manifold, with   the  goal  of constructing 

tilting objects in  the  category. We  give  a  construction of a 

class  of Morse  branes in the  cotangent  bundles, and  apply it 

to  give  the  holomorphic branes that  represent  the  big  tilting 

sheaves on flag  varieties. 

© 2019 Elsevier Inc.  All rights reserved. 

 
Keywords: Tilting  

sheaves Morse  

branes Holomorphic  

branes Fukaya  

categories 

 
 

 
1.  Introduction 

 
For a complex semisimple Lie group G and a Borel subgroup  B ⊂ G with its unipotent 

radical  N , the  category  of N -equivariant perverse  sheaves on B = G/B  corresponds  to 

the principal  block of the BGG Category  O. The indecomposable  tilting  perverse sheaves 

form a natural basis for the  category,  and  they  are in bijection  with  the  Schubert cells. 

One  can  also  view the  tilting  sheaves  from  other  perspectives, i.e.  as  D-modules  via 

the  Riemann–Hilbert correspondence  or as Lagrangian branes  in the  Fukaya category 

F (T ∗B) via the Nadler–Zaslow correspondence. There have been several constructions of 

tilting  objects  as sheaves or D-modules,  including  certain  averaging  or limiting  process 
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(cf. [7], [14], [3], [5]). In this paper,  we construct the tilting  object  corresponding  to the 

open Schubert cell, often referred  as the  big tilting,  as a holomorphic  Lagrangian brane 

in the Fukaya category  F (T ∗B). 

The construction is simple. Consider  the moment map for the Hamiltonian N -action 

on T ∗B, μN  : T ∗B → n∗, where n is the Lie algebra of N . Take a non-degenerate character 

ē  of n in n∗,  then  Lē   = μ−1 
(ē)  is a closed (smooth) holomorphic  Lagrangian in T ∗B. 

It  is just  an  N -orbit  and  we can equip  it  with  a canonical  brane  structure to  make  it 

correspond  to a perverse  sheaf (cf. [10]). 

 
Theorem 1.1. The brane Lē   corresponds  to the big tilting  sheaf on B, via the Nadler– 

Zaslow correspondence. 

 
The  construction fits  into  a  more  general  setting  as  Morse branes in  holomorphic 

symplectic manifolds that we will introduce below, and the consideration of Morse branes 

is largely  motivated from the  approach by Nadler  [14] to construct tilting  sheaves.  We 

remark that a notable  application of the holomorphic  brane approach to tilting  sheaves is 

that the branes  come in a C∗-family, and one can use it to give a geometric  construction 

of the  mixed  Hodge  structures on  the  tilting  sheaves  (in  the  sense  of [18]), and  the 

construction is in the forthcoming  work [11]. 

 
1.1. Morse branes in holomorphic symplectic manifolds 

 

 
We will work in the  setting  that an exact  holomorphic  symplectic  manifold  (M, ωC) 

is endowed  with  two commuting C∗-actions: one is Hamiltonian and  is denoted  as C∗  , 

and  the  other,  denoted  as  C∗ , scales ωC  by  a positive  weight  and  it  contracts M  to 

a compact  core as t → 0. We also assume  that the  C∗  -action  has  finitely  many  fixed 

points, and  we will denote  the  union  of their  ascending  (resp.  descending)  manifolds  as 

ΛX  (resp.  Λ
opp 

). Both  ΛX  and  Λ
opp  

are holomorphic  conical Lagrangians with  respect X X 

to the  C∗ -action,  by the  commutativity condition  of the  two actions.  We assume  that 

ΛX  and Λ
opp  

are disjoint away from the compact  core of M . 

Consider  the Fukaya category  FΛX 
(M ), whose objects are (closed) Lagrangian branes 

in M  that are  dilated  towards  ΛX  by  C∗
 as t → 0. We call a brane  L ∈ FΛX (M )  a   

Morse brane if it  intersects Λ
opp  

uniquely  and  transversely at  a point  in the  smooth 

portion of Λ
opp 

. The name comes from the principle  that it plays the role of calculating 

the “microlocal stalk”  in F  opp (M ) at the intersection point (cf. [17] and [10]). 
X 

We give a natural construction of a class of Morse branes  in the  situation when  M 

is the cotangent bundle  of a complex projective  variety with a contracting C∗ -action  on 

the fibers (of weight 1). The specialty  of cotangent bundles  is that if k0  is the minimum 

of the  positive weights  of the  C∗  -action  on the  tangent spaces of the  fixed points, then 

we can use the  flow of ∗ 
X −k0 Z 

to  construct holomorphic  Morse branes.  Here  ∗ 
X −k0 Z 

is the  subgroup  in C∗ × C∗
 which  is the  graph  of the  group  homomorphism C∗    → 

Z , t t→ 

t 

−k0 . We expect  the  construction to be generalized  to some other  holomorphic 
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symplectic  manifolds (e.g. hypertoric varieties, the resolution  of the Slodowy slices) with 

more careful investigation of the  weights  of the  two C∗-actions, and  we leave this  for a 

future  work. 

The  construction goes as follows. Take  a point in the  fixed  loci of ∗ 
X −k0 Z 

, and 

take  the  ascending  manifold  of with  respect  to  the  ∗ 
X −k0 Z 

-action.  By the  weights 

condition,  this is a (not  necessarily closed) holomorphic  Lagrangian submanifold  and we 

denote  it by Lx . The main theorem  we get is the following. 
 

Theorem 1.2. If x ∈ (Λ
opp 

)sm , then Lx is a holomorphic Morse brane in FΛ (M ). 

 
1.2. Application to the construction of tilting  objects 

 
In the case of a cotangent bundle,  we have a C∗ -action  on the base K which induces 

the Hamiltonian C∗  -action on T ∗K , and the Lagrangian ΛX (resp. Λ
opp 

) is the conormal X X 

variety  to  the  stratification S (resp.  S−) defined  by  the  ascending  (resp.  descending) 

manifolds of the fixed points in K . 

In good situations, S = {Sα } and  Sopp  = {Sopp } are  transverse to  each  other,  and 
opp 

S is simple (see Definition  2.4). Then  Theorem  1.1 is a special case of a more general 

result. 

 
Theorem 1.3. If  x ∈ (Λ

opp 
)sm , then Lx  corresponds  to a tilting  sheaf on K under the 

Nadler–Zaslow correspondence. 

 
Once we have obtained Theorem  1.2, the proof of Theorem  1.3 follows from a similar 

argument as in [14]. Namely, the stalk (resp. costalk)  of the corresponding  sheaf on Sopp 

can  be calculated by the  microlocal  stalk  of the  costandard (resp.  standard) sheaf for 

α    at x, therefore  they  are concentrated in the right degrees. 

We  expect  Morse  branes  to  give  tilting  objects  in  the  Fukaya category  of a  wide 

class  of holomorphic  symplectic  manifolds.  In  the  case  of symplectic  resolutions,   the 

Fukaya categories  are expected  to be equivalent to the category  of modules over certain 

quantizations of the  manifolds.  Therefore  the  tilting  branes  are expected  to correspond 

to tilting  objects  in certain  representation categories. 

 
1.3. Organization 

 

 
The  paper  is organized  as follows. In Section  2, we recall some basic definitions  and 

facts about  constructible sheaves, perverse  sheaves and tilting  sheaves. In Section 3, we 

make  the  basic set-up  for the  Fukaya category  of a holomorphic  symplectic  manifolds, 

and we also briefly review the definition  of Fukaya categories and the Nadler–Zaslow 

correspondence. Next,  we give the  construction of a class of holomorphic  Morse branes 

and  the  proof of Theorem  1.2 in Section  4. The  proof is based  on the  analysis  of the 

Morse–Bott flow of some combinations of the  C∗ and  C∗ -actions.  Lastly,  we give the 
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big tilting  brane  in T ∗B and  prove  Theorem  1.1 in Section  5. The  exactly  same proof 

applies to Theorem  1.3. 
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2.  Tilting  perverse sheaves 
 
 

2.1. Constructible sheaves 
 
 

This subsection  reviews some basic definitions  and properties of constructible sheaves 

with the main purpose  of introducing notations. We recommend  [13] for an introduction 

to the theory  of constructible sheaves. We will keep working in the subanalytic setting. 

Let  M  be a real  analytic  manifold.  Fix  a Whitney stratification S = {Sα } on M . 

A sheaf F of C-vector  spaces on M  is said  to  be constructible with respect to S , if its 

pull-back  to  each  stratum i∗ 
α 
F  is locally  constant. Let  DS (M ) (resp.  D(M ))  be the 

bounded  derived  category  of complexes  of sheaves  whose  cohomology  sheaves  are  all 

constructible with  respect  to S (resp.  with  respect  to some stratification). Let ShS (M ) 

(resp.  Sh(M )) be the natural dg-enhancement of DS (M ) (resp.  D(M )). We will always 

refer to an object  in Sh(M )  a sheaf rather than  a complex of sheaves. 

For  any  map  f :  M1    →  M2    between  two  analytic   manifolds,  there  are  standard 
!
 

operations f∗, f!   : Sh(M1 )  → Sh(M2 ),  f ∗, f : Sh(M2 )  → Sh(M1 ),  where  all  of our 

functors  have been derived  and  we always omit  the  derived  notation. There  is also the 

Verdier duality  D : Sh(M )  
∼  

Sh(M )op , which intertwines the ∗, ! functors, i.e. f!  = Df  D
 

→  ∗ 

and f ! = Df ∗D. 

For  any  open  embedding  i : U '→ M  and  closed embedding  of the  complement  j : 

Z '→ M , there  are the standard triangles 
 

 
i! i

! F → F → j j∗F , j j ! F → F → i i∗F ,
 

∗ ! ∗ 
 

 

from which it is not hard to deduce that ShS (M ) is generated by iSα ∗LSα 
, Sα ∈ S , where 

LSα   
ranges in the set of irreducible  local systems  on Sα. 
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2.2. Perverse  sheaves and tilting  sheaves 
 

 
Here  we recall  the  basic  definitions  and  properties of perverse  sheaves  and  tilting 

sheaves. We refer the reader  to [8], [12] for more discussions  on perverse  sheaves and [2] 

on tilting  sheaves. 

 
2.2.1. Perverse sheaves 

The most natural definition  of perverse sheaves may be through the Riemann–Hilbert 

correspondence. For  a complex  analytic  manifold  M , the  Riemann–Hilbert correspon- 

dence gives an equivalence  between  the  bounded  derived  category  of regular  holonomic 

D-modules  and  D(M ).  The  obvious  t-structure on  the  D-module  side induces  an  in- 

teresting t-structure on D(M ),  which  is called  the  perverse  t-structure. The  perverse 

sheaves are the  objects  in the  heart  of the  t-structure. In other  words, a perverse  sheaf 

corresponds  to a single regular  holonomic D-module. 

There  are  other  characterizations of perverse  sheaves.  A commonly  used  one is the 

following definition  through the degrees of cohomological (co)stalks of sheaves. Let F be 

a sheaf that is constructible with respect  to a complex stratification S = {Sα }. 

 
Definition  2.1. A sheaf F is perverse if the followings hold for all Sα ∈ S: 

(1) H •(i∗ 
α 

(2) H •(i! 
α 

F ) = 0 for all • > − dimC Sα ; 

F ) = 0 for all • < − dimC Sα . 

 

There is another natural characterization of perverse sheaves through microlocal stalks 

(also called local Morse groups or vanishing cycles). Let’s first briefly review the definition 

of microlocal stalks. Microlocal stalks are well defined in the real setting  (cf. [8]), however, 

we will restrict ourselves to the complex setting  for simplicity.  For any covector  (x, ξ) ∈ 

Λsm ,  we  choose  a  generic  germ  of  holomorphic  function  F  near  x such  that  F (x)  =  0   S 

and  dFx = ξ. Here the  genericity  condition  can be interpreted as that the  graph  of dF 

as a germ of Lagrangian in T ∗M  is transverse to ΛS at (x, ξ). 

 
Definition  2.2. The  microlocal stalk of F  ∈ ShS (M ) at (x, ξ),  denoted  as Mx,ξ (F ) is 

defined to be 

 
Mx,ξ (F ) = Γ(Bc (x), Bc (x) ∩ {ReF < 0}; F ), 

 
for E > 0 sufficiently  small. 

 
Now we can define the singular support of a sheaf F ∈ ShS (M ) to be 

 
SS(F ) = {(x, ξ) ∈ Λsm  : Mx,F (F ) jrv 0}. 

 
One important feature  about  microlocal stalk is that it is perverse t-exact. Moreover, 

we have the following microlocal characterization of perverse  sheaves. 
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Proposition 2.3. A  sheaf F  is perverse  if  and only if  al l of its microlocal stalks are 

concentrated in degree 0. 

 
2.2.2. Tilting  sheaves 

Tilting  sheaves form a special kind of perverse  sheaves. Under  some natural assump- 

tions on the stratification S , the indecomposable  tilting  sheaves form a natural basis for 

the category  of perverse  sheaves. 

 
Definition  2.4. A complex stratification S = {Sα } is called simple if the frontier  of each 

stratum Sα − Sα is a Cartier divisor in Sα . 

 
It  is a standard fact  that the  Schubert stratification on a flag variety  B = G/B  is 

simple. This  is because  each stratum is isomorphic  to a unipotent subgroup  of G, so it 

is affine, hence the inclusion from each stratum to G/B  is affine. If S is simple, then  the 

standard and  costandard sheaves  i∗LSα 
[− dim Sα ], i! LSα 

[− dim Sα ]  are  both  perverse 

sheaves, for any local system  LSα   
on Sα . 

 
Definition  2.5. A sheaf F ∈ ShS (M ) is tilting  if for all Sα ∈ S , we have 

(1) H •(i∗ 
α 

(2) H •(i! 
α 

F ) = 0 for all • j= − dimC Sα ; 

F ) = 0 for all • j= − dimC Sα . 

 

Proposition 2.6. If S is simple and π1 (Sα ) = π2 (Sα ) = 0 for every Sα ∈ S , then there 

is a unique indecomposable tilting  perverse sheaf supported  on each Sα , and this gives a 

bijection between indecomposable  tilting  perverse  sheaves and the strata in S. 

 
3.  Fukaya  categories  on holomorphic symplectic  varieties 

 

 
Let M be a (quasi-projective) holomorphic  symplectic  variety with an exact holomor- 

phic symplectic  form ωC . 

 
3.1. Two C∗-actions 

 
We assume that M  is equipped  with two commuting (algebraic) C∗-actions: C∗ and 

Z , where X and Z denote for the integral vector fields of the corresponding  U (1)-actions 

respectively.  Similarly  for any  integral  combination of the  vector  fields of X  and  Z we 

can define the corresponding  C∗-action. 

The C∗  -action  should be Hamiltonian with respect  to ωC, and it should have finitely 

many  fixed  points.  We  index  the  fixed  points  by  xα , α  ∈  I ,  and  use  SX (xα )  (resp. 

UX (xα )) to denote  the ascending  manifold (resp. descending manifold)  of xα. There  is a 

natural partial ordering  on the  fixed point set I , namely  xα ≺ xβ  if xα ∈ SX (xβ ). The 

ascending  manifold  of each fixed point is a holomorphic  Lagrangian manifold  in M , and 

we will denote  the union of them  by ΛX . 
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The  C∗ -action  contracts M  to a compact  core, denoted  as Core(M ), and  it acts  on 

ωC by weight k, for some integer k ≥ 1. By the commutativity assumption, ΛX is conical 

with respect  to the C∗ -action. 

 
3.2. Examples 

 

 
A class of interesting examples  of holomorphic  symplectic  manifolds  are the  conical 

symplectic  resolutions.  We refer the  readers  to the  definition  and  a list of examples  in 

Section 2 of [4]. 

In this paper we will mostly focus on the case when M = T ∗K is the cotangent bundle 

of a complex projective  variety K , the C∗  -action will be the induced Hamiltonian action 

from a given C∗  -action  on K (with  isolated  fixed points),  and the C∗ -action  will be the X  Z 

contraction on the cotangent fibers. In particular, we have k = 1. 
 

 
3.3. The Fukaya category FΛX 

(M ) 

 
3.3.1. A brief review of the Fukaya category in the real setting 

For  any  real  exact  symplectic  manifold  (M, ω)  with  a  conical  end  with  respect  to 

the  Liouville flow for a preferred  primitive  of ω  (such  a manifold  is called  a Liouville 

manifold),  one  can  define  its  infinitesimal   Fukaya  category,1  denoted  by  F (M ).  The 

definition  is originated from [16] in the cotangent bundle  case and can be generalized  to 

Liouville manifolds. The book [19] treats the case of Lefschetz fibrations. For an expanded 

review of infinitesimal  Fukaya categories,  see [10, Appendix  C]. Roughly  speaking,  an 

object in the Fukaya category  is a (complex of) Lagrangian brane(s) (L, Φ, P ) consisting 

of the  data2  of a properly  embedded  Lagrangian submanifold  L,  a grading  Φ : L → R, 

and  a relative  Pin-structure on L.  In the  following, to  make  the  notations simple,  we 

usually  denote  a brane  only by its underlying  Lagrangian submanifold  when there  is no 

cause of confusion.  Moreover,  one compactifies  M  by the  conical structure on the  ends 

to M = M ∪ M ∞, where M ∞ is the contact boundary of M which is also referred as the 

infinity  of M . We also require that L is well-behaved  near the infinity  of M in the sense 

that L∞ = L ∩ M ∞ is a Legendrian  subset  of M ∞, which can be equivalently described 

as  lim 
t→0+ 

t · L is contained in a conical Lagrangian. 

The morphism  between two objects (L1 , Φ1 , P1 ) and (L2 , Φ2 , P2 ) is the Floer complex 

CF (L1 , L2 )  = (  
EB

 
p∈L1 ∩L2 

C · p[−deg   p], μ1 ),  where  μ1   is  defined  by  counting   pseudo- 

holomorphic  discs bounded  by the two Lagrangians. The degree of p, denoted  as deg p, 

depends  on the gradings  Φ1  and Φ2 . The relative  Pin-structures also enter  into the story 

because  these  are needed to give an orientation of the (0-dimensional) moduli spaces of 

pseudo-holomorphic strips,  so that one can count the  points. Of course,  implicit  in the 
 
 

1  We always assume the Fukaya category to be  triangulated. 
2  The brane structure also includes a local system (equivalently, a vector bundle with a flat connection) 

on  L. For simplicity, in  this paper, we  will  assume that the local system is  always trivial of  rank 1. 
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definition  is the transversality between L1  and L2  and certain  standard treatment of L∞ 

and L∞ if they  overlap. 

The composition  of morphisms 
 
 

μ2  : CF (L2 , L3 ) ⊗ CF (L1 , L2 ) → CF (L1 , L3 ) 
 

 
is defined by counting  pseudo-holomorphic triangles  bounded  by the three  Lagrangians. 

There  are  also higher  compositions  μn, n ≥ 3 which  are  defined  by  counting  pseudo- 

holomorphic  polygons.  The  sequence  {μn }n≥1   satisfies  the  A∞-relation, which  makes 

the Fukaya category  into an A∞-category. 

Since we will only use a short  list of theorems  or facts about  the  Fukaya categories, 

we find it not necessary  to go through the long story  of the subject.  We will review the 

statements we need in the  next  subsection  and  refer the  reader  to [19], [1] and  [16] for 

more details  on the definition  of Fukaya categories. 
 

 
3.3.2. The subcategory FΛ(M ) 

Continuing on  the  real  setting,  for any  conical  Lagrangian Λ ⊂ M , we define  the 

full subcategory FΛ (M )naive  to be generated by objects  L with  L∞ ⊂ Λ∞. We put  the 

superscript “naive” because the actual  definition  of FΛ(M ) is defined microlocally, which 

corresponds  to ShΛ (K ) when M = T ∗K . Given an L ∈ F (M ), for any ξ ∈ (L∞)sm , one 

can construct a Lagrangian disc Lξ   (which is also an object  in F (M )) whose infinity  is 

disjoint from L∞ and which intersects the cone over L∞  transversely at a unique  point 

in the  ray pointing to ξ. For more details  of the  construction of Lξ , we refer the  reader 

to  Section  3.7 in [17] and  Section  4 in [10] (in  the  cotangent  bundle  case).  Once  such 

a brane  Lξ   can  be constructed for every  ξ, we can  define  the  microlocal support of a 

brane  L,  which is a conical Lagrangian. Then  FΛ (M ) is the  full subcategory generated 

by branes  whose microlocal support is contained in Λ∞. 

In this  paper,  we will be mostly  interested in the  objects  in FΛ(M )naive , so it is not 

harmful  to keep that as an intuitive replacement of FΛ(M ). 
 

 
3.3.3. F (M, ωC ) and FΛX 

(M ) 

In the  holomorphic  symplectic  setting,  as we started with,  we take  the  real  part  of 

ωC  and  the  R+ -factor  in C∗
 to  serve as the  Liouville flow, then  these  fit  into  the  real 

setting,  and give us the Fukaya category  F (M, ωC). Similarly,  we can define FΛX 
(M ) to 

be the subcategory of F (M, ωC ) in the real setting. 

There are some special features  about  the Fukaya category  of a holomorphic  symplec- 

tic manifold.  For example,  one can do a projective  compactification M C = M ∪ M ∞ of 

M  using the C∗ -action,  so that M ∞ = (M − Core(M ))/C∗ (we will omit the subscript Z Z 

C from now on) is a divisor in M . Moreover, there  is a specific class of Lagrangians—the 

holomorphic  Lagrangians. In [10], it is proved that any holomorphic  Lagrangian brane  in 

M = T ∗K  represents a perverse  sheaf on K , under  the  Nadler–Zaslow  correspondence. 
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Hence one could roughly  think  of the  class of the  holomorphic  branes  as the  heart  of a 

t-structure on the Fukaya category.3 

 
 
3.4. The Nadler–Zaslow correspondence 

 
 

Given a compact  real analytic  manifold  K , the  Nadler–Zaslow  correspondence  gives 

a quasi-equivalence between  the  Fukaya category  F (T ∗K ) and  the  dg-category  Sh(K ) 

of constructible sheaves  on K . The  theorem  also holds  for a given microlocal  support 

condition,  i.e. given  a conical  Lagrangian Λ ⊂ T ∗K  (containing the  zero-section),  we 

have FΛ (T ∗K ) rv ShΛ (K ), where ShΛ (K ) denotes  for the full subcategory consisting  of 

sheaves whose singular  support is contained in Λ. 

We will collect some of the results involved in the Nadler–Zaslow  correspondence  that 

we will use in later  sections  without proof.  We refer the  interested reader  to  [16] and 

[15] for more details.  In the  following, we will fix a Whitney stratification S = {Sα } on 

K such  that each  stratum is connected  and  is a cell, and  we will always  work  in the 

subanalytic setting. 

 
• (Co)Standard branes. 

For  each  stratum  Sα ∈ S , one can  define  a standard brane on it,  denoted  as LSα
 

as follows. Pick  a function  mα : K → R such that mα > 0 on Sα  and  mα =  0 on 

K − Sα . Now define LSα   
to be Γd log mα 

+ T ∗   K . It  is shown in [16] that LSα
 can 

be equipped  with a canonical  grading  and a canonical  Pin-structure, so we will refer 

LSα    
as the  standard brane  on Sα. Note  that LSα   

as an object  in F (T ∗K ) doesn’t 

depend  on the  choices of mα. The  involution  on T ∗K  that negates  the  cotangent 

vectors  correspond  to the  Verdier  duality  on Sh(K ). We will call the  involution  of 

LSα   
a costandard brane. 

• Generators of F 
S 
(T ∗K ). 

Under the Nadler–Zaslow correspondence, each standard brane LSα  
goes to the stan- 

dard  sheaf iSα ∗CSα 
, and the involution  of LSα   

goes to the costandard sheaf iSα ! CSα 
, 

where  iSα    
: Sα  '→ K is the  embedding.  If we put  a standard or costandard  sheaf 

(resp.  brane)  for each stratum, then  they  will generate  Sh 
S 

by taking  shifts and iterated cones. 
 

 
4.  Holomorphic  Morse  branes  in FΛX 

(M ) 

(K ) (resp.  F 
S 
(T ∗K )) 

 
 

We will continue  on the  set-up  for the  Fukaya category  of a holomorphic  symplectic 

manifold  in Section 3. 

 
 

3  This is  not a precise statement,  since not every perverse sheaf can be  represented by a holomoprhic 

brane. 
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4.1. Definition of Morse branes in FΛX 
(M ) 

 
Let Λ

opp   
be the  union  of the  descending  manifolds  of C∗  . We assume  that ΛX  and

 
X X 

Λ
opp

 

X are disjoint away from the compact  core of M . 
 

Definition  4.1. A Lagrangian brane  L in FΛX 
(M ) is called a Morse brane, if it satisfies 

that L intersects Λ
opp  

in a single point that is contained in the smooth part  of Λ
opp

, and X X 

the intersection is transverse. 

 
The consideration of Morse branes is largely motivated by the results in [14], in which 

the author constructed tilting  perverse  sheaves on the flag variety B by means of Morse 

theory.  We will see the  applications of the  notion  of Morse branes  in the  construction 

of big tilting  sheaves  in Section  5. We  also remark  that there  is an  intimate relation 

between  the Morse brane  here and the so called local Morse branes  in [10]. In [10], local 

Morse  branes  are  introduced to  represent  the  Morse  kernel  (vanishing  cycle functor) 

in the  Fukaya category  at  a given smooth  point  of a holomorphic  conical  Lagrangian 

in  the  cotangent  bundle  of a  complex  manifold.  One  can  generalize  the  construction 

to  a holomorphic  symplectic  manifold  M  (with  conical ends)  since the  construction is 

completely  local. In our current  situation, a (holomorphic) Morse brane  is definitely  a 

local Morse brane,  but  it  is more  rigid  and  relies on the  global  geometry  of M , for it 

satisfies additional microlocal condition  from ΛX . 

 
4.2. Construction of a class of holomorphic Morse branes in cotangent bundles 

 

 
In  this  section,  we assume  that M  is the  cotangent  bundle  of a smooth  projective 

variety. The action  by C∗ is dilating  the fibers with weight 1, and we assume that 

 
the minimum  of the positive  weights  of C∗

 on the tangent spaces  (4.1) 
 

at the fixed points  is k0 . 

 
We  will use  aX ,  aZ ,  aX −k0 Z  : C∗  →  Aut(M )  to denote  the  action  of C∗  , C∗ and 

X Z 
∗ 
X −k0 Z 

on M , respectively.  Again,  we index  the  fixed points  of C∗ by xα, α ∈ I . We 

will denote  each fixed locus of ∗ 
X −k0 Z 

containing  a C∗  -fixed point xα by Eα . 

 

Lemma  4.2. For any in the fixed loci of ∗ 
X −k0 Z 

, the ascending manifold SX −k0 Z (x) 

is a holomorphic Lagrangian submanifold (not necessarily closed). 

 
Proof.  First,  x must lie in the descending  manifold  of the C∗  -fixed point 

 
y = lim aZ (t) · x = lim aX (t) · x, 

t→0 

 
therefore  it belongs to Eα for some α ∈ I . 

t→0 
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C 

xα C 

X −k0 Z 

Z 

Z 

X Z 

Z 

R+   ⊂ C 

 
 

Since the action  of ∗ 
X −k0 Z 

is Morse–Bott, the decomposition of the tangent space at 

x into weight spaces is the same as that at xα. By the assumption (4.1), we know that the 

ascending  manifold of with respect  to  ∗ 
X −k0 Z 

is the same as the ascending  manifold 

with  respect  to C∗  , thus  the  negative  weight  space of C∗ has the  dimension  of a 
X X −k0 Z 

Lagrangian. Now at x, we only need to show that in a small neighborhood, the ascending 

manifold  SX −k0 Z (x)  is isotropic,  since C∗ scales ωC  with weight −k = −k0 . First, 

the  tangent space at  x is isotropic  by a similar  reason  of weights:  the  negative  weights 

for X − Z  are  at  most  −2k0 . To  show  that near  x we have  SX −k0 Z (x)  locally  be a 

Lagrangian, we identify  a neighborhood of 0 in Tx M  with  a neighborhood of x in M 

by an aX −k0 Z (R)-equivariant diffeomorphism, and use the equivariant version of Moser’s 

argument to modify the diffeomorphism  into a local equivariant symplectomorphism.   ✷ 

 
Remark 4.3. It  is easy to see that C (L)  :=  lim aZ (t) · L is both  C∗ and  C∗  -invariant. 

t→0  
Z X 

However, we cannot  conclude that C (L)  is contained in the conical Lagrangian ΛX . 

 
We will denote  every Lagrangian constructed in Lemma 4.2 by Lα,x, for x ∈ Eα . Now 

we work  with  the  projective  compactification of M  with  respect  to  the  action  of C∗ , 

defined by 

 
M = (M × C − Core(M ) × {0})/C∗ . 

 
Since our M  is the cotangent bundle  of a projective  variety, M  is again projective.  The 

action of C∗ and C∗  both extend to M by keeping their actions on M and acting trivially 

on the  extra  factor  C. In particular, they  will preserve  M ∞ = M − M . We will denote 

the projectivization of a conical line C∗  · v in M  by [v] ∈ M ∞. 

Now by basic properties of algebraic  C∗-actions on smooth projective  varieties and its 

relations  to Morse theory  (cf. [6] Section 2.4), we can deduce the following. 

 

Theorem 4.4. If  Eα j⊂ 
U

 
xβ ≺xα 

UX (xβ ), then for any x ∈ Eα − 
U

 
xβ ≺xα 

opp
 

UX (xβ ), Lα,x is a 

Morse brane in FΛX 
(M ) with Lα,x ∩ ΛX    = {x}. 

 
Proof.  First,  we have UX (xβ ) = UX −k0 Z (Eβ ) by Assumption (4.1). Next, we claim that 

the  boundary of Lα,x consists  of points in M  that can be connected  to x by piecewise 

flow lines, which are  usually  called  broken  flow lines. This  follows from the  properties 

of finite volume flow in [9], and  can  be argued  in the  same  way as Lemma  3.4 in [9]. 

More explicitly,  one can  construct a Kahler  metric  on M  and  a Morse–Bott function 

whose gradient  flow gives the  ∗ 
X −k0 Z 

action  (cf. [6, Section  2.4] or [9, Section 

9]). Then  for any sequence yi  ∈ Sx , because  the  flow lines from yi  to x are of bounded 

lengths,  up  to  passing  to  a subsequence,  the  flow lines converge  to  a broken  flow line, 

i.e. there  is y∞ = lim yi  and a finite sequence of critical  points p1 , · · · , pk  such that the 
i→∞ 

flow connects  y∞  to p1 , then  pi  to pi+1 , 1 ≤ i ≤ k − 1 and lastly  pk  to x. 
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X +kZ 

X 

fixed by C 

v C 

Z 

∗ 

X 

X 

X +k[v] Z 

X 

∗ 

∞  1 

U 
L∞ 

 

 

Now by the assumption that Eα j⊂ 
U

 
xβ ≺xα 

UX (xβ ), there is no flow line of X − k0 Z that 

travels  from Eβ  to x. Therefore,  for any broken  flow line ending  on x, the  last  portion 

must start from a point [v] on a critical  manifold  inside M ∞. We claim that [v] is lying 

in Λ∞. Note  that the  critical  manifolds  in M ∞ are  exactly  the  projectivization of the 

conical lines in M  that are fixed (pointwise)  by C∗
 for some nonzero  integer  k. In 

particular, this  says that [v] ∈ Λ∞ if and  only if the  conical line corresponding  to [v] is 
∗ 
X +k[v] Z 

for some positive integer  k[v] . Suppose the contrary, we have k[v]  < 0, 

this would imply the descending manifold of [  ] under the flow of   ∗ 
X −k0 Z is contained in 

M ∞, which cannot  be true,  so the claim follows. Since Λ∞ ∩ (Λopp 
)∞ = ∅ by assumption, X X 

we can conclude that the broken  line is contained in M ∞ except  for the last  portion. 

Now we can model the  piece of flow line in M ∞ ending  at  [v] by a flow of C∗
 

ending  at  a point v0  ∈ C∗  · v in M , which means that the  projectivization of the  latter 

flow line in M ∞ will be equal  to that piece of flow line (here  we have  used again  that 

CX +k[v] Z  gives rise to  a Morse–Bott flow on M ). If the  starting point  of the  flow line 

modeled on is away from the zero section, then by rescaling it with a−k[v] Z (t) with respect 

to some parametrization (so that we get a flow line of C∗  ), it is clear that the whole flow 

line at infinity  lies in Λ∞. On the other  hand,  if the flow line starts at some fixed point 

xβ   of C∗  , then  there  are  two  cases after  rescaling  the  flow line of C∗ in M  by 
X X +k[v] Z 

a−k[v] Z (t): one is at  0 the flow line approaches something  away from the  compact  core, 

the other  is at 0 it remains  to be at xβ . The first case directly  implies that the flow line 

in M ∞ is contained in Λ∞, and  the  second implies that Λ∞ ∩ (Λ
opp 

)∞ j= ∅, which is a X X X 

contradiction. By induction on the  pieces of the  broken  flow line (from ∞ to 0), we get 

that the  whole broken  line is lying in Λ∞ except  for the  first  piece. This  completes  the 

proof that Lα,x satisfies the geometric  conditions  in Definition  4.1. 

Lastly, we show the compactness of the moduli space of J -holomorphic  discs bounding 

Lα,x and a finite collection of branes L1 , · · · , Lk , which proves that Lα,x is a well defined 

object  in FΛX 
(M ). Here J is a �ωC -compatible  almost  complex  structure that is also 

compatible with  the  conical  structure of M  (cf.  [19, (7b)]).  We  remark  that in  [16], 

certain  tameness  conditions  (and  more  generally  a family  of tame  perturbations)  are 

imposed on the branes  in the Fukaya category,  but  this is purely for the sake of ensuring 

compactness of the moduli space of J -holomorphic  discs. 

Let ϕt (resp. R+ 
) denote  for the radial  flow (resp. radial  action)  associated  with

 
1  X −k0 Z 

CX −k0 Z .  Given  L0    = Lα,x and  (tame) branes  L1 , · · · , Lk ,  which  satisfy  the  generic 

condition  that they don’t intersect at infinity  and their  intersections are transverse (here 

the order doesn’t really matter), since X is Hamiltonian, the calculation of Floer cochains 

and  the  A   -maps  are invariant under  the  flow of ϕt . More precisely, one needs to first 

modify X so that it becomes 0 outside  a neighborhood of Lα,x (but  it remains  the same 

on a smaller neighborhood of Lα,x), and in particular, it should be 0 in a neighborhood of 
k 

i . Let H be a contact hypersurface in M such that M ∼= M0  ∪ ([0, ∞) × H ), where 
i=1 H 

∂M0 = H and the Liouville vector  field on M  is corresponding  to the vector  field ∂r  on 
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1 

ϕt
 

R 

u  R 

x 

w 

 
 

the  factor  [0, ∞)  with coordinate r. Choose K » 0 and  let M≤K = M − ((K, ∞) × H ) 

and M>K = ((K, ∞) × H ). 

Now we show that after  replacing  Li  by ϕt (Li ), i = 1, · · · , k for t sufficiently  large 

(note  that L0 

k 

 

α,x is invariant under  ϕt ), any J -holomorphic  polygon u : (S, ∂S) → 

(M, L0  ∪ 
U 

Li ) satisfies that u(∂S) ⊂ M≤K for a fixed sufficiently  large K . Here ∂S = 
i=1 

k U 
Ci  and  u(Ci)  ⊂ Li . Note  that Lx,α ∩ M≤K  is tame  in the  sense of [20, Definition 

i=0 

4.7.1], so we can apply [20, Proposition 4.7.2(ii)] using appropriate rL0 
, C4 (L0 ) on Lx,α ∩ 

M≤K −1 . Now fix a small  neighborhood Ux  of x in Lα,x . It  is clear  that if a curve  on 

Lα,x has  one end  in Ux  and  the  other  outside  Lx,α ∩ M≤K , then  there  needs  at  least 

NK -balls of radius  rL0  
to cover it, for a fixed NK » 0. Since X  is 0 in a neighborhood 

k 

of  
U 

L∞, by enlarging  K and  replacing  rL0 by a smaller  one if needed  (these  choices 
i=1 

can be made once for all), we can be sure that at least one of the balls does not intersect 
k 

( 
U   U

 1 (Li )) ∩ M>K −2  for some (fixed)  T » 0. It follows then  from [20, Proposition 
i=1 t>T 

4.7.2(ii)],  the  area  of a J -holomorphic  disc u as above  satisfying  u(C0 ) ∩ Ux  j=  ∅  and 

u(C0 ) ∩ M>K  j=  ∅  has  a uniform  lower bound  E  > 0, which  does not  depend  on t for 

t > T . 

Since Lx,α is the ascending manifold of x with respect to ϕt , again after replacing Li by 

1 (Li ), i = 1, · · · , k for t sufficiently large, the intersection points Lα,x ∩ L1  and Lk ∩ Lα,x 

are getting  inside Ux. Since u(C0 ) has boundary points  contained in Lα,x ∩ (L1 ∪ Lk ), 

if u(C0 ) ∩ (Lx,α ∩ M>K ) j= ∅, then  by the  conclusion above,  the  area  of u is at  least  E. 

However, since  
+ 
X −k0 Z 

scales the  area  of a J -holomorphic  disc by weight  −k0  and  the 

area  of any  disc only depends  on the  intersection points  of the  Lagrangians that they 

connect (this is a standard fact for exact Lagrangians), we can always make area(u) < E  

for every  after  a sufficient dilation  by  + 
X −k0 Z 

, so then  u(C0 ) ⊂ Lx,α ∩ M≤K . By the 

tameness  condition  imposed  on L1, · · · , Lk , we have  u(Ci)  ⊂ M≤K , i = 1, · · · , k for a 

fixed large K as well. So we finish the proof that u(∂S) ⊂ M≤K . Lastly, by the maximum 

principle  (cf. [19, Lemma  7.4]), we also have  u(S) ⊂ M≤K . So the  compactness of the 

moduli space is established as desired.    ✷ 

 
5.  The big tilting  branes  in T ∗B 

 
Let  G be  a  semisimple  Lie group  over  C, B  ⊂ G be  a  Borel  subgroup  and  B be 

the  flag  variety  G/B. Fix  a  maximal  torus  H  ⊂ B.  Let  B−  be  the  opposite  Borel 

subgroup,  and  N  ⊂ B  (resp.  N −  ⊂ B−)  be  the  unipotent  radical  of B  (resp.  B−). 

Let g, b, b−, n, n−, h be the Lie algebra  of G, B, B−, N, N −, H respectively.  For a general 

Borel bx , we will use nb     to denote  its nilradical.  Let Δ, Φ+
 and Φ− denote  respectively 

the  set of simple,  positive  and  negative  roots.  Let  W = NG (H )/H be the  Weyl group 

of G. Let  S = {Sw }w∈W   (resp.  S− = {S−}w∈W ) be the  Schubert stratification (resp. 

determined by the orbits  of N (resp. N −). Fixing
 

opposite  Schubert stratification) on B 
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the  coweight  in h whose pairing  with  the  simple  roots  are  all −1, usually  called  ρ̌,  its 

induced C∗-action on B has fixed points naturally indexed by W , denoted  as pw , w ∈ W , 

and  the  ascending  (resp.  descending)  manifolds  of each  of the  fix points  pw  coincide 

with  Sw  (resp.  S−). Let  sw  : Sw  '→ B and  s− : S− '→ B (resp.  ip
 : pw  '→ B) be the 

w  w  w  w 

embeddings  of the strata (resp.  fixed points). 

The  C∗-action on B induces  a Hamiltonian action  on T ∗B, which we will use as the 

CX -action as in Section 3.1. It is easy to see that ΛX coincides with the conormal variety 

of S , i.e. ΛS  = 
U 

 
Sw ∈S 

∗   B. The  transversality between  the  Schubert stratification and 

the  opposite  one implies that Λ∞ ∩ (Λopp 
)∞ = ∅. The  C∗ -action  on T ∗B is the  natural X  X  Z 

C∗-action on the  cotangent fibers with  weight  1. It is clear that k0  = 1 in (4.1) for this 

case. 

Let  w0  be the  longest  element  in W . Let  zα , α ∈ w0 (Δ)  be the  linear  coordinates 

around  pw0   
which correspond  to the negative  of the simple roots w0 (Δ)  ⊂ h∗. Let Fw0  

= 
L 

cα zα be a generic linear  function  on Sw0 
, i.e.  

n 
cα  j= 0. Then  Lw0 ,(dFw0 

)pw     
is 

α∈w0 (Δ) α∈S 

the  same as the  Lagrangian graph  ΓdFw   
. For  any Lagrangian graph,  there  is a natural 

brane  structure one  can  put  on  it,  similarly  to  the  case  of standard and  costandard 

branes,  and this will be the default  brane  structure on ΓdFw   
. 

For any w ∈ W , let bw  denote for the Borel AdwB b, and n−
 = 

EB
 

α∈w(Φ− ) 

gα . Let N − be 

the unipotent group whose Lie algebra is n− ∩ n−  
, then each S− is the orbit of pw under

 
bw 

w  w   at  bw 

w 

is (n− ∩ n−  
)⊥ 

 

∩ nbw  
rv n− 

 

∩ nbw  
= 

EB 
 

α∈w(Φ+ )∩Φ− 

gα , with respect  to the Killing form. Similarly,  the conormal at any bx ∈ Sw 

can be identified  with n− ∩ nbx   
⊂ AdN − (n− ∩ nbw 

). 

 
Lemma 5.1 (Lemma 5.17 [14]). For any sheaf F ∈ ShS (B), we have 

 
pw 

sw F r v D(Hom(F , sw! CS− [dim Sw ]))[− dim Sw ],
 

i∗ ∗
 

i∗ !
 

−  −  − 
w 

−  −  −
 

 

 
for al l w ∈ W . 

pw 
sw F r v D(Hom(F , sw∗CS− [dim Sw ]))[− dim Sw ], 

 

Let N and N reg   respectively  be the nilpotent cone and the orbit  of regular  nilpotent 

elements  in g. 

 
Lemma 5.2. For any w ≺ w0 , ΓdFw0  

∩ UX (pw ) = ∅. 

 
Proof.  Consider  the  moment  maps  μG  : T ∗B → N (the  Springer  resolution) and  μN   : 

T ∗B → n∗  rv n−  of the  Hamiltonian G-action  and  N -action  on T ∗B respectively,  then 

ΓdFw is nothing  but  μ−1 
(ē)  = N · μ−1

 (e),  where  e is the  image  μG(dFw0 
|pw0 

) whose 

projection  ē  is the  character of n corresponding  to the  linear  function  
L

 
α∈w0 (Δ) 

cα zα . It 

follows from  our  assumption that e lies in N reg . We  only  need  to  show  that for any 
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w ≺ w0 , n− ∩ nb      are singular  values of μG,  or in other  words,  (n− ∩ nb    )  
reg 

reg 

= ∅, 

because then  μG(UX (pw )) = AdN − (n− ∩ nbw 
) will not intersect N  . 

Note that N reg  ∩ n− = AdB− e. Therefore,  if we decompose any element in N reg  ∩ n−
 

with  respect  to  the  weight  decomposition, it  will have  a  nonzero  component  in  each 

negative simple root space. However, the elements in n− ∩nbw   
cannot  satisfy this property 

for w ≺ w0 , hence we are done.    ✷ 
 

Proposition 5.3. The Lagrangian graph ΓdFw
 is a Morse brane in FΛX 

(T ∗B). 

 
Proof.  This  directly  follows from Theorem  4.4 and  Lemma  5.2. Alternatively, one can 

1
 

directly  use the fact that ΓdFw = μ−  
(ē) to deduce that the Lagrangian is closed. Also 

−1  ∞ ∞
 

from this one easily sees that lim aZ (t) · ΓdFw0   
⊂ μN   (0) = ΛX , so ΓdFw

 ⊂ ΛX .    ✷ 
t→0  0 

 

Theorem 5.4. The Lagrangian graph ΓdFw0 
[dimC B] corresponds to the big (indecompos- 

able) tilting  perverse sheaf. 

 
Proof.  We first  show that the  sheaf corresponding  to  ΓdFw

 plays  the  role of a Morse 

kernel on ShS− (B), i.e. calculating vanishing  cycles. 

Since  the  strata in  −  are  all  contractible, FΛ 
S− 

 
(T ∗B)  is generated by  the  brane 

pw0 
B and the standard branes of the other strata. For any stratum Sw  ∈ S 

 
other than

 
T ∗ −  − 

{pw0 
}, the closure of its standard brane  (after  a sufficient dilation  by the conical action) 

doesn’t intersect ΓdFw   
, for ΓdFw

 is a Morse brane  and the standard brane  of S− has its 
0 

infinity  contained in T ∗ 
w 

0 

B. Then  from HF (Γ 
 
dFw0

 

 

[dimC 

 

B], T ∗ 

w 

B) rv C by the  general 

fact  about  the  grading  of the  transverse intersection of two  holomorphic  Lagrangian 

branes  (cf. [10]), we see that ΓdFw  
[dimC B] represents the Morse kernel at dFw0 

|pw    
. 

0 0 

Now by Lemma 5.1, the stalk and costalk of the sheaf corresponding  to ΓdFw0 
[dimC B] 

on Sw are concentrated in the right degrees for being a tilting  sheaf. It is easy to see this 

sheaf is exactly  the tilting  sheaf Tp,F   for some p, F introduced in [14]. 

Lastly,  by  the  multiplicity formula  multT   (Tp,F ) = dim Mp,F (IC
opp ) in [14], where 

Tw  is the minimal  tilting  sheaf on Sw , we see that ΓdFw0 
[dimC B] corresponds  to the big 

indecomposable  tilting  sheaf.  ✷ 
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