

1 **Intrinsic-extrinsic size effect relationship for micromechanical tests**

2

3 Janelle P. Wharry^{a*}, Kayla H. Yano^b, Priyam V. Patki^{a,b}

4 ^a School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette,

5 IN 47907, USA

6 ^b School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West

7 Lafayette, IN 47907, USA

8

9

10

11 *Corresponding Author

12 Name: Janelle P. Wharry

13 Postal Address: 400 Central Drive, West Lafayette, IN 47907, USA

14 Telephone Number: +1 (765) 494-0782

15 E-mail address: jwharry@purdue.edu

16

17

18

19

20 **Abstract**

21

22 Miniaturized mechanical tests are commonly utilized to evaluate properties of materials,
23 including thin films, nanostructured, and irradiated materials. However, the specimen size
24 effect occurs when miniaturized sample geometries contain too few dislocation sources,
25 resulting in elevated yield stresses. The size effect is controlled by extrinsic (specimen
26 dimensions) and intrinsic (microstructure) factors. Here, we summarize extrinsic and
27 intrinsic size effects from micro-compression pillar, micro-cantilever bend, and flexure
28 studies reported in the archival literature. We find an approximately linear relationship
29 between intrinsic and extrinsic size effects. Meaningful mechanical properties can be
30 measured when extrinsic size dominates the intrinsic size.

31

32

33 **Keywords:** micro-mechanical testing, size effect, intrinsic, extrinsic

34

35 **Body of Manuscript**

36

37 Miniaturized mechanical tests are becoming evermore commonplace for assessing
38 performance of volume-limited materials such as thin films, nanostructured or
39 nanolayered materials, ion irradiated layers, and radioactive or otherwise hazardous
40 specimens. Many of these tests are conducted *in situ* in either a scanning electron
41 microscope (SEM) or transmission electron microscope (TEM), which enable researchers
42 to gain deeper insight into fundamental mechanical behaviors by enabling qualitative
43 observation of plastic phenomena simultaneous to recording of quantitative load-
44 displacement data. However, miniaturized mechanical test specimens have smaller
45 dimensions than prescribed by ASTM standards. Hence, the specimen size effect [1–7]
46 limits the specimen dimensions at which one can accurately and meaningfully obtain both
47 quantitative and qualitative mechanical insights.

48 The specimen size effect arises when nanoscopic through microscopic mechanical
49 testing geometries are so small that their deformation mechanisms differ from those of
50 bulk specimens. These differing deformation mechanisms often arise because miniature
51 specimens contain too few dislocation sources, so plastic yielding cannot occur until a
52 sufficient population of dislocations has been introduced into the specimen from external
53 loading. Consequentially, the measured yield strength exceeds “bulk” values, and can
54 approach the theoretical strength of the material (blue curve, [Figure 1](#)). When yield
55 strength is controlled by the availability of a dislocation source, i.e. ***intrinsic*** size effect,
56 the yield strength exhibits a negative logarithmic relationship with the specimen
57 dimension. Upon increasing the specimen dimension, one will eventually reach the

58 “transition dimension”, at which the yield strength is specimen size-independent. That is,
59 the specimen dimensions, or **extrinsic** size effects, are sufficiently large that the tested
60 volume contains ample dislocation sources. It has been shown that stochasticity of
61 dislocation source lengths can sufficiently rationalize the onset of the size effect for
62 decreasing specimen sizes [8].

63 Microstructural refinement, such as through nanostructuring or irradiation,
64 reduces the extent of the specimen size effect by creating a larger number density of
65 obstacles, enabling one to test progressively smaller volumes [9,10]. The overall yield
66 stress is governed by the superposition of dislocations, grain boundaries, and dispersed
67 obstacles of varying morphologies. It is theorized that the higher the number density of
68 dispersed obstacles, the lower the transition dimension [9,10] (red curve, [Figure 1](#)). The
69 transition dimension is inherently correlated with the material microstructure, and
70 understanding this extrinsic-intrinsic size effect relationship is instructive for researchers
71 using miniature mechanical testing methods. The intrinsic size effect is represented as the
72 average obstacle spacing on the glide plane (L_{ob}), which assumes a homogeneous
73 microstructure, from [11]:

$$74 \quad L_{ob} = \frac{1}{\sqrt{N_{ob} \overline{d_{ob}}}} \quad (1)$$

75 in which N_{ob} is the total number density of obstacles hindering dislocation slip (e.g.
76 loops, SFTs, nanoclusters) and $\overline{d_{ob}}$ is the weighted average diameter of the obstacles. If
77 the pillar dimensions are greater than the obstacle spacing, the obstacles are the limiting
78 factor governing dislocation source size [9,12]. Conversely, if there are too few obstacles
79 within a pillar (i.e. minimum pillar dimension approaches L_{ob}), the pillar size more

80 significantly influences the dislocation source size, leading to an observed size effect on
81 the measured yield strength.

82 In this paper, we review the literature to identify an extrinsic-intrinsic size effect
83 relationship for micro-mechanical testing configurations including micro-compression
84 pillars, micro-cantilevers, and thin film flexure. We summarize studies from nine
85 materials; these studies measure yield strength as a function of specimen dimensions and
86 provide sufficient microstructural characterization to estimate the intrinsic size effect
87 (L_{ob}). Although the objectives of the summarized studies were not necessarily to
88 determine a transition dimension, the a transition dimension can be estimated from the
89 studies' plots of yield strength vs. specimen dimension.

90 Three of these studies [13,14] utilize TEM *in situ* compression pillars to
91 systematically measure the transition dimension (i.e. extrinsic size effect) as a function of
92 microstructure (i.e. intrinsic size effect), both before and after irradiation. The first of
93 these studies focuses on an Fe-9%Cr oxide dispersion strengthened (ODS) alloy, which is
94 a candidate for advanced nuclear reactor structural and cladding components [15–20].
95 The second study focuses on a nanocrystalline Cu-10Ta alloy, which is a model system
96 for more complex engineering ODS alloys, and also exhibits excellent creep resistance
97 [21]. The third study focuses on pure Cu, and illustrates the influence of irradiation on
98 transition dimension [9]. Results from these aforementioned studies are placed in context
99 of transition dimension results compiled from the archival literature on non-irradiated
100 materials. None of the summarized studies carried out experiments that would enable
101 direct verification that micropillars and bulk specimens deform by identical mechanisms.
102 However, their systematic observations of a transition dimension sufficiently demonstrate

103 that mechanical properties of nano/micro-scopic and bulk specimens can be comparable
104 above that transition dimension. Finally, we determine a relationship between the
105 intrinsic and extrinsic size effect.

106 ***Irradiated Fe-9%Cr ODS*** – Yano, *et al.* [13] studied an Fe-9%Cr ODS
107 martensitic steel (irradiated with 5.0 MeV Fe^{2+} ions to doses of 3 displacements per atom
108 (dpa) and 100 dpa at 500°C. TEM *in situ* compression pillar dimensions are varied 100-
109 600 nm in height and width, and 50-600 nm in thicknesses. Details of the pillar shaping,
110 testing, and recording processes are provided in ref. [13]. Fe-9%Cr ODS pillars contain
111 oxide nanoclusters and discrete dislocations prior to loading ([Figure 2a](#)). During loading,
112 plasticity occurs in dislocation bursts [13], with the final compressed pillar containing a
113 dense forest of dislocations ([Figure 2b](#)). These TEM video still-frames underscore the
114 role of dislocations in deformation of Fe-9%Cr ODS, suggesting there is a pillar
115 dimension at which the yield strength transitions from pillar size-independent to
116 dislocation source-limited. Yano, *et al.* [13] demonstrates that this transition dimension
117 for Fe-9%Cr ODS is likely to occur within the range 150-200 nm. Specifically, the as-
118 received Fe-9%Cr ODS pillars containing a minimum dimension $\gtrapprox 150$ nm have yield
119 strengths that fall within the 95% confidence interval around the bulk yield strength of
120 1000-1200 MPa [22]. Irradiated Fe-9%Cr ODS pillars do not exhibit a statistically
121 significant change in yield strength [13], consistent with expected values from
122 nanoindentation [23,24]. Increases in yield strength due to the irradiation-induced
123 nucleation of dislocation loops is offset by the softening attributed partial dissolution of
124 oxide nanoclusters during irradiation [25–27]. The Fe-9%Cr ODS size effect is illustrated
125 in [Figure 2c](#), after ref. [13]. Although there is considerable scatter in the data, there may

126 be a transition dimension near 150 nm, above which the yield strength is relatively
127 independent of pillar size.

128 A combination of TEM and atom probe tomography (APT) are used to quantify
129 the size and number density of grains, phases, dislocation loops, and oxide nanoclusters
130 [25,28,29]. Based on this microstructure characterization [13,25,27], the average obstacle
131 spacing in the Fe-9%Cr ODS ranges 19.9-37.6 nm. Typically, obstacle spacing is
132 determined on the planes on which slip is occurring. However, since the material is
133 nanostructured, even the smallest pillars tested are polycrystalline. As such, multiple slip
134 systems are active in the pillars, so it is not appropriate to measure obstacle spacing only
135 on a single glide plane.

136 ***Irradiated Cu-10Ta*** – Patki [14] studies nanostructured Cu-10Ta (at%),
137 consolidated from mechanically alloyed powders by equal channel angular extrusion
138 (ECAE) [30]. The CuTa specimens were subsequently irradiated with 2.0 MeV protons to
139 1 dpa at 500°C. TEM *in situ* compression pillars were created and tested, having a range
140 of dimensions, following similar methods described by Yano, *et al.* [13]. The Cu-10Ta
141 pillars contain Ta nanophases embedded within a Cu matrix ([Figure 3a](#)). During
142 deformation, the comparatively softer Cu matrix deforms readily, while the harder Ta
143 phases remain relatively undeformed [14], and the final compressed pillar contains a dark
144 contrast from the dislocations that enable the Cu deformation ([Figure 3b](#)). Patki [14]
145 shows that there is no obvious transition dimension for Cu-10Ta. Although the plot of
146 yield strengths against pillar minimum dimension ([Figure 3c](#), adapted from ref. [14])
147 exhibits considerable scatter, the measured yield strengths are relatively independent of
148 pillar size, for both the as-received and irradiated materials. Because of the extensive

149 population of dislocations in the pillars throughout the deformation process, it is not
150 likely that the pillars are already smaller than the transition dimension. Rather, a
151 transition dimension is likely smaller than the smallest pillar tested, i.e. ≤ 100 nm.
152 Overall, the pillars tend to exhibit yield strengths lower than the expected bulk yield
153 strength of 1.23 GPa [30], due to the high strain rate of the TEM *in situ* testing [6,31,32].
154 The Cu-10Ta exhibits an incremental change in yield strength with irradiation, which is
155 linked to the irradiation stability of the Ta phases as well as the nucleation of irradiation-
156 induced SFTs [14].

157 The microstructure characterization accounts for Cu grains, Ta nanophases, and
158 irradiation-induced stacking faults. Based on the microstructure characterization [14], the
159 average obstacle spacing Cu-10Ta ranges 21.2-21.4 nm. Much like the Fe-9%Cr ODS,
160 the nanostructure produces polycrystalline pillars in which multiple slip systems are
161 active. Hence, an overall average obstacle spacing is noted.

162 ***Irradiated Cu*** – Kiener, et al. [9] conduct a TEM *in situ* pillar compression study
163 on proton irradiated Cu. They test a range of pillar diameters and measure yield strength
164 as a function of diameter. They observe a distinct transition dimension in the irradiated
165 Cu at ~ 400 nm (see Figure 3 in ref. [9]). All defects, including irradiation-induced SFTs
166 and excluding long dislocation lines, are reported to have obstacle spacing on the glide
167 plane, L_{ob} of 68 ± 30 nm.

168 ***Ni-base ODS Alloy*** – Girault, et al. [12] utilize *in situ* SEM for their pillar
169 compression studies on Ni-base ODS alloy Inconel MA6000, nominally Ni-15Cr-4.5Al-
170 2.5Ti-2Mo-4W-2Ta-0.15Zr-0.01B-0.05C-1.1Y₂O₃, in wt%. They measure a critical
171 resolved shear stress (CRSS) as a function of pillar diameter, and compare their

172 measurements to those from Ni single crystal (see Figure 3 in ref. [12]). Neither the
173 MA6000 data nor the Ni single crystal data exhibit an inflection point indicative of the
174 transition dimension, unlike the Fe-9%Cr ODS, Cu-10Ta, and Cu data sets [9,13,14].
175 However, Girault surmises that the MA6000 size effect will be observed when the
176 MA6000 data set intersects with the Ni single crystal data set, at pillar diameters <200
177 nm. Girault's MA6000 microstructure was characterized in earlier reports, enabling one
178 to estimate an average obstacle spacing of ~50 nm based on their reported populations of
179 oxide dispersoids and dislocation segments. An average obstacle spacing is used here as
180 an estimate to L_{ob} since the microstructural details are reported as a volumetric average
181 rather than on a specific glide plane.

182 **Pure Ni** – The aforementioned pure Ni data set to which the MA6000 could be
183 compared, can also provide an estimated transition dimension and obstacle spacing.
184 Combining the SEM *in situ* pillar results for CRSS from Frick, et al. [33] and Dimiduk, et
185 al. [34], the transition dimension can be estimated ~4700 nm. Their studies also estimate
186 a defect density based on pure, annealed metals, from which one can approximate an
187 average obstacle spacing of ~1000 nm. For this pure Ni data set, an average obstacle
188 spacing is again used to estimate L_{ob} since the microstructural details are known as a
189 volumetric average.

190 **LiF** – Soler, et al. [35] carry out SEM *in situ* pillar compression tests using a
191 variety of pillar dimensions on LiF. Although their study focused on the role of
192 temperature on CRSS, they obtain a sufficient number of data points using room
193 temperature pillar compression tests, in order to estimate a transition dimension ~1000

194 nm. They also report a dislocation density, from which an obstacle spacing of \sim 200 nm
195 can be approximated.

196 **Pure Fe Single Crystals** – Rogne & Thaulow [36] conduct compression testing of
197 pure Fe single crystal micropillars loaded along the $\langle 001 \rangle$ direction. Pillar diameters
198 range 140 nm to 4.3 μm . They measure 0.2% offset strain yield stress as a function of the
199 pillar diameters, but do not observe a transition dimension. However, when their results
200 are considered in the context of yield stress measurements from thin Fe plates loaded in
201 the [110] direction [37], and tension and compression experiments on single crystal Fe
202 [38–40], a transition dimension of \sim 10,000 nm can be estimated (see Figure 7 in ref.
203 [36]). Rogne & Thaulow report an average (i.e. not specific to a slip system) dislocation
204 density of 10^{12} m^{-2} , from which an average obstacle spacing of \sim 1000 nm can be
205 estimated.

206 **Single Crystal Cu (Cantilevers)** – Size effect transition dimensions have also
207 been identified using cantilever geometries. For example, Motz, *et al.* [41] conduct
208 bending tests on single-crystal Cu micro-cantilevers with beam thicknesses ranging from
209 7.5 to 1 μm . Flow stress is measured from the plateau load force and plotted against the
210 beam thickness, which reveals a transition dimension \sim 3 μm (see Figure 6 in ref. [41]).
211 They suggest a characteristic length of 4 μm for pure Cu based on strain gradient
212 plasticity models.

213 **Ni Films (Flexure)** – A load-unload flexure testing geometry was utilized by
214 Ehrler, *et al.* [42] on Ni thin films of thicknesses 10, 50, and 125 μm . The reported grain
215 size of each film thickness was 30 μm ; with no other reported microstructural
216 information, this value is used as the approximate obstacle density. Yield stress is

217 reported as a function of the inverse square root of the grain size (see Figure 3 of ref.
218 [42]), and a transition is evident between films with thickness 10 μm and films with
219 thickness 50 μm . Hence, a transition dimension of 50 μm is used for the discussion
220 herein.

221 Compiling the transition dimensions and L_{ob} values from all aforementioned
222 studies, a roughly linear relationship can be found between extrinsic and intrinsic size
223 effects, but additional data points should be obtained before a conclusive relationship can
224 be drawn ([Figure 4](#)). The authors' own results (refs. [13,14]) fall into agreement with the
225 overall trend. Regions in which intrinsic or extrinsic size effects dominate the mechanical
226 response can be approximated. That is, in [Figure 4](#), the extrinsic size effect is dominant in
227 the upper left region relative to the data points; here, specimen dimensions are
228 sufficiently larger than microstructural constraints, enabling meaningful yield strengths to
229 be measured. However, the intrinsic size effect is dominant in the lower right region of
230 [Figure 4](#); here, specimen dimensions are too small relative to the microstructure, so yield
231 strength measurements will be inflated. These regions are shaded only for illustrative
232 purposes and do not abut the data points in order to account for experimental uncertainty
233 and the limited amount of data presented here.

234 This extrinsic-intrinsic relationship suggests that perfect crystals (i.e. infinitely
235 large obstacle spacing) require infinitely large specimen dimensions because of the
236 absence of a dislocation source; this is consistent with the original definition of the size
237 effect, in which defect-free specimens will evaluate near the theoretical strength. At the
238 same time, specimens that possess a high defect density, such as nanostructured and
239 irradiated materials, can be tested at progressively smaller volumes and still provide

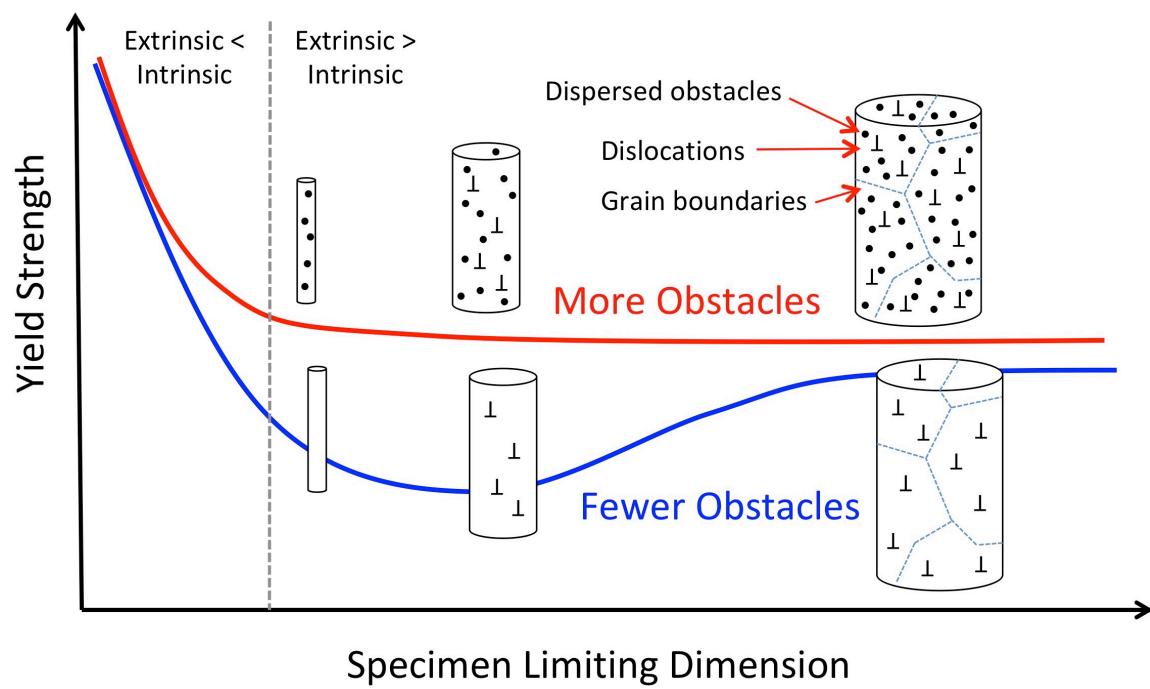
240 meaningful quantitative assessment of yield strength. Malyar and coworkers [43] recently
241 showed that micropillar yield strengths will fall along a strength distribution function,
242 and that at least 300-500 specimens must be tested under identical conditions in order to
243 discriminate the nature of this continuous probability distribution. Using the intrinsic-
244 extrinsic relationship herein to inform the specimen geometry could tighten these
245 statistical distributions. Finally, at the intrinsic obstacle spacings found in nanostructured
246 and irradiated materials, the allowable extrinsic pillar dimensions are electron
247 transparent, enabling one to utilize TEM *in situ* pillar compression testing to
248 simultaneously measure mechanical properties and observe plastic phenomena at the
249 nanoscale, representing the potential for unparalleled advancement in our understanding
250 of deformation processes in nanostructured and irradiated materials.

251

252

253 **Acknowledgements**

254 This research was sponsored in part by the National Science Foundation CAREER award
255 DMR-1752636, the US Nuclear Regulatory Commission grant NRC-HQ-84-14-G-0056,
256 Purdue University, and by the US DOE Office of Nuclear Energy under DOE Idaho
257 Operations Office Contract DE-AC07-05ID14517, as part of the Nuclear Science User
258 Facilities experiments 16-656 and 18-1168.

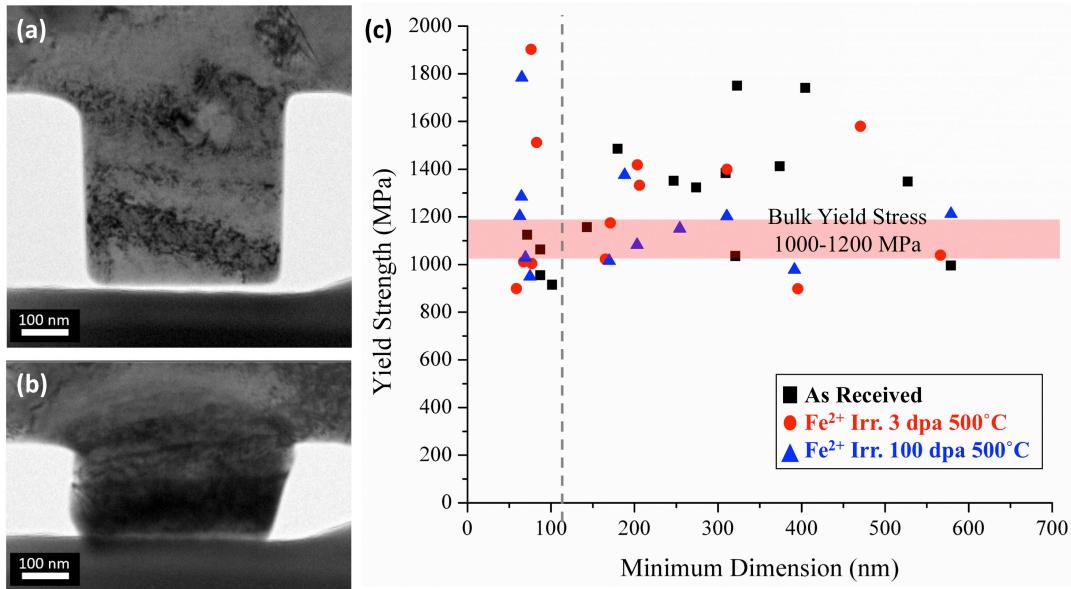

259

260 **Figures**

261

262

263


264

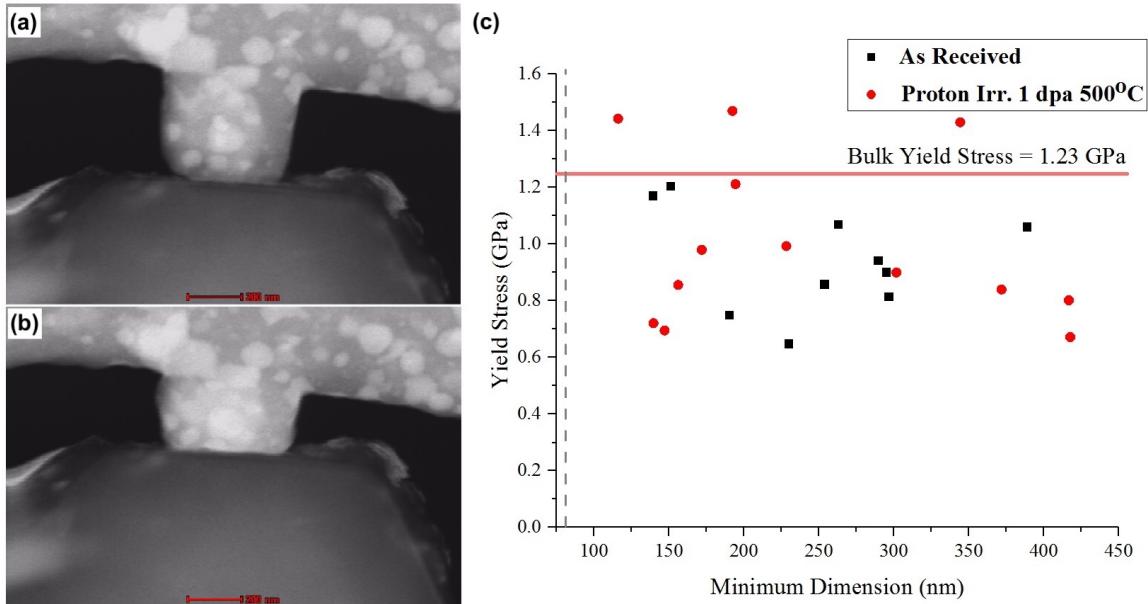
265 **Figure 1.** Illustration of the specimen size effect and the influence of irradiation, with
266 transition dimension indicated by vertical dashed line.

267

268

269

270

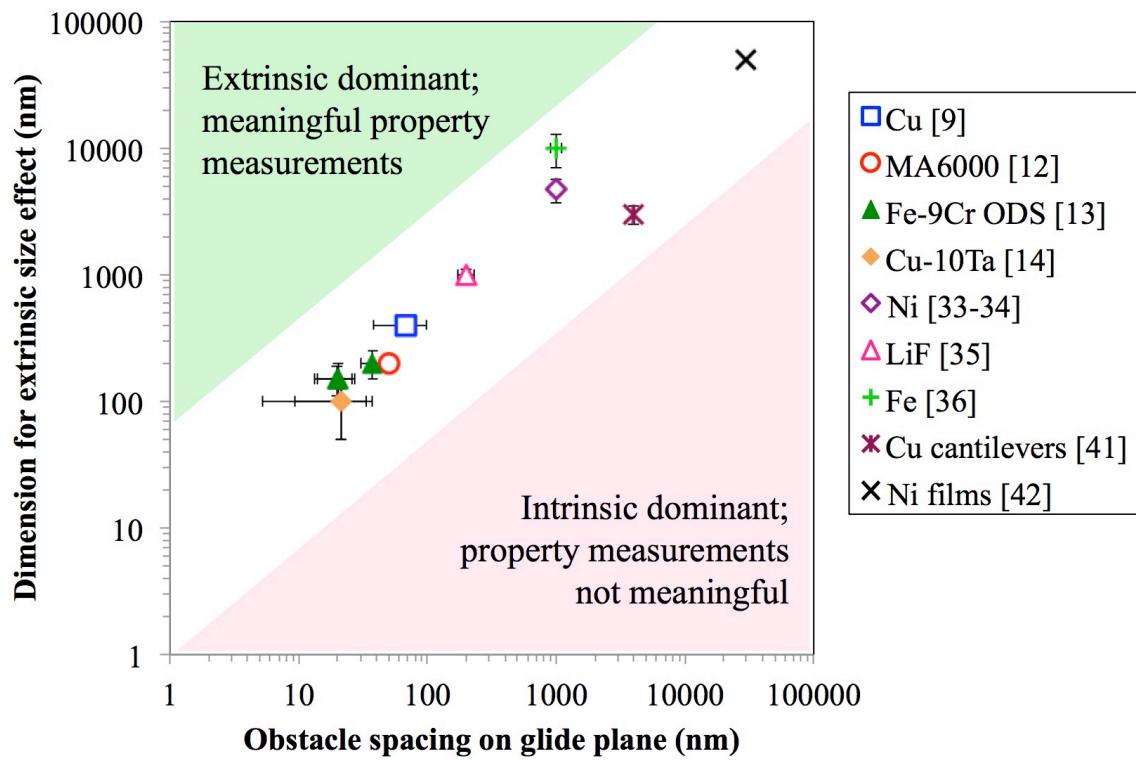

271 **Figure 2.** Representative TEM *in situ* pillar compression still frames from 100 dpa,
272 500°C, Fe²⁺ irradiated Fe-9%Cr ODS, showing (a) discrete dislocations before
273 compression testing, and (b) dense dislocation network after compression; (c) yield
274 strength as a function of pillar dimension.

275

276

277

278



279

280 **Figure 3.** Representative TEM *in situ* pillar compression still frames from 3 dpa, 500°C,
 281 proton irradiated Cu-10Ta, showing (a) undeformed Cu and Ta phases before
 282 compression testing, and (b) dense dislocation network after compression; (c) yield
 283 strength as a function of pillar dimension.

284

285

288 **Figure 4.** Relationship between extrinsic and intrinsic size effect for compression pillars.

290 **References**

291

292 [1] E. Arzt, *Acta Mater.* 46 (1998) 5611–5626.

293 [2] W.D. Nix and H.J. Gao, *J. Mech. Phys. Solids.* 46 (1998) 411–425.

294 [3] A.A. Elmoustafa and D.S. Stone, *Acta Mater.* 50 (2002) 3641–3650.

295 [4] D. Kiener, W. Grosseinger, G. Dehm, R. Pippan, *Acta Mater.* 56 (2008) 580–592.

296 [5] J.D. Nowak, A.R. Beaber, O. Ugurlu, S.L. Girshick, W.W. Gerberich, *Scr. Mater.*
297 62 (2010) 819–822.

298 [6] J.R. Greer, J.T.M. De Hosson, *Prog. Mater. Sci.* 56 (2011) 654–724.

299 [7] A.H.W. Ngan, X.X. Chen, P.S.S. Leung, R. Gu, K.F. Gan, *MRS Commun.* 7
300 (2017) 131–140.

301 [8] T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, D.R. Trinkle, *Scr.*
302 *Mater.* 56 (2007) 313–316.

303 [9] D. Kiener, P. Hosemann, S.A. Maloy, A.M. Minor, *Nat. Mater.* 10 (2011) 608–
304 613.

305 [10] P. Hosemann, *Scr. Mater.* 143 (2018) 161–168.

306 [11] G.S. Was, *Fundamentals of Radiation Materials Science*, Springer, New York,
307 2007.

308 [12] B. Girault, A.S. Schneider, C.P. Frick, E. Arzt, *Adv. Eng. Mater.* 12 (2010) 385–
309 388.

310 [13] K.H. Yano, M.J. Swenson, Y. Wu, J.P. Wharry, *J. Nucl. Mater.* 483 (2017).

311 [14] P. V. Patki, *Microstructure Evolution and TEM in situ Mechanical Testing of*
312 *Proton Irradiated Nanocrystalline Copper Tantalum Alloy* (M.S. Thesis), Purdue

313 University, 2018.

314 [15] A. Kimura, H.-S. Cho, N. Toda, R. Kasada, K. Yutani, H. Kishimoto, N. Iwata, S.
315 Ukai, M. Fujiwara, *J. Nucl. Sci. Technol.* 44 (2007) 323–328.

316 [16] A. De Bremaecker, *J. Nucl. Mater.* 428 (2012) 13–30.

317 [17] P. Dubuisson, Y. de Carlan, V. Garat, M. Blat, *J. Nucl. Mater.* 428 (2012) 6–12.

318 [18] J. Hoffmann, M. Rieth, R. Lindau, M. Klimenkov, A. Möslang, R.H. Zschommler
319 Sandim, *J. Nucl. Mater.* 442 (2013) 444–448.

320 [19] G.R. Odette, *JOM*. 66 (2014) 2427–2441.

321 [20] S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M.
322 Rieth, L. Tan, H. Tanigawa, *Nucl. Fusion*. 57 (2017) 092005.

323 [21] K.A. Darling, M. Rajagopalan, M. Komarasamy, M.A. Bhatia, B.C. Hornbuckle,
324 R.S. Mishra, K.N. Solanki, *Nature*. 537 (2016) 378–381.

325 [22] L. Toualbi, C. Cayron, P. Olier, R. Logé, Y. de Carlan, *J. Nucl. Mater.* 442 (2013)
326 410–416.

327 [23] C.K. Dolph, D.J. da Silva, M.J. Swenson, J.P. Wharry, *J. Nucl. Mater.* 481 (2016).

328 [24] M.J. Swenson, C.K. Dolph, J.P. Wharry, *J. Nucl. Mater.* 479 (2016) 426–435.

329 [25] M.J. Swenson, J.P. Wharry, *J. Nucl. Mater.* 467 (2015) 97–112.

330 [26] M.J. Swenson, J.P. Wharry, *J. Nucl. Mater.* 496 (2017) 24–40.

331 [27] K.H. Yano, S. Thomas, M.J. Swenson, Y. Lu, J.P. Wharry, *J. Nucl. Mater.* 502
332 (2018) 201–212.

333 [28] M.J. Swenson, J.P. Wharry, *J. Nucl. Mater.* 502 (2018) 30–41.

334 [29] C.M. Parish, K.G. Field, A.G. Certain, J.P. Wharry, *J. Mater. Res.* 30 (2015)
335 1275–1289.

336 [30] K.A. Darling, M.A. Tschopp, R.K. Guduru, W.H. Yin, Q. Wei, L.J. Kecske, *Acta*
337 *Mater.* 76 (2014) 168–185.

338 [31] J.R. Greer, J.-Y. Kim, M.J. Burek, *JOM*. 61 (2009) 19–25.

339 [32] G. Dehm, B.N. Jaya, R. Raghavan, C. Kirchlechner, *Acta Mater.* 142 (2018) 248–
340 282.

341 [33] C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, E. Arzt, *Mater. Sci. Eng. A*. 489
342 (2008) 319–329.

343 [34] D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy, Size-affected single-slip behavior
344 of pure nickel microcrystals, *Acta Mater.* 53 (2005) 4065–4077.

345 [35] R. Soler, J.M. Wheeler, H.J. Chang, J. Segurado, J. Michler, J. Llorca, J.M.
346 Molina-Aldareguia, *Acta Mater.* 81 (2014) 50–57.

347 [36] B.R.S. Rogne, C. Thaulow, *Philos. Mag.* 95 (2015) 1814–1828.

348 [37] M. Fukamachi, *Jpn. J. Appl. Phys.* 11 (1972) 1259–1264.

349 [38] W.A. Spitzig, A.S. Keh, *Metall. Trans.* 1 (1970) 2751.

350 [39] D.. Stein, J.. Low, *Acta Metall.* 14 (1966) 1183–1194.

351 [40] T.L. Altshuler, J.W. Christian, *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* 261
352 (1967) 253–287.

353 [41] C. Motz, T. Schöberl, R. Pippal, *Acta Mater.* 53 (2005) 4269–4279.

354 [42] B. Ehrler, X.D. Hou, T.T. Zhu, K.M.Y. P’Ng, C.J. Walker, A.J. Bushby, D.J.
355 Dunstan, *Philos. Mag.* 88 (2008) 3043–3050.

356 [43] N. V. Malyar, B. Grabowski, G. Dehm, C. Kirchlechner, *Acta Mater.* 161 (2018)
357 412–419.

358