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Abstract— Quantifying near-field displacements can help
enable a better understanding of earthquake physics and hazards.
To date, established remote sensing techniques have failed to
recover subcentimeter-level near-field displacements at the scale
and resolution required for shallow fault physical investigations.
In this paper, methods are developed to rapidly extract planar
parameters, using fast parallel approaches and an alternative
registration approach is employed to automatically match the
planes extracted from pairwise temporally spaced mobile laser
scanning (MLS) and Airborne laser scanning (ALS) data sets
along the Napa fault. The features extracted from two tem-
porally spaced point clouds are then used to calculate rigid-
body transformation parameters. The production of robust and
accurate deformation maps requires the selection of appro-
priate planar feature extraction and feature mapping criteria.
Rigorously propagated point accuracy estimates are employed
to produce realistic estimated errors for the transformation
parameters. Displacements of each aggregate study area are
computed separately from left and right sides of the fault and
compared to be within 3 mm of alinement array displacements.
Local differential displacements show distinct patterns which,
compared to alinement array measurements, were found to agree
within the confidence bounds. The findings demonstrate the abil-
ity to accurately estimate near-field deformations from repeated
MLS or ALS scans of earthquake-prone urban areas. ALS is
also used in conjunction with the MLS data sets, illustrating the
algorithm’s ability to accommodate different LiDAR collection
modalities at subcentimeter-level accuracy. The automated planar
extraction and registration is an important contribution to the
study of near-field earthquake dynamics and can be used as input
observations for future geological inversion models.

Index Terms— LiDAR, near field, octree, planes, registration.

I. INTRODUCTION

ACCURATE quantification of surface deformation is
essential to understand the general mechanisms of earth-

quake ruptures, for inferring the nature of fault slip at depth,
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and for assessing seismic hazards [1]–[5]. However, the sur-
face expression of earthquake ruptures can be quite complex
and difficult to map, especially in the near field (<1 km from
earthquake rupture) [5]. Various remote sensing techniques
have been applied for mapping of earthquake surface defor-
mation; however, to date, these have primarily been restricted
to observations in the far field (>1 km from the fault).
High-resolution synthetic aperture radar (SAR) data have

been used for mapping ground displacement by calculating
the ratio or difference between multitemporal SAR imagery
and then using classification strategies [6], [7]. For example,
SAR revealed over 2 m of slip at a blind strike-slip fault due
to the 2003 Bam, Iran earthquake mapped using ENVISAT
radar data [3]. Differential Interferometry (DInSAR) has been
used to map far-field deformation of earthquakes by calcu-
lating the phase difference between SAR images acquired
before and after the earthquake following the work in [5],
and it is now so commonly used to study earthquake-related
deformation that it has become part of operational post-
earthquake analysis products produced by organizations such
as the United States Geological Survey [8]. DInSAR is capable
of achieving centimeter-level accuracy measuring far-field
deformations; however, near the fault, changes in radar scat-
tering properties due to large ground motions often precludes
properly unwrapping phase observations and can render the
technique ineffective [9]. Global navigation satellite system
(GNSS) measurements are also used routinely to estimate
3-D static [10] and dynamic [11] coseismic displacements.
These studies have clearly shown that GNSS observations can
recover far-field displacements with subcentimeter precision;
however, GNSS observations are primarily limited to the far-
field because of the high cost of installing and operating a
sufficiently dense GNSS network.
Recently, emergent remote sensing techniques, optical

imagery correlation, and laser scanning have demonstrated
the potential for mapping near-field deformation. For exam-
ple, the Co-Registration of Optically Sensed Images and
Correlation (COSI-Corr) method has been developed by
Leprince et al. [12] for automatic coregistration of optical
imagery without external information such as GNSS measure-
ments of ground control points. COSI-Corr offers advantages
over traditional methods of slip because it enables measure-
ments across the entire zone and over wide aperture [13].
It has been used to quantify surface slip measurements for
various earthquake studies such as the 1992 Mw 7.3 Landers
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earthquake [13] and 2013 Mw 7.7 Balochistan, Pakistan
earthquake [14]. Although the method retrieves near-field
horizontal movements accurate to the decimeter level, it does
not directly provide a complete 3-D displacement field essen-
tial for earthquake deformation mapping. In contrast, laser
scanning directly measures the 3-D geometry and can provide
3-D displacement field estimates. Airborne laser scanning
(ALS) was first used to produce detailed 3-D models of the
entire fault zone in [15]. Recent ALS results include [16]
where used pre-event and postevent digital elevation models
(DEMs) were used to estimate vertical displacements and
reveal surface ruptures, and [17]–[19] which used an iterative
closest point (ICP) method [20] to register pre-earthquake
and post-earthquake ALS scans and derive 3-D seismic dis-
placements. These studies proved that ALS could be used
to estimate near-field displacements. However, the accuracy
of ALS is limited to decimeter scale and does not capture
small movements which may be significant to the mapping
and analysis of surface deformation. Finally, temporally spaced
terrestrial laser scans have also been used for deformation
measurement using least squares 3-D surface matching but
they are severely limited by the restricted areal extent of data
acquisition [21].
Here, we hypothesize that the high precision of LiDAR

observations can be used to provide deformation estimates
between consecutive scans in an automated manner and that
planar features of man-made structures can be used as control
surfaces (persistent scatterers) to be registered in repeat passes
of LiDAR surveys to improve the accuracy of the extracted
transformation parameters when compared to simple point
cloud matching techniques such as ICP. The development of
automated methods is paramount for reacting to earthquakes
where low latency derived displacement fields are essential.
We propose and detail the use of a hierarchical “octree” data
structure to partition small subsets of point clouds to permit
identification of neighboring points (topology) as a preliminary
segmentation step. The planar features must be extracted from
the finest octree nodes by realizing best fit planes for the
points. Thresholding parameters, specific to different data
sets, dictate the choice of planar nodes and region growing
operations. A registration approach based on an iterative rigid
body least squares solution is then performed to condition the
points of planar surfaces to lie on a matched planar surface
from temporally distinct point clouds. The common planar
features of two consecutive data sets are then matched utilizing
some matching criteria. Both global and local displacement
estimates are then extracted for the data sets. We compare the
global estimates with ground truth observations to determine
the accuracy of the approach, while the local spatial varying
estimates provide a picture of the ability to resolve localized
deformation. A point accuracy (PA) measure based on the error
propagation of the hardware components of the laser scanning
system and error due to terrain are also implemented to
examine if weighting the observations by estimated accuracy
causes significant changes to the displacement estimates. The
intended area of application is to urban or suburban areas that
have multiple built structures and that are prone to surface
displacements related to earthquakes [22].

II. METHODOLOGY

A parallel segmentation approach using the octree data
structure is performed to divide the data set into a hierarchical
structure. A least squares best-fit implementation is performed
on each leaf node (end node) to extract the planar regions.
The planar regions are grouped to form planar features using
connected-component labeling (CCL) algorithm. The steps are
detailed in the following.

A. Parallel Octree Generation

The data structure implemented for regularizing the
anisotropic point data should provide easy access to the
nodes as well as the neighbor information for each node
but still be developed in real time. With these constraints in
mind, a parallel octree implementation is adapted from [23]
which capitalizes on the modern GPU’s massively parallel
architecture accessible in an OpenCL environment. OpenCL
specification [24], designed by the Khronos group, is a new
industry standard used for general purpose GPU (GPGPU).
It has specific advantages over NVIDIAs CUDA including
programing for heterogeneous systems of either GPUs and/or
CPUs and is supported by various kinds of GPU vendors
(NVIDIA, AMD, Apple, Intel, and so on).
The fundamental basis of the parallel octree algorithm is the

construction of a tree based on level-order traversals, whereby
all the octree nodes at the same level are processed in parallel.
The parallel structure of the octree maximizes the number of
nodes processed by spawning a new thread for every new
node in the same level. Following the normal convention,
the voxel containing the entire data set is referred to as the
root and the voxels at the finest level are called leaf nodes. The
selection of the maximum depth level is made by calculating
it from the minimum size of the octree node that is input
as a parameter. This allows us to construct data structures
based on the variable point spacing of the different LiDAR
data collection systems. 64 bits are used to represent the key,
increasing the maximum depth level to 20 and employs a much
simpler octree data structure than given in [23].
An example pointcloud is given in the Fig. 1(a) and the

octree segmentation is given in Fig. 1(b).

B. Planar Least Squares Fit

In 3-D Euclidean space, a plane can be given by a hessian-
normal form as

ax + by + cz + d = 0 (1)

where n = (a, b, c) is the unit normal vector and d is the
distance from the plane to the origin of the coordinate system.
For a point cloud, P = (xi , yi , zi ), 1 ≤ i ≤ N , the observation
equation is given as

J (p, n) =
N∑
i=1

[n · (pi − p̄)]2. (2)

The centroid of the data set must lie on the least squares
plane [25]. The direction of the plane, n, can be solved
by constraining the objective function (i.e., the sum of the
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Fig. 1. Segmentation and planar region growing steps. (a) Original point
cloud. (b) Octree division of the point cloud (green boxes representing nodes
after third level of division). (c) Extracted planar surfaces colorized.

squares of the direction cosines must equal unity) subject to
minimization of J, given by

G = a2 + b2 + c2 − 1 = 0. (3)

For a matrix M containing the data points, the function J is
minimized using the Lagrange multiplier (λ). The resulting
equations are given by

�J = λ � G (4)

and

(MT M)n = λn (5)

(known as the normal equations) can then be solved using
eigen analysis. MT M is denoted as the normal (or covariance)
matrix C , which is defined as

C =
N∑
i=1

⎡
⎣ x2i xi · yi xi · zi
xi · yi y2i yi · zi
xi · zi yi · zi z2i

⎤
⎦ (6)

where x , y and z are the spatial coordinates of a given
point pi .
The problem can also be solved using singular value decom-

position of M since the eigenvectors of C are also singular
vectors [26]. The solution then is given by the right singular
vector corresponding to the smallest singular value.
The planar fit of every octree node is computed in par-

allel by following the eigenvalue analysis given by (5). The
covariance matrices of all the points of the octree nodes are
constructed. The covariance matrices are then used to find the
smallest eigenvalues which help us compute the corresponding
eigenvectors, providing us with the planar normals. The planar
normals are used to test if the octree nodes are planes using
a limiting criterion. The steps are provided in Algorithm 1.

Algorithm 1 Parallel Least Squares Planar Extraction
Input: points, planar threshold
Output: planar nodes

1: for each of the nodes in parallel do
2: N ← number of points in node
3: for j=1 to N do
4: Calculate covariance matrix C
5: end for
6: find eigen values from C
7: find eigenvector of smallest eigenvalue
8: for j = 1 to N do
9: Check if Point within planar threshold
10: end for
11: if points within threshold greater than threshold then
12: specify node as plane
13: end if
14: end for

C. Region Growing Using Connected Component Labeling

The region growing method needs to incorporate the planar
information of the leaf nodes. A simple solution would be
to find the planar information of every leaf node in the
octree and then compute the following distance metrics for
the neighboring nodes:

distnormal(p1, p2) = 〈n1 · n2〉 (7)

and

distpoint-plane(p1, p2) = 〈n1 · c2〉 + d2 (8)

where n1 and n2 are the planar normals of two best fit planes,
d1 is the planar distance of the first best fit plane, and c2 is the
centroid of the second best fit plane. Thresholds are provided
for both normal and range distances to detect planar surfaces.
The CCL algorithm is highly parallelizable because the

labels can be updated independently of each other. There-
fore, an attempt is made to parallelize the algorithm (see
Algorithm 2) by modifying the modified 8-directional label
selection algorithm given by [27] for checking planar nodes
and growing planar regions. The original algorithm performs
CCL on an image by checking the minimum label in every
direction at every iteration. The algorithm is modified to work
for octree nodes by specifying labels for all the planar nodes
that are connected and within a threshold. At every iteration,
the old label for a planar node is initially assigned to be the
minimum label. All 27 neighbors are checked for matching
planes and the minimum of those labels are assigned as the
minimum label for this node. All directions are continually
searched until a nonplanar node is encountered. Iterations are
stopped when the labels no longer change. A check is applied
at the end of two iterations to find whether the label assigned
is the smallest to expedite the region growing process. This is
performed by checking whether the label of the i th node is i.
If it is, the label is taken to be the smallest and then all the
nodes having the label i are excluded from check in the next
iteration.
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Algorithm 2 Parallel Planar Region Growing Algorithm
Input: nodes
Output: labels

1: for j = 0 to n iterations do
2: for each of the nodes in parallel do
3: if node i is a plane then
4: Assign old label of i as minimum label
5: for k = 1 to 27 directions do
6: if neighbor nodes are planes and dot product is

within threshold then
7: Compare labels and assign minimum label
8: end if
9: end for
10: end if
11: end for
12: if j = 2 and label of i is smallest then
13: stop comparing i node
14: end if
15: if no label change then
16: exit
17: end if
18: end for

Once the labels are determined, the nodes having the same
labels are gathered. This is a simple yet time-consuming
operation in sequential processing, but fortunately can be
performed in parallel as well. The parallel radix sort orders all
the labels along with the indices in the original array. Then,
a unique label finding operation is performed where the unique
labels, the number of nodes having the label, and the first index
of the label in the sorted array are output. The results of these
operations are the consolidated planar regions in the data set.
The final planar regions of the example pointcloud are shown
in Fig. 1(c). Further details on the octree generation and CCL
operations can be found in [28].

D. Planar Matching and Registration

In the case of urban/suburban areas, planar surfaces are
present in abundance and, thus, can be exploited to strengthen
the least square estimation of differences between temporally
spaced point clouds. The correspondences between the before
(t−1) and after (t) planar patches need to be established in
order to define a rigid transformation. An assumption is made
that the postevent planes have undergone minuscule rotation
(within 1◦) in all three axes due to earthquake movement,
which is justified by the results presented in [17]. This assump-
tion is valid for all georeferenced point clouds using the same
geodetic datum and simplifies the search for correspondence.
For every plane in the t−1 point cloud, a search is performed
to find the nearest planar surface with a similar surface normal
and plane-centroid distance below a certain threshold in the
time t point cloud. If such a plane is found, then the planes
are said to be matched and can be used in registration.
For two LiDAR point clouds, XI and XF , with an unknown

spatial difference between them, a rigid body transformation

can be defined to align the point clouds as

XF = R · XI + tl (9)

where R is the rotation matrix and tl is the translation. The
rotation matrix can be simplified using the approximations sin
θ = θ and cos θ = 1, if small-angle rotations are assumed, and
thus transforms the nonlinear rotation matrix into the linear
form

R =
⎡
⎣ 1 −γ β

γ 1 −α
−β α 1

⎤
⎦

where α, β, and γ are the rotation angles about the
three orthogonal axes, and the translation is given as tl =
(tx , ty, tz)T . A least squares approach detailed in [29] uses
planar constraints to determine airborne LiDAR system bore-
sight parameters. This constrained planar solution is modified
to extract optimized rigid body transformation parameters by
conditioning the geo-referenced LiDAR target points to lie on
planes. The functional model for a point j with coordinates
Pj = [x j , y j , z j ], lying on plane i , is given as〈

−→pi ,
[−→
Pj

1

]〉
= 0 = f (

−→
l ,−→x1 ,−→x2 )

= f
(−→
l obs + v̂,−→x1 0 + δ̂1,

−→x2 0 + δ̂2
)

(10)

where the position vector of observed point j on the plane−→
Pj = h(

−→
li ,−→x1 ) is a function of the LiDAR observations

−→
li =

[X Y Z ]Ti ; the calibration parameters are −→x1 = [α β γ tx ty tz];−→x2 are the vector of plane parameters; δ1 and δ2 are the
estimated corrections to calibration and plane parameters and
v̂ are the observational residuals.
Expanding (9) and substituting into (10) leads to the func-

tional form of

〈
−→pi ,

⎡
⎢⎢⎣R

⎡
⎣x j

y j
z j

⎤
⎦ +

⎡
⎣txty
tz

⎤
⎦

1

⎤
⎥⎥⎦

〉
= 0. (11)

For a points and b planes, a 	 b, there are a conditions, n =
3a observations and u = 6 + 4b unknowns. For every plane,
a unit length constraint needs to be satisfied, and therefore,
the number of constraints is b.
Solving this iterative least squares problem (Appendix)

gives us the transformation parameters between the data sets.
Therefore, for pre-event and postevent data sets, this iterative
solution delivers the estimated displacement due to the earth-
quake. In order to determine the relative movement between
the left and right sides of the fault, the displacements are
computed separately and differenced.

E. Point Accuracy Estimation

The quantification of the PA in three dimensions is central to
the point-to-plane registration algorithm because the displace-
ment estimation requires an estimate of PA (weight matrix P).
The preliminary stochastic model considers all observational
errors to be uncorrelated and zero mean. This assumption pro-
vides a case where considering a purely diagonal covariance
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matrix allows a simplified model for efficient processing of
large data sets. Considering this, the weight matrix, P for the
observations, is assumed to be diagonal given by

P =
⎡
⎣Px 0 0
0 Py 0
0 0 Pz

⎤
⎦ (12)

with Pi = (1/σ 2
i ) where σi is the point uncertainty in the i th

direction.
For the initial analysis, all coordinates are weighed equally.

This assumption is not justified since the errors of the laser
scanner components affect the PA in each dimension differ-
ently. Therefore, for rigorous estimation of displacement accu-
racy estimates, the PA for each LiDAR point can be estimated
by propagating the error from the laser scanner components
and including the error due to uncertainty induced by terrain.
More realistic weighting should also provide properly scaled
estimates of uncertainty of the surface deformations.
There are numerous factors affecting the accuracy of the

final coordinates, which have been extensively studied [30].
For our error analysis, only stochastic error sources are
taken into account. The point uncertainty is estimated in two
steps.

1) Error Propagation Through LiDAR Georeferencing Equa-
tion: The ground coordinates for scan-points in a point
cloud are calculated using the georeferencing equa-
tion [31] by combining the information from the scanner,
the integrated GNSS/Inertial Navigation System measure-
ments and calibration parameters. The georeferencing
equation is nonlinear and the individual effects of the
errors of the sources can be calculated by linearizing
using Taylor series expansion and truncating after the first
term. The nominal PA is then given by using Special
Law of Propagation of Variance formula. For details,
the reader is referred to [31].

2) Error Due to Surface Morphology: While the error
propagation estimates the error due to instrumentation,
the error induced by the process of interaction of the
laser pulse with the surface needs to be quantified,
which can introduce additional uncertainty in the actual
position of the laser point. Bray et al. [32] model the
laser beam as a cone with the footprint of the beam
being modeled assumed to be an ellipse formed by
the intersection of the cone and the local plane esti-
mated from the nearest neighbors. The 2-D ellipse
gives us the covariance information in the direction of
the normal which is then rotated to Universal Trans-
verse Mercator coordinate framework to output the full
3-D error due to incidence. The total error is given by

Ctotal = Cnominal + Csurface (13)

adding the nominal covariance and covariance due to
surface morphology.

III. STUDY AREA

In this paper, we use two mobile laser scanning (MLS) data
sets and three ALS data sets from a study area surrounding

the Napa fault, to examine the ability of the proposed planar
technique for estimating the near-field displacements. The
West Napa Fault is a geological right lateral strike-slip fault
located in Napa County, California, and was the source of the
Mw 6.0 earthquake on August 24, 2014. The earthquake was
the first major earthquake in the San Francisco Bay Area since
1989 and was the cause of $1 billion in monetary damages and
a life lost. Hand measurements made immediately following
the earthquake documented 5–50 cm of slip in the northern
section of the fault, and consistently less than 5 cm of
coseismic slip in the southern section. However, immediately
following the earthquake (within 3 h) afterslip was detected by
alinement array stations on the southern half of the fault, and
accumulated tens of centimeters of displacement [33]–[35].
MLS observations were made along approximately 85% of
the fault on September 1 and 2, 2014, and to document
afterslip, an additional set of MLS observations was collected
on September 28–30th, 2014. An overview of the fault and the
MLS platform coverage is given in Fig. 2. For our analysis,
we have examined two distinct areas along the Napa fault: the
northern section which was subjected to little afterslip, and
the southern section where significant afterslip was detected
by alinement stations. The northern study area is a suburban
neighborhood called Browns Valley that contains a large num-
ber of residential structures. The southern area is nearer to the
epicenter of the earthquake and the coseismic displacements
in this area were much smaller than the Browns Valley area—
on the order of 5–6 cm [36]. Brooks et al. [37] showed the
photographs taken at the same location in and around the area
having a large amount of afterslip (20 cm) within the first
24 h following the earthquake. Since then, the afterslip has
decayed considerably but is still predicted to be 30 cm over
a 2–3-year period [11]. This region, shown in the lower black
box in Fig. 2, consists of mostly ranch houses and has two
alinement array stations, labeled as NLAR and NWIT. This is
a rural region, and therefore, buildings are sparse. The sparse
planar features help to test the robustness of our algorithm
for determining realistic offsets with minimal observational
redundancy.
In order to establish the flexibility of the algorithm in

dealing with different kinds of scanning systems, three dif-
ferent ALS data sets (two pre-event and one postevent) are
used to derive the displacements among themselves and in
combination with the MLS data sets. The first prevent ALS
data set was acquired by National Center for Airborne Laser
Mapping for the Napa River Watershed survey during May 15
to June 1, 2003, covering an area of 1500 km2 with a point
density of 1.45 points/m2. The second, more recent pre-event
ALS data set was acquired by Quantum Spatial on June 7,
2014 for an update of base maps for the city of Napa. The
data set was acquired using a Leica ALS60 scanner with a
point density of 10 points/m2. The postevent ALS data set was
acquired by Towill, Inc., using an Optech Orion M300 scanner
on September 9, 2014. Although the area extents were similar
to the preevent acquisition, the point density was close to
10 points/m2. The ALS data sets are shown in Fig. 3. Table I
summarizes all the ALS and MLS data sets acquired in the
Napa region.
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Fig. 2. (Left) Overview of the Napa fault zone with the fault trace in red, alinement array stations in cyan, and the scanned areas in yellow boxes. (Top right)
Browns Valley (top yellow box). (Bottom right) South rural Napa. Inset: zoomed-out-image of the scanned area with the different fault traces. Background of
image is the ALS DEM hillshade (grayscale).

TABLE I

DESCRIPTION OF ALS AND MLS DATA SETS ENCOMPASSING NAPA REGION

IV. RESULTS

A. Browns Valley MLS Displacements (Napa Fault)

For suburban Browns Valley, two MLS data sets were
collected on September 2, 2014 and September 30, 2014 to
measure afterslip. Alinement arrays were set up along the
main fault line trace of the Napa earthquake [38] and were
periodically observed to measure afterslip, with estimated
accuracy better than 1 mm. The alinement array site closest

to the Browns Valley area was NLOD and, therefore, served
as the primary reference for the MLS estimates of afterslip.
For estimating horizontal displacements, we were primarily
interested in examining the above-mentioned ground planar
features (i.e., buildings). Therefore, the first processing step
for all MLS scans was to remove the ground points by
filtering. Ground planes in this region are mostly horizontal
and, therefore, offer little or poor constraints on the expected
dominant horizontal afterslip motion of the Napa fault.
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Fig. 3. Overview of the extracted rooftops from ALS data sets for the Napa fault. Blue: 2003 data set. Green: June 2014 data set. Yellow: September 2014 data
set. Red: fault trace. Cyan: alinement array.

Several algorithms have been proposed to filter ground points
for ALS data sets [39]. The ground points filtering algorithm
provided in the commercial software, Terrascan was used
which starts from a sparse triangulated irregular network and is
iteratively refined the ground definition using the laser point set

based on user-specified thresholds [40]. After the automated
filtering, some limited manual exclusion of points was also
applied to clean up the data sets. Planar surfaces were again
extracted from the left and the right sides of the fault trace with
a 10 m buffer around the a priori known fault trace location.
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Fig. 4. Polar plots of azimuth angle versus elevation angle of the normal vector of matched planes used in the estimation of displacement for (a) left and
(b) right sides of the Napa fault (Browns Valley) MLS data sets.

The planar surfaces extracted were then used to perform a
global registration between the two temporally spaced data
sets.
The large point clouds are broken down into tiles to facilitate

parallel computation and the displacements are calculated over
the tiles. The global displacements are an average of tiles of
a certain side of the fault. The initial analysis was performed
using a tile size of 20 m but increased tile sizes of 35 and
50 m were also evaluated to determine the effect of tile size
on the number of planes and resultant displacement estimates.
The number of planes extracted was found to decrease with
increasing tile size. This was to be expected as the minimum
node size increases, and thus, certain planar surfaces are under
segmented or are clustered with vegetation leading to their
rejection. Fig. 4 is a polar plot of the normal vector orientation
for each matched plane pair and provides a measure of the
planar strength in each direction for estimating displacements
for left and right sides of the fault. This shows that the
solution has observation strength in all particular directions.
Note that this is the case for all the Browns Valley comparisons
presented here in this paper, and therefore, polar plots for other
solution sets are not given. The estimates of afterslip are given
in Table II along with the number of planes used to estimate
each offset. To estimate afterslip from the alinement array
observations, the graph provided in [11] is used. It provides
the accumulated slip for the alinement array stations both
measured and predicted using the AFTER program [41]. The
AFTER function describes the alinement array observations
of postseismic slip. The function consists of two terms which
characterize the power law, the time dependence, τ , and
the temporal index, p. Its chief characteristic is that once
time (t) > τ , the deformation nearly ceases.
The accumulated slip was interpolated over the MLS obser-

vational period to find the horizontal displacement (Hz) for
the NLOD station. This measurement is given along the

fault rupture trace and the results show that the MLS fault
parallel estimates are slightly smaller than that predicted by
the alinement array/AFTER program estimates. This slightly
larger disagreement can be attributed to both the fact that the
NLOD station is outside the Browns Valley study area and
that the alinement array offset was not actually a measured
value, but that predicted by the AFTER model. However,
the disagreement is close to the combined expected accuracy
of the MLS and the alinement array estimates of displacement.
In order to examine spatially varying estimates of afterslip,

the left and right sides of the fault were divided into strips
of both 100 and 50 m sizes laterally (i.e., perpendicular to
the fault), to examine the spatial resolution of the method.
Unfortunately, since most of the MLS data were collected on
the east side of the fault (see Fig. 2), the majority of the
strips west of the fault had an insufficient number of planes to
reliably estimate a left-side offset. However, because this is a
right lateral strike-slip fault, the movement is only expected on
the right-hand side. Therefore, all the planes on the left side
were used to calculate a global offset which was then sub-
tracted from each of the right side strip displacement estimates.
Fig. 5 shows the fault parallel displacements with respect to the
profile distance from north to south and provides a comparison
to the global results from the NLOD observations and the
AFTER software. The 100-m fault parallel displacements
gave more precise estimates than the 50-m displacements
due to the increased number of planes used in estimating
the displacements. No discernible pattern was evident. All
local variations were within the estimated uncertainty of the
calculated displacements.
It has been established that local heterogeneous displace-

ments are important to understand the variable near-field
deformation and to derive an estimate of spatial resolution
achievable [17]. In order to find out if local spatially varying
displacements could be derived, point residuals from the least
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TABLE II

COMPARISON OF HORIZONTAL FAULT-PARALLEL AFTERSLIP ESTIMATE TO NLOD ALINEMENT ARRAY STATION
ESTIMATE USING DIFFERENT TILE SIZES FOR NAPA FAULT AT BROWNS VALLEY NEIGHBORHOOD

Fig. 5. Fault-parallel horizontal displacements along with estimated accura-
cies for lateral 50- (red circle) and 100-m (blue square) strips with profile AB
(distance increasing from north to south) (Fig. 2). Ground truth measurements
are presented for NLOD alinement array estimates (gray dotted line). Error
bars represent displacement accuracy estimates at 1 σ .

squares solution are plotted for 50-m tile sizes for the left and
right side separately in Fig. 6(a) along with the histograms to
show the distribution of the residuals. The residuals could be
scaled by (or projected onto) the direction cosines of the planar
surfaces on which the individual points lay. Fig. 6(b)–(d)
shows the residual components in x-, y-, and y-directions,
respectively. To further study whether the residuals exhibit
a spatial pattern, a polar plot was given for the mean of
the residuals of each plane versus the azimuth angle of the
planar normal [Fig. 6(e) and (f)]. The residuals showed no
discernible spatial pattern, which suggested that the afterslip
from September 2 to September 30 was uniform at the noise
level of the method, and therefore, localized displacement
analysis was not performed for these data sets.

TABLE III

COMPARISON OF HORIZONTAL FAULT-PARALLEL AFTERSLIP ESTIMATE

TO NLOD ALINEMENT ARRAY STATION ESTIMATE WITHOUT PA
ESTIMATES AND USING PA ESTIMATES FOR NAPA FAULT AT THE

BROWNS VALLEY NEIGHBORHOOD

1) Point Accuracy Estimates for MLS Displacements: The
estimates in Section IV-A assumed a constant PA of 0.05 m
for all MLS points in x-, y-, and z-directions, respectively. This
accuracy value was based on previous experience evaluating
the MLS data from this system. However, point accuracies
could vary considerably due to a variety of environmental
factors such as heading changes and the incidence angle of the
laser on the planar surfaces [31]. Therefore, a PA estimation
was performed for the Browns Valley data set. Fig. 7(a)–(c)
showed the spatial variation in PA in the x-, y-, and
z-directions. The range of the point accuracies in all three
directions showed that even though a constant PA measure
was reasonable, it did not effectively capture the variability in
point uncertainty.
The displacement estimates were then recalculated using

actual PA estimates (see Table III). The X displacement was
smaller than the X displacement for constant PA while the
corresponding Y displacement was larger. The Z displace-
ment was much smaller using the estimated point accuracies,
which was expected since for a right lateral strike-slip fault,
the vertical displacement was usually small. The fault parallel
horizontal displacement showed better agreement with the
measured NLOD estimate while the estimated displacement
accuracy increased almost by a factor of 2. The inclusion of
the realistic PA improved both the accuracy and reliability of
the method.

B. Browns Valley ALS Results

Three ALS data sets were captured before and after the
Napa earthquake. To investigate the robustness of our planar
algorithm, we also attempted to use these temporally spaced
ALS observations to estimate the deformations. The data sets
were first classified using the Terrascan software and only
points belonging to building surfaces were used as inputs for
the algorithm. These different ALS data sets were captured
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Fig. 6. Least squares residuals of the MLS data set for left and right sides, respectively, for 50-m tile sizes. (a) Residual magnitudes with histograms.
(b) X residual component. (c) Y residual component. (d) Z residual component. (e) Polar plot of mean of residuals (in meters) versus azimuth angle of plane
(in degrees) for MLS data set left of fault trace. (f) Polar plot of mean of residuals (in meters) versus azimuth angle of plane (in degrees) for MLS data set
right of fault trace.
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Fig. 7. Estimated PA for (a) X-component, (b) Y-component, and (c) Z-component of the matched planar points for the Browns Valley data set using the
Schaer method [32].

in different acquisition conditions, and with different point
density which needs to be accounted for in the algorithm.
Also, the noise level of the points in the earlier data set
(2003) is higher than the later data sets (June 2014 and
September 2014). For the first analysis, planar surfaces from
the 2003 data set were used in conjunction with the points from
the June 2014 data set. The movement between the 2003 data
set and the June 2014 data set were given in Table IV.

The movement along the fault should be negligible as both
the data sets were pre-earthquake but the horizontal fault-
parallel estimates were nonzero. This could be attributed to the
sparsity of points in the pre-event data set which can give rise
to unrealistic Y displacement estimates. Another factor could
be an anthropogenic change in structures over the 11-year time
span. The estimated displacement accuracy was reported at the
centimeter level which was realistic for the noise level of the
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Fig. 8. Signed residual magnitudes for ALS differences (September 2014–June 2014) using 100-m tile sizes with histograms. Solid line: fault lines.

ALS point coordinates and made the estimated Hz statistically
insignificant. However, since only the creep motion less than
a centimeter was expected [37], the result gave a very good
indication of the expected accuracy with which we could
determine displacements using ALS.
Between the June 2014 and September 2014 data sets,

the shift given by the displacement estimation algorithm
should correspond to the combined coseismic and the post-
seismic displacements (up to September 9, 2014) caused
by the 2014 earthquake. The estimated displacements were

given in Table V. When compared to the estimated coseis-
mic and postseismic displacements provided by the AFTER
program in [11], the ALS displacement seemed to slightly
overestimate the motion. The displacement accuracy was
better than the corresponding displacement accuracy for the
previous ALS–ALS computation which could be attributed
to the increased ALS precision and decreased anthropogenic
change for the data sets. Overall, the overestimation was
well within the expected accuracy of the computed ALS
displacement.
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Fig. 9. Estimated ALS data set residual (unsigned) for (a) X-component, (b) Y-component, (c) Z-component using 100-m tiles. Solid line: fault lines.
ALS DEM hillshade (grayscale) is provided in background.

A global residual analysis, similar to that performed for
the MLS data sets, was attempted for the left and right
sides of the fault as shown in Fig. 8 for a 100-m tile size
for the June 2014 data set versus September 2014 data set.
The residuals were shown as signed variables and fit using
a Gaussian distribution for the left and right sides of the

fault separately. In order to show a smoothed out difference,
a moving window technique was applied to compute localized
differences and shift by a small distance in both x- and
y-directions (20 m in this case). The histograms did not reveal
much information regarding the spatial distribution of the
residuals. Since there was not much variability expected for the
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TABLE IV

HORIZONTAL FAULT-PARALLEL ALS ESTIMATE FOR
JUNE 2003–JUNE 2014 FOR NAPA FAULT AT

BROWNS VALLEY NEIGHBORHOOD

TABLE V

COMPARISON OF HORIZONTAL FAULT-PARALLEL ALS DISPLACEMENT

ESTIMATE TO NLOD ALINEMENT ARRAY STATION ESTIMATE FOR
JUNE 2014–SEPTEMBER 2014 FOR NAPA FAULT IN THE

BROWNS VALLEY NEIGHBORHOOD

left side of the fault, the residuals of the right side of the fault
were then projected onto the planar normals [Fig. 9(a)–(c)].
Inspection of the individual residual components revealed
distinct patterns in both the X and Y residual components,
especially in the extreme right of the figure which showed
complex patterns whereby a simplistic overall displacement
appears to mask localized distributions. This suggested that
estimation of spatially finer resolution displacements might be
possible.
To further investigate if localized patterns could be retrieved

from the ALS data sets, the mean of residuals for each
plane was plotted with respect to the azimuth angle of the
plane in polar plots for 100-, 200-, and 400-m tiles. While
100- and 200-m tile did not show any obvious clusters,
the 400-m plot did (Fig. 10). The points from these clusters
could be plotted spatially to reveal localized displacement
patterns. Fig. 11(a) shows the clusters mapped spatially with
diametrically opposite clusters colored the same. It is thus
shown that the localized displacements might be recoverable
using 400-m blocks but 200-m blocks did not have enough pla-
nar features to provide meaningful estimates. Fig. 11(b) and (c)
shows the localized displacement estimates for 400-m blocks
using a moving window of 20 m for X and Y displacements.
The tiled Y displacement estimates appear to show significant
localized deformations.
1) Browns Valley ALS–MLS Results: ALS and MLS data

sets have different look angles, point densities, and point
accuracies. However, there are overlapping planar surfaces
between ALS and MLS which could be exploited to provide
displacement estimates. The use of combined ALS and MLS
data sets is because earthquake-prone zones such as the San
Andreas fault have been previously mapped using ALS [42].
Use of MLS for mapping postevent deformation might be
a viable method for rapidly and cost effectively estimating
displacements in cases where pre-event ALS is available.

TABLE VI

COMPARISON OF HORIZONTAL FAULT-PARALLEL ALS-MLS
ESTIMATE TO NLOD ALINEMENT ARRAY STATION ESTIMATE FOR

JUNE 2014 ALS–SEPTEMBER 2, 2014 MLS FOR NAPA FAULT AT

BROWNS VALLEY NEIGHBORHOOD WITH CONSTANT

PA ESTIMATES AND TOTAL PA ESTIMATES

TABLE VII

COMPARISON OF HORIZONTAL FAULT-PARALLEL ALS-MLS
ESTIMATE TO NLOD ALINEMENT ARRAY STATION ESTIMATE

FOR SEPTEMBER 2, 2014 MLS–SEPTEMBER 9, 2014 ALS
FOR NAPA FAULT AT BROWNS VALLEY NEIGHBORHOOD

WITH CONSTANT PA ESTIMATES AND

TOTAL PA ESTIMATES

Our first analysis used the June 2014 ALS data set as pre-
event and September 2 MLS as the postevent data set to derive
displacements. The MLS points were conditioned to lie on the
best fit ALS planes and the displacement results were provided
in the first column of Table VI. The number of planes extracted
as common surfaces in the ALS–MLS case was found to be
less than both the ALS–ALS and MLS–MLS case due to
difference in look angle of the airborne and mobile laser scan-
ners; however, there was still a sufficient distribution of planar
surfaces at varying look angles to provide a reliable solution.
The fault parallel displacement estimate was compared to
the NLOD estimated displacement during the same period.
The result showed that the fault-parallel displacement agrees
with the alinement array within the estimated accuracy of
the ALS–MLS displacement. Variable PA estimates were also
used to weight the displacement calculation (second column
of Table VI). The variable PA provided values closer to the
alinement array values while increasing the estimated accuracy
of the recovered displacements.
The second ALS–MLS analysis used the September 2, 2014

MLS data set as the pre-event and the September 9, 2014 ALS
data set as the postevent data set. The displacement results
should provide the afterslip of the fault in the intervening
period of 7 days. The results of the analysis with constant
PA and with variable PA are provided in Table VII. The after-
slip fault-parallel displacement result was again found to be
very close to the estimated displacements from the alinement
array. Including PA estimates into the solution increased the
displacement accuracy estimates similar to previous results.
The deviations between the ALS–MLS afterslip and the NLOD
alinement station estimate were within the estimated accuracy
of the ALS–MLS displacement estimates.
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Fig. 10. (a) Polar plots of mean of residuals (in meters) versus azimuth angle (in degrees) for ALS data set east of fault trace with tile size 400 m.
(b) Clusters for 400-m tiles shown in different colors with diametrically opposite clusters given same color.

TABLE VIII

COMPARISON OF HORIZONTAL FAULT-PARALLEL ALS-MLS
ESTIMATE TO NLOD ALINEMENT ARRAY STATION ESTIMATE

FOR SEPTEMBER 9, 2014 ALS–SEPTEMBER 30, 2014 MLS
FOR NAPA FAULT AT BROWNS VALLEY NEIGHBORHOOD

WITH CONSTANT PA ESTIMATES AND

TOTAL PA ESTIMATES

The final analysis used the September 9 ALS data set as the
pre-event and the September 30 MLS data set as the postevent
data set to compute the displacements (Table VIII).
The results were consistent with the previous comparisons

and showed that errors in horizontal fault-parallel displace-
ments could be extracted at the subcentimeter level using ALS
and MLS data sets.

C. South Rural Napa MLS Displacements

As previously mentioned, the southern portion of the Napa
MLS data set is closer to the epicenter of the earthquake
and had much smaller coseismic displacements but a higher
observed and predicted afterslip; up to 30 cm over a 2–3 year
period [11]. This region, shown in Fig. 2, consists of mostly
ranch houses and has two alinement array stations set up near
the study area, labeled as NLAR and NWIT. The region is
an interesting test of our proposed methodology due to the
sparseness of buildings (and therefore planes) that allowed us
to examine the robustness of the algorithm. For the south rural
areas, MLS data sets were captured on September 1, 2014
(t−1) and September 28 and 29, 2014 (t), data set of a 8
km2 area, as shown in the bottom black box of Fig. 2.
The same processing steps were applied to this data set as

the previous MLS data sets. However, the plane extraction
analysis was performed using 100-m segmented tiles for the
entire data set for octree voxelization. This was a larger tile
size than that used for the suburban Napa area; however,
smaller tiles would not be useful due to the sparseness of

TABLE IX

AFTERSLIP ESTIMATES FOR NAPA VALLEY FAULT AT SOUTH RURAL NAPA

WITH CONSTANT PA ESTIMATES AND TOTAL PA ESTIMATES

man-made structures. The estimates of displacement, given
in Table IX, showed that the afterslip was still predicted quite
accurately, even with a sparse number of planar surfaces.
The result agreed to 0.0003 m of the NLAR estimate, which
was within the expected accuracy of the alinement array
measurements and the estimated MLS displacement accuracy.
The result was significantly less than the NWIT estimate
(difference of 0.0037 m), but this might be because NWIT is
slightly north of the study block and closer to the location of
the expected maximum afterslip for the rupture. The inclusion
of PA estimates did not change the displacement estimates
appreciably but did increase the least squares confidence
estimates for the computed MLS displacements.

V. COMPARISON OF THE DISPLACEMENT

ERROR ESTIMATES

The displacement estimation process is a least squares
adjustment and, therefore, can provide expected confidence
levels in the displacement estimate. These errors will be
reasonably and approximately sized if the accuracy of the
individual observations (points) is well modeled and if there
are no systemic errors in the observations. Table X quantifies
the error of the fault-parallel displacements with respect to the
alinement array and the least squares estimated displacement
accuracy for all data sets analyzed. The initial analysis of
the PA for MLS data sets assumed a constant noise variance
in all three dimensions. This approach is suboptimal as it is
apparent that the magnitude of noise is not constant but varies
for each laser point. Thus, with the inclusion of PA estimation,
the residual observational error should be Gaussian.
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Fig. 11. (a) Spatial distribution of clusters from the polar plot for planes on the right side of fault trace. (b) Local X displacements found using
400 m × 400 m tile sizes with 20-m moving window size. (c) Local Y displacements found using 400 m × 400 m tile sizes with 20-m moving window size.
Red solid line: fault traces.

It can be seen that the MLS displacements give estimates
which are closest to the alinement array results. Another
obvious conclusion that can be drawn from the table is that
displacement accuracy estimates can be compared for the type
of sensor used for data collection. Therefore, the MLS–MLS
displacement analysis has the smallest accuracy values while
ALS–ALS has the largest (in the centimeter level).

Although qualitative analysis has been provided for the
displacement accuracy estimates, no quantitative measure has
been shown to compare the size of the estimated accuracy for
the displacement errors. A scale (relative magnitude) measure
(ratio of the displacement error to the norm of displacement
accuracy) is provided in the table to analyze whether the
accuracy estimates are reasonable. The reasonability assertion
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TABLE X

QUANTIFICATION OF DISPLACEMENT ERROR (
displacement = 
Hzfault parallel - 
Hzalinement) WITH RESPECT TO DISPLACEMENT ACCURACY
ESTIMATES FOR DATA SETS WITH CONSTANT PA AND WITH ESTIMATED PA. RELATIVE MAGNITUDES PROVIDE THE CHANGE WITH RESPECT

TO ESTIMATED ACCURACY FROM LEAST SQUARES. ESTIMATED VARIANCE FACTORS ARE PROVIDED FOR LEAST SQUARE ESTIMATES.
J: JUNE DATA SET. S: SEPTEMBER DATA SET

provides that the norm of estimated accuracy should be in
the range of 1 of the displacement errors (relative magnitude
0.68). If the scale is relatively large, then the norm of estimated
accuracy is much smaller compared to displacement error,
which shows that the accuracy estimates are not reasonable.
Similarly, very small scale values indicate unreasonable accu-
racy estimates. However, the relative magnitudes of all data
sets should also follow a normal distribution and, therefore,
should have a mean of 0.68 ideally. The relative magnitudes
for all data sets range between 0.01 and 2.55 with a mean
of 0.6770 and standard deviation of 0.8469 showing that
the algorithm can estimate the displacements accurately and
robustly. The June ALS data set–September 2 MLS data set
combination has a relative magnitude which is an order of
magnitude higher than the others. Also, the displacements
calculated with estimated PA can be shown to find relative
magnitudes which are higher than those estimated using
constant PA. That does show that inclusion of estimated PA
enhances the quality of the least squares solution. This also
shows that in the absence of ground truth, we can be confident
that the least squares approach will give realistic estimates of
accuracy, assuming there are no remaining systematic errors
in the point cloud.
Finally, the reference or estimated variance factor σ 2, which

includes the effect of all observation errors and determines
the quality of least squares model, is reported in the Table X.
The computed variance factor should ideally be close to 1
and a large deviation can be attributed to various factors as
follows [42].

1) Undetected blunders in the observations.
2) The a priori estimates of the standard deviations are

incorrect.
3) The constraints are tending to distort the adjustment.
4) Degrees of freedom are statistically small.

The estimated variance factors are calculated for the left
and right sides separately to determine the quality of the
least squares solution. We find that for all the displacement
results, the estimated variance factors are close to 1, show-
ing that the least squares solution has properly weighted
observations.

Therefore from Table X, we can conclude that we can
calculate displacements from MLS data sets at the millimeter
level, from the ALS data sets at the 5-mm level and the
combination of ALS–MLS data sets at the 3-mm level. This
shows the viability of the use of the registration algorithm
to estimate near-field subcentimeter-level displacements for
earthquake deformation.

VI. CONCLUSION

An algorithm has been developed to automatically match
planar surfaces and automate point-to-plane registration. The
algorithms are applied to the problem of extraction of sub-
centimeter accuracy near-field earthquake deformation using
MLS and ALS observed point clouds. The implementation
of the planar growing steps was parallelized using GPGPU
in OpenCL leading to a near real-time, robust, and precise
segmentation algorithm. A planar least squares approach was
detailed which performed a constrained solution to recover the
transformation parameters by conditioning the points to lie on
planar surfaces. The preprocessing steps for the least squares
operation matched up planar surfaces from the temporally
spaced point clouds. This was performed by finding the
angle between the normals and the centroid-to-plane distance
within certain tolerance thresholds. The least squares approach
utilized a rigid body transformation equation to estimate the
displacements.
The least squares approach required estimates of PA to

derive the final displacement accuracy. The initial PA estimates
were constant values derived from previous experience. The
hardware error sources were determined from manufacturer
specifications while the error due to scene geometry was
estimated by estimating the ellipse formed by the intersection
of the cone from the laser vector and the local best-fit plane.
The total point uncertainty was the addition of the nominal
error and the error due to the scene geometry. The PA
estimation could then be used for deriving realistic estimates
of displacements and associated estimated accuracy.
Various combinations of ALS and MLS data sets from the

Napa fault were used to estimate fault surface displacements.
Displacement estimates show that the least squares technique
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can be used effectively for deriving fault-parallel surface
displacements in the subcentimeter level without the presence
of ground truth with high accuracy. This method can, therefore,
provide very useful displacement estimates in earthquakes
occurring in urban and semiurban areas having pre-event
LiDAR data.
A possible limitation of our approach is that fault dis-

placement is not the sole cause of apparent planar surface
motion. It can also be caused by other phenomena, for exam-
ple, rebuilding or renovation of structures between LiDAR
acquisitions. Our future work will incorporate registration of
natural surfaces (such as terrain) to determine offsets in rock
outcrops and remote areas. Natural surfaces are difficult to
quantify as parametric surfaces but can be approximated using
an objective function which uses a higher order approximation
for the samples of the surface. The problem can then be
posed from a geometric optimization perspective to understand
the underlying properties and lead to faster global and local
convergence. Registration then can be formulated as a con-
strained non-linear least squares problem. Mitra et al. [43] use
a squared distance function between the model and the data by
approximating a quadratic surface for the data points. Adding
to the former work, the study in [44] uses different registration
formulations to minimize quadratic functions between model
and data. Moving least squares has also been used in [45]
to reconstruct surfaces from point cloud data which provides
a good approximation of the point cloud data. These need
to be evaluated for their suitability in estimating surface
displacements. The authors believe that the existing framework
can be easily modified to incorporate free-form surfaces to
extract displacements from temporally spaced point clouds and
it is hoped that the work can form the basis of earthquake
deformation studies and provide greater understanding to the
near-field displacement problem.

APPENDIX

SOLVING LEAST SQUARES EQUATIONS

Solving the functional model requires a generalized least
squares (Gauss–Helmert) adjustment model, the work in [46]
having two sets of unknowns, −→x1 and −→x2 . The linearized form
of the least squares equation is given as

A1δ̂1 + A2δ̂2 + B v̂ + w = 0 (14)

where A1 = (∂ f /∂x1) and A2 = (∂ f /∂x2) are the respective
design matrices of partial derivatives of the functional with
respect to the unknowns; B = (∂ f /∂l) is the coefficient matrix
of partial derivatives with respect to the observations; and w =
f (

−→
l ,−→x 0) is the misclosure vector.
The planar constraint of the direction cosines having a unit

length can be implemented as a constraint equation given as

a2 + b2 + c2 − 1 = v̂c (15)

which is a nonlinear equation. The equation is linearized
similar to the previous equations as

Gδ2 + wc = vc (16)

where G = (∂g/∂−→x2 ) is the design matrix of partial derivatives
with respect to the plane parameters; wc is the constraint
misclosure vector; and v̂c is the constraint residual.
The stochastic model consists of a weight matrix P of

weights for all the observations and a constraint weight matrix
Pc having a fixed diagonal weight, as we assume all planes to
be weighed equally.
The final normal equation form of the generalized least

squares model is given as[
AT
1 (BP−1BT )−1A1 AT

1 (BP−1BT )−1A2

AT
2 (BP−1BT )−1A1 AT

2 (BP−1BT )−1A2 + GT PcG

] [
δ̂1
δ̂2

]

+
[

AT
1 (BP−1BT )−1w

AT
2 (BP−1BT )−1w + GT Pcwc

]
=

[
0
0

]
. (17)
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