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Abstract: The generalized method of moments (GMM) estimator of the reduced-rank regression
model is derived under the assumption of conditional homoscedasticity. It is shown that this GMM
estimator is algebraically identical to the maximum likelihood estimator under normality developed
by Johansen (1988). This includes the vector error correction model (VECM) of Engle and Granger.
It is also shown that GMM tests for reduced rank (cointegration) are algebraically similar to the
Gaussian likelihood ratio tests. This shows that normality is not necessary to motivate these estimators
and tests.
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1. Introduction

The vector error correction model (VECM) of Engle and Granger (1987) is one of the most widely
used time-series models in empirical practice. The predominant estimation method for the VECM is
the reduced-rank regression method introduced by Johansen (1988, 1991, 1995). Johansen'’s estimation
method is widely used because it is straightforward, it is a natural extension of the VAR model
of Sims (1980), and it is computationally tractable.

Johansen motivated his estimator as the maximum likelihood estimator (MLE) of the VECM
under the assumption that the errors are i.i.d. normal. For many users, it is unclear whether the
estimator has a broader justification. In contrast, it is well known that least-squares estimation is both
maximum likelihood under normality and method of moments under uncorrelatedness.

This paper provides the missing link. It is shown that Johansen’s reduced-rank estimator is
algebraically identical to the generalized method of moments (GMM) estimator of the VECM, under the
imposition of conditional homoscedasticity. This GMM estimator only uses uncorrelatedness and
homoscedasticity. Thus Johansen’s reduced-rank estimator can be motivated under much broader
conditions than normality.

The asymptotic efficiency of the estimator in the GMM class relies on the assumption of
homoscedasticity (but not normality). When homoscedasticity fails, the reduced-rank estimator
loses asymptotic efficiency but retains its interpretation as a GMM estimator.

It is also shown that the GMM tests for reduced (cointegration) rank are nearly identical to
Johansen’s likelihood ratio tests. Thus the standard likelihood ratio tests for cointegration can be
interpreted more broadly as GMM tests.

This paper does not introduce new estimation nor inference methods. It merely points out
that the currently used methods have a broader interpretation than may have been understood.
The results leave open the possibility that new GMM methods that do not impose homoscedasticity
could be developed.

This connection is not new. In a different context, Adrian et al. (2015) derived the equivalence
of the likelihood and minimum-distance estimators of the reduced-rank model. The equivalence
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between the Limited Information Maximum Likelihood (LIML) estimator (which has a dual
relation with reduced-rank regression) and a minimum distance estimator was discovered
by Goldberger and Olkin (1971). Recently, Kolesar (2018) drew out connections between
likelihood-based and minimum-distance estimation of endogenous linear regression models.

This paper is organized as follows. Section 2 introduces reduced-rank regression models and
Johansen’s estimator. Section 3 presents the GMM and states the main theorems demonstrating
the equivalence of the GMM and MLE. Section 4 presents the derivation of the GMM estimator.
Section 5 contains two technical results relating generalized eigenvalue problems and the extrema of
quadratic forms.

2. Reduced-Rank Regression Models

The VECM for p variables of cointegrating rank r with k lags is

k-1
AXy=af' X1+ ) _TidX;_i+PDt + ey, (1)
i=1
where D; are the deterministic components. Observations are t = 1, ..., T. The matrices « and j3 are
p x r with v < p. This is a famous workhorse model in applied time series, largely because of the
seminal work of Engle and Granger (1987).

The primary estimation method for the VECM is known as reduced-rank regression and was
developed by Johansen (1988, 1991, 1995). Algebraically, the VECM (1) is a special case of the
reduced-rank regression model:

Y = D(IB/Xt +YZ; + ey, 2)

where Y; is p x 1, X; is m x 1, and Z; is g x 1. The coefficient matrix a is p x r and B is m x r with
r < min(m, p). Johansen derived the MLE for model (2) under the assumption that ¢; is i.i.d. N (0,Q).
This immediately applies to the VECM (1) and is the primary application of reduced-rank regression
in econometrics.

Canonical correlations were introduced by Hotelling (1936), and reduced-rank regression was
introduced by Bartlett (1938). A complete theory was developed by Anderson and Rubin (1949, 1950)
and Anderson (1951). These authors developed the MLE for the model:

Y = I1X; + ¢, 3)
I'r1=o, 4)

where I' is p X (p —r) and is unknown. This is an alternative parameterization of (2) without the
covariates Z;. Anderson and Rubin (1949, 1950) considered the case p — r = 1 and primarily focused
on estimation of the vector I'. Anderson (1951) considered the case p —r > 1.

While the models (2) and (3)-(4) are equivalent and thus have the same MLE, the different
parameterizations led the authors to different derivations. Anderson and Rubin derived the estimator
of (3) and (4) by a tedious application of constrained optimization. (Specifically, they maximized the
likelihood of (3) imposing the constraint (4) using Lagrange multiplier methods. The solution turned
out to be tedious because (4) is a nonlinear function of the parameters I' and I1.) The derivation is so
cumbersome that it is excluded from nearly all statistics and econometrics textbooks, despite the fact
that it is the source of the famous LIML estimator.

The elegant derivation used by Johansen (1988) is algebraically unrelated to that of Anderson-Rubin
and is based on applying a concentration argument to the product structure in (2). It is similar to the
derivation in Tso (1981), although the latter did not include the covariates Z;. Johansen’s derivation is
algebraically straightforward and thus is widely taught to students.

It is useful to briefly describe the likelihood problem. The log-likelihood for model (2) under the
assumption that e; isii.d. N (0,Q) is
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T

Y4 (Dé, ﬁ,‘Y, Q) = —% log det) — % Z (Yt — tXﬁ,Xt — ‘th)/ Qil (Yt — Déﬁ/Xt - TZ{) . (5)
t=1

The MLE maximizes ¢ («, B, 'Y, Q). Johansen’s solution is as follows. Define the projection matrix
My =Ir-272(Z'Z )_1 7' and the residual matrices Y = MzY and X = Mz X. Consider the generalized
eigenvalue problem:

~~e [~ L1 o ~ ~

‘XYOWj WX—XXﬂzQ ®)
The solutions 1 > A > - > Xp > 0 satisfy

~~ S~y 1~ ~ o~ o~

XY (Y’Y) Y'Xv; = X' X0A;.

~ B DU
where (A, 7;) are known as the generalized eigenvalues and eigenvectors of X'Y (Y’ Y) Y'X with

respect to X' X. The normalization 7/ X' X7; = 1 is imposed.
Given the normalization /X' Xp = I, Johansen’s reduced-rank estimator for 8 is

Bmte = [U1, .., U] .
The MLE @, and ‘?mle are found by least-squares regression of Y; on B\;nl Xt and Zy.

3. Generalized Method of Moments

Define W; = (X{, Z;)I. The GMM estimator of the reduced-rank regression model (2) is derived
under the standard orthogonality restriction:

E (W) = 0 @)
plus the homoscedasticity condition:
E (ere; ® WW/) = Q® Q, (8)

where Q) = E (e;e}) and Q = E (W;W/). These moment conditions are implied by the normal regression
model. (Equations (7) and (8) can be deduced from the first-order conditions for maximization of (5)).
Because (7) and (8) can be deduced from (5) but not vice versa, the moment condition model (7) and (8)
is considerably more general than the normal regression model (5).

The efficient GMM criterion (see Hansen 1982) takes the form

Jr(a, B,¥) = T3, (2, 8,¥) V'3, (1, B,¥),

where
1 n
g, (v, BY) = T Z (Y —ap'Xs —YZ) @ W), )
t=1
7820
~ 1,
Q= T 2 ey, (10)
t=1
G=1 i W W,
- T t:l t 7

and ¢; are the least-squares residuals of the unconstrained model:
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G =Y — 11X, —9Z,.

The GMM estimator are the parameters that jointly minimize the criterion J, (0, 8,Y) subject to
the normalization p'X'XB = I:

(fx\gmm/ ,B\gmm/ (I\{gmm) = argmin J, (a,B,Y).
BX' Xp=I

The main contribution of the paper is the following surprising result.

Theorem 1. (agmm, 5gmm,‘1fgmm) — (amle, ﬁmle,‘lfmle).

Theorem 2. J;(®gmm, Egmm,‘?gmm) =tr ((A)’l (Y’Y)) —-Tp—-TYi 4 153\1' where 7L1~ are the eigenvalues
from (6).

Theorem 1 states that the GMM estimator is algebraically identical to the Gaussian maximum
likelihood estimator.

This shows that Johansen’s reduced-rank regression estimator is not tied to the normality
assumption. This is similar to the equivalence of least-squares as a method of moments estimator and
the Gaussian MLE in the regression context.

The key is the use of the homoscedastic weight matrix. This shows that the Johansen reduced-rank
estimator is an efficient GMM estimator under conditional homoscedasticity. When homoscedasticity
fails, the Johansen reduced-rank estimator continues to be a GMM estimator but is no longer the
efficient GMM estimator.

It is important to understand that Theorem 1 is different from the trivial statement that the MLE is
GMM applied to the first-order condition of the likelihood (e.g., Hall (2005), Section 3.8.1). Specifically,
if you take the derivatives of the Gaussian log-likelihood function (5) and treat these as moment
conditions and solve, this is a GMM estimator, and thus MLE can be interpreted as GMM. That is not
what Theorem 1 states.

GMM hypothesis tests can be constructed by the difference in the GMM criteria; tests for reduced
rank are considered, which in the context of VECM are tests for cointegration rank. The model

Yy =1IXy +¥YZ; + e
is taken and the following hypotheses on reduced rank are considered:
H, : rank (IT) = r.
The GMM test statistic for H, against H,,; is

Cr,r+1 = ~In~in ]7 (“r ﬁ/ly) - Nmin ]‘r‘+1 (D‘/ ﬁll}r) .
B X' XB=I, B'X'XB=I,11

The GMM test statistic for H, against H, is

Crp= min Jr(a,8,¥) — min ]p(oc,/S,‘I’).
BX'Xp=I, B'X'Xp=1,
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Theorem 3. The GMM test statistics for reduced rank are

At
Crpp1 =T —— |,
r,r <1)\r+1

p AA

Cop=T X 1

where A; are the eigenvalues from (6).

Here it is recalled in contrast that the likelihood ratio test statistics derived by Johansen are
LRy,4; = —Tlog (1 - /\,H) )

LR,, =T f log (1 - T\M) .
i=r+1

The GMM test statistic C, 1 and the likelihood ratio (LR) statistic LR, ,; yield equivalent tests,
as they are monotonic functions of one another. (If the bootstrap is used to assess significance, the
two statistics will yield numerically identical p-values.) They are asymptotically identical under
standard approximations and in practice will be nearly identical, because the eigenvalues A; tend to
be quite small in value (at least under the null hypothesis), so that —log (1 —A) = A/(1 —A) =~ A.
For p — (r +1) > 1, the GMM test statistic C , and the LR statistic LR, , do not provide equivalent
tests (they cannot be written as monotonic functions of one another), but they are also asymptotically
equivalent and will be nearly identical in practice.

An interesting connection noted by a referee is that the statistic C;,, was proposed by Pillai (1955)
and Muirhead (1982, Section 11.2.8).

4. Derivation of the GMM Estimator
It is convenient to rewrite the criterion in standard matrix notation, defining the matrices Y, X, Z,
and W by stacking the observations. Model (2) is
Y = XBa' + Z¥ +e.

The moment (9) is

g (0,B,%) = %Vec (W' (Y — XBa! — 2¥')).

Using the relation
tr (ABCD) = vec (D)’ (C' ® A) vec (B),

the following is obtained:

I, B,G) = Tg, (B ¥) (O @ Q1) 3, (0, 8,F)
= vec (W' (v = X' = Z¥))' (O~ & (W'W) ") vee (W' (¥ - XBa' — Z¥'))
= tr (071 (v = XBa' — Z¥) W (W'W) W (¥ — XBo — Z¥') ).
Following the concentration strategy used by Johansen, B is fixed and « and ¥ are concentrated out,
producing a concentrated criterion that is a function of § only. The system is linear in the regressors

XpB and Z. Given the homoscedastic weight matrix, the GMM estimator of («, ¥) is multivariate
least-squares. Using the partialling out (residual regression) approach, the least-squares residual can
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be written as the residual from the regression of Y on X B, where Y=M 7Y and X=M 7 X are the
residuals from regressions on Z. That is, the least-squares residual is

- - e N1
B =Y-XB(FXXB) BXY
=Y - Xpp'X'Y,
where the second equality uses the normalization §/X’XB = I,. Because the space spanned by
W = (X, Z) equals that spanned by (X, Z), the following can be written:

1

W(WW) W =7(2/2)7 72+ X (X'X) Ty

Because Z'¢(B) = 0, then

/ —1 1p77 o / -1 PN
W (W'W) " We(p) = X (X X) X'e(B)

X(XX) RV - RppRY

and

F(BYW (W) W) = V'R (X'R) Y -V RepRY

=YY -Y MY - Y'XpBX'Y,

where
My=1-X(X%) X

Using the partialling out (residual regression) approach, the variance estimator (10) can be
written as

~

= %Y’ (1-www)"'w)y= %Y’MXY.
Thus the concentrated GMM criterion is
J:(B) = (Q7Yeyw (W'w) " We())

(@ (7)) - (07 (VigY)) - (0 (VREERY))

—u (a7 (V7)) - Tp - THe ([3’5&’? (Vmy¥) " ?/5&;3) . (1)

The GMM estimator minimizes J;(B) or, equivalently, maximizes the third term in (11). This is
a generalized eigenvalue problem. Lemma 2 (in the next section) shows that the solution is
Bgmm = [11, ..., V] as claimed.

Because the estimates Rgmm and ‘?gmm are found by regression given Bgmm/ and because this is
equivalent with the MLE, it is also concluded that #gmm = &mje and ¥gmm = ¥me. This completes the
proof of Theorem 1.

To establish Theorem 2, Lemma 2 also shows that the minimum of the criterion is
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]r(agmm/ ,B\gmm/{f}gmm) = min Ir(“ B, G)
B Xp=1,
— min J(B)
B Xp=1,
_ -1 (v'v ! / / v
—t (071 (YY) - Tp - T mex (/SX (VmgY) YXﬁ)

/\

4

=t (071 (YY) - Tp - Ti; . —i7\f

This establishes Theorem 2.

5. Extrema of Quadratic Forms

To establish Theorems 1 and 2, a simple extrema property is necessary. First, a simple property
that relates the maximization of quadratic forms to generalized eigenvalues and eigenvectors is given.
It is a slight extension of Theorem 11.13 of Magnus and Neudecker (1988).

Lemma 1. Suppose A and C are p x p real symmetric matrices with C > 0. Let Ay > - -+ > A, > 0 be the
generalized eigenvalues of A with respect to C and vy, ..., vy be the associated eigenvectors. Then

r

maxtr AB) =
gnax, (B'AB) ;

and

argmaxtr (B'AB) = [v1, ..., v].
B'Cp=1Ir

Proof. Define v = C'/?Band A = C"1/2AC~1/?'. The eigenvalues of A are equal to the generalized
eigenvalues A; of A with respect to C. The associated eigenvectors of A are C'/?v;. Thus by
Theorem 11.13 of Magnus and Neudecker (1988),

r
max tr (B AB) = max tr (v'A A;
ginax tr (BAp) = max tr(y'Ay) = l; i

and

argmaxtr (B'AB) = c argmaxtr (7' A7)
BCp=I, Yr=I
— A2y, )

= [V1, e Vy]
as claimed. [

Lemma 2. Let Mx = [ — X (X'X) "' X' If X'X > O and Y'MxY > 0 then

.
! Yy -1
e (/3 X'Y(Y' MyY)~ly X[S)

and

argmax tr (ﬁ’X’Y(Y’MXY)*lY'X/S) = [v1, . 1],
BIX'XB=1I,

where1 > Ay > -+ > A, > 0 are the generalized eigenvalues of X'Y (Y'Y)~1Y'X with respect to X'X, and
vy, ..., Up are the associated eigenvectors.



Econometrics 2018, 6, 26 80f9

Proof. By Lemma 1,
T
tr (B/X'Y(Y'MxY)'Y'XB) =Y A
5/>?§?§:1,r(5 (Y'MxY) ﬁ) i;z
and

argmax tr (‘B/X'Y(Y'MXY)AY/X‘B) = [, ..., %],
BIX Xp=1,

where Ay > --- > A, > 0 are the generalized eigenvalues of X'Y(Y’MxY)~1Y’X with respect to X'X
and vy, ..., Vp are the associated eigenvectors. The proof is established by showing that Ai= A/ (1= A)
and v; = v;.
Let (7,A) be a generalized eigenvector/eigenvalue pair of X'Y(Y'MxY)~1Y’X with respect to
X'X. The pair satisfies
X'Y (Y MxY) " Y'X0 = X'XUA. (12)

By the Woodbury matrix identity (e.g., Magnus and Neudecker (1988), Equation (7)),

1

(rMxY) " = (Y'Y =YX (X'X) T X'Y) -

1 -1

= (YY) (YY) TTYX (XX - XY (YY) T YX) XY (YY)

1 1

= (YY) (YY) Y X (X MyX) T XY (YY)

where My = I — Y (Y'Y) ' Y'. Thus

XY (YMxY) 'YX =X'Y (YY) YX 4+ XY (YY) VX (XMyX) T XY (YY) T YX
— X'PyX + X'PyX (X'MyX) ' X'Py X
— X'X (X'MyX) ' X'PyX,
where Py =Y (Y/ Y)_1 Y’ and the final equality uses X'PyX = X’'X — X' My X. Substituting into (12)

produces
X'X (X'MyX) ' X'PyXv = X' XA,

Multiplying both sides by (X' My X) (X’X)~1, this implies

X'Py XV = X' My XvA
= X'XVA — X'Py XVA.

By collecting terms,
X'PyXv(1+4 1) = X'XVA,
which implies

A
(1+A)

X'PyXv = X' XV

This is an eigenvalue equation. It shows that A/(1+ A) = A is a generalized eigenvalue and
7 is the associated eigenvector of X’Py X with respect to X’'X. Solving, A = A/(1 — A). This means
that the generalized eigenvalues of X'Y (Y MxY)~!1Y’X with respect to X'X are A;/(1 — A;) and v;.
Because A/ (1 — A) is monotonically increasing on [0,1) and A; < 1, it follows that the orderings of A;
and A; are identical. Thus A; = A;/(1 — A;) as claimed. [
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