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Abstract 

 Photochemical reactions are beginning to play an important role during the 

synthesis of complex organic molecules.   The impetus to employ light initiated 

photoreactions as a synthetic tool derives from the fact these reactions require no reagents 

except light.  Abundance of sunlight has prompted the chemists to search for visible light 

absorbing sensitizers (catalysts) to initiate the desired reactions.  Our goal in this context 

is to develop stable and readily available catalysts that would function under sunlight.  In 

this manuscript we present results of our experiments with gold nanoclusters (AuNCs) as 

a visible light absorbing catalysts.   AuNCs absorb and emit in the visible region, soluble 

in water and transfers electron to suitable acceptors. Employing a series of acceptors we 

found that excited AuNC can transfer one electron to any acceptor whose reduction 

potential is above – 1.1 eV.   In the excited state AuNC does not accept electrons.  Also it 

did not serve as an energy transfer sensitizer even with molecular oxygen. We are 

optimistic that AuNP and AuNC could be developed into a stable and water-soluble 

visible light absorbing photocatalysts to perform useful photoreactions. 

 
 

Key Words    Nanoclusters, Photocatalysis, Electron transfer, Emission quenching, 

Visible light photocatalysis 
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In Search of Stable Visible Light Absorbing Photocatalysts: Gold Nanoclusters 

Barnali Mondal, Mohan Raj Anthony Raj and V. Ramamurthy 

 

In the context of visible light photocatalysis gold nanoclusters upon light absorption 

were found to transfer electron to acceptors whose reduction potential is above –1.1 eV.   

AuNC has limited value as electron transfer sensitizers in photochemical reactions. 
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1. Introduction 
	

Prompted by the need to carry out organic synthesis under ‘green’ and 

‘sustainable’ conditions interest in visible light photocatalysis (VLPC) has grown during 

the last decade.1-3  Energy and electron transfer concepts developed by pioneers during 

1950-80 have been valuable for the development of this topic.4 Among the VLPC 

enthusiasts, the term ‘sensitizer’ used in photochemical literature has taken a new label 

namely, ‘catalyst’.  Although numerous visible light absorbing organic dyes that could be 

used as catalysts (sensitizers) are available, their poor stability and tendency to aggregate 

have forced chemists to look for Ru, Re, Rb complexes and metal aggregates that absorb 

in the visible region as photocatalysts.  In this context two types of metal nano aggregates 

with different properties have attracted attention.  One is metal nanoparticles (NPs)5-11 

and the other is metal nanoclusters (NCs).12-18 For example, metal nanoparticles of gold, 

silver and platinum are characterized by their distinct surface plasmon band in the visible 

spectrum extending to red while gold nanoclusters have a broad absorption in the visible 

region.19   While metal nanoparticles are non-emissive, nanoclusters emit in the visible 

spectrum.20-22  The nanoclusters are usually smaller in size than nanoparticles and their 

absorption and emission depend on their size and the stabilizing ligand.  The properties of 

metal nanoclusters, in addition, depend on the method of preparation.  The recent interest 

in this ultra small nanoclusters is due to their molecular like properties and emissive 

nature.   The emissive property of these Au-thiolate clusters, their low toxicity, ultra 

small size, and good biocompatibility, make them ideal as bio imaging probes.    

A recent report of an easy and reliable procedure to synthesize thiolate-protected 

water-soluble gold nanoclusters of 1-3 nm diameter.23-24 prompted us to explore their use 
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as visible light absorbing photocatalysts.  Our interest in these systems stems from their 

possible use as energy and electron transfer sensitizers to initiate organic 

phototransformations.25-29  With this in mind we have examined the electron and energy 

transfer properties of AuNC by quenching their emission with various organic molecules 

and oxygen.  Our ultimate goal is to identify metal nanoclusters and nanoparticles that 

could act as an energy or electron transfer catalysts (sensitizers) in water.  

 

2. Results and Discussion 

Thiolate stabilized AuNC are commonly synthesized by reducing Au(I) thiolate 

complexes using reducing agent such as NaBH4.  These clusters show emission in the 

blue to near-IR region with low quantum yield.  Recent research has established that slow 

decomposition of large Au-nanocrystals or Au-thiolate complex can also be used to 

synthesize AuNC. A facile one-pot synthesis of Au-thiolate has been reported recently by 

Xie and co-workers (Scheme 1). For the current investigation L-glutathione protected 

gold nanoclusters were synthesized using the method reported by Xie et al.23-24  By this 

procedure, as the solution aged for 24 h, nanoclusters having a few-gold-atom core 

capped with Au(I) thiolate complex shell were formed.  These AuNCs were characterized 

by their absorption, emission and 1H NMR spectra, TGA and DLS data and TEM (Figure 

S1-S5 in Supporting Information).  These clusters absorb both in UV and visible region 

extending up to 500 nm.  These AuNCs exhibited emission in the region 500-800 nm 

with maximum at 612 nm.  The absorption and emission spectra of above synthesized Au 

nanoclusters are shown in Figure 1.  These spectra are consistent with the ones reported 

in the literature.  It is reported that these clusters consist of a mixture of different sizes 
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consisting 29-43 Au atoms capped with glutathione molecules. The clusters prepared in 

this study we believe are a mixture and not a well-defined one with specific number of 

Au atoms.  Having synthesized small AuNCs we were interested to examine whether 

these would act as electron and energy transfer sensitizers.  Other workers have employed 

such types of clusters in the context of solar energy storage and water splitting.30-31  

However to our knowledge these have not been used as sensitizers in organic 

photochemistry.  The emissive nature distinguishes these clusters from larger 

nanoparticles that have characteristic plasmonic properties and do not emit.    

 

 

 

Scheme 1. Method used to synthesize Au-glutathione nanocluster (AuNC) 
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Figure 1. Normalized absorbance (red line), excitation (pink line) monitored at 612 nm 
and emission spectra (blue line, λex = 400nm) of AuNC. 

 

With our interest to examine whether these clusters could act as good electron 

transfer agents, we conducted fluorescence quenching experiments with various organic 

electron acceptors and donors.  The quenchers examined and their redox potential data 

are listed in Scheme 2.  Electron transfer properties of these clusters were probed by 

recording fluorescence and measuring the excited state lifetime in presence of quenchers.  

Cluster emission was quenched by methyl viologen (2) and its derivative (1).  Stern-

Volmer plots of quenching by 1 and 2 shown in Figures 2 and 3 indicate that the I0/I and 

τ0/τ do not overlap.  Since there are changes in lifetimes the quenching is not completely 

by a static process.  If this is truly a static process the donor (AuNC) and the acceptor 

(viologens) should be in physical contact prior to excitation.  We were curious to know 

whether the viologen that is included within a cucurbiturils (CB) would be able to 
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establish contact and quench the AuNC emission.  As illustrated in Figure 4, CB[7] 

included 2 (i.e., (2@CB[7]) failed to quench the cluster emission.   This suggested that 

AuNC and the electron acceptor have to be in physical contact for electron transfer to 

occur.   Whether it is static or dynamic the electron transfer is prohibited by the walls of 

the host CB[7].  Due to lack of time resolved transient absorption facilities we did not 

measure the rate of electron transfer.  However, the recent report by Kamat’s group 

indicated that AuNC is quenched by 2 at > 5x1010   M-1 s-1 that is higher than the rate of 

diffusion.28  This is consistent with our conclusion of the quenching proceeding by a 

static process.  Since the excited state energies of 1 and 2 are expected to be above that of 

AuNC we believe that the process by which the quenching occurs is via electron transfer. 

 

	
Scheme 2. Structures of molecules used as acceptors and donors. Redox potentials 
reported are with respect to SCE in CH3CN except in 1 where it is with respect to SCE in 
DMF.  Reduction potentials of 1-8 and 11-15 and oxidation potentials of 9 and 10 are 
provided in parenthesis. 

N N
I

O2N

O2N NO2

2 ClO4

N

N

N N

2Cl

O2N

NO2 O2N

NO2
CN

CN

NC

NC

OHC NO2O2

MeO OMe

OMe

MeO OMeN
NR

N N

R

R= methyl   (13a)
R= ethyl      (14a)
R= propyl    (15a)

R= methyl   (13b)
R= ethyl      (14b)
R= propyl    (15b)

1 2 3 4

5 6 7 8

9 10

N

ClO4

R= phenyl  (11)
R= benzyl  (12)

O
R

O

(-0.40 V) (-0.45 V) (-0.69 V)

I

(-0.71V)

(-0.73 V) (-0.78 V) (-0.86 V) (-1.08 V)

(1.34 V) (1.2 V)

≈ (-1.5 V)

≈ (-1.36 V) ≈ (-1.40 V)



 
 
 

 

Figure 2. Quenching of emission of AuNC by 1 in H2O (a) Emission spectra (b) Lifetime 
measurements (c) Stern-Volmer plot for emission and lifetime. λex=400 nm, λem= 600 
nm, [AuNC]= 10-4 M; [1] = 0 to 3.4×10-3 M.  The excited AuNC decayed via two 
exponentials and both are plotted in (c). 
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Figure 3. Quenching of emission of AuNC by 2 in H2O (a) Emission spectra (b) Lifetime 
measurements (c) Stern-Volmer plot for emission and lifetime. λex=400 nm, λem= 600 
nm, [AuNC]= 10-4 M; [2] = 0 to 3.1×10-3 M.  The AuNC decayed via two exponentials 
and both are plotted in (c). Figure (d) provides Stern-Volmer plot for the faster 
component of the decay. 
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Figure 4. Emission spectra of AuNC upon addition on 2@CB[7] (CB[7] methyl viologen 
complex). , [AuNC]= 10-4 M; [2@CB[7]] = 0 to 2×10-4 M 

 

 

 To probe whether AuNC would also act as an energy transfer sensitizer we chose 

oxygen as the acceptor. We believed that oxygen with excited singlet energy of 22 

kcal/mol would be an ideal acceptor for energy transfer from excited AuNC.  As 

illustrated in Figure 5 molecular oxygen quenched the emission of AuNC. Quenching of 

AuNC emission by O2 was studied in three different solvents, H2O, dimethyl sulfoxide 

and methanol.  Since the solubility of oxygen differed in these solvents, we expected the 

rate of quenching would vary.  In methanol where the O2 dissolves better than in the 

other two solvents the cluster emission was quenched more efficiently than in H2O and 

DMSO (Figure S10-S11).  If the quenching is due to energy transfer singlet oxygen 

should be generated in solution.  Singlet oxygen in principle can occur from either 

excited singlet (when the S1–T1 gap is more than 22 kcal/mol) or from triplet when it is 

above 22 kcal/mol.  However characteristic singlet oxygen emission (1268 nm) was not 

detected when an oxygen saturated solution of AuNC was excited at 400 nm (Figure 6).  

This suggested that energy transfer is not the process by which oxygen quenches the 

AuNC emission.  However, generation of singlet oxygen from well-defined Au25(SR)18 

cluster has been reported in the literature.32  The fact that the emission of AuNC is 

quenched by oxygen suggested that most likely it occurs by electron transfer.  Our 

attempts to detect the product of electron transfer namely superoxide anion were not 

successful.  



 

Figure 5. Quenching of emission of AuNC by oxygen in H2O (a) Emission spectra (b) 
Lifetime measurements (c) Stern-Volmer plot for emission and lifetime. λex=400 nm, 
λem= 600 nm, [AuNC]= 10-4 M.  Solution was purged with oxygen-nitrogen mixture; the 
percentage of oxygen is indicated above.  The AuNC decayed via two exponentials and 
both are plotted in (c). 

 

 

 

Figure 6. Emission spectra of AuNC solution saturated with oxygen (a) D2O and (b) 
DMSO-d6.  λex: 400 nm. 
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Ability of oxygen to quench AuNC emission suggested that it could oxidize 

systems with reduction potential of at least – 0.78 eV.  To determine the oxidation power 

of the AuNC we used several quenchers with reduction potentials varying between – 0.40 

and – 1.5 eV.   The list of quenchers included 2, 4 dinitro phenol (3), 1, 2, 4, 5-tetracyano 

benzene (4), 2, 2’-bipyridinium N, N’ dimethyl (5), 4-nitro benzaldehyde (7), and nitro 

benzene (8).  Their structure and reduction potentials are provided in Scheme 2.  Stern-

Volmer plots for quenching by these acceptors are shown in Figure 7. Individual 

emission and lifetime quenching spectra and traces are provided in SI (Figure S6-S9).  

Although nitrobenzene quenched the emission, the  pyridinium derivatives 11 and 12 did 

not.  This suggested that the limitation of AuNC to reduce organic molecules resided 

some where in between – 1.0 eV and –1.5 eV.  Based on the results shown in Figure 7 

we believe that AuNC can reduce organic molecules whose potential is above – 1.1 eV.  

The fact that nitrobenzaldehyde but not nitrobenzene quenches the AuNC emission is a 

clear indication of the limitation of excited AuNC as a reductant.  AuNP often act both as 

an oxidant and reductant.33-35  To probe whether AuNC has similar property we used di-

and trimethoxy- benzenes as electron donors (Scheme 2).  As illustrated in Figure 8 no 

quenching was observed even with a good electron donor such as 1, 3, 5-trimethoxy 

benzene.   

 

 



 

Figure 7. Stern-Volmer plot for fluorescence quenching experiment with various 
acceptors. 

 

 

Figure 8. AuNC emission in presence of 1,3,5-trimethoxy benzene in H2O (a) Emission 
spectra (b) Lifetime measurements. λex=400 nm, λem= 600 nm, [Au NCs]= 10-4 M [10] = 
0 to 2.0×10-3 M.

 
Thus the results with the electron donors and acceptors listed in Scheme 2 lead us 

to conclude that the AuNC is an electron donor and not an electron acceptor.   Also 

results with oxygen suggested that AuNC is not an energy donor.   As mentioned in the 

introduction section, desire to identify visible light absorbing light-stable sensitizers drew 

our attention to gold nanoparticles and clusters.   In this context we were particularly 

DNP MV2+ (1) 

MV2+ (2) 

(6) 

Dinitro benzene (3) 

2,2’ N N’ DiMe Py (5) 

Conc in mM 

Tetracyano benzene (4) 
 
Nitro benzene (8) 

x 4- nitro benzaldehyde (7) 
  

I 0/
I 

C
ou

nt
s 

Time (ns) 

10 1

10 2

10 3

10 4

20x10 3151050

300x10 3

250

200

150

100

50

0

800700600500

In
te

ns
ity

 

Wavelength (nm) 

(a) (b) 



attracted by the studies of Falvey’s group in which they demonstrated that carboxylic 

acids could be released by a phototriggering reaction initiated by AuNP through an 

electron transfer process (Scheme 3, eq. 1).36   In their studies dithiothreitol served as the 

primary electron donor to excited AuNP.  We experimented the same reaction with 

AuNC without an additional electron donor (Scheme 3, eq. 2). As shown in Figure 9, as 

expected based on reduction potential, AuNC emission was not significantly quenched by 

the photoprotected esters 11 and 12.  Given that AuNC is able to reduce substrates having 

reduction potentials only above – 1.1 eV, the inability of the two esters (– 1.5 eV) to 

quench was not surprising.  As expected, irradiation of a solution of AuNC and the two 

esters did not result in any reaction.  We plan to pursue this study employing more easily 

reducible triggers such as methylviolgen etc. and in presence of an additional electron 

donor. 
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Scheme 3. (Top): Steps during decarboxylation of N-methylpicolinium ester triggered by 
visible light absorbing AuNP.  (Below) Visualized steps during decarboxylation of N-
methylpicolinium ester triggered by visible light absorbing AuNC  
 

       

 

Figure 9. Fluorescence quenching of AuNC by N-methylpicolinium esters in methanol, 
(a) using 11 and (b) 12. Quenching in both cases were minimal. 
 
 
 One other reaction that worked best with AuNP was the thermal isomerization of 

cis- to trans-azobenzene.37  The process is illustrated in Scheme 4.  cis-Azobenzene 
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was no conversion of cis to trans in presence of AuNC.  From this result it is clear that 

AuNC behaves distinctly differently from AuNP.  To test whether excited AuNC will 

initiate isomerization by transferring an electron to octa acid encapsulated cis-azobenzene 

we performed AuNC emission quenching experiments.  As shown in Figure 10 addition 

of octa acid encapsulated cis-azobenzene or trans-azobenzene did not result in quenching 

of AuNC emission.   Clearly AuNC even from the excited state do not initiate the 

isomerization of azobenzenes.  This is consistent with the results with several quenchers 

(Scheme 2) discussed above.  The reduction potential of azobenzenes ( ~ – 1.4 eV) are 

too low for AuNC to reduce them and initiate isomerization. 

 

 

 

Scheme 4. (a) Environment dependent isomerization of cis-azobenzene. (b) Absorption 
spectrum of AuNP used in the study. 
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Figure 10. Emission spectra of AuNC solution after addition of both cis and trans isomer 
of 15@OA2 
 
 
Conclusions 

 Our recent interest in visible light photocatalysis prompted us to identify stable 

molecules/materials that would absorb in the visible spectrum and function as sensitizers 

and initiate transformations of organic molecules by transferring either energy and/or 

electron.38-41  This led us to stable and clean gold nanoparticles and nanoclusters.  These 

well-explored materials have absorptions in the visible spectrum and act as electron and 

energy transfer agents.  In spite of their dominance in materials science, to our knowledge 

they have not been commonly used as sensitizers to initiate organic photoreactions.  

Thanks to the report by Xie,23-24 AuNC that absorbs in the visible region can be easily 

synthesized.   AuNC thus synthesized consists of a mixture of clusters of different sizes.  

The above AuNC has limited ability to serve as electron donor. It can reduce organic 

molecules whose reduction potentials are above ~ – 1.1 eV.  Based on the fluorescence 

quenching experiments we believe that AuNC has only limited ability to serve as energy 

transfer sensitizer.  It is quite likely that well defined AuNC such as Au25NC will have 

better ability to reduce wide ranging substrates and would serve as energy transfer 
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sensitizers.  We plan to continue our search for stable visible light absorbing sensitizers 

(catalysts) that would find use in the current burgeoning field of VLPC.   
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