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ABSTRACT

We consider the problem of regulating products with negative
externalities to a third party that is neither the buyer nor the seller,
but where both the buyer and seller can take steps to mitigate the
externality. The motivating example to have in mind is the sale of
Internet-of-Things (IoT) devices, many of which have historically
been compromised for DDoS attacks that disrupted Internet-wide
services such as Twitter [5, 26]. Neither the buyer (i.e., consumers)
nor seller (i.e., IoT manufacturers) was known to suffer from the
attack, but both have the power to expend effort to secure their
devices. We consider a regulator who regulates payments (via fines
if the device is compromised, or market prices directly), or the
product directly via mandatory security requirements.

Both regulations come at a cost—implementing security require-
ments increases production costs, and the existence of fines de-
creases consumers’ values—thereby reducing the seller’s profits.
The focus of this paper is to understand the efficiency of various
regulatory policies. That is, policy A is more efficient than policy
B if A more successfully minimizes negatives externalities, while
both A and B reduce seller’s profits equally.

We develop a simple model to capture the impact of regulatory
policies on a buyer’s behavior. In this model, we show that for
homogeneous markets—where the buyer’s ability to follow security
practices is always high or always low—the optimal (externality-
minimizing for a given profit constraint) regulatory policy need
regulate only payments or production. In arbitrary markets, by
contrast, we show that while the optimal policy may require regu-
lating both aspects, there is always an approximately optimal policy
which regulates just one.
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1 INTRODUCTION

The Tragedy of the Commons is a well-documented phenomenon
where agents act in their own personal interests, but their collec-
tive action brings detriments to the common good [13]. One mo-
tivating example that we will keep referencing in the paper is the
sale of Internet-of-Things (IoT) devices, such as Internet-connected
cameras, light bulbs, and refrigerators. Recent years have seen a
proliferation of these “smart-home” devices, many of which are
known to contain security vulnerabilities that have been exploited
to launch high-profile attacks and disrupt Internet-wide services
such as Twitter and Reddit [5, 26]. Both the owners and manu-
facturers of IoT devices have the ability to protect the common
good (i.e., Internet-wide service for all users) from being attacked
by securing their devices, but have little incentive to do so. For
the manufacturers, implementing security features, such as using
encryption or having no default passwords, introduces extra en-
gineering cost [2]. Similarly, security practices, such as regularly
updating the firmware or using complex and difficult-to-remember
passwords, can be a costly endeavor for the consumers [9, 27]. The
results of their actions cause a negative externality, where Internet
service is disrupted for other users.

One way to reduce the negative externality is regulation. In the
context of IoT sales, a regulator can, for instance, set minimum
security standards for the manufacturers or impose fines on owners
of hacked IoT devices that engage in attacks. Fines could come in
a few forms: direct levies on the consumer, or indirect monetary
incentives. For instance, ISPs could offer discounts to users whose
networks have not displayed any signs of malicious activities. One
might argue that such penalty-based policies could be too futuristic,
but it is worth noting that similar practices are being adopted in
other industries to mitigate negative externalities [3]. One example


https://doi.org/10.1145/3308558.3313692
https://doi.org/10.1145/3308558.3313692
https://doi.org/10.1145/3308558.3313692

is the levying of fines on users (such as cars and factories) that cause
pollution [11]. While there are a lot of practicalities that have to be
kept in mind and the decision of when to implement consumer/user
fines depends on various factors, this is certainly one of the various
policy alternatives that is worthwhile to study. Such regulations,
however, can potentially increase the cost of production, discourage
consumers from purchasing IoT devices, and reduce the manufac-
turer’s profit. Our focus is to compare the efficiency of various
regulatory policies: for two policies which equally hurt the seller’s
profits, which one better mitigates externalities? We will also be in-
terested in understanding the optimal policy: the minimum security
standards for the manufactures and fines on owners that together
best mitigate externalities subject to a minimum seller’s profit.

We first develop a model that consists of a buyer (e.g., consumers
interested in purchasing IoT devices) and a single product for sale
(e.g., IoT device). The product may come with some (costly to in-
crease) level of security, ¢, and a consumer purchasing the device
may choose to spend additional effort h to further secure the de-
vice. We consider a mechanism for regulating the market through
incentives, for example, by requiring that the product being sold
implement security features that cost the seller ¢ dollars, imposing
a fine of y dollars on the buyer if the product is later compromised
and used in attacks, or both. Which intervention is more appropri-
ate depends on how efficient buyers are in securing the product.
The goal of the regulator is to minimize the negative externalities
subject to a cap on the negative impact on the seller’s profits—the
idea being that any policy which too negatively impacts the seller
could be unimplementable due to industry backlash.

Understanding the effects of such regulations on the behavior
of a single consumer is relatively straightforward. For example: as
fines go up, consumers adjust (upwards) the optimal level of effort to
expend, lowering their total value for the item. Yet, reasoning about
how an entire market of consumers will respond to changes, and
how these responses impact seller profits becomes more complex.

Our contributions are as follows: (i) We model the sale of a single
item with negative externalities, using the sale of IoT devices as
the motivating example (Section 3). (ii) We show in Sections 5
and 6 that when the population of consumers is homogeneous (i.e.,
all consumers are comparably effective at translating effort into
security) that optimal policies need only to regulate either the
product (via minimum security standards) or the payments (via
fines). (iii) We provide an example of non-homogeneous markets
where the optimal policy regulates both product and payments,
but prove that in all markets, it is always approximately optimal
to regulate only one (Sections 7.1 and 7.2). The technical sections
additionally contain numerous examples witnessing the subtleties
in reasoning about these problems, and that any assumptions made
in our theorem statements are necessary.

2 RELATED WORK

Auction Design with Externalities. There is ample prior work
studying auction design with network externalities in the following
sense: if the item for sale is a phone, then one consumer’s value for
the phone increases when another consumer purchases a phone as
well (which is a positive externality, because they can talk to more
people). Similarly, the item could be advertising space, in which case
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one consumer’s value for advertising space could decrease as other
consumers receive space (which is a negative externality, as now
each unit of space is less likely to grab attention) [4, 6, 12, 15, 17, 23].
Our work differs in that it is a third party, who is neither selling
nor purchasing an item, who suffers the externalities.

Improving the Commons. There is also a large body of work
studying the regulation of common goods (e.g., clean air, security,
spectrum access) in the form of taxes or licenses. For example,
a government agency can regulate the emission of pollution by
auctioning licenses (perhaps towards minimizing the total social
cost—regulation cost plus negative externalities) [10, 19, 22, 24,
28, 29]. Our work differs in that our regulations are constrained
to guarantee minimum profit to the seller, rather than focusing
exclusively on the social good.

Approximation in Auction Design. Owing to the inherent com-
plexity of optimal auctions for most settings of interest, it is now
commonplace in the Economics and Computation community to
design simple but approximately auctions. Our work too follows
this paradigm. We refer the reader to previous work [16] for an
overview of this literature.

Mitigating Security Problems. Computer security is a particular
example of the Tragedy of the Commons, where a software or
hardware provider sells an insecure product, and where consumers
may purchase the product without considering or taking actions to
reduce the security risks. In addition, users might be unable to dis-
tinguish insecure products from insecure ones [1]. One mitigation
strategy is to have the vendor release updates with security fea-
tures, although this could be a costly process, as August observes [2].
However, identifying the existence of security vulnerabilities in the
first place may take time for the vendors; for instance, a common
software vulnerability known as buffer overflow remained in more
than 800 open-source products for a median period of two years
before the vendors fixed the problems, according to a study by
Li [21].

An alternative to relying on a vendor to implement security
features or releasing updates is to incentivize the users to follow
security practices. Redmiles has found that users who adopt security
practices, like using two-factor authentication, have a lower overall
utility for themselves than if they adopt no security practices at
all, as security practices may introduce inconvenience [27]. Even if
users were notified of security problems that they were presumably
unaware of, it took as long as two weeks for fewer than 40% of
the users to take remedial actions, according to a study [20]. To
introduce incentives, vendors could, for instance, offer discounts
to users who adopt security behaviors [2]; regulators, on the other
hand, could incur fines to users whose software or devices were
hacked [18], which is a part of our model in this paper.

3 MODEL

In this section, we introduce our model, which consists of a popula-
tion of rational buyers and a single item for sale. After introducing
each of the concepts one-by-one, we include a table (Table 1) at the
end of this section to remind the reader of each of the components.



Buyer properties. Buyers in our model have two parameters:
(v,k) € Ri. v denotes the buyer’s value for the item (i.e., how
much value does the buyer derive from the IoT device in isolation,
independent of fines, etc.). k denotes the buyer’s effectiveness in
translating effort into improved security. That is, a buyer with high
k can spend little effort and greatly reduce the risk of being hacked
(e.g. because they are well-versed in security measures). A buyer
with low k requires significant effort for minimal security gains.
We will often use ¢ := (v, k) to denote a buyer’s type.

Security. A buyer who chooses to purchase an item will spend
some level of effort h > 0 securing it, which causes disutility h to
the buyer. The seller may also include some default security level
c. If the buyer has effectiveness k, we then denote the combined
effort by EFForT(k, c,h) := ¢ + kh. The idea is that buyers with
higher effectiveness are more effective at securing the device for the
same disutility. Note that buyers with effectiveness k > 1 are more
effective than the producer, and buyers with effectiveness k < 1
are less effective. Highly effective buyers should not necessarily
be interpreted as “more skilled” than producers, but some security
measures (e.g., password management) are simply more effective
for consumers than producers to implement.

We model the probability that a device is compromised as a func-
tion ¢g(-) of EFFORT, with g(x) := e™*. This modeling decision is
clearly stylized, and meant as an approximation to practice which
captures the following two important features: (a) as effort x ap-
proaches oo, g(x) — 0 (that is, it is possible to shrink the probability
of being compromised arbitrarily small with sufficient effort), and
(b) g”’(x) > 0. That is, the initial units of effort are more effective
(i.e. g’ (x) is larger in absolute value) than latter ones (when g’(x)
is smaller in absolute value). The idea is that consumers/producers
will take the highest “bang-for-buck” steps first (e.g., setting a pass-
word). Note that our results do not qualitively change if, for instance,
g(x) == A4 e?2X for some constants A1 € (0,1],A2 > 0, but since
the model is stylized anyway we set A; = A3 = 1 for simplicity of
notation.

Regulatory Policy. The regulator selects a policy/strategy s =
(y,c,p) € €R3. Here, ¢ denotes the security standards the producer
must include which is equivalent to the production cost. y denotes
the fine the consumer pays should their device be compromised.
p denotes the price of the item. Conceptually, one should think
of the regulator inducing the producer to set security standard
¢ and price p via particular regulatory policies (e.g., requiring a
minimum security level ¢/, or mandating purchase of insurance).
Mathematically, we will not belabor exactly how the regulator
arrives at (y, ¢, p). We will also be interested in “simple” policies,
which regulate either y or c.

Definition 3.1 (Simple Policy). For a policy s = (y, ¢, p), we say s
is a fine policy if ¢ = 0, a cost policy if y = 0 and a simple policy if s
is either a fine policy or a cost policy.

Utilities. Recall that so far our buyer has value v and efficiency
k, and chooses to put in effort h. The regulator mandates security ¢
(which is equivalent to the production cost) on the item (which has
price p) and imposes fine y for compromised items. The probability
that an item is compromised is g(ErFForT(k, c, h)) = e~ ¢k The
buyer’s utility is therefore: v — p — h — y - e""%"_Observe that
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the buyer is in control of h (but not v, p, y, ¢, k). So the buyer will
optimize over h > 0 to minimize h + y - e~ kh, By taking the
derivative with respect to h, we get a closed form for the choice of
effort h*(t, s) (recalling that we denote the buyer’s type ¢ = (v, k)
and the regulator’s strategy s = (y, c, p)):

In(yk) — c)

(1)

h*(t,s) = max (0, B

We can now see that the probability that the buyer’s item is com-
promised, conditioned on expending the optimally chosen effort

1S:
1
yk |

We will additionally refer to the buyer’s (security) loss as the
expected fines they suffer plus the effort they spend. That is:

RISK(Z, §) := min {e_c,

@)

ln(yklz—c+l’ yk > o

£(t,s) :=y - RISK(, s) + h*(t,s) :=
() = y - mask(t,s) + B (1,5) {ye—c, e

It then follows that the buyer’s utility (value minus price minus
expected fines) is:
o po ke

v—p-—ye yk < e

c
u(t,s) ::v—p—t’(t,s):{ ykze

Population of Buyers. We model the population of buyers as a
distribution D over types t. Additionally, we make the now-typical
assumption in the multi-dimensional mechanism design literature
(e.g. [8, 14, and follow-up work]) that the parameters v and k are
drawn independently, so that D := Dy, x Di..! The seller’s profits
are then:

Prorp(s) := (p—c) - Pr [u(t,s) = 0] (5)
t<D
Externalities. Finally, we define the externalities caused and the
regulator’s objective function. Each device sold has some probability
of being compromised, and the regulator wishes to minimize the
total fraction of compromised devices.? That is, we measure the
externalities caused as:>

s) > 0)]
0]

(6)

Exrp(s) = BroDISK) 0

Pricplu(t,s)

Optimization. The regulator’s objective is to propose an s =
(y, c, p) that minimizes ExTp (s). Observe that, if left unconstrained,
the regulator can simply propose ¢ — oo, resulting in 0 externalities.
Such a policy is completely unrealistic, as it would cause costs to
approach co and destroy the industry. Similarly, taking y — oo
would cause consumers to have negative utility even to get the
item for free (again destroying the industry). We therefore impose
a minimum profit constraint for a policy to be considered feasible.
Indeed, this forces the regulator to trade off profits for externalities

! This assumption is even more justified in our setting than usual, as it is hard to imagine
correlation between the value a consumer derives from using a smart refridgerator
and their ability to secure IoT devices.

21t would be equally natural for the regulator to aim to minimize the total mass of
compromised devices. Most of our results do not rely on optimizing one objective
versus the other, but we stick with one in order to unify the presentation.

3Below, I(-) denotes the indicator function, which takes value I(X) = 1 whenever
event X occurs, and 0 otherwise.



as effectively as possible. Therefore, our regulator is given some
profit constraint R, and aims to find:

arg ming pror, (s)=R {ExTp(s)}

We will only consider cases where there is some feasible s (that
is, we will only consider R such that there exists a p with R <
PrOFp (0, 0, p). If no such p exists, then the profit constraint exceeds
the optimal achievable profit without regulation, and the problem
is unsolvable).

Recap of model. Table 1 recaps the parameters of our model for
future reference. Note also that many parameters (e.g. (-, ) are
formally defined as a function of t = (v, k) and s = (y, ¢, p), but only
depend on (e.g.) k, y, c. As such, it will often be clearer to overload
notation and write {(k, y, c), rather than defining a new t = (v, k)
with a meaningless parameter. Sometimes, though, it will be clearer
to use the defined notation for a type t that was just defined. In the
interest of clarity, we will overload notation for these variables, but
it will be clear from context what they refer to.

Table 1: Model Variables

Variable Text Definition Formal Definition
t = (v,k) (value, effectiveness) N/A
D := Dy X Dy buyer population N/A
s=(y,c.p) (fine, security, price) N/A
h*(t,s) buyer optimal effort | max{0, % 1(1)
RISK(Z, $) compromise prob. min{e”¢, ylk 1 (2)
£(t,s) buyer security loss Equation (3)
u(t,s) buyer utility v—p—1L{(1,s), (4)
PRrROFp(s) seller profits Equation (5)
ExTp(s) frac. compromised Equation (6)

Final Thoughts on Model. We propose a stylized model to capture
the following salient aspects of this market: (a) neither buyer nor
seller suffer externalities when the item is compromised, (b) the
regulator can regulate both the product (via c¢) and payments (via
y, p), (c) there is a population of buyers, each with different value
v and effectiveness k at translating effort into security, and (d) the
regulator must effectively trade off externalities with profits by
minimizing negative externalities, subject to a minimum profit con-
straint R. The goal of this model is not to capture every potentially
relevant parameter, but to isolate the salient features above.

3.1 An Intuitive Example

In this section, we provide one example to help give intuition for the
interaction between the fines y, default security c, and seller’s profits
PrOFp(s). In particular, Figure 1 plots the maximum achievable
PRrOFp (s) over all s with a fixed ¢ (the x-axis) and y (the color of the
plot). In all three examples, Dy, is the uniform distribution on [0, 20],
and k is drawn from either the uniform distribution on [0, 1], [0, 3],
or [2,3], respectively. Note that k > 1 is the threshold when a
buyer is more efficient than the seller in mitigating externalities,
so these examples cover two homogeneous populations, where all
consumers are more (respectively, less) efficient than the producer,
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and one heterogeneous population, where some consumers are more
efficient, and others are not.

For each possible (partial) regulation (y, c), the profit-maximizing
choice of p is essentially a classic single-item problem (e.g. [25]),
as the buyer’s “modified value” v’ is simply v — (¢, s) — ¢, and the
seller’s profit for setting price p is just p-Pryp[v’ > p]. Therefore,
for each partial regulation (y, c), we can construct the modified
distribution and simply maximize p - Pr;p[v’ > p] as above.

Observe in Figure 1, when y = 0, the seller gets greater profits
with lower c. This should be intuitive, as neither the buyer nor
seller suffer when the device is compromised. When y > 0, and
Dy = U([0, 1]), the seller’s profits can increase with c. This should
also be intuitive: now that the buyer suffers when the device is
compromised, they prefer to buy a secure device.

On the other hand, when the market contains only efficient buy-
ers (k > 1 always), the buyer prefers to provide her own security;
any increased cost will always decrease the buyer’s utility. Indeed,
observe that % is either 0 (if yk < €€) or 1 — 1/k (otherwise).
If k > 1, then this is always positive, so higher c results in (weakly)
higher loss for the consumer, and lower utility.

3.2 Preliminary Observations

We conclude with two observations which allow an easy compari-
son between the profits of certain policies. Intuitively, Observation 1
claims that any policy which makes every single consumer in the
population have lower loss generates greater profits for the seller.
We will make use of Observation 1 repeatedly throughout the tech-
nical sections to modify existing policies into ones which improve
profits (ideally while also improving externalities, although that is
not covered by Observation 1).

OBSERVATION 1. Lets = (y,c,p), s’ = (y’,c’,p’) be such that
p'—c =p-c > 0andforallk € support(Dy), €(k,s) + ¢ <
t(k,s") +c’. Then for all D, PROFp_xp, (s) = PROFp_xD, (s").

Proor. Observe that for both s and s’, the seller’s profit per sale
is identical (as p” — ¢’ = p — ¢). So we just wish to show that the
probability of sale for s is larger than that for s. Indeed, observe
that for all ¢:

u(t,s) =v—-~L(k,s)—p
=v-(l(k,s)+c)+c—p
20— (lk,s")+c)+c" =p’
=v—L(k,s")—p" =ult,s).
Therefore, any consumer (v, k) who chooses to purchase the item

under policy s’ will also choose to purchase under policy s, and
therefore the probability of sale is at least as large for sass’. O

Observation 2 below claims that the profit of any policy s is
larger in populations D where every consumer is more effective
than in D’.

OBSERVATION 2. Let Dy stochastically dominate D;c.4 Then for
all policies s = (y,c,p) withp > c, and all Dy, PROFp_xp, (s) 2
Prorp, XD/, (s).

4That is, it is possible to couple draws (k, k') from (Dg, D) so that k > k” with
probability 1. Equivalently: for all x, Pr[k > x, k « Dg] 2 Pr[k’ 2 x, k" < D} ].
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Figure 1: Seller’s optimal profits under different distributions for efficiency, k. We plot the seller’s profits on the vertical axis
and the default security c on the horizontal axis. Each curve corresponds to different fines, y. Importantly, observe that when
the fine is zero, the seller achieves greatest profits with lower default security. However, when the fine is non-zero, the seller
may actually increase their profits with default security, but the benefits (to the seller) of default security decrease as the buyer

population becomes more efficient.

Proor. As Dj stochastically dominates Dl’c’ it is possible to
couple draws (t,t’) from (Dy X Di, Dy x Dy ) such that v = v’
and k > k’. Observe simply that u(t,s) > u(t’,s) always. There-
fore, Prlu(t,s) > 0] > Pr[u(t’,s) > 0], and PROFp_xp, (s) =
PROFDXD;{ (S) m}

Observe, however, that Observation 2, perhaps counterintu-
itively, does not hold if we replace profits with externalities. That is,
for a fixed policy s, we might increase all consumers’ effectiveness
yet also increase the externalities caused. Intuitively, this might hap-
pen (for instance) in a fine policy which successfully only sells the
item to extremely effective consumers who effectively secure their
purchase. Ineffective consumers choose not to purchase the product
to avoid fines. However, if these ineffective consumers are instead
somewhat effective, they may now choose to purchase the item,
thereby increasing externalities. Below is a concrete instantiation:

Example 3.2. Consider the population where Dy, is a point-mass
at e, and Dy takes on effectiveness 0 with probability 1/2 and x > 1
with probability 1/2. Consider the policy s = (e, 0, e — 2.5). Then
the (e, 0) consumer chooses not to purchase: {(e, 0,s) = e, so their

utility would be e—e—(e—2.5) < 0. The (e, x) consumer chooses to

purchase, as their loss is %

L

exConsider now improving the effectiveness of the k = 0 con-
sumers to k = 1 (so D; now takes on 1 with probability 1/2 and x
with probability 1/2). The (e, 1) consumer now chooses to purchase,
as their loss is 2 (so their utility is e — 2 — (e — 2.5) = 1/2). So now

EXTDvXD}C (s) = (% + é)/z. As x > 1, the externalities have gone

< 2(as x > 1).So EXTp, xp, (s) =

up. If x > 1, the externalities may have gone up quite significantly.

In Example 3.2, of course “the right” thing to do is to also change
the policy. Indeed, it is still the case that, for a fixed consumer who
purchases the item, increasing effectiveness can only decrease exter-
nalities. But without fixing whether the consumer has purchased
the item or not, the claim is false. Observation 3 captures what
we can claim about risk, loss, etc. on a per-consumer basis. Proofs
for the claims in Observation 3 all follow immediately from the
definitions in Section 3.
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OBSERVATION 3. Letk > k’, then for all s:

o risk(k,s) < risk(k’,s).
o ((k,s) < L(K',s).

o h*(k,s) = h*(k’,s).

o u(k,s) > u(k’,s).

4 ROADMAP OF TECHNICAL SECTIONS

Now that we have the appropriate technical language, we provide
a brief roadmap of the results to come.

o In Section 5, we provide a technical warmup to get the reader
familiar with how to reason about our problem. The main
result of this section is Theorem 5.1, which claims that the
optimal policy when Dy, is a point-mass is simple. The proof
of this theorem helps illustrate one key aspect of our later
arguments, and will also be used as a building block for later
proofs.

e In Section 6, we prove our first main result (Theorem 6.1):
as a function of R and Dy, there exists a cutoff T. If Dy
is supported on [0, T], then a cost policy is optimal. If Dy
is supported on [T, o), then a fine policy outperforms all
profits-maximizing policies (we define this term in the rele-
vant section — intuitively a policy is profits-maximizing if
the price is the seller’s best response to (y, ¢)). Section 6 also
contains a surprising example witnessing that the additional
profits-maximizing qualification is necessary.

o In Section 7, we consider general distributions. Unsurpris-
ingly, simple policies are no longer optimal. Perhaps sur-
prisingly, if one insists on exceeding the profits benchmark
exactly, no simple policy can guarantee any bounded approx-
imation to the optimal externalities (Corollary 7.5). However,
we also show (Theorem 7.6) that it is possible to get a bicrite-
rion approximation: if one is willing to approximately satisfy
the profits constraint, it is possible to approximately mini-
mize externalities with a simple policy. That is, for any s, D,
there is a simple policy s” with PROFp (s”) = Q(1) -PROFp(s)
and ExTp(s’) = O(1) - ExTp(s).



e We include complete proofs for most of our results on point-
mass and homogeneous distributions, as these convey many
of the key ideas. By Theorem 7.6, the proofs get quite techni-
cal so we provide a sketch of the main ideas. This and other
omitted proofs can be found in [7].

5 WARM-UP: POINT-MASS EFFECTIVENESS

As a warm-up, we first study the case where Dy is a point mass
(that is, all buyers in the population have the same effectiveness
k). In this case, we show that a simple policy is optimal. The proof
is fairly intuitive, with one catch. The intuitive part is that every
consumer will put in the same effort, conditioned on buying the
item. It therefore seems intuitive that if k < 1, it is better for all
parties involved if any effort spent by the consumer is transferred
to the producer instead (and this is true). It also seems intuitive
that if k > 1, it is again better for all parties involved if any effort
spent by the producer is “transferred” to the consumer instead (e.g.
by raising fines so that the consumer chooses to spend the desired
level of effort). This is not quite true: the catch is that the fine
required to induce the desired buyer behavior may be too high to
satisfy the profit constraint. But, the above argument does work for
sufficiently large k. Importantly, there is some cutoff T such that
for all k < T, the optimal policy is a cost policy (y = 0), while for
all k > T, the optimal policy is a fine policy (¢ = 0). Below, when
we write D, X {k}, we mean the distribution which draws v from
D, and outputs (v, k).

THEOREM 5.1. For all Dy, R, and k, the externality-minimizing
policy for Dy, X {k} is a simple policy. Moreover, for all R, D), there is
a cutoff T such that if k < T, then the optimal policy is a cost policy.
Ifk > T, then the optimal policy is a fine policy.

Proor. Consider any policy s = (y, ¢, p). Because all consumers
have the same effectiveness k, s induces the same loss for all con-
sumers. We first claim the following: |

LEmMA 5.2. Letk < 1. Then for all D, and any policy s = (y, c, p),
there is an alternative policy s’ = (0,c’, p) with PROFp_ () (s") =
PROFp (k1 (s) and EXTp_ (k) (s") < EXTp_x(k}(s)-

Proor. In policy s, all consumers have the same loss ¢(k, s). This
therefore is a good opportunity to try and make use of Observa-
tion 1. First, consider the possibility that yk < e€. In this case,
h*(k,s) = 0, €(k,s) = ye ¢, and risk(k,s) = e . This implies
that EXTp_ »(k(s) = ™. Consider instead the policy s = (0, ¢, p).
Then £(k,s’) = 0, but risk(k,s) = e”¢ and EXTp_xk)(s) = e™¢
like before. So the externalities are the same. An application of
Observation 1 concludes that the profits have improved (indeed,
(c,p) are the same in both policies, and the loss decreases as we
switch from policy s to s’).

Consider now the possibility that yk > e€. In this case, h* (k,s) =
%, l(k,s) = w, and risk(k,s) = yLk Consider in-
stead the policy s’ = (0, In(yk), p — ¢ + In(yk)). In this new policy,
t(k,s’) = 0 and risk(k,s’) = ﬁ So indeed, the new policy has
the same externalities. We just need to ensure that we can apply
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Observation 1. To this end, observe that:

Cks) +c— (Clk,s") +¢') = ln(yk)%” + ¢~ In(yk)
= (1/k = 1) - (In(yk) — ¢) + 1/k
> 0.

The last line follows because k < 1 and In(yk) > ¢ (because yk >
). So the hypotheses of Observation 1 hold, and we can apply
Observation 1 to conclude that the profits improve from s to s” as
well. O

Lemma 5.2 covers the cases when k < 1: there is always an
optimal cost policy. We now move to the case when k > 1. There
are two cases to consider: one where the optimal policy will be a
cost policy, and one where the optimal policy will be a fine policy.
The distinguishing feature between these cases will be for a given
¢, how big of a fine is necessary to incentivize the consumer to
put in effort ¢/k, and what the consumer’s loss looks like for this
choice of y. Below, ¢* is defined to be the maximum ¢ such that
there exists a p such that PROFp_ «(0}(0,¢,p) > R. Observe that c*
is also equal to the maximum ¢ such that there exists a p such that
PROF(p_ _¢)x(0}(0,0,p) = R (here, Dy, — ¢ denotes the distribution
which samples v from D, and then subtracts ¢, taking a maximum
with 0 if desired). That is, ¢* is the maximum loss that can be
uniformly applied to all consumers (drawn from D) while still
resulting in a distribution for which profit > R is achievable.

LEMMA 5.3. Let c* denote the maximum c such that there exists
a p such that PROFp_x0}(0,¢c,p) = R. Then a cost policy is optimal
for Dy, x {k} ifk € [1,1+ 1/c*].

Proor. First, observe that the lemma hypothesis implies that any
feasible policy must have £(k, s) + ¢ < ¢* (if not, then an application
of Observation 1 lets us contradict the lemma’s hypothesis with a
feasible ¢’ = €(k,s) + ¢ > ¢*).

Consider now k € [1,1 + 1/c*], and start from some pol-
icy s = (y,c,p). If this policy has h*(k,s) = 0, then certainly
we can just update s’ = (0,c,p) and get better profits with the
same externalities (by Observation 1). If instead h*(k,s) > 0,
then ¢(k,s) = w, and risk(k, s) = yLk Consider instead
s* = (0,c*, p*), for whichever p* witnesses PROFp(s*) > R (we
know that such a p* exists by the lemma’s hypothesis). So now we
just need to compare externalities. Assume for contradiction that
risk(k, s*) > risk(k, s). Then we get:

* 1
risk(k, s*) > risk(k,s) = e ¢ > =
Y
= ¢ < In(yk)
In(yk) —c+1 c*—c+1
- k k
- 1
= l(k,s) +c¢ > %+c
c*+1

= C(k,s) +c >

= l(k,s)+c>c" ==

The last implication uses the fact that k < 1+ 1/c*. The line before
this uses that k > 1. The contradiction arises because this would
imply a scheme (s) with profit > R with loss > ¢*, contradicting



the definition of ¢* by the reasoning in the first paragraph of this
proof. O

LEMMA 5.4. Let c* denote the maximum c such that there exists
a p such that PROFp_x(0}(0,¢c,p) = R. Then a fine policy is optimal
for Dy, x {k} ifk > 1+1/c".

PRrROOF. Again start from some policy s = (y, ¢, p), inducing some
loss £(k, s). First, maybe h*(k, s) > 0. In this case, the risk is y_lk and

the loss plus cost is In@l=c+l | o 1 particular, observe that the

partial derivative of the loss plus cost with respect tocis 1-1/k > 0.
So the policy s’ = (y,0,p — c) has risk(k, s”) = risk(k, s) but also
C(k,s’) + ¢’ < £(k,s) + c. So Observation 1 claims that this policy
gets at least as much profits (and the risk is the same).

If instead, h* (k, s) = 0, then the risk is ™€ and the loss is y - €.
In this case, consider instead y* such that w = ¢* and using
s* = (y*,0,p*), for the p* satisfying PROFp (s*) > R (again, such
a p* must exist by definition of ¢*, and the fact that €(k, s*) = ¢*,
plus Observation 1). We just need to analyze the risk. Similar to
the previous proof, assume for contradiction that risk(k,s*) >
risk(k, s). Then:

¢ <

risk(k, s*) > risk(k,s) = e~ ,
y'k

— ¢ > In(y*k)

In(y*k) +1 - c+1
k k
c+1

k

c+1

1+c*
The last inequality uses the fact that k > 1 + 1/c*, and derives a
contradiction as ¢ < ¢* (if ¢ > ¢*, then certainly €(k,s) + ¢ > ¢¥,
contradicting the definition of ¢*). O

=c*

<

=c >

All three cases together prove Theorem 5.1. The T prescribed in
the theorem statement is exactly 1+ 1/c*, where ¢* is the maximum
c such that there exists a p for which PROFp_ «{0)(0,c,p) = R.

We conclude with one last proposition regarding the behavior
of the threshold with respect to the profits constraints R. Propo-
sition 5.5 below states that as R increases, the threshold beyond
which a fine policy is optimal increases as well.

ProrosITION 5.5. Let T(Dy, R) denote the threshold such that
both a fine policy and cost policy are optimal for Dy, X {T(Dy,R)}
subject to profits constraints R. Then T(D,,, R) is monotone increasing
inR.

Proor. To see this, let ¢*(Dy, R) denote the maximum ¢ such
that there exists a p such that PROFp_ x(0)(0,¢c,p) = R. Then
¢*(Dy, R) is decreasing in R (as the profits constraint goes up, we
can’t afford as much security). So 1 + 1/¢*(Dy, R) is increasing in R.
This means that the threshold T(D,, R) beyond which a fine policy
is optimal for D,, X {T} is increasing as a function of the profits
constraint R (because T = 1 + 1/¢*(Dy, R)). O

This concludes our treatment of the case where k is a point-mass.
Theorem 5.1 should both be viewed as a warm-up to introduce some
of our core techniques, and also as a building block towards our
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stronger theorems (in the following sections). The main technique
we introduced is the ability to reduce risk and loss simultaneously
to improve both profits and externalities. The idea was that if the
buyer is less effective than the seller, everyone prefers that the seller
put in effort (y = 0,c¢ > 0). If the buyer is more effective than the
seller, everyone prefers that the buyer put in effort. However, the
regulator can not directly mandate that the buyer put in effort, and
unfortunately the fines required to extract the desired buyer behav-
ior may too negatively affect the profit. This is why the transition
from cost to fine policies is 1 + 1/c* instead of 1.

6 HOMOGENEOUS DISTRIBUTIONS

In this section, we show that for populations that are sufficiently
homogeneous in effectiveness, the optimal policy remains simple.
The second half of Theorem 6.1 requires a technical assumption.
Specifically, we say that a policy (y, ¢, p) is profits-maximizing if,
conditioned on y, ¢, p is set to maximize the seller’s profits (that is,
PrOFp(y,c,p) = PROFp(y, c,p’) for all p’).

THEOREM 6.1. For all Dy, R, there exists a cutoff T such that

e For all Dy supported on [0,T], the externality-minimizing
policy for Dy, X Dy subject to profits R is a cost policy.

e For all Dy supported on [T, ), the externality-minimizing
policy for Dy, X Dy subject to profits R is either a fine policy,
or it is not profits-maximizing.

The proof of Theorem 6.1 will follow from Lemmas 6.3 and 6.7,
which handle the two claims in the theorem separately. Finally, we
show in Section 6.3 that the profits-maximizing qualification in part
two of Theorem 6.1 is necessary:

PROPOSITION 6.2. There exist distributions Dy, Dy, and profits
constraint R such that:

o T is such that for allk > T, the externality-minimizing policy
for Dy, X {k} subject to profits constraints R is a fine policy.
o Dy is supported on [T, o).
o No fine policy is externality-minimizing policy for Dy, X Dy
subject to profits constraints R.
o The externality-minimizing policy for Dy, X Dy subject to
profits constraints R is not simple, and not profits-maximizing
(the latter is implied by the second bullet of Theorem 6.1).
Proposition 6.2 is perhaps surprising: a fine policy is externality-
minimizing for D, X {T}, and Dy stochastically dominates T, so the
same fine policy has even lower externalities, and potentially greater
profit for Dy, X Dy. Indeed, the optimal fine policy for Dy, X Dy
achieves lower externalities than that of D, X {T}. The catch is that
an even better non-simple policy becomes viable, and achieves still
lower externalities. Theorem 6.1 claims, however, that the optimal
non-simple policy must not be profits-maximizing.

6.1 Extension Lemma for small k

The small k case follows roughly from the following intuition. For
cost policies, neither the buyer’s loss nor her risk depend on k. So
whichever cost policy is optimal for D, X {T} achieves the same
profits and externalities as Dy, X Dy. Intuitively, going from {T} to
Dy supported on [0, T] cannot possibly increase the profits of any
scheme (formally: Observation 2), so the initial cost policy should
remain optimal.



LEMMA 6.3 (EXTENSION OF CosT Poricy). Lets be a cost policy
that is optimal for D, X {T} subject to profits R. Then for all Dy
supported on [0, T], s is optimal for Dy, X Dy. subject to profits R.

Proor. First, we observe that PRoFp_y(7}(s) = PROFp_xD, (5).
This is simply because the loss of consumers is independent of k
(as y = 0). Similarly, ExTp_x(7}(s) = EXTp,xD, (s). This is again
because the risk of consumers is independent of k.

Now, assume for contradiction that there is some policy s’
with profits PROFp,_xp,(s’) = R and also EXTp xp,(s’) <
EXTp,x(T}(s). Then we have the following inequality from Ob-
servation 2:

R < PROFp,xD, (s") < PROFp_ x(T}(s).

Therefore, as s is optimal for D;, X {T} subject to profits R, we
must have:

EXTp,x(1}(s) 2 EXTp,x(T}(s).

This now lets us conclude the following chain of inequalities,
where the first line is a corollary of Observation 3: the consumer
in a population with Dy supported on [0, T] whose device is least
likely to be compromised is a consumer with k = T. The third line
follows from the reasoning above (that s” achieves profits at least
R on Dy X {T}, and is therefore feasible). The final line follows
because the externalities of a cost policy are independent of k.

EXTp,xp (s") = Risk(T, s")
=EXTp, x(1}(s")
> EXTp,, x(T}($)
= EXTp,_xpD, (5).

Lemma 6.3 proves the first bullet of Theorem 6.1.

6.2 Extension Lemma for large k

In this section, we sketch the proof for the large k case of The-
orem 6.1. Refer to Section 6 of [7] for omitted proofs. The proof
will be a little more involved this time, since we can no longer
claim that the externalities of a fine policy are independent of k
(whereas this does hold for cost policies). The intuition for this
case is the same though: if a fine policy is optimal for D, x {k}
for all k > T, and Dy, is supported on [T, o), fine policies should
remain optimal for Dy, X Dy. Most of the proof does not make use
of the technical assumption that the s we are competing with is a
profits-maximizing policy: this assumption only arises at the very
end.

The first step in our proof is the following concept, which cap-
tures the change in loss for a consumer (v, k) for regulation s versus
s’

Definition 6.4 (Policy Comparison Function). For two policies s
and s’, we define the policy comparison function gs ¢ (-) so that

gs,s (k) = C(k,s) — E(k,s”).

The policy comparison function takes as input an effectiveness
k, and outputs the change in loss for a consumer under one policy
versus another. Our first lemma argues that for certain pairs (s, s’),
the policy comparison function is monotone in k. That is, consumers
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with more effectives have greater preference for one policy over
another.

LEMMA 6.5. Lets = (y,c,p) and s’ = (y’,c’,p’) be such that
ye ¢ < y’e’cr. Then g5, s (-) is monotone non-decreasing. Observe
that the hypothesis holds ify < y” andc > ¢’.

We use Lemma 6.5 to claim the following corollary, which essen-
tially states that if a policy change universally lowers loss and risk,
then it is possible to adjust the price so that the profits go up and
externalities go down.

COROLLARY 6.6. Let (y,¢), (y’, c’) be such that (a) ye ¢ < y’e_cl
and (b) for all k in the support of Dy, {(k,y,c) +c > C(k,y’,c’) + ¢’
and risk(k,y,c) > risk(k,y’,c’). Then for all p and all Dy, there
exists a p’ such that:

ProFp,xp, (y',¢’,p") = PROFD %D, (U ¢, p),

ExTp,xp, (y',¢'.p") < EXTp, xD, (Y: ¢, p).

Now we are ready to formally state the extension lemma for
large k.

LEmMA 6.7 (EXTENSION OF FINE Poricy). Let Dy be supported on
[T, c0), whereT is such that a fine policy is optimal for D, X{T} subject
to profits R. Then there is a fine policy s’ with PRoFp(s’) > R such
that for all profits-maximizing s with PROFp(s) > R, ExTp(s’) <
ExTp(s).

Proor SKETCH. Consider any proposed optimal policy s =
(y, ¢, p). We first consider the case where £(T, s)+c > €(T,s") where
s* is the optimal fine policy on Dy, X {T}. If that is the case, then
consider a fine policy s’ = (y’,0,p — ¢) where £(T,s”) = {(T,s) +c.
Observe we must have y’ > y since we can only obtain equality by
increasing fines, then by Lemma 6.5, we have €(k,s’) < €(k,s) + ¢
for all k in the support of Dy and the profit under s’ can only be
higher.

Now, we need to show that the risk is only lower for all k > T.
First, as ¢(T,s") > €(T,s*) we conclude that y’ > y*. Next, we can

argue (see [7] for the full proof) that we must have ﬁ < e €. This

allows us to conclude that y,LT < e7¢, and we already have that

Yy >yso y'Lk < y_lk This gives us that risk(k, s”) < risk(k, s) for
all k > T. Then Corollary 6.6 let’s us claim that there exists a price
p’ for which both the profits and the externalities are better for
(y’,0,p’) than s.

For the case where £(T, s)+c¢ < {(T,s*), observe that £(Dy,s) +c
is strictly stochastic dominated by £(Dy, s*); therefore, there is a
price p where the profit strictly higher than R. Lemma 6.9 bellow,
allows us conclude that if s is optimal, then ProFp_xp, (s) = R;
otherwise, we can compromise ¢ > 0 fraction of the profit to strictly
improve externalities. This implies that if the policy s we start with
is optimal, then it is not profits-maximizing. O

Definition 6.8 (Invariant Transformation). Given a policy s =
(y,c, p), define

INv(s, @) := (ye(Pfc)(lf‘X), ac+ (1- a)p,p)
)4

where «a € [0, el



LEMMA 6.9 (INVARIANT PROPERTY). Lets’ = INV(s, &), then for
allk e R*

o h*(k,s’) = h*(k,s).

o {(k,s") = t(k,s).

o u(t,s) =u(t,s’).
In addition,

Prorp(s’) = aProFp(s)
Extp(s’) = e~ =0 @=) Exrp (s, p)
ProoF SKETCH. By applying the definition of buyer’s efficiency,

we can see that for all k, h* (k, s”) = h*(k, s) which implies {(k, s”) =
£(k,'s), and risk(k, s’) = e~ (1= P=C)gysk (k, 5). o

This concludes the proof of bullet two of Theorem 6.1.

6.3 Example: The Profits-Maximizing
Qualification is Necessary

In this section we provide the example promised in Proposition 6.2.
Refer to Section 6 of [7] for omitted proofs. Consider the following
distribution, and profits constraint R := 0.5:

v =1 W.p.%
D, = 1
vz =16/15 w.p. 5
k1 =3 W.p.%
Dy = 2
ko=x—>0c0 w.p. 3

Above, x will be finite, but approaching oo, and ¢ will be finite
but approaching 0). The proposition will follow from the following
sequence of claims. First, we will establish bullet one for T := 3.

Cram 4. A fine policy is optimal for Dy, X {3}.

Bullet two now immediately follows, as Dy is indeed supported
n [3,00). We now just need to find the optimal fine policy for
Dy, X Dy, and establish a better policy that is not simple. We now
search for the optimal fine policy. Such a policy might sell only to
(16/15, x), but then the profits is at most 4/5, which is too little. Such
a policy might sell only to (16/15, x) and (1, x). But since x is finite,
such a policy certainly charges price < 1 (unless y = 0, in which
case the policy sells to all four types), and sells with probability
< 1/2, so the profits are also too small. Such a policy might sell to
all four types, which we analyze below. Or it might sell to all types
except (1,3), which we analyze after.

Cram 5. The optimal fine policy s which sells to all four types has
ExTp, %D, (s) = ﬁg.

CraM 6. The optimal fine policy s which sells to all types except
(1,3) has EXTp,xp, (s) > e"'/%/3.

COROLLARY 6.10. The optimal fine policy s has EXTp xp, (s) =
—1/5/3
e .

Here’s now some intuition for how we’re going to design a better
non-simple policy: given that we wish to sell to all types except
(1, 3), we can set y very close to 0 and have RIsK(x, s) ~ 0, because
x is so large. The remaining question is then whether we wish to
use y or ¢ to make the risk of (16/15, 3) as small as possible. Note
that we must keep their loss under 2/5 < 1/2 (as above). But for
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k = 3, aloss of 1/2 is exactly the cutoff when it becomes more
efficient to use a fine policy instead of a cost policy. So if we use ¢
instead, we can get the risk lower for the same loss.

Cramm 7. Let € be such that w <e¢. Thensetc =1/3—¢, and

y = (2/5—c)eC. Then EXTp xp, (y,¢,2/3 +¢) = @Lx + e 1/3+e 3
and PROFp xp, (y,¢,2/3 +¢) = 1/2.

Now, we just need to compare e~1/5/3 and e~1/3+¢/3 4+ 3yix
Observe that as x — co, ¢ — 0 and e~'/3*¢ /3 approaches e~1/3/3.
So 3yix +e /3¢ /3 5 0+ ¢71/3/3 < ¢71/5/3, and the externalities
are indeed lower.

As a sanity check, we’ll show that ((2/5=c)e'/37¢,1/3=¢,2/3+c)
is not profits-maximizing (technically, Theorem 6.1 doesn’t imply
this, since we didn’t prove that the scheme is optimal. But as this
scheme is better than all fine policies, certainly the optimal policy
is not simple, and therefore not profits-maximizing by Theorem 6.1.

So the fourth bullet is already proven).

Cramv 8. ((2/5 — c)el’37€.1/3 — £,2/3 + ¢) is not profits-
maximizing.

7 GENERAL DISTRIBUTIONS: AN
APPROXIMATION

In this section, we consider general distributions. Clearly, one
should not expect a simple policy to be optimal in general. Given
that simple policies are optimal for homogeneous populations, one
might reasonably expect that simple policies are approximately
optimal for general distributions by simply ignoring half of the
population and targeting the half that is responsible for most of
the externalities. This idea works in one direction: if the “low k”
region is responsible for most of the externalities in the optimum
solution, then using a cost policy for the entire distribution is a
good idea: the high k consumers may have significantly higher risk
than previously, but this doesn’t outweigh the original risk from
the low k region.

This idea fails horribly, however, if the “high k” region is respon-
sible for most of the externalities in the optimum solution. The
problem is that while we can choose a policy to exclusively target
this subpopulation, any low k (think: k = 0) consumers who choose
to purchase anyway may have enormous risk in comparison to
before (i.e. it could now be 1 when it was previously e~ for large c).
We first show that this intuition can indeed manifest in a concrete
example by presenting a lower bound in Section 7.1. This rules out
a single-criterion approximation that satisfies the profits constraint
exactly, and approximates the externalities. In Section 7, we present
a bicriterion approximation which approximately satisfies the prof-
its constraint and also approximately minimizes externalities. This
approximation is our most technical result. As such, we provide
mainly proof sketches to overview the key steps.

7.1 Lower Bound on Heterogeneous
Distributions

The key insight for our example is to make the profits constraint

so binding that the only way to match it exactly is for the entire

population to purchase the item. Part of the population will have
k = 0, and part will have k — oco. With both ¢ and y, it will be



feasible to get the k — oo consumers to have risk essentially 0,
while the k = 0 consumers will have reasonably small risk. But
with either ¢ = 0 or y = 0, one of these will be lost, which causes
significant risk increase.

Example 7.1. Let Dy, be a point mass at vy = 2¢*/2 - (x + e™¥).
Let Dy be a distribution with two point masses, one at k = 0 with
probability e*/2 with probability 1 — e /2. Let
R:=vg—e™*

, one at exe™?
—X.
LEMMA 7.2. The policy (1, x, R+x) achieves profit R in Example 7.1,

. — — —xeX/2
and has externalities < e */2 . ¢™X 4 1. ¢g7Xe*"",

X

Proor. The utility of (vp, 0) is exactly vg —e ™ —R—x =0, so

they will choose to purchase. (vy, e¥ ex/z) has only larger utility, so
they will purchase as well. Therefore, the profit is indeed R.

The externalities are computed simply as the probability of hav-
ing consumer (vp, 0) times their risk (e7) plus (upper bound on the)
probability of consumer (v, e* ex/z) times their risk (e™* ex/z). O

LEMMA 7.3. Any cost policy that achieves profit R has externalities
at least e™*1

Proor. The maximum security we can set and still have profit
Ris x + e *. If we set this, then the risk of all consumers (which is
now independent of k) is e X*€ " > ¢~X+1, m]

LEMMA 7.4. Any fine policy that achieves profit R has externalities
—x/2

at least e

Proor. To achieve profit R, the policy must sell to the entire
population. The consumer with k = 0 will not put in any effort,
and therefore their risk will be one, and the externalities will be at
least e™*/2. ]

CoROLLARY 7.5. For all x, there exists a distribution D, X Dy and
profits constraint R such that the optimal policy is not simple, and
any simple policy that satisfies profits constraints R has externalities
at least a factor of x larger than the optimum.

Corollary 7.5 is the main result of this section. Clearly the distri-
bution witnessing Corollary 7.5 is highly contrived and unrealistic.
And clearly, the way to get around this is to allow for a slight re-
laxation in the profits constraint so that we don’t have to sell to
the entire market (indeed, even allowing to relax the constraint
by a (1 — e~*/2) fraction in this case would suffice). So the sub-
sequent section shows that by relaxing the profits constraint, an
approximation guarantee is possible.

7.2 A Bicriterion approximation

Given the lower bound in Section 7.1, we show that simple policies
guarantee a bicriterion approximation. As is traditional with worst-
case approximation guarantees, our constants are not particularly
close to 1, but are still relatively small. This is not meant to imply
that the seller should be happy with (e.g.) a 1/8-fraction of the
original profits, but more qualitatively to conclude that simple
policies can reap many of the benefits of optimal ones (see [16] for
further discussion about the role of approximation in mechanism
design). As referenced previously, the proof of Theorem 7.6 is quite

205

technical, so we sketch the key steps. The complete proof can be
found on [7].

THEOREM 7.6. For all distributions D, and all policies s, there exists
a simple policy s’ such that

ProFp(s’) = ProrFp(s)/8,
Extp(s’) < 40/3 - ExTp(s).

ProorF SKETCH. Given an arbitrary policy s = (y, c, p), consider
the conditional distribution of buyers that purchase under s. If
with constant probability a buyer has efficiency k < 1, then we
output the cost policy s1 := (0,¢ + £(o,s),p + £(0,s)) where o
is chosen such that a buyer continues to purchase with constant
probability. We can show that ¢ + £(o, s) is sufficiently large such
that RiSk(Dy, s”) < Risk(Dy, s) with constant probability.

For the case where with constant probability a buyer has ef-
ficiency k > 1, we define a blowup of the fines such that with
constant probability a buyer continues to purchase but with the
hope that inefficient buyers stop to purchase. The blowup can fail in
two conditions: (1) Dy is not heavy tail, (2) Dy, is heavy tail. For (1),
we cannot derive a significant blowup if Dy is concentrated close
to 1. For (2), we cannot drive inefficient buyers out of the market if
they have high value. Either condition allow us to construct cost
policies that give good externality guarantees. O

8 SUMMARY

We propose a stylized model to study regulation of single item sales
with negative externalities, from which neither the buyer nor seller
suffer. We first show that a simple policy is optimal in homogenous
markets: That is, for all D, R, there exists a cutoff T such that when
the effectiveness of consumers ranges in [0, T], the optimal policy
regulates only the product (and does not impose fines). Similarly, if
all consumers have effectiveness in [T, ), a policy which regulates
only payments (via fines, and does not impose default security
features) outperforms all profits-maximizing policies. Importantly,
T is not necessarily the cutoff at which the consumers are more
effective than the producer (which would be T = 1), but actually
depends on the value distribution D,, and profit constraint R.

We then show in general markets that while a simple policy may
not be optimal, one is always approximately optimal. In particular,
we show that while no simple scheme can guarantee any finite
approximation while satisfying the profit constraint exactly, a bi-
criterion approximation exist, which approximately satisfies the
profit constraint and also approximately minimizes externalities.
Going forward, we must better understand the effectiveness of con-
sumers to decide which regulation strategy is more appropriate to
approximately minimizes externalities.

While stylized, our model captures the key salient features of
this problem. We chose to study the single seller/single item setting
in order to isolate these features without bringing in additional
complexities (and the numerous examples throughout our paper
demonstrate that even the single seller/single item setting is quite
rich). Now that our results develop this understanding, a good
direction for future work is to consider competing sellers or multiple
items.
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