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ABSTRACT
We consider the problem of regulating products with negative

externalities to a third party that is neither the buyer nor the seller,

but where both the buyer and seller can take steps to mitigate the

externality. The motivating example to have in mind is the sale of

Internet-of-Things (IoT) devices, many of which have historically

been compromised for DDoS attacks that disrupted Internet-wide

services such as Twitter [5, 26]. Neither the buyer (i.e., consumers)

nor seller (i.e., IoT manufacturers) was known to suffer from the

attack, but both have the power to expend effort to secure their

devices. We consider a regulator who regulates payments (via fines

if the device is compromised, or market prices directly), or the

product directly via mandatory security requirements.

Both regulations come at a cost—implementing security require-

ments increases production costs, and the existence of fines de-

creases consumers’ values—thereby reducing the seller’s profits.

The focus of this paper is to understand the efficiency of various

regulatory policies. That is, policy A is more efficient than policy

B if A more successfully minimizes negatives externalities, while

both A and B reduce seller’s profits equally.

We develop a simple model to capture the impact of regulatory

policies on a buyer’s behavior. In this model, we show that for

homogeneous markets—where the buyer’s ability to follow security

practices is always high or always low—the optimal (externality-

minimizing for a given profit constraint) regulatory policy need

regulate only payments or production. In arbitrary markets, by

contrast, we show that while the optimal policy may require regu-

lating both aspects, there is always an approximately optimal policy

which regulates just one.
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1 INTRODUCTION
The Tragedy of the Commons is a well-documented phenomenon

where agents act in their own personal interests, but their collec-

tive action brings detriments to the common good [13]. One mo-

tivating example that we will keep referencing in the paper is the

sale of Internet-of-Things (IoT) devices, such as Internet-connected

cameras, light bulbs, and refrigerators. Recent years have seen a

proliferation of these “smart-home” devices, many of which are

known to contain security vulnerabilities that have been exploited

to launch high-profile attacks and disrupt Internet-wide services

such as Twitter and Reddit [5, 26]. Both the owners and manu-

facturers of IoT devices have the ability to protect the common

good (i.e., Internet-wide service for all users) from being attacked

by securing their devices, but have little incentive to do so. For

the manufacturers, implementing security features, such as using

encryption or having no default passwords, introduces extra en-

gineering cost [2]. Similarly, security practices, such as regularly

updating the firmware or using complex and difficult-to-remember

passwords, can be a costly endeavor for the consumers [9, 27]. The

results of their actions cause a negative externality, where Internet

service is disrupted for other users.

One way to reduce the negative externality is regulation. In the

context of IoT sales, a regulator can, for instance, set minimum

security standards for the manufacturers or impose fines on owners

of hacked IoT devices that engage in attacks. Fines could come in

a few forms: direct levies on the consumer, or indirect monetary

incentives. For instance, ISPs could offer discounts to users whose

networks have not displayed any signs of malicious activities. One

might argue that such penalty-based policies could be too futuristic,

but it is worth noting that similar practices are being adopted in

other industries to mitigate negative externalities [3]. One example
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is the levying of fines on users (such as cars and factories) that cause

pollution [11]. While there are a lot of practicalities that have to be

kept in mind and the decision of when to implement consumer/user

fines depends on various factors, this is certainly one of the various

policy alternatives that is worthwhile to study. Such regulations,

however, can potentially increase the cost of production, discourage

consumers from purchasing IoT devices, and reduce the manufac-

turer’s profit. Our focus is to compare the efficiency of various

regulatory policies: for two policies which equally hurt the seller’s

profits, which one better mitigates externalities? We will also be in-

terested in understanding the optimal policy: the minimum security

standards for the manufactures and fines on owners that together

best mitigate externalities subject to a minimum seller’s profit.

We first develop a model that consists of a buyer (e.g., consumers

interested in purchasing IoT devices) and a single product for sale

(e.g., IoT device). The product may come with some (costly to in-

crease) level of security, c , and a consumer purchasing the device

may choose to spend additional effort h to further secure the de-

vice. We consider a mechanism for regulating the market through

incentives, for example, by requiring that the product being sold

implement security features that cost the seller c dollars, imposing

a fine of y dollars on the buyer if the product is later compromised

and used in attacks, or both. Which intervention is more appropri-

ate depends on how efficient buyers are in securing the product.

The goal of the regulator is to minimize the negative externalities

subject to a cap on the negative impact on the seller’s profits—the

idea being that any policy which too negatively impacts the seller

could be unimplementable due to industry backlash.

Understanding the effects of such regulations on the behavior

of a single consumer is relatively straightforward. For example: as

fines go up, consumers adjust (upwards) the optimal level of effort to

expend, lowering their total value for the item. Yet, reasoning about

how an entire market of consumers will respond to changes, and

how these responses impact seller profits becomes more complex.

Our contributions are as follows: (i) We model the sale of a single

item with negative externalities, using the sale of IoT devices as

the motivating example (Section 3). (ii) We show in Sections 5

and 6 that when the population of consumers is homogeneous (i.e.,

all consumers are comparably effective at translating effort into

security) that optimal policies need only to regulate either the

product (via minimum security standards) or the payments (via

fines). (iii) We provide an example of non-homogeneous markets

where the optimal policy regulates both product and payments,

but prove that in all markets, it is always approximately optimal

to regulate only one (Sections 7.1 and 7.2). The technical sections

additionally contain numerous examples witnessing the subtleties

in reasoning about these problems, and that any assumptions made

in our theorem statements are necessary.

2 RELATED WORK
Auction Design with Externalities. There is ample prior work

studying auction design with network externalities in the following

sense: if the item for sale is a phone, then one consumer’s value for

the phone increases when another consumer purchases a phone as

well (which is a positive externality, because they can talk to more

people). Similarly, the item could be advertising space, in which case

one consumer’s value for advertising space could decrease as other

consumers receive space (which is a negative externality, as now

each unit of space is less likely to grab attention) [4, 6, 12, 15, 17, 23].

Our work differs in that it is a third party, who is neither selling

nor purchasing an item, who suffers the externalities.

Improving the Commons. There is also a large body of work

studying the regulation of common goods (e.g., clean air, security,

spectrum access) in the form of taxes or licenses. For example,

a government agency can regulate the emission of pollution by

auctioning licenses (perhaps towards minimizing the total social

cost—regulation cost plus negative externalities) [10, 19, 22, 24,

28, 29]. Our work differs in that our regulations are constrained

to guarantee minimum profit to the seller, rather than focusing

exclusively on the social good.

Approximation in Auction Design. Owing to the inherent com-

plexity of optimal auctions for most settings of interest, it is now

commonplace in the Economics and Computation community to

design simple but approximately auctions. Our work too follows

this paradigm. We refer the reader to previous work [16] for an

overview of this literature.

Mitigating Security Problems. Computer security is a particular

example of the Tragedy of the Commons, where a software or

hardware provider sells an insecure product, and where consumers

may purchase the product without considering or taking actions to

reduce the security risks. In addition, users might be unable to dis-

tinguish insecure products from insecure ones [1]. One mitigation

strategy is to have the vendor release updates with security fea-

tures, although this could be a costly process, as August observes [2].

However, identifying the existence of security vulnerabilities in the

first place may take time for the vendors; for instance, a common

software vulnerability known as buffer overflow remained in more

than 800 open-source products for a median period of two years

before the vendors fixed the problems, according to a study by

Li [21].

An alternative to relying on a vendor to implement security

features or releasing updates is to incentivize the users to follow

security practices. Redmiles has found that users who adopt security

practices, like using two-factor authentication, have a lower overall

utility for themselves than if they adopt no security practices at

all, as security practices may introduce inconvenience [27]. Even if

users were notified of security problems that they were presumably

unaware of, it took as long as two weeks for fewer than 40% of

the users to take remedial actions, according to a study [20]. To

introduce incentives, vendors could, for instance, offer discounts

to users who adopt security behaviors [2]; regulators, on the other

hand, could incur fines to users whose software or devices were

hacked [18], which is a part of our model in this paper.

3 MODEL
In this section, we introduce our model, which consists of a popula-

tion of rational buyers and a single item for sale. After introducing

each of the concepts one-by-one, we include a table (Table 1) at the

end of this section to remind the reader of each of the components.
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Buyer properties. Buyers in our model have two parameters:

(v,k ) ∈ R2+. v denotes the buyer’s value for the item (i.e., how

much value does the buyer derive from the IoT device in isolation,

independent of fines, etc.). k denotes the buyer’s effectiveness in

translating effort into improved security. That is, a buyer with high

k can spend little effort and greatly reduce the risk of being hacked

(e.g. because they are well-versed in security measures). A buyer

with low k requires significant effort for minimal security gains.

We will often use t := (v,k ) to denote a buyer’s type.

Security. A buyer who chooses to purchase an item will spend

some level of effort h ≥ 0 securing it, which causes disutility h to

the buyer. The seller may also include some default security level

c . If the buyer has effectiveness k , we then denote the combined

effort by effort(k, c,h) := c + kh. The idea is that buyers with

higher effectiveness are more effective at securing the device for the

same disutility. Note that buyers with effectiveness k > 1 are more

effective than the producer, and buyers with effectiveness k < 1

are less effective. Highly effective buyers should not necessarily

be interpreted as “more skilled” than producers, but some security

measures (e.g., password management) are simply more effective

for consumers than producers to implement.

We model the probability that a device is compromised as a func-

tion д(·) of effort, with д(x ) := e−x . This modeling decision is

clearly stylized, and meant as an approximation to practice which

captures the following two important features: (a) as effort x ap-

proaches∞, д(x ) → 0 (that is, it is possible to shrink the probability

of being compromised arbitrarily small with sufficient effort), and

(b) д′′(x ) ≥ 0. That is, the initial units of effort are more effective

(i.e. д′(x ) is larger in absolute value) than latter ones (when д′(x )
is smaller in absolute value). The idea is that consumers/producers

will take the highest “bang-for-buck” steps first (e.g., setting a pass-

word). Note that our results do not qualitively change if, for instance,

д(x ) := λ1e
λ2x

for some constants λ1 ∈ (0, 1], λ2 > 0, but since

the model is stylized anyway we set λ1 = λ2 = 1 for simplicity of

notation.

Regulatory Policy. The regulator selects a policy/strategy s =
(y, c,p) ∈ ∈R3+. Here, c denotes the security standards the producer
must include which is equivalent to the production cost. y denotes

the fine the consumer pays should their device be compromised.

p denotes the price of the item. Conceptually, one should think

of the regulator inducing the producer to set security standard

c and price p via particular regulatory policies (e.g., requiring a

minimum security level c ′, or mandating purchase of insurance).

Mathematically, we will not belabor exactly how the regulator

arrives at (y, c,p). We will also be interested in “simple” policies,

which regulate either y or c .

Definition 3.1 (Simple Policy). For a policy s = (y, c,p), we say s
is a fine policy if c = 0, a cost policy if y = 0 and a simple policy if s
is either a fine policy or a cost policy.

Utilities. Recall that so far our buyer has value v and efficiency

k , and chooses to put in effort h. The regulator mandates security c
(which is equivalent to the production cost) on the item (which has

price p) and imposes fine y for compromised items. The probability

that an item is compromised is д(effort(k, c,h)) = e−c−kh . The

buyer’s utility is therefore: v − p − h − y · e−c−kh . Observe that

the buyer is in control of h (but not v,p,y, c,k). So the buyer will

optimize over h ≥ 0 to minimize h + y · e−c−kh . By taking the

derivative with respect to h, we get a closed form for the choice of

effort h∗ (t , s ) (recalling that we denote the buyer’s type t = (v,k )
and the regulator’s strategy s = (y, c,p)):

h∗ (t , s ) = max

(
0,

ln(yk ) − c

k

)
(1)

We can now see that the probability that the buyer’s item is com-

promised, conditioned on expending the optimally chosen effort

is:

risk(t , s ) := min

{
e−c ,

1

yk

}
. (2)

We will additionally refer to the buyer’s (security) loss as the

expected fines they suffer plus the effort they spend. That is:

ℓ(t , s ) := y · risk(t , s ) + h∗ (t , s ) :=



ln(yk )−c+1
k , yk ≥ ec

ye−c , yk < ec
(3)

It then follows that the buyer’s utility (value minus price minus

expected fines) is:

u (t , s ) := v −p − ℓ(t , s ) =



v − p − 1/k −
ln(yk )−c

k , yk ≥ ec

v − p − ye−c , yk < ec
(4)

Population of Buyers. We model the population of buyers as a

distribution D over types t . Additionally, we make the now-typical

assumption in the multi-dimensional mechanism design literature

(e.g. [8, 14, and follow-up work]) that the parameters v and k are

drawn independently, so that D := Dv × Dk .
1
The seller’s profits

are then:

ProfD (s ) := (p − c ) · Pr

t←D
[u (t , s ) ≥ 0] (5)

Externalities. Finally, we define the externalities caused and the

regulator’s objective function. Each device sold has some probability

of being compromised, and the regulator wishes to minimize the

total fraction of compromised devices.
2
That is, we measure the

externalities caused as:
3

ExtD (s ) :=
Et←D [risk(t , s ) · I(u (t , s ) ≥ 0)]

Prt←D [u (t , s ) ≥ 0]

(6)

Optimization. The regulator’s objective is to propose an s =
(y, c,p) that minimizes ExtD (s ). Observe that, if left unconstrained,
the regulator can simply propose c → ∞, resulting in 0 externalities.
Such a policy is completely unrealistic, as it would cause costs to

approach ∞ and destroy the industry. Similarly, taking y → ∞
would cause consumers to have negative utility even to get the

item for free (again destroying the industry). We therefore impose

a minimum profit constraint for a policy to be considered feasible.

Indeed, this forces the regulator to trade off profits for externalities

1
This assumption is evenmore justified in our setting than usual, as it is hard to imagine

correlation between the value a consumer derives from using a smart refridgerator

and their ability to secure IoT devices.

2
It would be equally natural for the regulator to aim to minimize the total mass of

compromised devices. Most of our results do not rely on optimizing one objective

versus the other, but we stick with one in order to unify the presentation.

3
Below, I( ·) denotes the indicator function, which takes value I(X ) = 1 whenever

event X occurs, and 0 otherwise.
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as effectively as possible. Therefore, our regulator is given some

profit constraint R, and aims to find:

argmins,ProfD (s )≥R {ExtD (s )}

We will only consider cases where there is some feasible s (that
is, we will only consider R such that there exists a p with R ≤
ProfD (0, 0,p). If no suchp exists, then the profit constraint exceeds
the optimal achievable profit without regulation, and the problem

is unsolvable).

Recap of model. Table 1 recaps the parameters of our model for

future reference. Note also that many parameters (e.g. ℓ(·, ·) are
formally defined as a function of t = (v,k ) and s = (y, c,p), but only
depend on (e.g.) k,y, c . As such, it will often be clearer to overload

notation and write ℓ(k,y, c ), rather than defining a new t = (v,k )
with a meaningless parameter. Sometimes, though, it will be clearer

to use the defined notation for a type t that was just defined. In the

interest of clarity, we will overload notation for these variables, but

it will be clear from context what they refer to.

Table 1: Model Variables

Variable Text Definition Formal Definition

t = (v,k ) (value, effectiveness) N/A

D := Dv × Dk buyer population N/A

s = (y, c,p) (fine, security, price) N/A

h∗ (t , s ) buyer optimal effort max{0,
ln(yk )−c

k },(1)

risk(t , s ) compromise prob. min{e−c , 1

yk }, (2)

ℓ(t , s ) buyer security loss Equation (3)

u (t , s ) buyer utility v − p − ℓ(t , s ), (4)

ProfD (s ) seller profits Equation (5)

ExtD (s ) frac. compromised Equation (6)

Final Thoughts on Model. We propose a stylized model to capture

the following salient aspects of this market: (a) neither buyer nor

seller suffer externalities when the item is compromised, (b) the

regulator can regulate both the product (via c) and payments (via

y,p), (c) there is a population of buyers, each with different value

v and effectiveness k at translating effort into security, and (d) the

regulator must effectively trade off externalities with profits by

minimizing negative externalities, subject to a minimum profit con-

straint R. The goal of this model is not to capture every potentially

relevant parameter, but to isolate the salient features above.

3.1 An Intuitive Example
In this section, we provide one example to help give intuition for the

interaction between the finesy, default security c , and seller’s profits
ProfD (s ). In particular, Figure 1 plots the maximum achievable

ProfD (s ) over all s with a fixed c (the x-axis) andy (the color of the

plot). In all three examples,Dv is the uniform distribution on [0, 20],

and k is drawn from either the uniform distribution on [0, 1], [0, 3],

or [2, 3], respectively. Note that k ≥ 1 is the threshold when a

buyer is more efficient than the seller in mitigating externalities,

so these examples cover two homogeneous populations, where all

consumers are more (respectively, less) efficient than the producer,

and one heterogeneous population, where some consumers are more

efficient, and others are not.

For each possible (partial) regulation (y, c ), the profit-maximizing

choice of p is essentially a classic single-item problem (e.g. [25]),

as the buyer’s “modified value” v ′ is simply v − ℓ(t , s ) − c , and the

seller’s profit for setting price p is just p ·Prt←D [v
′ ≥ p]. Therefore,

for each partial regulation (y, c ), we can construct the modified

distribution and simply maximize p · Prt←D [v
′ ≥ p] as above.

Observe in Figure 1, when y = 0, the seller gets greater profits

with lower c . This should be intuitive, as neither the buyer nor

seller suffer when the device is compromised. When y > 0, and

Dk = U ([0, 1]), the seller’s profits can increase with c . This should
also be intuitive: now that the buyer suffers when the device is

compromised, they prefer to buy a secure device.

On the other hand, when the market contains only efficient buy-

ers (k > 1 always), the buyer prefers to provide her own security;

any increased cost will always decrease the buyer’s utility. Indeed,

observe that
∂ℓ(t,s )

∂c is either 0 (if yk < ec ) or 1 − 1/k (otherwise).

If k > 1, then this is always positive, so higher c results in (weakly)

higher loss for the consumer, and lower utility.

3.2 Preliminary Observations
We conclude with two observations which allow an easy compari-

son between the profits of certain policies. Intuitively, Observation 1

claims that any policy which makes every single consumer in the

population have lower loss generates greater profits for the seller.

We will make use of Observation 1 repeatedly throughout the tech-

nical sections to modify existing policies into ones which improve

profits (ideally while also improving externalities, although that is

not covered by Observation 1).

Observation 1. Let s = (y, c,p), s ′ = (y′, c ′,p′) be such that

p′ − c ′ = p − c ≥ 0 and for all k ∈ support(Dk ), ℓ(k, s ) + c ≤
ℓ(k, s ′) + c ′. Then for all Dv , ProfDv×Dk (s ) ≥ ProfDv×Dk (s

′).

Proof. Observe that for both s and s ′, the seller’s profit per sale
is identical (as p′ − c ′ = p − c). So we just wish to show that the

probability of sale for s ′ is larger than that for s . Indeed, observe
that for all t :

u (t , s ) = v − ℓ(k, s ) − p

= v − (ℓ(k, s ) + c ) + c − p

≥ v − (ℓ(k, s ′) + c ′) + c ′ − p′

= v − ℓ(k, s ′) − p′ = u (t , s ′).

Therefore, any consumer (v,k ) who chooses to purchase the item

under policy s ′ will also choose to purchase under policy s , and
therefore the probability of sale is at least as large for s as s ′. □

Observation 2 below claims that the profit of any policy s is
larger in populations D where every consumer is more effective

than in D ′.

Observation 2. Let Dk stochastically dominate D ′k .
4
Then for

all policies s = (y, c,p) with p ≥ c , and all Dv , ProfDv×Dk (s ) ≥
ProfDv×D′k

(s ).

4
That is, it is possible to couple draws (k, k ′) from (Dk , D′k ) so that k ≥ k ′ with
probability 1. Equivalently: for all x , Pr[k ≥ x, k ← Dk ] ≥ Pr[k ′ ≥ x, k ′ ← D′k ].
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Figure 1: Seller’s optimal profits under different distributions for efficiency, k . We plot the seller’s profits on the vertical axis
and the default security c on the horizontal axis. Each curve corresponds to different fines, y. Importantly, observe that when
the fine is zero, the seller achieves greatest profits with lower default security. However, when the fine is non-zero, the seller
may actually increase their profits with default security, but the benefits (to the seller) of default security decrease as the buyer
population becomes more efficient.

Proof. As Dk stochastically dominates D ′k , it is possible to

couple draws (t , t ′) from (Dv × Dk ,Dv × D ′k ) such that v = v ′

and k ≥ k ′. Observe simply that u (t , s ) ≥ u (t ′, s ) always. There-
fore, Pr[u (t , s ) ≥ 0] ≥ Pr[u (t ′, s ) ≥ 0], and ProfDv×Dk (s ) ≥
ProfD×D′k

(s ). □

Observe, however, that Observation 2, perhaps counterintu-

itively, does not hold if we replace profits with externalities. That is,

for a fixed policy s , we might increase all consumers’ effectiveness

yet also increase the externalities caused. Intuitively, this might hap-

pen (for instance) in a fine policy which successfully only sells the

item to extremely effective consumers who effectively secure their

purchase. Ineffective consumers choose not to purchase the product

to avoid fines. However, if these ineffective consumers are instead

somewhat effective, they may now choose to purchase the item,

thereby increasing externalities. Below is a concrete instantiation:

Example 3.2. Consider the population where Dv is a point-mass

at e , and Dk takes on effectiveness 0 with probability 1/2 and x > 1

with probability 1/2. Consider the policy s = (e, 0, e − 2.5). Then
the (e, 0) consumer chooses not to purchase: ℓ(e, 0, s ) = e , so their

utility would be e−e− (e−2.5) < 0. The (e,x ) consumer chooses to

purchase, as their loss is
2+ln(x )

x < 2 (as x > 1). So ExtDv×Dk (s ) =
1

ex .

Consider now improving the effectiveness of the k = 0 con-

sumers to k = 1 (so D ′k now takes on 1 with probability 1/2 and x

with probability 1/2). The (e, 1) consumer now chooses to purchase,

as their loss is 2 (so their utility is e − 2 − (e − 2.5) = 1/2). So now

ExtDv×D′k
(s ) = ( 1e +

1

ex )/2. As x > 1, the externalities have gone

up. If x ≥ 1, the externalities may have gone up quite significantly.

In Example 3.2, of course “the right” thing to do is to also change

the policy. Indeed, it is still the case that, for a fixed consumer who

purchases the item, increasing effectiveness can only decrease exter-

nalities. But without fixing whether the consumer has purchased

the item or not, the claim is false. Observation 3 captures what

we can claim about risk, loss, etc. on a per-consumer basis. Proofs

for the claims in Observation 3 all follow immediately from the

definitions in Section 3.

Observation 3. Let k > k ′, then for all s :

• risk(k, s ) ≤ risk(k ′, s ).
• ℓ(k, s ) ≤ ℓ(k ′, s ).
• h∗ (k, s ) ≥ h∗ (k ′, s ).
• u (k, s ) ≥ u (k ′, s ).

4 ROADMAP OF TECHNICAL SECTIONS
Now that we have the appropriate technical language, we provide

a brief roadmap of the results to come.

• In Section 5, we provide a technical warmup to get the reader

familiar with how to reason about our problem. The main

result of this section is Theorem 5.1, which claims that the

optimal policy when Dk is a point-mass is simple. The proof

of this theorem helps illustrate one key aspect of our later

arguments, and will also be used as a building block for later

proofs.

• In Section 6, we prove our first main result (Theorem 6.1):

as a function of R and Dv , there exists a cutoff T . If Dk
is supported on [0,T ], then a cost policy is optimal. If Dk
is supported on [T ,∞), then a fine policy outperforms all

profits-maximizing policies (we define this term in the rele-

vant section — intuitively a policy is profits-maximizing if

the price is the seller’s best response to (y, c )). Section 6 also

contains a surprising example witnessing that the additional

profits-maximizing qualification is necessary.

• In Section 7, we consider general distributions. Unsurpris-

ingly, simple policies are no longer optimal. Perhaps sur-

prisingly, if one insists on exceeding the profits benchmark

exactly, no simple policy can guarantee any bounded approx-

imation to the optimal externalities (Corollary 7.5). However,

we also show (Theorem 7.6) that it is possible to get a bicrite-

rion approximation: if one is willing to approximately satisfy

the profits constraint, it is possible to approximately mini-

mize externalities with a simple policy. That is, for any s,D,
there is a simple policy s ′ with ProfD (s ′) = Ω(1) ·ProfD (s )
and ExtD (s ′) = O (1) · ExtD (s ).
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• We include complete proofs for most of our results on point-

mass and homogeneous distributions, as these convey many

of the key ideas. By Theorem 7.6, the proofs get quite techni-

cal so we provide a sketch of the main ideas. This and other

omitted proofs can be found in [7].

5 WARM-UP: POINT-MASS EFFECTIVENESS
As a warm-up, we first study the case where Dk is a point mass

(that is, all buyers in the population have the same effectiveness

k). In this case, we show that a simple policy is optimal. The proof

is fairly intuitive, with one catch. The intuitive part is that every

consumer will put in the same effort, conditioned on buying the

item. It therefore seems intuitive that if k < 1, it is better for all

parties involved if any effort spent by the consumer is transferred

to the producer instead (and this is true). It also seems intuitive

that if k > 1, it is again better for all parties involved if any effort

spent by the producer is “transferred” to the consumer instead (e.g.

by raising fines so that the consumer chooses to spend the desired

level of effort). This is not quite true: the catch is that the fine

required to induce the desired buyer behavior may be too high to

satisfy the profit constraint. But, the above argument does work for

sufficiently large k . Importantly, there is some cutoff T such that

for all k ≤ T , the optimal policy is a cost policy (y = 0), while for

all k ≥ T , the optimal policy is a fine policy (c = 0). Below, when

we write Dv × {k }, we mean the distribution which draws v from

Dv and outputs (v,k ).

Theorem 5.1. For all Dv , R, and k , the externality-minimizing

policy for Dv × {k } is a simple policy. Moreover, for all R,Dv , there is

a cutoff T such that if k ≤ T , then the optimal policy is a cost policy.

If k ≥ T , then the optimal policy is a fine policy.

Proof. Consider any policy s = (y, c,p). Because all consumers

have the same effectiveness k , s induces the same loss for all con-

sumers. We first claim the following: □

Lemma 5.2. Let k ≤ 1. Then for all Dv and any policy s = (y, c,p),
there is an alternative policy s ′ = (0, c ′,p) with ProfDv×{k } (s

′) ≥
ProfDv×{k } (s ) and ExtDv×{k } (s

′) ≤ ExtDv×{k } (s ).

Proof. In policy s , all consumers have the same loss ℓ(k, s ). This
therefore is a good opportunity to try and make use of Observa-

tion 1. First, consider the possibility that yk < ec . In this case,

h∗ (k, s ) = 0, ℓ(k, s ) = ye−c , and risk(k, s ) = e−c . This implies

that ExtDv×{k } (s ) = e−c . Consider instead the policy s ′ = (0, c,p).
Then ℓ(k, s ′) = 0, but risk(k, s ) = e−c and ExtDv×{k } (s ) = e−c

like before. So the externalities are the same. An application of

Observation 1 concludes that the profits have improved (indeed,

(c,p) are the same in both policies, and the loss decreases as we

switch from policy s to s ′).
Consider now the possibility thatyk ≥ ec . In this case, h∗ (k, s ) =

ln(yk )−c
k , ℓ(k, s ) =

ln(yk )−c+1
k , and risk(k, s ) = 1

yk . Consider in-

stead the policy s ′ = (0, ln(yk ),p − c + ln(yk )). In this new policy,

ℓ(k, s ′) = 0 and risk(k, s ′) = 1

yk . So indeed, the new policy has

the same externalities. We just need to ensure that we can apply

Observation 1. To this end, observe that:

ℓ(k, s ) + c − (ℓ(k, s ′) + c ′) =
ln(yk ) − c + 1

k
+ c − ln(yk )

= (1/k − 1) · (ln(yk ) − c ) + 1/k

≥ 0.

The last line follows because k ≤ 1 and ln(yk ) ≥ c (because yk ≥
ec ). So the hypotheses of Observation 1 hold, and we can apply

Observation 1 to conclude that the profits improve from s to s ′ as
well. □

Lemma 5.2 covers the cases when k ≤ 1: there is always an

optimal cost policy. We now move to the case when k > 1. There

are two cases to consider: one where the optimal policy will be a

cost policy, and one where the optimal policy will be a fine policy.

The distinguishing feature between these cases will be for a given

c , how big of a fine is necessary to incentivize the consumer to

put in effort c/k , and what the consumer’s loss looks like for this

choice of y. Below, c∗ is defined to be the maximum c such that

there exists a p such that ProfDv×{0} (0, c,p) ≥ R. Observe that c∗

is also equal to the maximum ℓ such that there exists a p such that

Prof(Dv−ℓ)×{0} (0, 0,p) ≥ R (here, Dv − ℓ denotes the distribution

which samples v from Dv and then subtracts ℓ, taking a maximum

with 0 if desired). That is, c∗ is the maximum loss that can be

uniformly applied to all consumers (drawn from Dv ) while still

resulting in a distribution for which profit ≥ R is achievable.

Lemma 5.3. Let c∗ denote the maximum c such that there exists

a p such that ProfDv×{0} (0, c,p) ≥ R. Then a cost policy is optimal

for Dv × {k } if k ∈ [1, 1 + 1/c
∗
].

Proof. First, observe that the lemma hypothesis implies that any

feasible policy must have ℓ(k, s )+c ≤ c∗ (if not, then an application

of Observation 1 lets us contradict the lemma’s hypothesis with a

feasible c ′ = ℓ(k, s ) + c > c∗).
Consider now k ∈ [1, 1 + 1/c∗], and start from some pol-

icy s = (y, c,p). If this policy has h∗ (k, s ) = 0, then certainly

we can just update s ′ = (0, c,p) and get better profits with the

same externalities (by Observation 1). If instead h∗ (k, s ) > 0,

then ℓ(k, s ) =
ln(yk )−c+1

k , and risk(k, s ) = 1

yk . Consider instead

s∗ = (0, c∗,p∗), for whichever p∗ witnesses ProfD (s∗) ≥ R (we

know that such a p∗ exists by the lemma’s hypothesis). So now we

just need to compare externalities. Assume for contradiction that

risk(k, s∗) > risk(k, s ). Then we get:

risk(k, s∗) > risk(k, s ) ⇒ e−c
∗

>
1

yk

⇒ c∗ < ln(yk )

⇒
ln(yk ) − c + 1

k
>

c∗ − c + 1

k

⇒ ℓ(k, s ) + c >
c∗ − c + 1

k
+ c

⇒ ℓ(k, s ) + c >
c∗ + 1

k
⇒ ℓ(k, s ) + c > c∗ ⇒⇐ .

The last implication uses the fact that k ≤ 1 + 1/c∗. The line before
this uses that k ≥ 1. The contradiction arises because this would

imply a scheme (s) with profit ≥ R with loss > c∗, contradicting
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the definition of c∗ by the reasoning in the first paragraph of this

proof. □

Lemma 5.4. Let c∗ denote the maximum c such that there exists

a p such that ProfDv×{0} (0, c,p) ≥ R. Then a fine policy is optimal

for Dv × {k } if k ≥ 1 + 1/c∗.

Proof. Again start from some policy s = (y, c,p), inducing some

loss ℓ(k, s ). First, maybe h∗ (k, s ) > 0. In this case, the risk is
1

yk and

the loss plus cost is
ln(yk )−c+1

k + c . In particular, observe that the

partial derivative of the loss plus cost with respect to c is 1−1/k > 0.

So the policy s ′ = (y, 0,p − c ) has risk(k, s ′) = risk(k, s ) but also
ℓ(k, s ′) + c ′ < ℓ(k, s ) + c . So Observation 1 claims that this policy

gets at least as much profits (and the risk is the same).

If instead, h∗ (k, s ) = 0, then the risk is e−c and the loss is y · e−c .

In this case, consider instead y∗ such that
ln(y∗k )+1

k = c∗ and using

s∗ = (y∗, 0,p∗), for the p∗ satisfying ProfD (s∗) ≥ R (again, such

a p∗ must exist by definition of c∗, and the fact that ℓ(k, s∗) = c∗,
plus Observation 1). We just need to analyze the risk. Similar to

the previous proof, assume for contradiction that risk(k, s∗) >
risk(k, s ). Then:

risk(k, s∗) > risk(k, s ) ⇒ e−c <
1

y∗k

→ c > ln(y∗k )

⇒
ln(y∗k ) + 1

k
<

c + 1

k

⇒ c∗ <
c + 1

k

⇒ c∗ > c∗ ·
c + 1

1 + c∗
⇒⇐ .

The last inequality uses the fact that k ≥ 1 + 1/c∗, and derives a

contradiction as c ≤ c∗ (if c > c∗, then certainly ℓ(k, s ) + c > c∗,
contradicting the definition of c∗). □

All three cases together prove Theorem 5.1. The T prescribed in

the theorem statement is exactly 1+1/c∗, where c∗ is the maximum

c such that there exists a p for which ProfDv×{0} (0, c,p) ≥ R.
We conclude with one last proposition regarding the behavior

of the threshold with respect to the profits constraints R. Propo-
sition 5.5 below states that as R increases, the threshold beyond

which a fine policy is optimal increases as well.

Proposition 5.5. Let T (Dv ,R) denote the threshold such that

both a fine policy and cost policy are optimal for Dv × {T (Dv ,R)}
subject to profits constraints R. ThenT (Dv ,R) is monotone increasing

in R.

Proof. To see this, let c∗ (Dv ,R) denote the maximum c such
that there exists a p such that ProfDv×{0} (0, c,p) ≥ R. Then
c∗ (Dv ,R) is decreasing in R (as the profits constraint goes up, we

can’t afford as much security). So 1 + 1/c∗ (Dv ,R) is increasing in R.
This means that the thresholdT (Dv ,R) beyond which a fine policy

is optimal for Dv × {T } is increasing as a function of the profits

constraint R (because T = 1 + 1/c∗ (Dv ,R)). □

This concludes our treatment of the case where k is a point-mass.

Theorem 5.1 should both be viewed as a warm-up to introduce some

of our core techniques, and also as a building block towards our

stronger theorems (in the following sections). The main technique

we introduced is the ability to reduce risk and loss simultaneously

to improve both profits and externalities. The idea was that if the

buyer is less effective than the seller, everyone prefers that the seller

put in effort (y = 0, c > 0). If the buyer is more effective than the

seller, everyone prefers that the buyer put in effort. However, the

regulator can not directly mandate that the buyer put in effort, and

unfortunately the fines required to extract the desired buyer behav-

ior may too negatively affect the profit. This is why the transition

from cost to fine policies is 1 + 1/c∗ instead of 1.

6 HOMOGENEOUS DISTRIBUTIONS
In this section, we show that for populations that are sufficiently

homogeneous in effectiveness, the optimal policy remains simple.

The second half of Theorem 6.1 requires a technical assumption.

Specifically, we say that a policy (y, c,p) is profits-maximizing if,

conditioned on y, c , p is set to maximize the seller’s profits (that is,

ProfD (y, c,p) ≥ ProfD (y, c,p′) for all p′).

Theorem 6.1. For all Dv , R, there exists a cutoff T such that

• For all Dk supported on [0,T ], the externality-minimizing

policy for Dv × Dk subject to profits R is a cost policy.

• For all Dk supported on [T ,∞), the externality-minimizing

policy for Dv × Dk subject to profits R is either a fine policy,

or it is not profits-maximizing.

The proof of Theorem 6.1 will follow from Lemmas 6.3 and 6.7,

which handle the two claims in the theorem separately. Finally, we

show in Section 6.3 that the profits-maximizing qualification in part

two of Theorem 6.1 is necessary:

Proposition 6.2. There exist distributions Dv ,Dk , and profits

constraint R such that:

• T is such that for all k ≥ T , the externality-minimizing policy

for Dv × {k } subject to profits constraints R is a fine policy.

• Dk is supported on [T ,∞).
• No fine policy is externality-minimizing policy for Dv × Dk
subject to profits constraints R.
• The externality-minimizing policy for Dv × Dk subject to

profits constraints R is not simple, and not profits-maximizing

(the latter is implied by the second bullet of Theorem 6.1).

Proposition 6.2 is perhaps surprising: a fine policy is externality-

minimizing for Dv × {T }, and Dk stochastically dominatesT , so the
same fine policy has even lower externalities, and potentially greater

profit for Dv × Dk . Indeed, the optimal fine policy for Dv × Dk
achieves lower externalities than that of Dv × {T }. The catch is that

an even better non-simple policy becomes viable, and achieves still

lower externalities. Theorem 6.1 claims, however, that the optimal

non-simple policy must not be profits-maximizing.

6.1 Extension Lemma for small k
The small k case follows roughly from the following intuition. For

cost policies, neither the buyer’s loss nor her risk depend on k . So
whichever cost policy is optimal for Dv × {T } achieves the same

profits and externalities as Dv × Dk . Intuitively, going from {T } to
Dk supported on [0,T ] cannot possibly increase the profits of any

scheme (formally: Observation 2), so the initial cost policy should

remain optimal.
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Lemma 6.3 (Extension of Cost Policy). Let s be a cost policy
that is optimal for Dv × {T } subject to profits R. Then for all Dk
supported on [0,T ], s is optimal for Dv × Dk subject to profits R.

Proof. First, we observe that ProfDv×{T } (s ) = ProfDv×Dk (s ).
This is simply because the loss of consumers is independent of k
(as y = 0). Similarly, ExtDv×{T } (s ) = ExtDv×Dk (s ). This is again
because the risk of consumers is independent of k .

Now, assume for contradiction that there is some policy s ′

with profits ProfDv×Dk (s
′) ≥ R and also ExtDv×Dk (s

′) <
ExtDv×{T } (s ). Then we have the following inequality from Ob-

servation 2:

R ≤ ProfDv×Dk (s
′) ≤ ProfDv×{T } (s

′).

Therefore, as s is optimal for Dv × {T } subject to profits R, we
must have:

ExtDv×{T } (s
′) ≥ ExtDv×{T } (s ).

This now lets us conclude the following chain of inequalities,

where the first line is a corollary of Observation 3: the consumer

in a population with Dk supported on [0,T ] whose device is least
likely to be compromised is a consumer with k = T . The third line

follows from the reasoning above (that s ′ achieves profits at least
R on Dv × {T }, and is therefore feasible). The final line follows

because the externalities of a cost policy are independent of k .

ExtDv×Dk (s
′) ≥ risk(T , s ′)

= ExtDv×{T } (s
′)

≥ ExtDv×{T } (s )

= ExtDv×Dk (s ).

□

Lemma 6.3 proves the first bullet of Theorem 6.1.

6.2 Extension Lemma for large k
In this section, we sketch the proof for the large k case of The-

orem 6.1. Refer to Section 6 of [7] for omitted proofs. The proof

will be a little more involved this time, since we can no longer

claim that the externalities of a fine policy are independent of k
(whereas this does hold for cost policies). The intuition for this

case is the same though: if a fine policy is optimal for Dv × {k }
for all k ≥ T , and Dk is supported on [T ,∞), fine policies should
remain optimal for Dv × Dk . Most of the proof does not make use

of the technical assumption that the s we are competing with is a

profits-maximizing policy: this assumption only arises at the very

end.

The first step in our proof is the following concept, which cap-

tures the change in loss for a consumer (v,k ) for regulation s versus
s ′:

Definition 6.4 (Policy Comparison Function). For two policies s
and s ′, we define the policy comparison function дs,s ′ (·) so that

дs,s ′ (k ) = ℓ(k, s ) − ℓ(k, s
′).

The policy comparison function takes as input an effectiveness

k , and outputs the change in loss for a consumer under one policy

versus another. Our first lemma argues that for certain pairs (s, s ′),
the policy comparison function ismonotone ink . That is, consumers

with more effectives have greater preference for one policy over

another.

Lemma 6.5. Let s = (y, c,p) and s ′ = (y′, c ′,p′) be such that

ye−c ≤ y′e−c
′

. Then дs,s ′ (·) is monotone non-decreasing. Observe

that the hypothesis holds if y ≤ y′ and c ≥ c ′.

We use Lemma 6.5 to claim the following corollary, which essen-

tially states that if a policy change universally lowers loss and risk,

then it is possible to adjust the price so that the profits go up and

externalities go down.

Corollary 6.6. Let (y, c ), (y′, c ′) be such that (a) ye−c ≤ y′e−c
′

and (b) for all k in the support of Dk , ℓ(k,y, c ) + c ≥ ℓ(k,y
′, c ′) + c ′

and risk(k,y, c ) ≥ risk(k,y′, c ′). Then for all p and all Dv , there

exists a p′ such that:

ProfDv×Dk (y
′, c ′,p′) ≥ ProfDv×Dk (y, c,p),

ExtDv×Dk (y
′, c ′,p′) ≤ ExtDv×Dk (y, c,p).

Now we are ready to formally state the extension lemma for

large k .

Lemma 6.7 (Extension of Fine Policy). Let Dk be supported on

[T ,∞), whereT is such that a fine policy is optimal forDv×{T } subject
to profits R. Then there is a fine policy s ′ with ProfD (s ′) ≥ R such

that for all profits-maximizing s with ProfD (s ) ≥ R, ExtD (s ′) ≤
ExtD (s ).

Proof Sketch. Consider any proposed optimal policy s =
(y, c,p). We first consider the case where ℓ(T , s )+c ≥ ℓ(T , s∗) where
s∗ is the optimal fine policy on Dv × {T }. If that is the case, then
consider a fine policy s ′ = (y′, 0,p − c ) where ℓ(T , s ′) = ℓ(T , s ) + c .
Observe we must have y′ ≥ y since we can only obtain equality by

increasing fines, then by Lemma 6.5, we have ℓ(k, s ′) ≤ ℓ(k, s ) + c
for all k in the support of Dk and the profit under s ′ can only be

higher.

Now, we need to show that the risk is only lower for all k ≥ T .
First, as ℓ(T , s ′) ≥ ℓ(T , s∗) we conclude that y′ ≥ y∗. Next, we can
argue (see [7] for the full proof) that we must have

1

y∗T ≤ e−c . This

allows us to conclude that
1

y′T ≤ e−c , and we already have that

y′ ≥ y so
1

y′k ≤
1

yk . This gives us that risk(k, s
′) ≤ risk(k, s ) for

all k ≥ T . Then Corollary 6.6 let’s us claim that there exists a price

p′ for which both the profits and the externalities are better for

(y′, 0,p′) than s .
For the case where ℓ(T , s )+c < ℓ(T , s∗), observe that ℓ(Dk , s )+c

is strictly stochastic dominated by ℓ(Dk , s
∗); therefore, there is a

price p̂ where the profit strictly higher than R. Lemma 6.9 bellow,

allows us conclude that if s is optimal, then ProfDv×Dk (s ) = R;
otherwise, we can compromise ε > 0 fraction of the profit to strictly

improve externalities. This implies that if the policy s we start with
is optimal, then it is not profits-maximizing. □

Definition 6.8 (Invariant Transformation). Given a policy s =
(y, c,p), define

Inv(s,α ) :=
(
ye (p−c ) (1−α ) ,αc + (1 − α )p,p

)
where α ∈ [0,

p
p−c ].
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Lemma 6.9 (Invariant Property). Let s ′ = Inv(s,α ), then for

all k ∈ R+

• h∗ (k, s ′) = h∗ (k, s ).
• ℓ(k, s ′) = ℓ(k, s ).
• u (t , s ) = u (t , s ′).

In addition,

ProfD (s ′) = αProfD (s )

ExtD (s ′) = e−(1−α ) (p−c )ExtD (s,p)

Proof Sketch. By applying the definition of buyer’s efficiency,

we can see that for all k ,h∗ (k, s ′) = h∗ (k, s ) which implies ℓ(k, s ′) =

ℓ(k, s ), and risk(k, s ′) = e−(1−α ) (p−c )risk(k, s ). □

This concludes the proof of bullet two of Theorem 6.1.

6.3 Example: The Profits-Maximizing
Qualification is Necessary

In this section we provide the example promised in Proposition 6.2.

Refer to Section 6 of [7] for omitted proofs. Consider the following

distribution, and profits constraint R := 0.5:

Dv =



v1 = 1 w. p.
1

2

v2 = 16/15 w. p.
1

2

Dk =



k1 = 3 w. p.
1

2

k2 = x → ∞ w. p.
1

2

Above, x will be finite, but approaching∞, and ε will be finite
but approaching 0). The proposition will follow from the following

sequence of claims. First, we will establish bullet one for T := 3.

Claim 4. A fine policy is optimal for Dv × {3}.

Bullet two now immediately follows, as Dk is indeed supported

on [3,∞). We now just need to find the optimal fine policy for

Dv × Dk , and establish a better policy that is not simple. We now

search for the optimal fine policy. Such a policy might sell only to

(16/15,x ), but then the profits is at most 4/5, which is too little. Such

a policy might sell only to (16/15,x ) and (1,x ). But since x is finite,

such a policy certainly charges price < 1 (unless y = 0, in which

case the policy sells to all four types), and sells with probability

≤ 1/2, so the profits are also too small. Such a policy might sell to

all four types, which we analyze below. Or it might sell to all types

except (1, 3), which we analyze after.

Claim 5. The optimal fine policy s which sells to all four types has
ExtDv×Dk (s ) ≥

1

2

√
e
.

Claim 6. The optimal fine policy s which sells to all types except

(1, 3) has ExtDv×Dk (s ) ≥ e−1/5/3.

Corollary 6.10. The optimal fine policy s has ExtDv×Dk (s ) ≥

e−1/5/3.

Here’s now some intuition for how we’re going to design a better

non-simple policy: given that we wish to sell to all types except

(1, 3), we can set y very close to 0 and have risk(x , s ) ≈ 0, because

x is so large. The remaining question is then whether we wish to

use y or c to make the risk of (16/15, 3) as small as possible. Note

that we must keep their loss under 2/5 < 1/2 (as above). But for

k = 3, a loss of 1/2 is exactly the cutoff when it becomes more

efficient to use a fine policy instead of a cost policy. So if we use c
instead, we can get the risk lower for the same loss.

Claim 7. Let ε be such that
ln(x )+1

x ≤ ε . Then set c = 1/3− ε , and

y = (2/5 − c )ec . Then ExtDv×Dk (y, c, 2/3 + c ) =
2

3yx + e
−1/3+ε/3

and ProfDv×Dk (y, c, 2/3 + c ) = 1/2.

Now, we just need to compare e−1/5/3 and e−1/3+ε/3 + 2

3yx .

Observe that as x → ∞, ε → 0 and e−1/3+ε/3 approaches e−1/3/3.

So
2

3yx + e
−1/3+ε/3→ 0 + e−1/3/3 < e−1/5/3, and the externalities

are indeed lower.

As a sanity check, we’ll show that ((2/5−c )e1/3−ε , 1/3−ε, 2/3+c )
is not profits-maximizing (technically, Theorem 6.1 doesn’t imply

this, since we didn’t prove that the scheme is optimal. But as this

scheme is better than all fine policies, certainly the optimal policy

is not simple, and therefore not profits-maximizing by Theorem 6.1.

So the fourth bullet is already proven).

Claim 8. ((2/5 − c )e1/3−ε , 1/3 − ε, 2/3 + c ) is not profits-

maximizing.

7 GENERAL DISTRIBUTIONS: AN
APPROXIMATION

In this section, we consider general distributions. Clearly, one

should not expect a simple policy to be optimal in general. Given

that simple policies are optimal for homogeneous populations, one

might reasonably expect that simple policies are approximately

optimal for general distributions by simply ignoring half of the

population and targeting the half that is responsible for most of

the externalities. This idea works in one direction: if the “low k”

region is responsible for most of the externalities in the optimum

solution, then using a cost policy for the entire distribution is a

good idea: the high k consumers may have significantly higher risk

than previously, but this doesn’t outweigh the original risk from

the low k region.

This idea fails horribly, however, if the “high k” region is respon-

sible for most of the externalities in the optimum solution. The

problem is that while we can choose a policy to exclusively target

this subpopulation, any low k (think: k = 0) consumers who choose

to purchase anyway may have enormous risk in comparison to

before (i.e. it could now be 1when it was previously e−c for large c).
We first show that this intuition can indeed manifest in a concrete

example by presenting a lower bound in Section 7.1. This rules out

a single-criterion approximation that satisfies the profits constraint

exactly, and approximates the externalities. In Section 7, we present

a bicriterion approximation which approximately satisfies the prof-

its constraint and also approximately minimizes externalities. This

approximation is our most technical result. As such, we provide

mainly proof sketches to overview the key steps.

7.1 Lower Bound on Heterogeneous
Distributions

The key insight for our example is to make the profits constraint

so binding that the only way to match it exactly is for the entire

population to purchase the item. Part of the population will have

k = 0, and part will have k → ∞. With both c and y, it will be

204



feasible to get the k → ∞ consumers to have risk essentially 0,

while the k = 0 consumers will have reasonably small risk. But

with either c = 0 or y = 0, one of these will be lost, which causes

significant risk increase.

Example 7.1. Let Dv be a point mass at v0 = 2ex/2 · (x + e−x ).
Let Dk be a distribution with two point masses, one at k = 0 with

probability e−x/2, one at exe
x /2

with probability 1 − e−x/2. Let
R := v0 − e

−x − x .

Lemma 7.2. The policy (1,x ,R+x ) achieves profitR in Example 7.1,

and has externalities ≤ e−x/2 · e−x + 1 · e−xe
x /2

.

Proof. The utility of (v0, 0) is exactly v0 − e
−x − R − x = 0, so

they will choose to purchase. (v0, e
xex /2 ) has only larger utility, so

they will purchase as well. Therefore, the profit is indeed R.
The externalities are computed simply as the probability of hav-

ing consumer (v0, 0) times their risk (e−x ) plus (upper bound on the)

probability of consumer (v0, e
xex /2 ) times their risk (e−xe

x /2
). □

Lemma 7.3. Any cost policy that achieves profit R has externalities

at least e−x+1

Proof. The maximum security we can set and still have profit

R is x + e−x . If we set this, then the risk of all consumers (which is

now independent of k) is e−x+e
−x
≥ e−x+1. □

Lemma 7.4. Any fine policy that achieves profit R has externalities

at least e−x/2.

Proof. To achieve profit R, the policy must sell to the entire

population. The consumer with k = 0 will not put in any effort,

and therefore their risk will be one, and the externalities will be at

least e−x/2. □

Corollary 7.5. For all x , there exists a distribution Dv ×Dk and

profits constraint R such that the optimal policy is not simple, and

any simple policy that satisfies profits constraints R has externalities

at least a factor of x larger than the optimum.

Corollary 7.5 is the main result of this section. Clearly the distri-

bution witnessing Corollary 7.5 is highly contrived and unrealistic.

And clearly, the way to get around this is to allow for a slight re-

laxation in the profits constraint so that we don’t have to sell to

the entire market (indeed, even allowing to relax the constraint

by a (1 − e−x/2) fraction in this case would suffice). So the sub-

sequent section shows that by relaxing the profits constraint, an

approximation guarantee is possible.

7.2 A Bicriterion approximation
Given the lower bound in Section 7.1, we show that simple policies

guarantee a bicriterion approximation. As is traditional with worst-

case approximation guarantees, our constants are not particularly

close to 1, but are still relatively small. This is not meant to imply

that the seller should be happy with (e.g.) a 1/8-fraction of the

original profits, but more qualitatively to conclude that simple

policies can reap many of the benefits of optimal ones (see [16] for

further discussion about the role of approximation in mechanism

design). As referenced previously, the proof of Theorem 7.6 is quite

technical, so we sketch the key steps. The complete proof can be

found on [7].

Theorem 7.6. For all distributionsD, and all policies s , there exists
a simple policy s ′ such that

ProfD (s ′) ≥ ProfD (s )/8,

ExtD (s ′) ≤ 40/3 · ExtD (s ).

Proof Sketch. Given an arbitrary policy s = (y, c,p), consider
the conditional distribution of buyers that purchase under s . If
with constant probability a buyer has efficiency k ≤ 1, then we

output the cost policy s1 := (0, c + ℓ(σ , s ),p + ℓ(σ , s )) where σ
is chosen such that a buyer continues to purchase with constant

probability. We can show that c + ℓ(σ , s ) is sufficiently large such

that risk(Dk , s
′) ≤ risk(Dk , s ) with constant probability.

For the case where with constant probability a buyer has ef-

ficiency k > 1, we define a blowup of the fines such that with

constant probability a buyer continues to purchase but with the

hope that inefficient buyers stop to purchase. The blowup can fail in

two conditions: (1) Dk is not heavy tail, (2) Dv is heavy tail. For (1),

we cannot derive a significant blowup if Dk is concentrated close

to 1. For (2), we cannot drive inefficient buyers out of the market if

they have high value. Either condition allow us to construct cost

policies that give good externality guarantees. □

8 SUMMARY
We propose a stylized model to study regulation of single item sales

with negative externalities, from which neither the buyer nor seller

suffer. We first show that a simple policy is optimal in homogenous

markets: That is, for allDv , R, there exists a cutoffT such that when

the effectiveness of consumers ranges in [0,T ], the optimal policy

regulates only the product (and does not impose fines). Similarly, if

all consumers have effectiveness in [T ,∞), a policy which regulates

only payments (via fines, and does not impose default security

features) outperforms all profits-maximizing policies. Importantly,

T is not necessarily the cutoff at which the consumers are more

effective than the producer (which would be T = 1), but actually

depends on the value distribution Dv and profit constraint R.
We then show in general markets that while a simple policy may

not be optimal, one is always approximately optimal. In particular,

we show that while no simple scheme can guarantee any finite

approximation while satisfying the profit constraint exactly, a bi-

criterion approximation exist, which approximately satisfies the

profit constraint and also approximately minimizes externalities.

Going forward, we must better understand the effectiveness of con-

sumers to decide which regulation strategy is more appropriate to

approximately minimizes externalities.

While stylized, our model captures the key salient features of

this problem. We chose to study the single seller/single item setting

in order to isolate these features without bringing in additional

complexities (and the numerous examples throughout our paper

demonstrate that even the single seller/single item setting is quite

rich). Now that our results develop this understanding, a good

direction for futurework is to consider competing sellers ormultiple

items.
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