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Abstract. We investigate a multirate time step approach applied to decoupled meth-
ods in fluid and structure interaction(FSI) computation, where two different time
steps are employed for fluid and structure respectively. For illustration, the multirate
technique is examined by applying the decoupled β scheme. Numerical experiments
show that the proposed approach is stable and retains the same order of accuracy as
the original single time step scheme, while with much less computational expense.
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1 Introduction

Fluid structure interaction (FSI) finds many important applications in science and en-
gineering [3–5, 7, 15–17, 25–27]. Numerical FSI methods may be generally classified as
fully implicit and decoupled approaches. The fully implicit approach leads to coupled
schemes [29], in which the equations of fluid dynamics, structural mechanics, and mesh
moving are solved simultaneously in a fully coupled fashion. Although the coupled
schemes are unconditionally stable in general, they usually result in significant difficul-
ties and inflexibility in the design and choice of mesh generation, PDE discretization,
algebraic solvers, as well as software development. On the other hand, certain decou-
pled approaches, often called loosely coupled, or partitioned, or explicit coupling ap-
proaches, have been investigated [1, 2, 13, 20], where the equations of fluid dynamics,
structural mechanics, and mesh moving are solved locally so that existing fluid and
structure solvers may be applied by easy software integration. There are many other
important physical and numerical considerations that appeal to decoupled methods for
treating different sub-models in their own physical regions independently, particularly
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because the fluid and solid possess very different physical properties and time scales.
This is generally true, not only for FSI problems [6, 11, 14–16, 27, 29], but also for other
coupled multi-domain, multi-physics applications [8, 9, 18, 19, 21–24].

Due to different time scales in many multi-physics applications, it is natural and im-
portant to develop multirate time-stepping schemes that mimic the physical phenome-
na. A multirate time-step technique was introduced in [21, 22] for decoupled methods
of coupled fluid-porous media flow models, where the entire time interval [0,T] is first
partitioned into certain coarse time-grids with the time-step size τcoarse. Within each
coarse-time grid, the free fluid flow solutions are computed for multiple fine-time step-
s with the boundary information at the interface from the porous medium solution at
the beginning of the current coarse-time grid. When the computation reaches the end
of current coarse-time grid, the porous medium solution is then updated by using the
data from the fluid region. Such a multirate approach is proved to be stable. Other
multi-domain, multi-physics applications which adopt multirate time-step technique
can be found in [23, 24].

We propose to develop multirate decoupled algorithms for FSI applications in this
paper. It has been observed that decoupled methods might lead to instability for certain
FSI applications, such as the coupling of an incompressible Stokes flow with a thin-
walled structure, due to the artificial added-mass effect if the coupled FSI model is
not properly decoupled [10, 12]. It has become one of the major challenges recently to
develop stable decoupled methods without added-mass effects for such applications.
For the benchmark problem of the coupled incompressible Stokes flow with a thin-
walled structure, two decoupled methods have been devised recently, one is the Robin-
Neumann scheme [11] and the other is the so-called β scheme [6]. Both algorithms are
shown to be stable without added-mass effects [6, 11].

Note that the structure variables vary much more rapidly than the fluid variables
in this application. We thus propose to apply the multirate time-stepping to these sta-
ble decoupled schemes. For illustration, we will examine the application of the mul-
tirate technique to the β scheme, since similar performance is observed for both the
Robin-Neumann scheme and the β scheme in numerical experiments. Numerical ex-
periments demonstrate that the proposed approach is stable and retains the same order
of accuracy as the original single time step schemes, while with much less computa-
tional expense. Furthermore, the decoupled multirate β scheme may be extended to
more general FSI problems involving nonlinearity, irregular domains, and large struc-
tural deformations, which is illustrated by a computational biomechanical model for
abdominal aneurysm simulation.

The paper is organized as follows. In Section 2, we describe the coupled model
of a Stokes flow with a thin-walled structure. In Section 3, the multirate β scheme is
presented for the coupled model. Numerical experiments are presented in Section 4 to
show the stability, convergence, and efficiency of the multirate β scheme. Concluding
remarks are given in Section 5.
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2 A Benchmark Model of a Stokes Flow Interacting with a Thin-

Walled Structure

We describe below the benchmark model of a stokes flow interacting with a thin-walled
structure as studied in [6, 11], where the fluid motion is governed by the Stokes equa-
tions in a d-dimensional (d=2,3) domain Ω f and the structure is assumed to be a linear
thin-solid defined on a (d−1)− manifold Γ. Denote ∂Ω f =Γ∪ΓD∪ΓN to be the bound-
ary of Ω f , consisting of the fluid-structure interface Γ, as well as ΓD and ΓN for the fluid
boundaries with Dirichlet and Neumann conditions imposed externally. The coupled
model then reads as: finding the fluid velocity u f : Ω f ×R

+ → R
d, the fluid pressure

p f : Ω f ×R
+→R, and the solid displacement d : Γ×R

+→R
d−1 such that







ρ f ∂tu f −divσ f (u f ,p f )=0 in Ω f ,

divu f =0 in Ω f ,

u f =0 on ΓD,

σ f (u f ,p f )n= fN on ΓN ,

(2.1)

with the interface conditions






u f =us= ḋ on Γ,

ρsǫ∂tḋ+Led+Lvḋ=−σ f (u f ,p f )n on Γ,

d=0 on ∂Γ,

(2.2)

as well as the initial conditions

u f (0)=u0
f , d(0)=d0. (2.3)

Here, ρ f and ρs are the fluid density and the solid density respectively, ǫ is the solid

thickness, ḋ is the solid velocity, n is the unit outer normal vector towards ∂Ω f ,

ε(u f )=
1

2
(∇u f +∇uT

f ), σ f (u f ,p f )=−p f I+2µ f ε(u f ) (2.4)

with µ f being the fluid dynamic viscosity, fN is a given surface force on ΓN , Le and Lv

stand for the elastic and viscous contributions respectively.
The Dirichlet condition (2.2)1 guarantees the continuity between the fluid velocity

and the structure velocity at Γ while the Neumann condition (2.2)2 ensures the conti-
nuity of the stresses at Γ. Note that equation (2.2)2 is not only an interface coupling
condition but also the structure governing equation in this model. The coupled model
has been used extensively as a benchmark FSI model to examine the added-mass effects
for decoupled methods.

Define
V f =H1

0(Ω f )=
{

u f ∈ (H1(Ω f ))
d | u f =0 on ΓD

}

,

Vs =H1
0(Ωs)=

{

us ∈ (H1(Γ))d−1 | us =0 on ∂Γ

}

,

Q f = L2(Ω f ).

(2.5)
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Denote V ≡{(u f ,us)∈V f ×Vs | u f |Γ =us|Γ = ḋ|Γ}. The weak formulation of the coupled

model reads as: finding (u,p f )∈V×Q f , and d∈Vs, such that us = ḋ and
{

(δtu,v)+aΩ(u,v)+b(v,p f )= f (v), ∀v∈V ,

b(u,q)=0, ∀q∈Q f ,
(2.6)

satisfying the initial condition (2.3), where u≡(u f ,us)=(u f ,ḋ), v≡(v f ,vs), δtu≡(ρ f
∂u f

∂t ,

ρsǫ
∂us
∂t ), b(u,q)=−

∫

Ω f
qdivu f , aΩ(u,v)≡ aΩ f

(u f ,v f )+aΩs
(d,ḋ,vs) with

aΩ f
(u f ,v f )=2

∫

Ω f

µ f ε(u f ) : ε(v f ) and aΩs
(d,ḋ,vs)=

∫

Γ

Ls(d,ḋ)·vs. (2.7)

Here and hereafter, we use Ls(d,ḋ) = Le+Lv to denote the solid tensor. Note that, in
(2.6), the Neumann interface condition is automatically guaranteed in the weak form,
while the Dirichlet interface condition is enforced in the definition of V .

3 Numerical Algorithms

3.1 The β Scheme

Algorithm 1: The β scheme.

For m=0,1,2,3,...,N−1,
1. Structure step: find ũm+1

s such that

{

ρsǫ
ũm+1

s −um
s

∆t +Ls(dm+1,ḋm+1)=−βσ f (u
m
f ,pm

f )n on Γ,

ḋm+1= ũm+1
s , dm+1=dm+∆tũm+1

s on Γ.
(3.1)

2. Fluid step: find um+1
f , pm+1

f and um+1
s such that







ρ f

∆t(u
m+1
f −um

f )−divσ f (u
m+1
f ,pm+1

f )=0 in Ω f ,

divum+1
f =0, in Ω f ,

ρsǫ
um+1

s −ũm+1
s

∆t =−σ f (u
m+1
f ,pm+1

f )n+βσ f (u
m
f ,pm

f )n on Γ,

um+1
f =um+1

s on Γ.

(3.2)

The β scheme proposed in [6] for approximating (2.6) is described in Algorithm 1,
where the key is to split the structure equation as

ρsǫ

um+1
s −ũm+1

s
︸ ︷︷ ︸

+ũm+1
s −um

s

∆t
+Ls(d

m+1,ḋm+1)=

−σ f (u
m+1
f ,pm+1

f )n+βσ f (u
m
f ,pm

f )n
︸ ︷︷ ︸

−βσ f (u
m
f ,pm

f )n. (3.3)
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The ”
︸︷︷︸

” parts in (3.3) are then used in the fluid step as a Robin-type interface condi-

tion, whereas the other parts are computed in the structure step.
It is shown in [6] that the β scheme is stable if ∆t2≤Ch and 0≤β≤1, and β=1 leads

to the optimal convergence. Therefore, we set β=1 in our numerical experiments. We
further note that when β=1, the Robin-Neumann scheme [11] differs from the β scheme
in which submodel being solved firstly. Comparisons between the Robin-Neumann
scheme and the β scheme will be given in Section 4 by numerical experiments.

3.2 A Multirate β Scheme

l l l lll

in 
f

in 
s

 t
f

 t
s
l l l lll

in 
f

in 
s

 t
f

 t
s

Figure 1: An illustration of a multirate time stepping technique.

Algorithm 2: A multirate β scheme.

For k=0,1,2,3,...,N−1, set mk = r·k,
1. Structure steps: for m=mk,mk+1,mk+2,...,mk+1−1,

{

ρsǫ ũm+1
s −um

s
∆ts

+Ls(dm+1,ḋm+1)=−βσ f (u
mk

f ,pmk

f )n on Γ,

ḋm+1= ũm+1
s , dm+1=dm+∆tsũm+1

s on Γ.
(3.4)

2. Fluid step:







ρ f

∆t f
(u

mk+1

f −umk

f )−divσ f (u
mk+1

f ,p
mk+1

f )=0 in Ω f ,

divu
mk+1

f =0 in Ω f ,

ρsǫ u
mk+1
s −ũ

mk+1
s

∆t f
=−σ f (u

mk+1

f ,p
mk+1

f )n+βσ f (u
mk

f ,pmk

f )n on Γ,

u
mk+1

f =u
mk+1
s on Γ.

(3.5)

To cope with the multi time-scale of the fluid and structure, we propose to apply the
multirate time-stepping technique to the β scheme. The question is in which region the
larger time step size should be used. Numerical experiments suggest that the version
with a larger time step size in the fluid solver (cf. Figure 1) results in a better accuracy.
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The corresponding method is described in Algorithm 2. We comment here that the
multirate β scheme is nothing else but the β scheme itself when the time-step ratio
r=1.

Algorithm 1 and Algorithm 2 are the semi-discretization in the strong form. The
corresponding fully discrete scheme with finite element discretization in space is de-
scribed in Algorithm 3.

Algorithm 3: The fully discrete multirate β scheme.

For k=0,1,2,3,...,N−1, set mk = r·k
1. Structure step: for m=mk,mk+1,mk+2,...,mk+1−1, find ũm+1

sh ∈Vsh with

ḋm+1
h = ũm+1

sh and dm+1
h =dm

h +∆tsũm+1
sh , such that ∀vsh∈Vsh, there holds

ρsǫ

(

ũm+1
sh −um

sh

∆ts
,vsh

)

Γ

+aΩs
(dm+1

h ,ḋm+1
h ,vsh)=−β

(

σ f (u
mk

f h ,pmk

f h )n,vsh

)

Γ

. (3.6)

2. Fluid step: find (u
mk+1

f h ,u
mk+1

sh ,p
mk+1

f h )∈ (V f h,Vsh,Q f h) with u
mk+1

f h |Γ=u
mk+1

sh such that

∀(v f h,vsh,q f h)∈ (V f h,Vsh,Q f h) with v f h |Γ=vsh, there holds

ρ f

(
u

mk+1

f h −umk

f h

∆t f
,v f h

)

Ω

+aΩ f
(u

mk+1

f h ,v f h)−b(p
mk+1

f h ,v f h)+b(q f h,u
mk+1

f h )

+ρsǫ

(

u
mk+1

sh −ũ
mk+1

sh

∆t f
,vsh

)

Γ

=β
(

σ f (u
mk

f h ,pmk

f h )n,vsh

)

Γ

.

(3.7)

Remark 3.1. In the multirate β scheme, if m=mk, we have um
s =umk

s from the fluid step,
and if m>mk, we take um

s = ũm
s from the structure step.

4 Numerical Experiments and Simulation

4.1 Numerical Experiments for the Fluid and Thin-walled Structure Model

In this subsection, we present numerical experiments to demonstrate the convergence
and stability performance of the multirate β scheme (3.6)-(3.7) for coupling a Stokes
flow with a thin-walled structure by using a benchmark model. The model consists of a
2-D rectangular fluid domain Ω f =[0,L]×[0,R] with L=6 and R=0.5 and a 1-D structure
domain Γ= [0,L]×R that meanwhile also plays the role of the fluid-solid interface, as
shown in Figure 2. The displacement of the interface is assumed to be infinitesimal
and the Reynolds number in the fluid is assumed to be small. All the quantities will be
given in terms of the centimeter-gram-second (CGS) system of units.

The physical parameters are set as follows: ρ f = 1.0, ρs = 1.1, µ= 0.035; Ls(d,ḋ) =

c1∂2
xd+c0d, where c1=

Eǫ
2(1+ν)

, c0=
Eǫ

R2(1−ν2)
with ǫ=0.1, the Poisson ratio ν=0.5 and the
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Figure 2: Geometrical configuration.

Young’s modulus E=0.75·106. A pressure-wave

P(t)=Pmax(1−cos(2tπ/T∗))/2 with Pmax=2·104,

is prescribed on the fluid inlet boundary for T∗ = 5·10−3 (seconds). Zero traction is
enforced on the fluid outlet boundary and no-slip condition is imposed on the lower
boundary y=0. For the solid, the two endpoints are fixed with d=0 at x=0 and x=6.

The first experiment is set up to compare the Robin-Neumann scheme with the β
scheme, the two stable decoupled methods recently developed for the benchmark mod-
el. Figure 3 displays the displacements computed by the Robin-Neumann scheme and
the β scheme, together with the coupled implicit scheme for reference, where the mesh
size and the time step size are h = 0.05 and ∆t = 10−4. It is clearly seen that both de-
coupled schemes converge as well as the coupled implicit scheme. Moreover, little
difference is observed between the two decoupled schemes numerically. This suggests
us to focus on the β scheme for investigating the multirate time-step technique.
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Figure 3: Comparisons of the numerical results obtained by the coupled implicit
scheme, the RN scheme, and the β scheme under the setting: h=0.05 and ∆ts =10−4.

We then conduct numerical experiments to investigate the effects of the time-step
ratio r. Figure 4 illustrates that a larger time step size in the fluid part results in a more
accurate numerical solution than that obtained by using a larger step size in the struc-
ture part. In the test, we fix h=0.1 and ∆t=10−5. In addition, we observe that, when ∆ts

∆t f
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is further increased to be ∆ts
∆t f

=5 or ∆ts
∆t f

=10, there are substantial numerical instability.

This screens out the possibility of using a larger time step size in the structure part.
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Figure 4: Comparison of the β scheme and the multirate β schemes with two different
time-step ratios (h=0.1 and ∆t=10−5 are fixed).

To examine how the stability and approximation are affected when the time step
in the fluid region is too large, we fix the time step ∆ts and h while vary the time-
step ratio r = 1,5,10,20,50. Figure 5 displays the computed displacements at t= 0.015
with the structure time step size ∆ts = 10−5, the mesh size h = 0.1 (left) and h = 0.01
(right). In the left figure, we observe that the structure displacements computed by
using r=1, 2, 5,10 approximate very well to that by using the coupled implicit scheme.
To further investigate the stability and the convergence of the multirate β scheme, in
the right part of Figure 5, we reduce the mesh size to be h= 0.01 while fixing the time
step size. The numerical results confirm that the multirate β scheme is still stable even
the time-step ratio is reasonably large.
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Figure 5: Numerical displacements under the settings: h=0.1 (left) h=0.01 (right) and
∆ts =10−5.
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In Figure 6, we present the numerical results of the fluid pressure distribution at
t = 0.005, 0.01, 0.015. From the top to the bottom, numerical results are: a reference
solution by the coupled implicit scheme, the numerical solution by the β scheme, and
the solution by the multirate β scheme with r = 10. By comparing the results, we see
that the multirate β scheme provides a very good approximation.

(a) t=0.005 (b) t=0.010 (c) t=0.015

(d) t=0.005 (e) t=0.010 (f) t=0.015

(g) t=0.005 (h) t=0.010 (i) t=0.015

Figure 6: Fluid pressure distribution at t= 0.005, 0.010, 0.015 obtained by the coupled
implicit scheme (top), the multirate β scheme with r = 1 (middle) and r = 10 (bottom)
with h=0.01 and ∆ts =0.00001.

In order to examine the order of convergence, we start with h=0.1 and ∆ts =0.0001,
and then refine the mesh size by a factor of 2 and the time step size by a factor of 4. The
space-time size settings are:

{h,∆ts}
i ={0.1·(0.5)i,0.0001·(0.25)i}, i=0,1,2,3,4. (4.1)

We compare the numerical solutions of the multirate β scheme with the reference so-
lution. The reference solution is computed by using the coupled implicit scheme with
a high space-time grid resolution (h = 3.125×10−3, ∆t = 10−6) as that in [11]. In the
multirate scheme, r= 1 and r= 10. The relative errors of the primary variables (u f , p f
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and d) at t = 0.015 are displayed in Figure 7. From the comparisons, we see that the
numerical errors are approximately reduced by a factor of 4 as the mesh size and the
time step size are refined once. Therefore, the multirate β scheme is of a second order
in h and a first order in t.
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(a) Relative error of u f
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Figure 7: Relative errors of primary variables with the spacing h and time step size ∆ts

in (4.1).

Finally, in order to demonstrate the advantage of the multirate β scheme, we com-
pare in Table 1 the CPU times of the concerned numerical algorithms under various
settings. We fixed ∆ts = 10−5 and vary the mesh sizes as h= 1

10 , 1
20 , 1

40 , 1
80 , 1

160 . From
the table, it is observed that the multirate β scheme takes much less computational cost
than that of the coupled implicit scheme, particularly when r is large.
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Table 1: CPU times (in seconds) for the coupled implicit scheme and the multirate β
scheme (with r=1 or 10) under different settings of mesh sizes (∆ts =10−5 is fixed).

Implicit Scheme Multirate β scheme r=1 Multirate β scheme r=10

h= 1
10 14.90 4.02 0.74

h= 1
20 48.64 16.00 2.82

h= 1
40 179.83 66.67 11.6

h= 1
80 797.76 297.96 49.23

h= 1
160 3165.26 1270.30 206.32

4.2 Extension to More General Settings

In this subsection, we demonstrate that the multirate β scheme can be naturally extend-
ed to FSI applications with nonlinear models, complex geometric domains, and large
structural deformations. We use Ω f (t)⊂R

d and Ωs(t)⊂R
d to represent current domains

of fluid flow and the structure, respectively. The boundaries of the domains are denot-
ed by Γ f (t) and Γs(t). Denote the interface between the fluid flow and structure by
ΓI(t)=Γ f (t)∩Γs(t). In order to distinguish the reference domain from the current one,

we use the notation ”ˆ” to denote the reference domains and boundaries: Ω̂ f =Ω f (0),

Ω̂s =Ωs(0) and Γ̂ f = Γ f (0), Γ̂s = Γs(0), Γ̂I = ΓI(0). For simplification, we omit the tem-
poral variable t in the definitions of domains and boundaries in the rest of this paper.
For any point x̂∈ Ω̂= Ω̂ f ∪Ω̂s, the position at t is denoted by x(x̂,t)∈Ω=Ω f ∪Ωs. The
variables in the reference domain with Lagrangian coordinates are: the displacement
d̂(x̂,t)=x− x̂ and the velocity û(x̂,t)=∂td̂(x̂,t). Because of the relation x= x̂+d̂(x̂,t), the
velocity with Eulerian coordinates is defined by u(x,t)=∂tx=∂td̂(x̂,t)= û(x̂,t).

The fluid motion is described by the incompressible Navier-Stokes equations in the
Eulerian coordinates:

ρ f Dtu f −∇·σ f = f f in Ω f , (4.2)

∇·u f =0 in Ω f . (4.3)

Here, σf is defined as in (2.4) and f f is the body force. Dtu f is the total derivative, which
is defined in (4.9) later. The structure is modeled by an elastic equation in Lagrangian
coordinates for the displacement d̂s:

ρ̂s∂ttd̂s−∇x̂ ·Ps = f̂s in Ω̂s. (4.4)

In (4.4), the first Piola stress Ps is described as

Ps= JσsF-T, (4.5)

and the Cauchy stress tensor is σs = 2µε(d̂s)+λdivd̂s with µ being the shear modulus
and λ being the Lamé parameter. F = I+∇x̂d̂s is the deformation gradient tensor and
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J = |F|. Both the velocity and the normal stress are continuous across the interface,
which can be defined as interface conditions in the Eulerian coordinates as follows

{

σsn=σ f n on ΓI ,

us =u f on ΓI .
(4.6)

The arbitrary Lagrangian−Eulerian (ALE) method is needed to deal with the mov-
ing domains. Denote the ALE mapping A as

A=At
f : Ω̂ f 7→Ω f , ∀t≥0,

x=At
f (x0)= x0+Ext(d̂s(x0,t)|

Γ̂I
). (4.7)

Here, Ext(·) is an appropriate extension of the structure displacement at the interface.
A classical choice of the extension is the harmonic extension defined by







∆d̂m =0 in Ω̂ f ,

d̂m =0 on Γ̂ f \Γ̂I ,

d̂m = d̂s on Γ̂I .

(4.8)

In (4.8), d̂m is actually the displacement of the mesh. The time derivative of the moving
grid is

Dtu f =∂At u f +(u f −um)·∇u f . (4.9)

Here, ∂At is the ALE time derivative and um denotes the velocity of the mesh, which can
be calculated by

um(x,t)=∂tx|x0 =∂t(x0+Ext(d̂s(x0,t)|
Γ̂I
)=∂td̂m(x̂,t). (4.10)

After introducing the ALE mapping, the FSI model reads as: finding u f ,p f ,ûs such
that 





ρ f (∂
A
t u f +(u f −um)·∇u f )−∇·σ f = f f in Ω f ,

∇·u f =0 in Ω f ,

ρ̂s∂ttd̂s−∇x̂ ·Ps = f̂s in Ω̂s.

(4.11)

The complete FSI model also includes the initial and boundary conditions







u f (x,0)=0 in Ω f , ûs(x̂,0)=0 in Ω̂s,

u f =u f ,D on Γ f ,D, ûs = ûs,D on Γ̂s,D,

σ f n= g f ,N on Γ f ,N, Psn= ĝs,N on Γ̂s,N,

(4.12)

the constitutive relations (2.4), (4.5), the ALE mapping relations (4.7), (4.8), (4.10) and
the interface conditions (4.6).

Define
V̂s =H1

0(Ω̂s)=
{

ûs∈ (H1(Ω̂s))
d | ûs=0 on Γ̂s,D

}

,

V̂m =H1
0(Ω̂ f )=

{

d̂m∈ (H1(Ω̂ f ))
d | d̂m=0 on Γ̂ f \Γ̂I

}

.
(4.13)
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Then, denote W =
{
(u f ,ûs)∈V f ×V̂s | u f = ûs◦ x̂(x,t) on ΓI

}
. We adopt P1−P1 finite

elements with a SUPG/PSPG stabilized formulation [28] for the fluid problem, and
apply P1 elements for both the structure problem and the ALE mapping. The general
version of the multirate β scheme is described in Algorithm 4.

Algorithm 4: The fully discrete multirate β scheme (a general version).

For k=0,1,2,3,...,N−1, set mk = r·k

1. Structure step: for m=mk,mk+1,mk+2,...,mk+1−1, find
(

ũm+1
f h , ˜̂um+1

sh

)

∈Wh with

d̂m+1
sh = d̂m

sh+∆ts ˜̂um+1
sh such that ∀

(
v f h,v̂sh

)
∈Wh, there holds

ρ̂s

(
˜̂um+1

sh −ûm
sh

∆ts
,v̂sh

)

Ω̂s

+
(

Ps(d̂
m+1
sh ),v̂sh

)

Ω̂s

+ρ f

(
ũm+1

f h −umk

f h

∆t f
,v f h

)

Ω f

=−β
(

σ f (u
mk

f h ,p
mk

f h )n,v f h

)

ΓI

.

(4.14)

2. Update mesh: find d̂
mk+1

mh ∈ V̂mh with d̂
mk+1

mh |
Γ̂I
= d̂

mk+1

sh |
Γ̂I

such that ∀v̂mh∈ V̂mh, there
holds (

∇d̂
mk+1

mh ,∇v̂mh

)

Ω̂ f

=0. (4.15)

Then the fluid domain is updated by Ω f = Ω̂ f +d̂
mk+1

mh , and u
mk+1

mh is calculated by
(4.10).
3. Fluid step: find ((u

mk+1

f h ,û
mk+1

sh ),p
mk+1

f h )∈ (Wh,Q f h) such that

∀((v f h,v̂sh),q f h)∈ (Wh,Q f h), there holds

ρ f

(
u

mk+1

f h −ũ
mk+1

f h

∆t f
,v f h

)

Ω f

+
(

ρ f (u
mk+1

f h −u
mk+1

mh )·∇u
mk+1

f h ,v f h

)

Ω f

+aΩ f
(u

mk+1

f h ,v f h)

−b(p
mk+1

f h ,v f h)+b(q f h,u
mk+1

f h )+ ρ̂s

(

û
mk+1

sh − ˜̂u
mk+1

sh

∆ts
,v̂sh

)

Ω̂s

=β
(

σ f (u
mk

f h ,pmk

f h )n,v f h

)

ΓI

.

(4.16)

We consider a FSI numerical example for studying the abdominal aneurysm [14].
The 2-D×2-D unsymmetrical computational domain is shown in the left part of Figure
8. The length of this domain L is 0.08 m, the thickness of the structure ǫ is 0.002 m
and the radius of the fluid inlet r is 0.01 m. The physical parameters are described
as: ρ f =1.060×103 kg/m3, µ f =3.7·10−3 Pa×s; ρ̂s =1.15×103 kg/m3, µ=1.80645×105,
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Figure 8: Computational domain (left) and inlet flow ūin(t) (right).

λ=5.9797×105 . Define

ūin(t)=







1

(

sin(
2π

0.4
t−

π

2
)+1)

)

/2, t∈ [0,0.4],

0.02

(

sin(
2π

0.4
(t−0.4)−

π

2
)+1)

)

/2, t∈ [0.4,0.8].

(4.17)

The time dependent function (4.17) is an approximation of the blood inlet flow in 0.8s
cardiac cycle (see the right part of Figure 8 for its profile). We impose the Dirichlet con-
dition on the fluid inlet boundary by using uin(x,t)= ūin(t)·(r

2−‖x−x0‖2
2)/r2, where

x0 is the center of the fluid inlet and x is any point on the fluid inlet boundary. The
complete boundary conditions for such a biomechanical test are as follows.

{

u f =uin on Γ f ,in, ûs=0 on Γ̂s,in∪Γ̂s,out,

σ f n=0 on Γ f ,out, Psn=0 on Γ̂s,N.

To validate the efficiency of the multirate β scheme, similar to Table 1, we have two
setups of discretization parameters: (1) a coarse mesh with 1966 triangular elements
and ∆ts=0.001; (2) a fine mesh with 7864 triangular elements and ∆ts=0.0001. In order
to measure the movement of the interface, we present the displacement magnitudes
of Point A and Point B in Figure 9 and Figure 10, in which the results of the coupled
implicit scheme, the multirate β scheme with r=1 and r=10 are compared. The coarse
mesh and ∆ts = 0.001 are used in Figure 9 whereas the fine mesh and ∆ts = 0.0001 are
used in Figure 10. We also show the velocity distributions at t = 0.2, 0.4, 0.6, 0.8 s
obtained by the coupled implicit scheme, the multirate β scheme with r=1 and r=10 on
the fine mesh and fixing ∆ts=0.0001 in Figure 11. From these figures, we see clearly that
the multirate β scheme produces comparable numerical results as that of the coupled
implicit scheme. Furthermore, for the two discretization setups, the CPU times for the
multirate β scheme with r=10 are around 1

6 of that for the scheme with r=1. Therefore,
the multirate scheme improves the efficiency substantially.
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Figure 9: Displacement magnitudes of Point A (left) and Point B (right) in 0.8 s obtained
by the coupled implicit scheme, the multirate β scheme with r = 1 and r = 10 with a
coarse mesh and ∆ts =0.001.
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Figure 10: Displacement magnitudes of Point A (left) and Point B (right) in 0.8 s ob-
tained by the coupled implicit scheme, the multirate β scheme with r = 1 and r = 10
with a fine mesh and ∆ts =0.0001.
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(a) t=0.2 (b) t=0.2 (c) t=0.2

(d) t=0.4 (e) t=0.4 (f) t=0.4

(g) t=0.6 (h) t=0.6 (i) t=0.6

(j) t=0.8 (k) t=0.8 (l) t=0.8

Figure 11: Velocity distributions at t=0.2, 0.4, 0.6, 0.8 s obtained by the coupled implicit
scheme (left), the multirate β scheme with r=1 (middle) and r=10 (right) with fine mesh
and ∆ts =0.0001.
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5 Concluding Remarks

Fluid structure interaction models appear in many engineering and science applica-
tions. As these models possess different time scales, it is natural to apply a multirate
time-step strategy to solve them numerically. In this paper, we develop multirate β
schemes for solving FSI problems with the added-mass effects. We validate the algo-
rithms by testing a benchmark model involving a Stokes flow interacting a thin-walled
structure and a general FSI model involving nonlinearity, irregular domains, and large
structural deformations. It is notable that our algorithms are decoupled and added-
mass free. Compared with the coupled implicit scheme, our algorithm uses much less
computational cost to achieve the same order of accuracy.
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[7] H.-J. Bungartz, M. Schäfer, Fluid-structure interaction: modelling, simulation, optimisa-
tion, vol. 53, Springer Science & Business Media, 2006.

[8] M. Cai, M. Mu, and J. Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by
the two-grid approach. SIAM J. Numer. Anal. 47(5) (2009) 3325-3338.

[9] M. Cai, P. Huang, and M. Mu, Some multilevel decoupled algorithms for a mixed Navier-
Stokes/Darcy model. Adv. Comput. Math., 44(1), (2018) pp.115-145.

[10] P. Causin, J.-F. Gerbeau, F. Nobile, Added-mass effect in the design of partitioned al-
gorithms for fluid–structure problems, Comput. Methods Appl. Mech. Eng., 194 (42-44)
(2005) 4506–4527.

[11] M. A. Fernández, J. Mullaert, M. Vidrascu, Explicit Robin–Neumann schemes for the cou-
pling of incompressible fluids with thin-walled structures, Comput. Methods Appl. Mech.
Eng., 267 (2013) 566–593.

[12] C. Förster, W. A. Wall, E. Ramm, Artificial added mass instabilities in sequential staggered
coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Ap-
pl. Mech. Eng., 196 (7) (2007) 1278–1293.

[13] L. Gerardo-Giorda, F. Nobile, C. Vergara, Analysis and optimization of Robin–Robin par-
titioned procedures in fluid-structure interaction problems, SIAM J. Numer. Anal. 48 (6)
(2010) 2091–2116.

[14] W. Hao, S. Gong, S. Wu, J. Xu, M. R. Go, A. Friedman, and D. Zhu, A mathematical model
of aortic aneurysm formation. PloS one 12.2 (2017): e0170807.

[15] T. He, A CBS-based partitioned semi-implicit coupling algorithm for fluidstructure inter-
action using MCIBC method. Comput. Methods Appl. Mech. Eng. 298 (2016): 252-278.

[16] T. He, K. Zhang, and T. Wang, AC-CBS-based partitioned semi-implicit coupling algorith-
m for fluid-structure interaction using stabilized second-order pressure scheme. Commun.
Comput. Phys. 21.5 (2017): 1449-1474.
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