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ABSTRACT

The free streaming length of dark matter particles determines the abundance of struc-
ture on sub-galactic scales. We present a statistical technique, amendable to any pa-
rameterization of subhalo density profile and mass function, to probe dark matter on
these scales with quadrupole image lenses. We consider a warm dark matter particle
with a mass function characterized by a normalization and free streaming scale mpp,.
We forecast bounds on dark matter warmth for 120-180 lenses, attainable with fu-
ture surveys, at typical lens (source) redshifts of 0.5 (1.5) in early-type galaxies with
velocity dispersions of 220-270 km/sec. We demonstrate that limits on myy, deterio-
rate rapidly with increasing uncertainty in image fluxes, underscoring the importance
of precise measurements and accurate lens models. For our forecasts, we assume the
deflectors in the lens sample do not exhibit complex morphologies, so we neglect sys-
tematic errors in their modeling. Omitting the additional signal from line of sight
halos, our constraints underestimate the true power of the method. Assuming cold
dark matter, for a low normalization, corresponding the destruction of all subhalos
within the host scale radius, we forecast 20 bounds on myy, (thermal relic mass) of
1075 (5.0), 10® (3.6), and 1085 (2.7) Mg, (keV) for flux errors of 2%, 4%, and 8%.
With a higher normalization, these constraints improve to 1072 (6.6), 107 (5.3), and
1078 (4.3) Mg (keV) with 120 systems. We are also able to measure the normalization
of the mass function, which has implications for baryonic feedback models and tidal
stripping.

Key words: [gravitational lensing: strong - cosmology: dark matter - galaxies: struc-
ture - methods: statistical]

1 INTRODUCTION Lovell et al. 2014a; Bose et al. 2016; Menci et al. 2016). Ther-
mal relics and sterile neutrinos represent two WDM candi-
dates (Kusenko 2009; Abazajian 2017), and under certain
assumptions produce similar mass functions. Self-interacting
dark matter alters the density profiles of individual subha-
los, producing cores rather than cusps in the center of halos
(Schneider et al. 2017; Vogelsberger et al. 2016; Kamada
et al. 2017).

Dark matter models make testable predictions regarding
the abundance and mass profiles of substructure in galactic
dark matter halos. In the standard ACDM picture, struc-
ture grows bottom-up at practically all length scales (Schnei-
der et al. 2013), resulting in a scale-free mass function for
subhalos (Springel et al. 2008; Gao et al. 2012; Fiacconi
et al. 2016), and density profiles fit by the Navarro Frenk
and White (NFW) profile (Navarro et al. 1997). In con-
trast, in warm dark matter (WDM) models, free stream-
ing washes out small density perturbations, resulting in a
paucity of structure below a certain scale, which depends
on the free streaming scale of the dark matter particle(s)
(Schneider et al. 2012; Pullen et al. 2014; Viel et al. 2013;

These alternative models to ACDM have gained trac-
tion, motivated by apparent failures of the ACDM picture
on small scales (see Bullock & Boylan-Kolchin 2017). For
example, by invoking WDM one explains the non-detection
of low-mass satellites in the Milky Way, the “missing satel-
lites problem” (Klypin et al. 1999), by reducing the expected
number of subhalos. In another example, rotation curves of
* gilmanda@ucla.edu satellite galaxies imply shallower-than-isothermal inner den-
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sity profiles (de Blok 2010), characteristic of the mass pro-
files associated with self interacting dark matter.

These apparent anomalies are based on observations of
luminous structure and rely on assumptions about the con-
nection between baryons and dark matter halos. Under dif-
ferent combinations of models for star formation and kine-
matic data in satellites, some small-scale challenges to the
ACDM picture can be resolved (e.g. Kim et al. 2017). Un-
fortunately, it is difficult to measure kinematics of low mass
galaxies owing to the small number of stars that can be used
for this purpose. This leads to large uncertainties in the in-
ferred halo masses and densities. Different models for tidal
disruption and baryonic feedback (Despali & Vegetti 2017;
Garrison-Kimmel et al. 2017), differing luminosity functions
for dark subhalos (Nierenberg et al. 2016), and large scatter
in stellar-mass-halo-mass relations below 108Mg (Munshi
et al. 2017) complicate constraints on the nature of dark
matter. An independent and direct probe, which does not
rely on assumptions regarding the physics of star formation
in low mass galaxies, is needed to disentangle the physics of
baryons and the nature of dark matter.

Gravitational lensing offers a direct probe of dark sub-
structure below halo masses of 103Mg. Lensing relates a set
of three observables - time delays, positions, and magnifica-
tions - to the gravitational potential along a path traversed
by light emitted by a background source. As the observables
depend only on the gravitational potential of the deflector
and the potential along the line of sight, lensing offers a tool
to study dark matter substructure directly, without relying
on baryons as tracers.

Various techniques employ strong lensing as a probe
of dark matter structure. When the light from a spatially
extended background source is warped by a foreground de-
flector into a highly magnified arc, substructure can distort
the arc. By simultaneously modeling the mass distribution
in the lens plane and reconstructing the luminosity distribu-
tion of the background source, one can infer the mass of a
perturber and constrain the subhalo mass function (Koop-
mans 2005; Vegetti et al. 2010; Vegetti et al. 2012, 2014; Li
et al. 2016; Hezaveh et al. 2016b; Birrer et al. 2017; Vegetti
et al. 2018).

Flux ratios in lensed quasars offer an alternative probe
of dark substructure (Mao & Schneider 1998; Metcalf &
Madau 2001; Dalal & Kochanek 2002; Chiba 2002). The
sensitivity of this observable derives from the compact size
of a quasar and the fact that lensing magnifications can be
perturbed by a subhalo whose deflection angle is comparable
to or larger than the source size (Dobler & Keeton 2006).
From a theoretical standpoint, several forecasting studies
(e.g. Xu et al. 2009, 2012; Graus et al. 2017) use N-body
simulations to anticipate the lensing signal from CDM sub-
structures. From an observational and lens modeling point
of view, given observed flux ratios, one can add a subhalo
to the lens model and vary its properties to infer the mass
(e.g., Fadely & Keeton 2012; MacLeod et al. 2013; Nieren-
berg et al. 2014) or rule out the presence of substructure near
the images (e.g., Nierenberg et al. 2017). This lens modeling
technique, and the direct detection of subhalos via gravita-
tional imaging, comprise a class of observations that yield
constraints on individual substructures.

Recently, authors have called attention to a potential
bias present in flux ratios, wherein the morphology of deflec-

tor in the lens plane produces flux ratio anomalies reminis-
cent of those induced by substructure. Gilman et al. (2017)
showed that realistic deflectors with a luminous mass com-
ponent drawn from HST images of nearby galaxies occasion-
ally produce flux ratio anomalies with respect to a simplified
smooth lens model. Hsueh et al. (2017a) performed a simi-
lar analysis with galaxies produced in the Illustris simulation
(Vogelsberger et al. 2014), and reached similar conclusions.
In two observed lenses, Hsueh et al. (2016b, 2017b) argued
that a disk component in the deflector can explain observed
flux ratio anomalies. These effects may contribute to fre-
quency of observed flux ratio anomalies in strong lenses,
which occur more frequently than one would expect in a
CDM scenario, as pointed out by Xu et al. (2015). Among
non-dark matter sources of flux ratio anomaly, microlensing
can also induce drastic fluctuations in image magnifications,
although this effect can be mitigated by using flux ratios
measured from the more spatially extended narrow-line re-
gion of a background quasar (Moustakas & Metcalf 2003;
Nierenberg et al. 2014, 2016).

In the context of dark matter, it is important to note
that models predict large ensembles of dark subhalos, which
could act together to affect a lensed image. In contrast to sin-
gle subhalo models, other methods attempt to probe the col-
lective impact of numerous perturbers whose individual ef-
fects are not statistically significant, but which together pro-
duce a measurable signal (Dalal & Kochanek 2002; Fadely &
Keeton 2012; Hezaveh et al. 2016a; Cyr-Racine et al. 2016;
Daylan et al. 2017; Chatterjee & Koopmans 2017; Birrer
et al. 2017). Since these methods do not require high sig-
nificance detections of individual perturbers, they extract
information from a larger area around Einstein rings.

In an example, Birrer et al. (2017) quantify substructure
in the lens RX J1131—1231 by modeling surface brightness
anomalies detected in HST imaging data. Through a forward
modeling approach that relies on generating an extensive
suite of realistic simulations, they are able to constrain mod-
els of dark matter statistically. They could rule out WDM
mass functions with thermal relics below the mass of 2 keV
at 20.

In this work, we present a statistical method that uti-
lizes the flux ratios from an ensemble of multiply imaged
quasars to distinguish between dark matter models. Our
technique takes as input data from a sample of strong lens
systems and a prescription for rendering substructure re-
alizations for a dark matter theory, and returns posterior
probability distributions for the parameters describing the
substructure population. We use the technique of Approx-
imate Bayesian Computing (ABC; Rubin 1984), also ap-
plied in Birrer et al. (2017), which enables an application
of Bayesian statistics to the problem of substructure lens-
ing. In our framework, we are able to efficiently explore
the parameter space spanned by dark matter models with
different predictions regarding the nature of substructure
without explicitly computing a likelihood function, which in
substructure lensing is a computationally and analytically
daunting task. ABC permits one to circumvent calculation
of formidable likelihoods through the use of summary statis-
tics, which quantify agreement between an observation and
data computed in a forward model. Our method also natu-
rally accommodates joint inference from multiple strong lens
systems. The method can be applied to any parameteriza-
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tion of dark substructure, provided one specifies the mass
function, spatial distribution, and density profile of individ-
ual subhalos. Since the method relies on flux ratio statistics
rendered in a forward model, accurate lens models and con-
trol over systematic errors in flux ratios are crucial for at-
taining robust constraints. Finally, by omitting line of sight
substructure that is expected to contribute significantly to
flux ratio anomalies (Chen et al. 2003; Inoue 2016; Despali
et al. 2017), we do not capture the full information content
of each lens, so our results can be interpreted as conservative
theoretical bounds.

We present the formalism of our method and illustrate
its general capabilities via a case study in which we dis-
tinguish between two simplified dark matter models. We
consider a subhalo mass function with variable normaliza-
tion and damping below a free-streaming scale, and provide
forecasts for the constraints afforded under different flux
precisions with up to 180 systems, which is a sample size
attainable with future surveys such as Euclid, LSST and
WFIRST (Oguri & Marshall 2010). With our forward mod-
eling framework, we forecast the possible constraints on a
WDM subhalo mass function using flux ratios, and quantify
how these constraints scale with the number of lenses, the
uncertainty in fluxes, and the overall normalization of the
mass function.

This paper is structured as follows. Section 2 poses the
problem of substructure lensing in a Bayesian framework
and reviews the basics of Approximate Bayesian Comput-
ing. In section 3, we describe our parameterization for the
subhalo mass function, our method for creating mock data
sets, and the procedure to compute posterior distributions
from the forward model. In Section 4, we examine how the
signal from different substructure models appears surfaces
as flux ratio anomalies, and provide forecasts for constraints
on the half-mode mass for under various levels of preci-
sion in image flux measurements. We use a cosmology with
Q= 0.3, 22 = 0.7 and h = 0.7. We use the software pack-
age lensmodel to solve the lens equation and fit smooth
models to lensing observables (Keeton 2011).

2 BAYESIAN INFERENCE ON THE
SUBHALO MASS FUNCTION

In this section we describe how we infer the parameters de-
scribing subhalo populations within a Bayesian framework,
and propose an Approximate Bayesian Computing (ABC)
algorithm to contend with the highly stochastic nature of
substructure lensing. Section 2.1 derives the expression for
the posterior distribution of dark matter model parameters
given a set of lensing observables. In Section 2.2, we briefly
review the technique of Approximate Bayesian Computing.

2.1 Connecting dark matter model parameters to
lensing observables

The observables from a strong lens system are image time
delays t, positions x, and fluxes f.! The data vector for

I To impose constraints, we actually use flux ratios in order to
divide out the unknown source flux.
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the nth lens can be written dn = {Xn, tn,fn}, and we rep-
resent the dataset for a sample of N lenses as set D =
{d1,d2,...,dn}.

Given a dark matter model with global properties de-
scribed by a set of hyper-parameters qsub, the desired pos-
terior distribution for the parameters qsup is given by

P (Qsun|D) o< L (D | qsub) 7 (qsun) (1
where 7 (Qsub) is the prior probability for the parameters. In
practice, qsub describes the shape and normalization of the
subhalo mass function, the spatial distribution of subhalos,
the density profile of subhalos, etc.

Since the data from each lens is independent, the joint
likelihood in Equation 1 can be written as a product of the
likelihoods for each lens

N
£(D | qun) = [] £(da lau). (2)

We specify the model for each lens as a combination of
two mass components. The first is a macromodel, which ac-
counts for most of the mass of the deflector and its environ-
ment. For the nth lens, we denote this component Qac(n)-
The second component is the substructure population de-
scribed by by qsub. With these definitions, the components
of Qmac(n) are nuisance parameters which are marginalized
out of the posterior

L (dn | qsub) X /p (dn | Qmac(n)» qsub) ™ (qmac(n)) deac(n)a

(3)
where we have assumed that the macromodel qmac(n) is in-
dependent of the dark matter parameters qsub, and intro-
duce the prior 7 (qmac(n)). The assumption that qmac and
Qsub are independent is not formally correct, as parameters
such as the Einstein radius may be informative of the total
halo mass and the normalization of subhalo mass function.
Working with real datasets, this information would need to
be incorporated in the analysis. For the purpose of forecast-
ing the possible constraints on qsun, we examine the case
of two fixed normalizations that span the expected range of
substructure abundance for the halo masses implied by the
distribution of Einstein radii in our mock data (see Section
3). As we will demonstrate in Section 4, the information
content of each lens scales with the overall normalization,
such that the bounds on a sample of lenses with diverse ha-
los masses will be bound by the two limiting cases of the
overall normalization we analyze.

Dark matter models do not directly map qsup to a set
of lensing observables. Rather, qsu, specifies statistical dis-
tributions for the masses, positions, density profiles, etc. of
the subhalos. Defining a vector mq,1, that specifies a specific
substructure realization, the likelihood becomes

L (dn | gsub) o /E (dn | msub7qmac(n))p(msub|QSub)

X7 (Gmac(n)) AMsubdGmacn)  (4)

To make progress in evaluating Equation 4, we note
that the astrometric and time delay perturbations from
substructure are generally small and can be partially ab-
sorbed by small adjustments in qmac(,,>.2 The flux ratios,

2 Positions and time delays have some ability to probe substruc-
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Table 1. Definitions and descriptions for parameters relevant to Equation 7

parameter definition description

dn data from the nth lens positions, time delays, flux ratios

dsub vector of hyper-parameters describing (Ao, mnm), spatial distribution

the global subhalo mass function

Ao normalization of subhalo mass function 1% substructure mass fraction at Rgj, ~ Ap = 2 X 108M®’1
mass range 108 < Magp < 1010 [Mg)]

Mhm half-mode mass number of subhalos below my,, is strongly suppressed

mg,p defines parameters for an individual subhalo positions, masses, density profiles

substructure realization
.. () maximum-likelihood macromodel for nth lens fits nth positions, time delays in presence of substructure
fn* flux ratios computed in the forward model for nth lens computed with q * ) as opposed to

mac(n
true mass distribution

on the other hand, are determined by the second deriva-
tive of the gravitational potential near an image, thus the
effects of substructure are difficult to reproduce by ad-
justments in Qmac(n). With this in mind, we write im-
age positions and time delays separately from the flux
ratios, writing d, = {dtx<n),fn}, where d¢xm) denotes
the positions and time delays {t,x}. To relate qsup to
d¢x(n) and fn, our strategy is to forward model simu-
lated data sets of image positions, time delays, and fluxes
{dt;m) (qmac(n), msub) £ (qmac(n), msub) }, which depend
on gsub through the realizations of substructure mg,,. The
likelihood of observing d, is therefore

L (dn | Mgub, qmac(n)) =L (dtx(n) ‘dt;c(n)) L (fn |fn/) . (5)

Next, we note that most choices of qumac(n), With a wide prior
distribution, yield the incorrect positions and time delays,
and therefore do not contribute substantially to the integral
in Equation 4. We therefore approximate the marginaliza-
tion over the macromodel parameters by fixing the macro-
model in a certain configuration q,;,(»), which fits the image
positions and time delays. This step avoids sampling the po-
tentially vast parameter space of qmac. Explicitly, qnfac(n) is
defined by the relation

dix(n) = dex(n) (Amac(n)> Msub) - (6)

The procedure of re-optimizing the macromodel was also
employed in Dalal & Kochanek (2002).

By evaluating the flux ratios only with respect to
qnfac(n), we effectively take a derivative, while formally an
integral is required to marginalize over gmac. The procedure
of optimizing, rather than marginalizing, the macromodel
will yield a good approximation to the true likelihood as
long as the image fluxes do not vary significantly over the
range of macromodel parameters space for which the im-
age positions and time delays are fit. We verify that the

ture (Chen et al. 2007; Keeton & Moustakas 2009), but flux ratios
experience stronger perturbations that are our focus here.

variation in image fluxes for different macromodel configu-
rations that fit the observed image positions is smaller that
the typical 5 — 8% variations derived empirically in (Gilman
et al. 2017) by fitting smooth lens models to realistic de-
flectors. ® In macromodel parameterizations more compli-
cated than power-law ellipsoids that possess additional de-
grees of freedom, the fluxes may vary substantially even for
configurations of qmac with fixed image positions, and the
macromodel may be better able to absorb flux perturba-
tions from substructure. Stellar disks fall into this category
(Hsueh et al. 2016b; Gilman et al. 2017), as do models with
extreme angular structures (Congdon & Keeton 2005), but
the former are unlikely to be present in a sample of massive
elliptical deflectors, and the latter are unphysical. If exter-
nal sources of error were reduced such that the dominant
source of flux uncertainty stemmed from marginalizing the
macromodel, one would need to explicitly do the marginal-
ization. The procedure outlined here should be amended to
sample prior distributions of qsub and gmac constructed on
a lens-by-lens basis when working with real data, but for
the purpose of computational expediency and making ap-
proximate forecast statements we leave this level of detail
for future work.

After replacing the integral over Qmac With Qyacn)s
Equation 4 becomes

L (dﬂlqsub) X /[' (fl’l |fn*) p (msuby qsub) dmgyy, (7)

where we introduce the notation fn* = £/ (Qurac(n)> Msub)-
The parameters relevant to Equation 7 are summarized in
Table 1.

3 We find that constraining the magnitude of the external
shear, external shear angle, axis ratio and position angle to
0.01,5°,0.05,5°, as is possible with detailed modeling (e.g. Wong
et al. 2017), is sufficient to ensure the flux variations associated
with marginalizing the macromodel is below 4% per image. We
also verify that uncertainty associated with the power-law slope
of the main deflector does not incur a serious bias in our forecasts
(see Appendix E).
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Probing the nature of dark matter by forward modeling flux ratios in strong gravitational lenses 5

At this step, a Markov Chain Monte Carlo integration
scheme would be inefficient, as the flux ratios corresponding
to the overwhelming majority of realizations mgy, would not
match those observed in the data. Rather than computing
Equation 7 directly, we employ a computational method that
allows us to efficiently explore the parameter space spanned
by qsub.

2.2 Approximate Bayesian Computing

Approximate Bayesian Computing (ABC) is a computa-
tional algorithm rooted in Bayesian statistics that circum-
vents the direct calculation of intractable likelihoods, and
enables inferences from simulated data sets computed in a
forward model. For details in addition to those presented in
this section, see e.g. Turner & Zandt (2012); Csillry et al.
(2010); Lintusaari et al. (2017). In recent years, ABC has
seen applications across a wide range of problems in cos-
mology and astrophysics (Weyant et al. 2013; Robin et al.
2014; Hahn et al. 2017; Birrer et al. 2017; Herbel et al. 2017).

In an implementation of ABC, one draws samples from
a prior probability distribution, creates a forward model of
simulated data from the samples, compresses the data sets
into summary statistics (optional, but often necessary to
keep computation costs low), and accepts or rejects the sam-
ples based on the similarity of the simulated to the observed
data. An implementation of the algorithm therefore proceeds
as follows:

1. Sample from a set of model parameters 6.

2. From the samples 6, forward-model a set of simulated
data d’.

3. The data vector d’ is often multi-dimensional, but in
many cases the relevant information that will discriminate
between different parameters 6 is contained in only a subset
of the data. To reduce the dimensions of the problem, intro-
duce the summary statistics S(d’) and S(d), which compress
the relevant information contained in d’ and d.

4. Introduce a distance metric R (S(d),S(d’)) - for in-
stance, the Euclidean distance between the summary statis-
tics in N-dimensions - and accept the proposition 6 under
the requirement

R(S(d'), S(d)) < e (8)

for some tolerance e.

5. Repeat steps [1-4] until the distribution of accepted
samples is stable to changes in the total number of sam-
ples computed, and the total number of samples retained in
the posterior.

Formally, when implementing ABC one obtains samples
from the posterior density

p(AR(d’,d) <¢), 9)
with the property
p(0]d) = elimo [p(OIR(d',d) <¢€)]. (10)

Thus, assuming the summary statistic contains the infor-
mation necessary to distinguish between different models,
the distribution of accepted samples from 6 converges to the
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Figure 1. The subhalo mass function of Equation 13 which we
use to generate substructure realizations. In the figure we vary
the half-mode mass my,, with fixed normalization Ag = 1.2 X
108Mg ~!. We generate subhalo populations in such a way that
the amplitude of a CDM-like and a WDM-like mass functions are
identical for masses m > my,, rendering subhalos in projection
to a radius of 18.6 kpc.

true posterior as € tends to zero. Put another way, the rela-
tive number of accepted samples between multiple compet-
ing models reflects the relative probabilities of these models
as € — 0. In practice, one must compromise between an
€ large enough to ensure timely convergence of the ABC
procedure, and a value stringent enough to ensure the dis-
tribution of accepted samples is representative of the true
posterior.

Crucial steps in the implementation of ABC include the
choice of summary statistic S(d), and the acceptance crite-
rion €. A summary statistic which erodes the discriminating
information contained in the data will not converge to the
true posterior. In a similar vein, an acceptance threshold too
lax will result in a posterior distribution too broad, with the
extreme limit of accepting all samples from 6 and return-
ing the prior. For this reason, assuming the algorithm has
converged, the joint posterior distribution for the model pa-
rameters approximated in ABC will always be conservative,
in the sense that it contains more volume than the true pos-
terior.

In the context of substructure lensing, we compute a
summary statistic for each realization based on the observed
flux ratios, or the fluxes of three images normalized by the
flux of the fourth. The summary statistic we use based on
the observed flux ratios f,, and the forward model flux ratios
fn* is given by

S (£n, £a*) =

i (f"“) - fnfz‘))Q’ (11)

where the summation runs over the three flux ratios of the
nth lens, making use of the full information contained in
these data. For an example of results using a different sum-
mary statistic, see Appendix C.
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3 SIMULATION SETUP

In this section, we describe our lensing simulations, including
the ingredients necessary to render substructure realizations
and how we implement ABC to constrain the subhalo mass
function. Section 3.1 describes our prescription for model-
ing substructure populations for both cold and warm dark
matter scenarios. Section 3.2 describes the mock data sets
we use in our simulations, including lens and source redshift
configurations. In section 3.3, we explain how we use the in-
formation contained in the forward model within the ABC
framework to make inferences on qsub-

3.1 Subhalo density profile, mass definition, and
mass function

When quoting subhalo masses, we refer to the mass inside
a sphere of radius 7200, M200. We model subhalos as tidally
truncated NFW profiles (Baltz et al. 2009)

2

p(r) = —L° 4

=P T 12
x(1+a:)2$2+7'2 (12)

where x = i, T = :—i, r¢ is the truncation radius and 75
is a scale radius. * The finite, truncated mass can differ
from Moo to a varying degree depending on the truncation
radius and the concentration, but the effect on image flux
ratios is primarily determined by the central density, with
the truncation playing a sub-dominant role provided ¢ > rs.

We render subhalos with Maoo (denoted ms) between
10° < 2= < 10", drawing from a subhalo mass function
written as a broken power law,

dedm chdm TMhm -
= 14 hm
dms dm s

me\ 19 e 1
AO(MQ) (1+ ms> , (13)

a functional form which resembles the subhalo mass func-
tion of a WDM particle (Schneider et al. 2012; Lovell et al.
2014b). We restrict our analysis to this specific parameter-
ization, and do not attempt to constrain the exponent -1.3
appearing in Equation 13 or the -1.9 slope of the CDM func-
tion. More complex scenarios, such as multi-component dark
matter in which only a fraction of the dark matter is warm,
will require a more careful treatment of the parameterization
(see Vegetti et al. 2018). For reference, Ap ~ 2 x 10¥My ™"
corresponds to a convergence in substructure of 0.005, or a
mass fraction of 1% at the Einstein radius (for more details
see Appendix A).

The parameter mum, the half-mode mass, denotes the
mass scale at which the WDM power spectrum is damped
with respect the CDM case by one-half. Assuming a thermal
relic particle of mass m comprises the dark matter, one can
establish scaling relation mpm, o m 333 (Schneider et al.
2012). We normalize this relation to the 2 x 10*Mgh™' ~

4 While experimenting with Pseudo-Jaffe profiles, we find that
our results depend sensitively on how convergence is partitioned
between the truncation radius and the central density. Since the
central density dominates the flux ratio signal, different choices
for the truncation and central density normalization yield signif-
icantly different results.

3.3keV result of Viel et al. (2013), and translate between the
two parameters as

o/ m \—333 1
10 (@) Moh ™. (14)

In our simulations, we convert to physical masses in the
lens plane using h = 0.7. With this metric, the 2 keV result
from Birrer et al. (2017) corresponds to mum = 108‘8M@.
As shown in Figure 1, we normalize the mass function such
that mpm, does not affect the amplitude at scales ms >
Mum, yielding the same numbers of very massive subhalos,
on average.

We combine this mass definition with a form for the
mass-concentration relation for warm dark matter halos pre-
sented by Bose et al. (2016) (see also Maccio et al. 2008;
Ludlow et al. 2016)

m —0.098 mn —0.17
c(ms) =6 (M) (1+60 mm) . (15)

which results in lower central densities at a given mass for
warm dark matter models. The relation between concentra-
tion and mym, reflects the later collapse epoch of small WDM
subhalos, which prevents them from building up their con-
centrations over time. °

Given an Moo drawn from the mass function in Equa-
tion 13, and a concentration from Equation 15, we compute
the normalization po and the scale radius r,. To obtain the
truncation radius, and the lensing properties associated with
the mass profile in Equation 12, we generate subhalos in a
3-D sphere of radius 250 kpc (see Appendex A for details
regarding the spatial distribution). Given 734, we compute
the truncation radius (Cyr-Racine et al. 2016)

Mhm (M) =

2 3
MsT3q
S T 16
" (QECritREin) ’ (16)

where Xt is the critical density and where Rgin ~ 1” is a
typical Einstein radius.

3.2 Mock Data Sets

We consider three subhalo mass functions: a WDM mass
function with mymof 108M@ and normalization of 1()8M@_17
and two CDM mass functions with normalizations of 8 x
10"Me ! and 40 x 10"Mg !, The two normalizations in the
CDM simulations correspond to projected mass fractions at
the Einstein radius of 0.4% and 2%, respectively and bracket
a plausible range than spans the theoretical uncertainties as-
sociated with the connection to halo mass (e.g. Jiang & van
den Bosch 2017) and the tidal destruction of subhalos by
the host galaxy (Despali & Vegetti 2017; Garrison-Kimmel
et al. 2017). The low normalization case corresponds to the
scenario in which all subhalos inside the halo NFW scale
radius are destroyed, while the latter corresponds to no de-
struction (see the discussion in Appendix A for details on
obtaining these numbers).

When rendering subhalos to create mock data sets, we

5 We do not model the scatter in the mass-concentration relation.
In a careful measurement, this feature should be included.
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Probing the nature of dark matter by forward modeling fluz ratios in strong gravitational lenses 7

solve the lens equation and ray trace with every subhalo be-
tween 10° and 10'°Mg included in the computation. We dis-
tribute substructures over an SIE-+shear macromodel with
randomly oriented shear and ellipticity. Ellipticity (shear)
is sampled from a Gaussian with mean 0.2 (0.05) and stan-
dard deviation 0.05 (0.01), and Einstein radii sampled from
a Guassian with mean 1” and variance 0.2”. We randomly
sample source positions to produce equal numbers of cusp,
fold and cross configurations. In Appendix B, we compare
the sensitivities of the different image configurations by us-
ing each on separately to infer qsu,. We take the deflector
to lie at a typical redshift z4 = 0.5, and put the source at
zs = 1.5. The source in both the data and forward model is
parameterized by a circular Gaussian with width of 10 pc,
or 1.2 m.a.s. To check to what degree this source size plays
a role in our analysis, using source sizes as large as 30 pc we
generate distributions of thousands of flux ratios from iden-
tical mass functions, and verify the distributions are nearly
identical.

Even in the presence of identical subhalo populations,
the observed and simulated flux ratios will differ due to the
underlying macromodel and measurement errors. Examin-
ing mock lens systems with luminous mass components from
galaxies in the Virgo and Coma clusters, in Gilman et al.
(2017) we found flux ratio anomalies in mock deflectors com-
posed of a NFW halo with a galaxy at its center, with re-
spect to an SIE+shear model. Ray tracing through galaxies
formed in the Illustris simulations, the authors of Hsueh
et al. (2017a) also conclude that the incorrect macromodel
can contribute to a measured flux ratio anomaly.

To ensure that modest deviations away from an
isothermal-ellipsoid macromodel parameterization does not
bias the precision of our inference on qsup, we have simu-
lated mock lenses with with power law slopes drawn from a
distribution offset from isothermal and modeled them with
SIE profiles in the forward model. Encouragingly, the preci-
sion of our forecast is not degraded when subjected to this
source of error. See Appendix E for more details regarding
this test. In practice, systematic error associated with the
macromodel can be dealt with by sampling additional pa-
rameters in the forward model. For instance, macromodel
deviations around an isothermal profile can be handled by
simultaneously sampling the power law slope and qgsup. °

Even for samples of morphologically simple deflectors
(i.e. no disks or other prominent morphological features),
we expect deviations in flux ratios at the percent level from
measurement errors, and residual uncertainties in the image
fluxes caused by the parameterization of the macromodel.
To incorporate these uncertainties in our simulations, we
add perturbations to the fluxes in our mock data sets. We
model flux anomalies as Gaussian, and perturb each flux F’
as

F — F46F, (17)
SF = N(0,0xF),

examining specific cases of § = 0.02 6 = 0.04 and § = 0.08,
which correspond to flux errors of 2,4 and 8%. Conceptu-

6 In principle, this approach could be extended in the forward
modeling framework to more complex morphological features on
a lens by lens basis.
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ally, one can interpret this operation as erasing information
at the § level, which enables one to track the sensitivity of
lensing constraints on small sources of flux perturbations.
These perturbations lump together all deviations in image
fluxes away from those of an SIE+4shear model fit to the data
that are not caused by dark substructure, including mea-
surement errors and the baryonic structure of the deflector,
and bracket the range of errors one excepts for morphologi-
cally simple deflectors. These perturbations are empirically
motivated by the flux residuals we encounter in (Gilman
et al. 2017) fitting smooth lens models to lenses build from
high resolution images of galaxies in the nearby Virgo clus-
ter. We reiterate that extreme morphological features like
stellar disks may produce larger systematic perturbations
than those we are mimicking with the ¢ perturbations, but
these prominent features are unlikely to be present in mas-
sive ellipticals (Auger et al. 2010; Sonnenfeld et al. 2013). 7
Furthermore, deflectors likely to contain disks can be read-
ily identified based on velocity dispersion and stellar mass,
in addition to high resolution imaging. Since we add these
flux errors independent of perturbations to the image posi-
tions and time delays, we assume that the macromodel and
measurement-error induced flux ratio anomalies are inde-
pendent from astrometric and time delay anomalies, a con-
servative choice as correlations provide additional informa-
tion that can be used to identify these features in the data.
For reference, current techniques using measurements
of narrow-line fluxes achieve precision of roughly 4 — 6%
(Nierenberg et al. 2014, 2017). The 8% errors can therefore
be interpreted as pessimistic case, with errors induced by the
use of a simplified macromodel compounding measurement
errors, while 2% simulates an optimistic future precision.
The 4% curve serves to illustrate how the bounds evolve
between these two extremes. Finally, we add measurement
errors of 3 m.a.s. to the mock image positions, typical of
astrometric uncertainties with current instruments.

3.3 Constraining the subhalo mass function

In our simulations, the subhalo mass function is defined by
the free parameters Ao and mnm; our goal is to relate these
parameters to the observed data from N simulated lenses,
D. To do so, for each Ag and mpm, we render =~ 2000 sub-
structure realizations mg,, per proposed set of parameters
Qsub, sampling the prior uniformly in Ay and uniformly in
log,, (Mum), yielding in ~ 10° realizations per lens. In Ap-
pendix D, we perform tests to verify convergence with this
number of samples. For each realization, we use lensmodel
to re-optimize the macromodel parameters qmac(n) that sat-
isfy Equation 6, and ray-trace through a grid sampled at
0.4 m.a.s. per pixel to obtain image magnifications and flux
ratios with an extended background source modeled as a cir-
cular Gaussian with a full-width at half-maximum of 10 pc.
When re-optimizing the macromodel, we assume uncertain-
ties of 3 m.a.s. and 2 days on positions and time delays. We
use flux constraints weak enough that they do not impact

7 In fact, studies of massive elliptical lensing galaxies find their
mass profiles are well modeled by nearly isothermal power law
ellipsoids (Sonnenfeld et al. 2015; Shankar et al. 2017; Gilman
et al. 2017).
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Figure 2.
modeling analysis. We use one realization of substructure to cre-
ate mock data, as shown in the panel outlined in green (left).

This figure presents an illustration of the forward

Lensed images (blue) have sizes corresponding to their flux, while
subhalos (black) have sizes corresponding to Magg. We compute
flux ratios with respect to the middle image in the triplet; fi
denotes the image in the upper right, while fo and f3 denote
images in the left and right of the triplet, respectively. We then
discriminate between different parameters describing the subhalo
mass function by drawing many substructure realizations from
proposal mass functions, three examples of which are shown here
(panels outlined in black). For each realization we re-optimize the
macromodel and compute the summary statistic S (fn, fn*) from
Equation 11, which we use to accept or reject the realization and
the parameters describing the mass function it came from. The
procedure visualized here is repeatedly applied in the full analysis
shown in Figure 3.

the re-optimization of the macromodel, allowing us to im-
pose different flux perturbations in our mock data sets after
running the simulation.

To deal with the flux errors we add to our mock data
sets, we add perturbations of the same form as Equation 17
to the forward model fluxes. With the perturbed fluxes in
hand, we evaluate the statistic in Equation 11. After com-
puting the summary statistics, each proposal of qsup in each
of the N lenses has a set metric distances associated with
it. At this juncture, we apply a rejection criterion to select
the most probable models, including the 1,800 samples with
smallest corresponding summary statistics. In principle, be-
cause the systems are statistically independent, we could
apply this criteria to each one individually and multiply the
resulting distributions. Practically, however, multiplying a
large number of probability densities together computed on
a discretely sampled space is numerically unstable. To han-
dle these numerical issues, we first reduce the dimensional-
ity adding the summary statistics for pairs of lenses. In the
limit of an infinite number of realizations and infinitely strin-
gent acceptance criteria, this is equivalent to multiplying the
likelihoods. To each of the resulting % probability densi-
ties, we apply a Gaussian Kernel Density Estimator (KDE),
and multiply them. We verify that, with these choices, our

N o .
(Ao, Mim) = (2 x 108M1, 107M) i =0.22, £,*=0.56, £#=0.52

L i e
f*20.27, £*20.98, £*20.58] (a0, mym) = (1.7 x 10°M2, 108Mo)

Forward Model

d, = (dtx(n)l fn)

Asub /

| add
astrometric
generate errors
realization \
Mgyp 0
\ / model
lensmodel f, parameters
+
ray tracing observables
| operations
fy computed
quantities
Add simulated  Add flux
errors &f perturbations
to data
l ,
f' +6f f, + 6f

N/

compute summary
statistics

S (f., )

Figure 3. A schematic overview of the forward model used to
compare flux ratios in the simulated data sets to flux ratios de-
rived from substructure realizations drawn from qgyp.

algorithm satisfies a rudimentary test of convergence (see
Appendix D).

In summary: the forward model f,* contains the infor-
mation needed to discriminate between different dark mat-
ter models through the realizations mgy,, drawn from the
hyper-parameters Qsub. For any parameterization of qsub,
Equation 7 relates the flux ratios f, (qn:ac(n), mgyp) to the
observed data by evaluating the flux ratios at fixed image
positions, enforced by first re-optimizing the macromodel
by fitting a smooth lens model to the data d¢x(n), and then
computing the flux ratios £, * for this lens model in the pres-
ence of the substructure realization mgyp.

We account for flux ratio anomalies caused by measure-
ment errors, and by the imperfect SIE+shear macromodel
fit to realistic deflectors, by adding random Gaussian per-
turbations to the forward model fluxes. We then compute
a summary statistic which reflects the degree to which the
observed flux ratios match those computed in the forward
model. The final posterior probability distribution is com-
posed of the set samples from the prior 7 (qsub) Whose corre-
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Probing the nature of dark matter by forward modeling fluz ratios in strong gravitational lenses 9

sponding realizations mg,1, yield summary statistics closest
to those computed from the flux ratios in the observed data.
To keep computational costs low, in the forward model we
only render substructures below masses of 107°Mg if they
lie within 0.5 arcseconds of an image. All higher mass sub-
halos are included regardless of position.

4 RESULTS

Based on the method we outlined in the previous two sec-
tions, we are able to quantify the effect of substructure on
image flux ratios, and forecast the constraining power of this
method. We analyze three scenarios: a CDM mass function
with a mass fraction in substructure of 0.4% substructure at
the Einstein radius 4 = 8 x 107M51), a CDM mass func-
tion with a mass fraction in substructure of 2% at the Ein-
stein radius (Ao = 4 x 10°M "), and a WDM mass function
with a mass fraction in substructure of 0.5% substructure at
the Einstein radius (Ao = 10°M") and a half-mode mass
of 108M¢ corresponding to a 3.6 keV thermal relic. ® We
begin in Section 4.1 by discussing how variations in the nor-
malization and half-mode mass impact distributions of flux
ratios. In 4.2, we show the results of simulations in which
the mock data sets are free from errors; these simulations
serve to determine the constraints achievable with the best
possible data. In 4.3, we add measurement errors and un-
certainties to the fluxes in the mock data sets, account for
them in the forward model, and quantify their effect on ones
inference of qsub.

4.1 Flux ratio signal from structure in the lens
plane

In Figure 4, we plot the cumulative distribution of flux ra-
tio anomalies for 10,000 substructure realizations. Several
trends emerge which help to understand the signal coming
from substructure in image flux ratios.

If we consider modest anomalies whose strength is <
60% (summed in quadrature), we see that the normalization
and half-mode mass both affect the frequency of anomalies.
This suggests a degeneracy between the two mass function
parameters, which indeed surfaces in a joint inference. The
tails of the distributions, shown in the lower panel of Fig-
ure 4, tell a different story: the curves behave similarly for
anomalies whose strength is > 140% (summed in quadra-
ture), except for the most extreme WDM case (shown in ma-
genta). Together, these results suggest that the most massive
substructures, which survive the free-streaming cutoff and
are present in the black, blue, grey, and red curves, are re-
sponsible for the largest flux ratio anomalies. The frequency
of flux ratio anomalies from the model with muym = 1091\/[@
suggests that substructures with masses between 10" M, and
10°Mg dominate the lensing cross section for the largest flux
ratio anomalies, while the cross section for small flux ratio
anomalies is dominated by subhalos of mass < 10" M.

8 Due to the demanding computational resources required per
lens in the forward modeling procedure, we limit our present anal-
ysis to these cases.
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Figure 4. Cumulative distributions of flux ratio anomalies
summed in quadrature for different subhalo mass functions with
varying normalization (grey, black), and identical normalizations
but varying myy, (black, blue, red, magenta). The lower panel
shows a zoom-in of the long, low probability tail of the distribu-
tions. Models with higher normalization (black vs. grey) produce
more frequent flux ratio anomalies. Models with high my,,;, pro-
duce less frequent anomalies than the black curve with my,,, =0
for flux ratio anomalies < 1.4.

4.2 Inference on subhalo mass function with
idealized data sets

Before adding simulated errors to the measured flux ratios,
as will be present in a real sample of lenses, we first per-
form the inference on data sets where the flux ratios in the
data and the forward model are un-perturbed. Effectively,
in these simulations, the only unknowns are the properties
of the underlying subhalo mass function, as the macromodel
in both the data and the forward model is the same. They
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Figure 5. (Top) Joint posterior distribution for data with in-
put (Ao, mnm) = (1.04 x 108M@_1,108M@), marked by red
lines. The closing of the 1o contour from the bottom, ruling out
CDM mass functions at 20, demonstrates the sensitivity of the
flux ratios, and this method, for probing substructure on scales
Magp ~ 108-°Mg. (Bottom) Marginalized constraints on myy,.
The 20 bounds correspond to 107M@ < Mpm < 108'7M@.

demonstrate the best one could hope to do by modeling sub-
halos only in the lens plane.

First, Figure 5 shows the joint posterior distribution for
a simulated data set of 30 lenses with qsub = (Ao, Mhm) =
(10.4 x 10"Mg 1, 108M@). This idealized calculation pro-
vides a useful limit to the sensitivity of the flux ratio
anomaly method. The closing of the 20 contour around
10%°Mg demonstrates that the signal in flux ratios is sen-
sitive to subhalos of this mass. On their own, these objects
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(0.9) no flux : EEN 20 lenses
errors : B 60 lenses
10915 I EE 180 lenses
—~ (1.6) 1
;' .............. RXJ-1131 : ......................................
()} 1
= 1083 !
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10745 | I
Z (5.4) i
c 1
£ 1
= 1086
(9.6)]
10575
(17.3) o 3.4 69 104 139  17.3
Ao [M(;l] x 107
Figure 6. Posterior distribution for a CDM-like mass

function with input mass function parameters (Ao, mpm) =
(8.2 X 107M@’17 0). In this idealized simulation, we do not add
measurement errors or any other perturbations to fluxes in the
simulated data sets. Effectively, the only unknown variables are
Ao and mp,, which describe the subhalo mass function. In such
an idealized case, flux ratios probe scales below 106-°M), ruling
out WDM models with myy, > 106TMg and my, > 1054Mg at
1 and 20, respectively. For reference, grey solid and dashed lines
show the 20 bounds on a WDM particle mass from Viel et al.
(2013) and Birrer et al. (2017), respectively.

produce a very weak lensing signal, but they create collective
effects that should make it possible to distinguish between
a CDM scenario in which they are abundant and a WDM
scenario in which their numbers are depleted. In thie case
shown here, the 20 bounds on the half-mode mass are are
10"Mg < mam < 108"Mg, which correspond to bounds on
the WDM particle mass of 7.3 and 2.3 keV, respectively.

In a second simulation, we use a data set composed of
180 systems with an input mass function with (Ao, mnm) =
(8.2 x 10"M ', 0). Figure 6 shows the joint posterior dis-
tribution on this data set as the number of lenses is in-
creased. We interpret the 20 bound of 10%*Mg as the best
one could do with 180 systems. ° As we show in the next
section, these bounds weaken significantly under flux ratio
errors of 2%, 4% and 8%, which mimic the signal in flux
ratios produced by the smallest subhalos, or by subhalos far
from an image.

4.3 Inference on subhalo mass function with
simulated uncertainties

In this Subsection we demonstrate the effect of flux errors
on our inference.
We start by using the the same data drawn from the

9 In each of the simulations with mock data sets containing CDM
mass functions, we only quote the upper bound because the 20
lower bound is set by the limits of the prior assigned to myy,.
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Figure 7. Similar to Figure 6, but in this case the fluxes in
the mock data sets receive 4% and 8% uncorrelated Gaussian
errors. On their own, these errors look like substructure, biasing
the inference to models with more subhalos. However, we are able
to account for this uncertainty by introducing perturbations to
the fluxes in the forward model that match those applied to the
mock data. Adding noise to the fluxes washes out the signal from
the smallest subhalos, and the 20 constraining power on my,, is
diminished by over an order of magnitude. This figure shows the
result of a single draw of Gaussian errors in the fluxes. In Figure
9, we compute 20 bounds on my;, averaged over many draws of
these errors.

low subhalo mass normalization scenario as is plotted in
Figure 6. We add flux ratio errors of 4 and 8 percent to
the data, and add errors of the same form to the forward
model. Random flux errors applied to the data and forward
model weaken the constraint on Ag by a factor of ~ 2 and
on Mnm over an order of magnitude, as shown in Figure 7.
This is in part due to the loss of signal from subhalos be-
low masses 103Mg. The 20 posterior probability contours
slope upwards, mirroring the degeneracy seen in Figure 5.
We also explore the effect of flux errors in the case of a higher
normalization (Figure 8). A higher normalization results in
more frequent high-significance flux perturbations from sub-
structure, which translates to stronger constraints on mnm
for a fixed number of lenses, and for fixed flux uncertainties.

In the case of low normalization, the inference with 4%
errors rules out models with no substructure and very warm
mass functions, but with this specific realization of flux er-
rors applied to the data does not quite surpass the bounds
set by Viel et al. (2013) with the Lyman-« forest. If more
subhalos survive in the lens plane than the most extreme
models for tidal stripping suggest, the constraints on the free
streaming length improve to &~ 5.5 keV, as shown in Figure
8. Of course neither of these scenarios incorporate the boost
to the overall normalization which will comes from line of
sight structure, so the low normalization case may be seen
as a lower limit on the signal we expect. In a future paper
we will consider the effects of this additional signal.

We note that our method can robustly distinguish be-
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Figure 8. Similar to Figure 7, but an inference performed on a
dataset with a subhalo mass function normalization correspond-
ing to the expected mass fraction in substructure if there is no
tidal disruption of subhalos within the host scale radius (see Ap-
pendix A). The higher abundance of substructures in this sce-
nario results in a higher probability of observing flux perturbation
larger than the effective detection threshold, which is determined
by the precision of the image fluxes. Neither the high nor low
normalization scenarios includes the expected boost from line of
sight structure which we will consider in a future work.

tween the two normalization scenarios even in the case of
8% flux errors. This is important as it indicates that we are
able to measure the difference between WDM and a high
normalization and CDM and a low normalization. This can
potentially provide useful input to simulations of tidal dis-
ruption in massive halos, although the signal from the lens
plane will be somewhat diminished by the boost from line-
of-sight structure.

Figures 7 and 8 each show one realization of flux per-
turbations applied to the data. In Figure 9, we average over
many realizations of flux perturbations to properly account
for the constraints possible from N lenses. Stepping through
samples of N lenses in increments of 20, we compute 200
bootstraps for each sample, and repeat this procedure for
errors of 2%, 4%, and 8%. The resulting curves in reflect
a compromise between more precise flux measurements and
increasing the lens sample size. Both options improve the
constraints afforded by image flux ratios on the subhalo
mass function, but increasing the flux precision by better
handling systematic errors in the lens modeling and by more
accurate measurements results yields better marginal gains.
The curves do not appear to level off, suggesting that these
bounds may improve by including more lenses in the infer-
ence, but without simulating more systems it is difficult to
make definitive statements for the regime N > 180. The
normalization is also observed to play a key role, as it effec-
tively boosts the signal to noise ratio in the data and enables
measurements more robust to deviations in the fluxes at the
percent level.
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Figure 9. Curves show the dependence of the 20 bounds on
Mum, and the mass m of a corresponding thermal relic dark mat-
ter particle, as a function of the number of lenses. For each plotted
point, we randomly sample different combinations of N lenses,
each with a random draw of flux errors of 2, 4, and 8 percent.
We iterate this procedure 200 times, and compute the mean of
the two sigma bounds over the 200 iterations . With 180 lenses,
the 20 bound on My, is 106'4M@, 107'5M@, 103Mg), 108‘4M@ for
fluxes with errors controlled at 0%, 2%, 4%, and 8%, respectively.
For the higher normalization case, (dotted curves) the signal to
noise ratio in the data is higher, allowing tighter constraints for a
fixed sample size. For reference, horizontal lines show bounds on
the mass of a thermal from the Lyman-a forest (Viel et al. 2013)
and an analysis of the strong lens RXJ-1131 (Birrer et al. 2017).

Conceptually, one can interpret the dependence of the
20 bounds on different flux errors 0 F' as tracers of the prob-
ability distribution p (6 F|mgyp ). Supposing that mg* defines
the subhalo mass scale that dominates this probability den-
sity, it follows that adding random noise at the 6 F' level will
erode the sensitivity to mass scales &~ msx*, so the fast de-
terioration of constraining power on mum, tracks the loss of
sensitivity to mass scales &~ mg*. In this context, a higher
normalization increases the probability at each scale mg* of
observing a flux ratio anomaly 0 F', counteracting the loss of
signal induced by adding flux errors at the JF level.

5 DISCUSSION AND CONCLUSIONS

We have introduced a new method to infer the nature of dark
matter from observations of flux ratios in quadruply lensed
quasars. The method uses an Approximate Bayesian Com-
puting algorithm to statistically infer the input parameters
describing the subhalo mass function without directly com-
puting a likelihood function. We have illustrated the method

by performing simulations of strong lenses systems with sub-
structure populations of NF'W subhalos rendered in the lens
plane, in the case of cold and warm dark matter, and for
two different normalizations of the subhalo mass function.

While a real sample of lenses will be diverse in both
redshift distribution and host halo mass, the lens and source
redshift will primarily impact the contribution from the line
of sight, while the connection between the normalization and
host halo mass, and the effect on lensing observables, is sub-
ject to considerable theoretical uncertainty (Despali & Veg-
etti 2017; Garrison-Kimmel et al. 2017). We handle this un-
certainty by considering two limiting cases of the normaliza-
tion, corresponding to scenarios with and without complete
subhalo disruption within the scale radius of the parent halo.
As the normalization of each lens effectively weights the in-
formation content available, the limiting cases we analyze
bound the constraints from a sample of lenses with diverse
halo masses.

Our main results can be summarized as follows:

e In an idealized scenario, where the macromodel is
known to high precision and other sources of flux ratio er-
rors are mitigated, the only source of flux ratio perturba-
tion comes from dark substructure and flux ratios probe the
mass function at scales below 10" M. With flux uncertainty
at the level 2%, 4% and 8%, the bounds on the half-mode
mass [Mo)] (thermal relic mass [keV]) are mpm = 107 (5.0),
Mpm = 10° (3.6) and mpm = 10%* (2.7) with 180 sys-
tems. For the higher normalization case, the improvement
in the signal to noise ratio in the data yields constraints of
Mpm = 1072 (6.6), mpm = 107° (5.3) and mpy, = 107 (4.3)
with just 120 lenses. In a WDM scenario, we find with no
uncertainty in flux ratios that we can measure the position
of the free-streaming cutoff in the subhalo mass function
with just 30 lenses, constraining it to between 10" My and
1087 Mg at 20. With less control over systematics and de-
graded measurement precision, more than 30 lenses would
be required to achieve these constraints, but our simula-
tions suggest that this method can, in principle, measure the
warmth of dark matter should CDM be the incorrect model.
Provided one controls for systematic errors in flux ratios as-
sociated with incorrect macromodels, these constraints will
likely improve after adding the contribution from line of
sight structure, which contributes substantial additional sig-
nal.

e The 20 bound on myy, improves rapidly with increas-
ing flux uncertainties, and falls slowly after N & 100 lenses.
This reflects the sensitivity of flux ratios to low mass sub-
halos, which impart deviations at the level of a few percent.
In terms of overall strategy for the study of strong lens sys-
tems, this establishes the necessity of measuring fluxes pre-
cisely and controlling for systematic errors arising from the
parameterization of the macromodel. The simple SIE+shear
parameterization implemented in this work may not be suf-
ficient for systems in which additional mass components
are present in the main deflector, such as stellar disks. In
practice, identifying morphological complexity in the main
deflector can be achieved by deep imaging of the lensing
galaxy to identify luminous mass components, and prefer-
entially analyzing slow-rotators with high central velocity
dispersions.

e The frequency and magnitude of flux ratio anomalies
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differentiates between different dark matter models. In this
work, we have explored the effect of a varying normalization
and half-mode mass. While the half-mode mass scale car-
ries information regarding the nature of dark matter, bary-
onic effects can impact the normalization, which plays a cru-
cial role as it effectively determines the signal to noise ratio
in the data. This translates into better constraints on the
shape of the mass function, making it easier to distinguish
WDM from CDM. There is some degeneracy between the
normalization of the mass function and the half-mode mass,
but flux ratios are sensitive enough to break this degener-
acy and probe mass scales below 10®Mg, where CDM and
WDM subhalo abundance differs significantly.

Recent analysis has shown the contribution from line-
of-sight subhalos is substantial (Despali et al. 2017). Since
inclusion of the line-of-sight structure will likely improve
our projected constraints, we interpret our results as un-
derstated limits on the power of substructure lensing. We
leave the extension of our method to include line-of-sight
structure to future work.

Comparing the posterior probability distributions in
Figures 7 and 8, although there is some degeneracy between
the normalization and the half-mode mass these parame-
ters can be constrained simultaneously with ~ 100 lenses.
10 The normalization has important implications for dark
matter and baryonic physics through its connection to to-
tal halo mass and tidal stripping of subhalos, respectively,
and thus potentially will provide an important constraint
for theoretical models.

Our method hinges on accurate measurement of image
flux ratios and controlling for systematic errors in their mod-
eling. To quantify the impact of small uncertainties in these
observables, we simulate observations with different errors
applied to the image fluxes to erase information at the 2%,
4%, and 8% level, and find the projected constraints are ex-
tremely sensitive to loss of information at this level. Case
in point: the difference between perfect models and perfect
measurements, and an observational scenario with 2% uncer-
tainties in image fluxes is an order of magnitude in mym,. To
achieve the required level of measurement precision, we will
need flux ratios computed from the narrow-line emission of
the background quasar (Nierenberg et al. 2014, 2017), which
yield measurements accurate to 4 — 6% in flux, and are re-
silient to microlensing. The presence of systematic errors in
the modeling can also be mitigated by restricting analysis to
deflectors with high velocity dispersions and no complicated
morphological features like stellar disks, assuring that dark
substructure dominates as the source of flux ratio anomaly
computed with respect to simple SIE macromodels. Alter-
natively, deep imaging of the deflector and its stellar mass
distribution may enable the construction of lens models that
map the luminous structure of the deflector in detail, as was
done in Hsueh et al. (2016a, 2017b). For these more com-
plicated systems, additional observable information in the

10 Tn fact, the differences between the low normalization and high
normalization scenarios become apparent with fewer than 100
lenses, but the extent to which one can differentiate the two de-
pends on the degree to which one controls for systematic errors
in flux ratios, and the difference between the two normalizations.

© 0000 RAS, MNRAS 000, 1-7?

form of deep imaging is required to constrain the mass dis-
tribution of the deflector.

Finally, we note that our method accommodates any
arbitrary dark matter model, provided it specifies the form
of the subhalo mass function and the density profiles of indi-
vidual substructures. Possible extensions of our method can
explore subhalo populations from mixed or self-interacting
dark matter (Rocha et al. 2013; Todoroki & Medvedev
2017), and models in which a fraction of the dark matter is
composed of primordial black holes (e.g. Cotner & Kusenko
2017).
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APPENDIX A: MORE ON GENERATING
SUBSTRUCTURE REALIZATIONS

A1l Spatial distribution and truncation

As discussed in Section 3, we tidally truncate the subhalos
according to their 3-d position in the halo r3q according to

1

meriy 3
"= (22critREin) (AL
(see Cyr-Racine et al. 2016), where m, refers to Maoo at
redshift zg = 0.5. Although strong lensing quantities typi-
cally live in projection in the lens plane (omitting the line of
sight), the third spatial dimension enters through the trun-

cation, via the 3-d position 3¢ = \/22 + 72,.

To include this effect in our simulations, we begin by
noting that in projection, in the inner portions of a galactic
halo where strong lensing takes place, subhalos appear dis-
tributed uniformly in two dimensions (Xu et al. 2015). We
therefore assign each subhalo a projected position 24 with a
spatially uniform probability density out to Rmax = 18.6kpc,
or 3 arcseconds at the lens redshift.

To obtain the 3-dimensional z coordinate for a subhalo,
we start with a two dimensional distribution that is uniform
(to a very good approximation) with in 18.6 kpc

2

plralro) o (14 ) (A2)

with r. = 75kpc. We then de-project this 2-d density into
the third dimension to obtain a density for the z coordinate,
out to a maximum 3-d radius R = 250kpc. The correspond-
ing distribution for the z coordinate, given a 2-d position,
becomes

2 2 —1.5
224+
p (2|r2dq, ) o (1 + 72%1) .

Te

(A3)

We note that this has the same asymptotic form oc 72 as an
NFW profile for large z. The z coordinate affects the lensing
only indirectly through the truncation radius. For an NFW
profile, this does not significantly impact the image magni-
fication, as this observable is principally determined by the
central density which is unchanged. We verify that our trun-
cation scheme consistently yields r; > rs. Typical values for
:—f range between 5-30, depending on the concentration of
the subhalo.

A2 Mass Function

Focusing first on the form of the mass function %, numer-
ical simulations of cold dark matter halos (Springel et al.
2008; Gao et al. 2012; Fiacconi et al. 2016) suggest a scale

free mass function ddn]j x m; 0 for 10° < ;/I”—; < 10'°. We
s

acknowledge that tidal disruption may alter this prediction
significantly in the inner portions of galactic halos, but we

© 0000 RAS, MNRAS 000, 1-7?

do not address this concern here, as our principle aim is
to demonstrate the method rather than focus on the most
realist mass function.

When normalizing the subhalo mass function, we wish
to compare CDM realizations with WDM realizations with
the same amplitude at mass scales far above the half-mode
mass Mum. 10 accomplish this, we start with a scale free
CDM mass function

chdm _ ms -
. Ao (MG) (A4)

taking o = 1.9. In the regions of dark matter halos, the spa-
tial distribution of substructure is approximately uniform in
projection (Xu et al. 2015). Uniformly distributing subha-
los in a plane with radius Rmax, wWe relate the substructure
convergence at the Einstein radius, Ksub, to the mass in sub-
structure between mr and ms < mpg

m
2 _ H chdm
Ecrit Kfsubﬂ—Rmax - ms

mr,

dms. A
dm. M (A5)
This yields the normalization Ag in terms of Ksub, and the
mean number of subhalos
(2 — Oé) 7TR12nax2Crit Rsub

RCARTE

Ao

(N = 72 (mh ™ = mi ) Mo (46)

Ay =

‘We then draw N, subhalos from a Poisson distribution with
average value (Ns).

A3 Normalization

The normalization of the subhalo mass function depends
both on the accretion history and evolution of subhalos in
the lens halo, and the effects of baryonic physics in the cen-
tral regions of the halo. The former effect, the accretion his-
tory of dark matter halos as a function of halo mass, has
been well studied, and here we adopt the result of (Han
et al. 2016) and assume a total surviving halo mass frac-
tion of fsub,hato ~ 6%. There is scatter in the predictions
depending on halo accretion history and redshift which can
raise this value by as much as a factor of 2 (e.g. Fiacconi
et al. 2016; Jiang & van den Bosch 2017), however we con-
servatively adopt the lower normalization for this estimate,
and lower the overall subhalo mass normalization for both
the extreme and no tidal disruption cases by 30%, bring-
ing the assumed total halo mass fraction in substructure to
~ 4%.

The effect of baryonic physics is more uncertain. Recent
state of the art hydrodynamic simulations indicate that in a
Milky Way mass host halo, the central disk may destroy all
subhalos within the central 20 kpc of the host, in addition to
reducing the total number of subhalos by ~ 30% compared
to a dark matter only run (Garrison-Kimmel et al. 2017).
In these simulations, the destruction appears independent
of subhalo mass.

In order to bracket the range of possibilities and to
demonstrate how tidal disruption in the central region would
affect our inference, we consider two scenarios. In the first,
we assume that dark matter subhalos follow the NF'W den-
sity profile of the host (Han et al. 2016), which is seen in
dark matter only simulations. In the second case we mimic


http://dx.doi.org/10.1093/mnras/stu2673
http://adsabs.harvard.edu/abs/2015MNRAS.447.3189X
http://dx.doi.org/10.1155/2010/789293
http://adsabs.harvard.edu/abs/2010AdAst2010E...5D
http://adsabs.harvard.edu/abs/2010AdAst2010E...5D
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the effects of central tidal disruption by assuming that the
destruction radius scales with the host scale radius. Ded-
icated simulations of lens mass halos will be necessary to
calibrate this effect in more detail.

For a lower bound on the normalization, we assume that
all tidal disruption destroys all subhalos within the scale
radius of the host (for a typical lens halo of mass ~ 10" M
this radius is ~ 150 kpc). For an upper bound, we assume
that the subhalo number density follows the density profile
of the host. In each case, we compute the projected mass
density in substructure along the longitudinal virial radius of
the host inside a projected cylinder of 18 kpc (~ 3 arcseconds
at z = 0.5), and obtain (ksub) = 0.002 (0.01) in the case of
extreme (minimal) tidal stripping. These values correspond
to values of Ag = 8 (40) x 10"Mg ™ .

A4 Extension to WDM

The half mode mass mnm corresponds to a characteristic
length scale at which the linear matter power spectrum with
pure WDM is damped with respect to that of CDM by one-
half. For details, see e.g. Viel et al. (2005); Schneider et al.
(2012). We wish to compare a range of WDM subhalo pop-
ulations with varying munm according to the mass function

—-1.3
dedm — chdm (1 + mhm) (A?)

dms dm ms

while preserving the amplitude of the mass function for
masses high above mnm to isolate the effect of mpm from
the normalization Ag. To do this, we first generate subha-
los according to Equation A5. This results in scale free mass
function, which we deplete by removing subhalos probabilis-
tically with probability

-1.3

P (1 + mﬂ) . (A8)
ms

This yields substructure populations obeying the curves

plotted in Figure 1.

APPENDIX B: SENSITIVITY OF CUSP, FOLD,
AND CROSS CONFIGURATIONS

The response of an image magnification to small scale struc-
ture is heightened if it lies close to a critical curve. Similarly,
images close to one another may be affected by the same sub-
structures, introducing a correlation between flux anomalies
in different images.

Cusp (fold) configurations are characterized by three
(two) images straddling the critical curve, and by the three
(two) images close in proximity to each other. One therefore
expects a ranking in sensitivity to substructure of cusp, fold,
cross, in descending order. In Figure B1, we show that this
is indeed the case. Interestingly, the degeneracy between a
warm mass function with a high normalization, and a cold
mass function with low normalization is reduced in cusp and
fold configurations compared to crosses.

To identify image configurations, we adopt the following
classification scheme based on the Einstein radius Rgin and
the image separations. If the smallest image separation is
greater than 0.7Rgin, the lens is immediately classified as

1010
(0.9)

I cross
Il fold
Il cusp

10915 60 lenses each

(1.6) | no flux errors

10&3
(3.0) ]

10745
(5.4) ]

Mhm [Me] (m [keV])

10&6
(9.6) ]

105]5
(17.3)] 3.4 6.9 104 139  17.3
Ao [M5*] x 107

Figure B1l. Response of cusp, fold and cross image configura-
tions to small scale structure. For a fixed number of lenses, cusps
yield the strongest constraints, followed by folds and crosses.

a cross. If the second largest separation is < 1.2Rgin, we
classify it as a cusp, and otherwise it is a fold.

APPENDIX C: USE OF OTHER SUMMARY
STATISTICS

The summary statistic in Equation 11 is closely the likeli-
hood, or a x? value. It penalizes models which do not re-
produce the anomalies observed in the data in the correct
images. There is, however, no ‘correct’ choice of summary
statistic, only ones that perform better than others.

We experimented with using other statistics, including
Reusp and Riola (see Keeton et al. 2003; Keeton et al. 2005).
An advantageous feature of these parameters is that they
can be computed directly from the observed image fluxes,
and do not rely on a lens model to identify anomalies. Af-
ter experimenting with other summary statistics, however,
we find the summary statistic in Equation 11 yields the
strongest constraints, because it does not discard informa-
tion by adding and subtracting fluxes from different images.

As an example, consider the summary statistic

3
> (Faty = Faliy)
=1

Using this equation instead of Equation 11, we perform an
inference on the same simulation as in Figure 6. The results
are shown in Figure C1. Equation 11 performs better.

S (fa, fa*) = : (C1)

APPENDIX D: CONVERGENCE OF ABC
SIMULATIONS AND POSTERIORS

To assess convergence of the ABC algorithm, we compare
two inferences made on the same data set in which one has
half the number of realizations as the other. To produce the
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Figure C1. Inference made using the statistic in defined in
Equation C1, rather than Equation 11.
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(17.3) o 3.4 6.9 104 139  17.3
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Figure D1. A convergence test in which we discard half of
the realizations before applying the acceptance criterion. Each
distribution is composed of the samples from qgy}, associated with
the lowest 1,800 summary statistics.

black distribution, we retain the draws from qs,1, associated
with the lowest 1,800 summary statistics. We then discard
half of the realizations, and reject all but the lowest 1,800
summary statistics from the depleted simulation. Under-
sampling by a factor of two, we recover the same bounds
on Ag and mnm to a high degree of precision, indicating the
inference made with ~ 2000 realizations per proposal gsub
has converged.

© 0000 RAS, MNRAS 000, 1-7?

1010
(0.9)

| |
BN y=2.08+0.2

10915 | 20 lenses
(1.6)

108.3
(3.0)

107.45
(5.4) ]

Mhm [Mo] (m [keV])

1066
(9.6) ]

105.75
(17.3).0 6.8 13.8 208 27.8 346
Ao [M5'] x 107

Figure E1. We test the effect of an incorrectly parameterizing
the macromodel by generating mock data with non-isothermal
ellipsoids, and modeling the data with an SIE in the forward
model. The power law slope v is sampled from a Guassian with
mean 2.08 and variance 0.2.

APPENDIX E: FITTING SIE MACROMODELS
TO DATASETS BUILT WITH
NON-ISOTHERMAL POWER LAWS

We test the effect of incorrectly parameterizing the macro-
model by created datasets with non-isothermal power law
ellipsoids, and fitting them with SIEs in the forward model.
When generating mock lenses, we sample power law slopes
from a Guassian distribution offset from isothermal at v =
2.08 + 0.2, consistent with the findings of Shankar et al.
(2017), who find the power law slopes for massive ellipticals
are consistently steeper than isothermal. The results of this
exercise are shown in Figure E1. The effect of varying the
power law slope in the data is seen to not significantly de-
grade the inference on Ag and mnm, and therefore does not
affect the precision of our forecast statements.

By completely neglecting the presence of this system-
atic, we exaggerate its potential bias in the inference. In
practice, this systematic should be properly dealt with by
sampling different power laws slopes in the forward model. A
prior v may be constructed on a lens by lens basis based on
measurements of the central velocity dispersion, if available.
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