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a b s t r a c t 

Deep Neural Networks (DNN) have proven to be highly effective in extracting high level abstractions of 

input data using multiple neural network layers. However, the huge training times for DNNs in tradi- 

tional von-Neumann machines have hindered their ubiquitous adoption in IoT and other mobile comput- 

ing platforms. Recently, acceleration of DNN with a time complexity of O(1 ) was proposed using the 

idea of stochastic weight update with resistive processing units (RPU). However, it has been projected 

that RPU devices require more than 10 0 0 reliable conductance levels, which is a stringent requirement 

to realize in memristive devices. Here, we study the optimization of stochastic learning for DNNs for the 

hand-written digit classification benchmark using the characteristics of non-filamentary Pr 0.7 Ca 0.3 MnO 3 

(PCMO) devices that are fabricated using a standard lithography process. The electrical characteristics of 

these devices exhibit a linear conductance response with an on-off ratio of 1.8 with 26 levels and signif- 

icant programming variability. We captured these non-ideal behaviors of experimental PCMO device in 

the simulations to demonstrate stochastic learning with O(1 ) time complexity, achieving a test accuracy 

of 88.1% for the hand-written digit recognition benchmark. While the linearity, dynamic range, bit res- 

olution, programming variability and the reset rate of the device conductance to account for its limited 

dynamic range have to be co-optimized for improving the training efficiency, we show that programming 

variability has the paramount role in determining the network performance. We also show that if devices 

with reduced programming variability (5x smaller compared to our experimental device) can be devel- 

oped keeping all other parameters constant, it is possible to boost the network performance as high as 

95%. We also observe that the performance of stochastic DNNs with memristive synapses is independent 

of the on-off ratio of the devices for a fixed programming variability. Thus, programming variability rep- 

resents a new optimization corner for on-chip learning of stochastic DNNs. Further, we also evaluate the 

performance of stochastic inference engines to noise corrupted input test data as a function of the vari- 

ability in the memristive devices. We demonstrate that noise-resilient inference engines can be achieved 

if 100 bits are used for stochastic encoding during inference even though the expensive network training 

can be done with as few as 10 bits. Thus, our studies emphasize the need for optimization of learning 

strategies for DNNs based on the non-ideal characteristics of experimental nanoscale devices. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The human brain, with its exceptional structural organization

nd efficiency has inspired the development of today’s modern mi-

roprocessors [1,2] . Human brain employs a massively parallel ar-

hitecture based on a large interconnected network of neurons and

ynapses (local memory elements) for efficient computation. In

ontrast, the performance of conventional microprocessors is lim-

ted by the “von Neumann bottle-neck” for applications involving
∗ Corresponding author. 
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arge data movement between processor and memory [3,4] . In an

ffort to mimic the brain’s power efficient and fault tolerant com-

utation, neural networks have been explored since 1940s [5–7] .

mong these, the second generation Artificial Neural Networks

ANN) have shown unprecedented success recently. However, train-

ng of deep neural networks is computationally intensive and re-

uires large training times with a time complexity of O( N 
2 ) ( N is

he number of neurons in any layer) in von-Neumann machines;

ence several hardware approaches have been proposed for ac-

elerating DNN training [8,9] . However, none of these approaches

ave mitigated the limitations with respect to power, area and

raining time, and hence there are several proposals to employ

https://doi.org/10.1016/j.neucom.2018.09.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.09.019&domain=pdf
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non-volatile memory (NVM) based synapses for efficient acceler-

ation of neural network training and inference [10–13] . 

Two-terminal memristive devices are an ideal choice for imple-

menting electrical synapses due to its small size, enabling them

to be densely packed in crossbar arrays. Further, thanks to their

low power programming and read characteristics and the abil-

ity to store and retain multiple bits in a single device [14,15] ,

they offer one possible way to emulate the brain’s connectivity in

hardware. Moreover, it has been numerically estimated that NVM

based on-chip learning systems promise upto 25 × speed up and

30 0 0 × improvement in power compared to GPU (Graphics Pro-

cessing Unit) based implementations [16] . However, most of the

memristive devices being explored today also have non-ideal char-

acteristics such as finite on-off ratio, finite conductance resolution

and has temporal and spatial conductance variability during pro-

gramming and read [17,18] . Therefore, new architectural and device

level optimizations are necessary to obtain the projected perfor-

mance enhancements in hardware. 

It has recently been proposed that DNNs can be implemented

using tiled arrays of 2D crossbars of resistive processing units

(RPU), which are memristive devices that can store multiple ana-

log states and also adjust its conductivity based on identical

sequence of voltage pulses [19] . If such crossbar arrays can be

designed and all the weights in the array can be updated in

parallel, the training time can be accelerated by replacing the

vector cross-product operation with AND operation of stochastic

bit streams representing neuronal signals. One of the most chal-

lenging requirements to be satisfied by an ideal RPU device is

that it must be possible to incrementally program it to nearly

10 0 0 reliable conductance states within a dynamic range of 10 by

the application of identical sequence of voltage pulses. This is a

stringent requirement and has not been demonstrated so far on

experimental devices. Pr 0.7 Ca 0.3 MnO 3 (PCMO) based RRAM devices

have been explored for neuromorphic hardware due to its ana-

log conductance response by previous authors. However, most of

these schemes use complex programming methods which cannot

support parallel synaptic communication or updates, which is cru-

cial for obtaining O(1 ) time complexity operation and hardware

acceleration. In [20] , numerical simulations of a 3-layer network

with experimental PCMO characteristics having an on-off ratio of

5 and 256 conductance states showed a recognition accuracy of

90.55% for hand-written digit classification, although pulses with

variable amplitudes were used for device programming. Linear

and symmetric conductance response are shown to improve net-

work performance [20] and several programming strategies have

been explored to compensate for the non-linear and asymmet-

ric conductance response at the cost of higher power and chip

area [21–23] . 

Towards the goal of attaining parallel synaptic communication

and weight update, we fabricated and characterized PCMO de-

vices specifically optimized for analog and incremental program-

ming upon the application of identical programming pulses. Using

the measured characteristics, we study the performance of DNNs

trained in a stochastic fashion for the exemplary hand-written im-

age recognition task. We then conduct several numerical studies to

determine the crucial device parameters for improving network ac-

curacy and training times. While it is necessary to optimize the lin-

earity, dynamic range, bit resolution, programming variability, and

the frequency of conductance reset to account for the limited dy-

namic range of the synaptic device for improving the training time

and convergence rate of hardware deep networks, we show that

programming variability has the paramount role in determining

the network performance. We also show that if devices with re-

duced programming variability can be developed keeping all other

parameters constant, it is possible to attain close to baseline accu-

racies in PCMO based synaptic hardware. 
This paper is organized as follows: We first discuss the basic

deas of stochastic computing and how it can be used for acceler-

ting DNN training. A 4-layer network for hand-written digit clas-

ification is then analyzed as a benchmark for our studies based on

onventional floating point implementation using stochastic weight

pdates. The basic 4-layer network is then extended to a cross-

ar compatible implementation with PCMO device conductances as

he synaptic weights at the crossbar. The performance of stochastic

NNs is then studied for different optimizations of the PCMO de-

ice characteristics such as programming variability and dynamic

ange. Finally, we demonstrate the robustness of stochastic infer-

nce engines using low on-off ratio devices to noise corrupted test

ata by using higher precision for network encoding for inference

s compared to training. 

. Stochastic computing 

In the stochastic framework for computation, a number x ∈
0,1] can be represented as a Bernoulli sequence X = [ x 1 , x 2 ,

 3 , . . . , x N ] such that the random variable x has a probability of

 (x i = 1 ) = x , and N is the length of the Bernoulli sequence [24–

6] . In order to compute the product of two scalar quantities a

nd b , that are appropriately scaled in the range [0,1], two uncor-

elated N bit long Bernoulli sequences representing a, b are cre-

ted such that P (a i = 1 ) = a , P (b i = 1 ) = b . Let C represent the

it-wise logical AND operation of sequences A and B of variables a

nd b . Therefore, 

 (c i = 1) = P (a i = 1) P (b i = 1) = ab (1)

 (c i = 0) = 1 − P (a i = 1) P (b i = 1) = 1 − ab (2)

Thus the product c = a × b, can be approximately obtained by

he bit-wise logical AND or coincidence detection of the Bernoulli

equences A, B . The expectation and variance of the binary random

ariable C i is E( C i ) = ab , Var( C i ) = ab(1 − ab) . Let the number rep-

esented by the Bernoulli sequence c = C 1 , C 2 , . . . , C N be obtained

y averaging the N independent random variables C i , 

 = 

1 

N 

N ∑ 

i =1 

C i (3)

⇒ E(c) = ab , V ar(c) = 

ab(1 − ab) 

N 

(4)

The error in the estimated average decreases with the length

f the Bernoulli sequence N . Hence, a key advantage of stochas-

ic representation is that multiplication can be implemented effi-

iently by using simple logic gates or coincidence detection [27–

9] . Stochastic computing is suitable for applications that can tol-

rate certain level of inexactness such as image processing [30] ,

rror correcting codes [31] as well as in artificial neural networks

32,33] . 

. DNN training and acceleration 

Deep Neural Network (DNN) training is done in two steps - a

orward pass to calculate the activations or the output of all the

eurons in the network, and a backward pass to determine the

eight update required for all the synapses in the network. In for-

ard pass, the input y to neuron j in layer (l + 1) is calculated

ased on the inputs in the previous layer and the synaptic weights

etween these two layers, given by 

 

(l+1) 
j 

= σ

( 

N ∑ 

i =1 

w 

(l) 
i j 
x (l) 
i 

) 

(5)
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Fig. 1. A 4-layer deep neural network with 784-256-128-10 neurons in each layer 

used for hand-written digit classification (Simulated using MATLAB) [40] . 

Fig. 2. Training and test error for floating point DNN with weight update using 

Eq. (7) . Training and test error decreases with epoch and reaches a maximum test 

accuracy of 98%. This network is used as the baseline to determine the bit length 

required for stochastic DNNs. 
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here σ is the non-linear sigmoid activation function. The time

omplexity involved in forward pass given in Eq. (5) of DNN train-

ng is O( N 
2 ), with N being the number of neurons in each layer.

n the backward pass, the error terms for each layer ( l ) is calcu-

ated based on the error in the succeeding layer (l + 1) using back

ropagation algorithm [34] . 

(l+1) 
j 

∝ 

N ∑ 

k =1 

w 

(l+1) 
jk 

δ(l+2) 
k 

(6) 

 

(l) 
i j 

← w 

(l) 
i j 

± ηx (l) 
i 

δ(l+1) 
j 

(7) 

As before, matrix multiplication in Eqs. (6) and ( 7 ) has a time

omplexity of O( N 
2 ). Each of the weights in layer ( l ) is updated

y multiplying the error in the succeeding layer (l + 1) , the in-

ut to layer ( l ) and learning rate ( η) as shown in Eq. (7) . Hence,

etwork training for data intensive applications such as audio and

ideo analysis can have training times exceeding several days or

onths even when implemented in parallel architectures such as

PUs [35] . In order to accelerate DNN training in hardware, for-

ard pass, backward pass and the weight update operations have

o be executed in parallel. The vector-matrix multiplications in-

olved in the forward and backward pass can be implemented

sing crossbar arrays with memristive devices at the cross-point

36–39] . 

Recently, a scheme to implement parallel weight update has

een proposed using memristive resistive processing units (RPU)

t the crossbar under the framework of stochastic computing [19] .

n the parallel weight update scheme, stochastic pulses of constant

mplitude (and opposite polarity) representing x j and δj are fed
o the crossbar from the row and column respectively. The pulse

mplitude is chosen such that when there is no overlap between

he pulses from the row and column, the device conductance re-

ains un-perturbed, and only during coincidence of these pulses

oes the device conductance change. Ideally, the RPU conductance

ill change by an integer multiple of minimum allowed conduc-

ance change ( �w min ) per coincident pulse pair. Thus DNN training

an be done with a time complexity of O(1 ) using RPU devices at

he cross-point [19] . 

To perform DNN training with O(1 ) time complexity using

tochastic computing, simulations suggest that the proposed RPU

evice should have more than 10 0 0 reliable conductance states

hich is a stringent requirement to meet experimentally. Therefore

he challenge is to achieve DNN training with real device spec-

fications such as - limited on-off ratio, programming variability

nd limited conductance resolution (levels). This paper realizes a

-layer stochastic DNN for hand-written digit classification using

emristive synapses, whose synaptic behavior is derived from the

lectrical characteristics of the fabricated Pr 0.7 Ca 0.3 MnO 3 device.

he electrical characteristics of Pr 0.7 Ca 0.3 MnO 3 devices are highly

on-ideal, with a dynamic range in conductance (Gmax/Gmin) of

.8, 26 discernible levels in this range and significant variability

uring programming. We then simulate and analyze the perfor-

ance of stochastic DNNs to various device parameters-such as

n-off ratios, sensitivity to conductance variations and tolerance to

oisy input for inference. 

. Network architecture 

A 4-layer deep network is selected for hand-written digit classi-

cation with 784-256-128-10 fully connected neurons in each layer

s shown in Fig. 1 [19,40] . This network is trained with a standard

and-written digits database (MNIST - Modified National Institute

f Standards and Technology) with 50,0 0 0 hand-written digits for

raining, 10,0 0 0 images for validation and a different set of 10,0 0 0

mages for testing. Each of the input image has 784 pixel values in
he grey scale and is preprocessed by normalization such that the

nput lies in the range [0,1] [41] . The 784 input neurons in the first

ayer takes these 784 pre-processed pixel inputs for training. Net-

ork learning is done by using multi-class cross entropy objective

unction with sigmoid activation function for the hidden layers and

oftmax function for the output layer. Batch size of unity is used

or training with the weights updated after every image and the

resentation of entire 50,0 0 0 images constitutes 1 epoch. A vari-

ble learning rate scheme is used for weight updates and all the

etwork simulations for training and testing is done using MAT-

AB. 

.1. Floating point DNN 

As a baseline, the network which is trained by the floating

oint multiplication (without stochastic encoding) for weight up-

ate shown in Eq. (7) is referred to as ‘Floating Point DNN’. Af-

er 30 epochs of training, we obtain state-of-the-art accuracies

or fully connected networks of similar complexity (98%) ( http:

/yann.lecun.com/exdb/mnist/ ). The corresponding test and training

rror is shown in Fig. 2 . This network is used as the base line for

ptimizing stochastic DNNs. 

http://yann.lecun.com/exdb/mnist/
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Fig. 3. Training error for stochastic DNN with BL = 2 , 10 , 50 , 100 bits. BL = 10 bits is a reasonable choice for stochastic DNN (left); Table showing the maximum test 

accuracy of floating point and stochastic DNNs for hand-written digit classification. BL = 10 bits is a reasonable choice for stochastic DNN. Shown here is the maximum test 

accuracy across 5 different MATLAB iterations (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Pr 0.7 Ca 0.3 MnO 3 device structure with Tungsten (W) as the top contact and 

Platinum (Pt) as the bottom contact. 
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4.2. Stochastic DNN 

The network which uses stochastic pulses for forward pass,

backward pass and weight update is referred to as ‘Stochastic

DNN’. During forward pass, the input to each layer is converted

to a stochastic pulse stream of length BL to compute the neuronal

activations. For the backward pass given by Eq. (6) , the error in the

succeeding layer (l + 2) is converted to a stochastic pulse stream

of length BL for calculating the error in the layer (l + 1) . For the

weight update, if x i and δj ∈ [0,1] is represented by Bernoulli se-

quences, then the multiplication of x i and δj can be implemented

by coincidence detection as explained in section 2 . The modified

weight update rule is 

w 

(l) 
i j 

= w 

(l) 
i j 

± B 

( 

BL ∑ 

n =1 

x (l) 
i,n 

∧ δ(l+1) 
j,n 

) 

(8)

where BL is the bit length that is used to approximately represent

the real values in x i , δj , and B is the minimum jump in conduc-

tance that can be programmed into the device and corresponds

to one coincidence event of the sequences x i,n , δj,n . Based on the
number of coincidences in the two sequences, the network weights

get updated by an integer multiple of B . We first study the opti-

mization of stochastic training of the network as a function of BL

and is shown in Fig. 3 . 

The learning rates for stochastic DNN and floating point DNN

are kept the same (as explained in [19] ) and the corresponding

simulated test accuracies for BL = 2 , 10 , 50 , 100 bits is shown in

the table in Fig. 3 . The table lists the maximum test accuracy of 5

different seeds for the random generator in MATLAB. Since there

is only marginal improvement in test accuracy for BL > 10, BL = 10

bits is used in the rest of the paper. 

5. PCMO device as synapse 

PCMO based RRAM devices are non-filamentary in nature and

hence exhibit high endurance and low variability compared to the

filamentary switching devices such as those based on HfO 2 [42] .

PCMO devices are favored for neuromorphic hardware due to its

simple structure, fast switching speed and area scalability [43,44] .

Therefore, here we choose PCMO device as the memristive synapse

for accelerating stochastic DNNs. 

5.1. Device fabrication 

The Pr 0.7 Ca 0.3 MnO 3 based RRAM devices were fabricated on

4” Si wafer using a 2 mask lithography process. To isolate the

device from substrate, 300 nm thick SiO 2 was grown by ther-

mal wet oxidation. Ti (20 nm)/ Pt (70 nm) was then deposited on
iO 2 by DC sputtering. Ti acts as an adhesion layer between SiO 2 and

t with Pt as the bottom contact for the device. This was followed

y deposition of 65 nm thick PCMO alloy using RF sputtering. Dif-

erent sizes of devices were obtained by defining via-holes of 1 μm

n SiO 2 by electron beam lithography (EBL). Finally, Tungsten (W)

op contact pads were created using EBL followed by liftoff of W.

he device schematic is shown in Fig. 4 . All the electrical measure-

ents were done using Agilent B1500A/B1530A semiconductor an-

lyzer at room temperature. 

.2. Device characterization 

The fabricated Pr 0.7 Ca 0.3 MnO 3 device is characterized and the

orresponding resistive switching behavior is shown in Fig. 5 (a).

s can be seen from the current-voltage characteristics, significant

on-linearity is observed in the conductance of the device as a

unction of voltage. For instance, the ratio η = g(V ) /g(V/ 2) > 50

for the operating region of the device, where g ( V ) is the con-

uctivity of the device measured at voltage V . This allows PCMO

ased crossbar arrays to be used for synaptic and memory appli-

ations without a current limiting diode or access device at every

ross-point, based on a V /2 programming scheme, as explained in

ection 6.1.2 [45,46] . The selectivity of PCMO devices during pro-

ramming greatly depends on the non-linearity in the I-V charac-

eristics and is in-turn determined by the PCMO composition [44] . 

On the application of positive and negative voltage polarity, the

CMO RRAM shows SET (i.e. low to high conductance state) and

ESET (i.e. high to low conductance state) switching respectively.

he device is initialized to low conductance state by applying a

ESET pulse with amplitude 2 V lasting 1 ms [46] . After initializing,

RITE pulses of amplitude 2.2 V and duration 100 ns were applied.

 READ pulse (-0.5 V, 5 μs) follows each WRITE pulse to mea-
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Fig. 5. (a) Current-Voltage characteristics of the fabricated PCMO device exhibiting significant non-linearity. (b) The conductance response of the PCMO device showing the 

variability across 5 different measurements on the same device. The approximately linear region of the conductance response from pulse #5 to pulse # 30, with an on-off

ratio of 1.8 and a resolution of 26 states is used for training stochastic DNNs. 

Fig. 6. Every synapse is represented using 2 PCMO devices scheme such that the effective synaptic weight, G eff= G + − G − (left); Illustration of a fully connected crossbar 

network with 4 input neurons and 4 output neurons (right). 
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Fig. 7. Crossbar compatible implementation of forward pass (Read mode). The real 

valued input to each neuron in any layer is converted to a stochastic pulse stream 

and depending on the presence or absence of the pulse, current flows downstream 

to layer 2. This configuration is used for inference as it requires only forward pass. 
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ure conductance change. The conductance response of PCMO de-

ice across 5 different measurements on the same device is shown

n the Fig. 5 (b). The approximate linear region in the conductance

haracteristics ranging from pulse number 5 to 30 is utilized for

raining stochastic DNNs. The conductance response clearly shows

 variability for repeated measurements and the average program-

ing variability is captured in the simulation of stochastic DNNs. 

. Crossbar compatible implementation 

This section describes the details of the crossbar implementa-

ion of the 4-layer network for stochastic DNN training ( Fig. 1 ). 

.1. Two-devices per synapse 

As proposed in [47] , 2 PCMO devices are used per synapse,

o that both positive and negative weights can be realized in the

etwork. The synaptic weight is encoded as the difference of the

CMO device conductances, i.e, G eff = G 
+ - G 

− as shown in Fig. 6 .

If the minimum voltage required for increasing the device con-

uctance is V p , a V p /2 pulsing scheme is used, where pulses of

 V p / 2 amplitude are used to encode the 1s in the stochastic

treams of the x i in the rows and pulses of amplitude −V p / 2 are

sed to encode the 1s in the stochastic streams of the δj in the
olumns. Thus, when there is a coincidence of 1s in the two pulse

treams, V p voltage drops across the device, perturbing its conduc-

ance. For this pulsing scheme to work accurately, the synaptic de-

ice conductance is un-perturbed for pulses of amplitude ±V p /2,

ut undergoes conductance transitions for pulses of amplitude V p .

his condition is satisfied in PCMO devices as they exhibit a strong

on-linearity as described earlier. 
.1.1. Forward pass 

In forward pass, the devices will be operated in read mode and

 voltage smaller than the programming voltage (denoted by V r )

an be used ( Fig. 7 ). The real valued input that lie in the range

0,1] is converted to a stochastic pulse stream with BL = 10 and

pplied to the crossbar wires across the rows. The forward pass

s illustrated in Fig. 7 with 3 neurons in layer 1 and 2 neurons

n layer 2. The stochastic pulse stream has 10 slots (since BL = 10

, and depending on the presence or absence of pulse a current

ows downstream and gets sensed by the sense amplifier. Thus the

orward activation functions can be calculated across all layers in

arallel achieving a time complexity of O(1 ). 
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Fig. 8. Illustration of backward pass. (a) First step of backward pass (Read mode): Matrix multiplication of the error term with the transpose of the weight matrix is done 

by feeding the error voltage as stochastic pulses to the column such that the total current is summed across the neurons in layer 2. (b) Second step of backward pass (Write 

mode): For updating the weights in layer 1, the error obtained at layer 2 and input to layer 1 is scaled by the learning rate and applied as stochastic pulses through the 

crossbar wires. A V p /2 pulsing scheme is used such that the conductance changes only when each device experiences a minimum voltage of V p . In the case of inference, the 

configurations shown in (a) and (b) will not be used as no training is involved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Unidirectional weight update scheme in 2 PCMO devices per synapse in the 

crossbar. When the required weight update ( �W ) for a synapse > 0, G + will get 

selected and the conductance increases such that G eff = G + − G − is effectively in- 

creased. On the other hand, if �W < 0 then G − is selected for weight increment 

and G e f f = G + − G − is reduced. The device marked green is selected for weight 

increment and the unselected is indicated in red. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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6.1.2. Backward pass 

The backward pass involves two steps - illustrated by Eq. (6) ,

( 7 ) and is demonstrated in Fig. 8 (a), (b). In the first step, ma-

trix multiplication of transpose of the weight matrix with the error

term is achieved by passing the stochastic error voltage pulses as

input to the columns (layer 3) and the currents get summed up

across the rows in layer 2. Since the devices are operated in read

mode, a voltage of V r is used to encode the stochastic pulse stream.

In the second step of back propagation, voltages corresponding to

these current values are then adequately scaled to incorporate the

learning rate and presented across the column as stochastic pulses

as shown in Fig. 8 (b). The input to layer 1 will also be scaled and

subsequently converted to stochastic pulse streams and applied

along the rows. Based on the number of coincidences in the two

pulse streams (across the column and row), the device will experi-

ence an effective voltage of V p / 2 − (−V p / 2) = V p , thereby changing

the conductance by an integral multiple of the minimum resolu-

tion B (which in real devices could exhibit significant variability).

As a result, by effectively utilizing the locality and parallelism of

the back propagation algorithm, weight updates can happen in par-

allel across all devices in the crossbar achieving a time complexity

of O(1 ) [37–39] . 

Since most of the memristive devices exhibit gradual conduc-

tance change in one direction, we assume a unidirectional weight

update scheme [48] . In this scheme, conductance of the device

will be always increased and the device representing G 
+ ( G 

−) will

be selectively programmed to increase (decrease) the weight. The

weight update schematic is illustrated in Fig 9 . If the calculated

incremental weight update ( �W ) using the back propagation algo-

rithm is positive, then the conductance of G 
+ (shown in green in

Fig. 9 ) is increased so that G eff is increased. On the other hand, if

the weight update required is negative, then the conductance of

G 
− is increased to effectively reduce G eff. 

6.2. Modifications to the 4-layer network 

All the PCMO devices in the network are initialized randomly

between the minimum and maximum conductance values. As the

actual device conductance values are not compatible for network

learning, they are appropriately scaled during training. The scaling

factor is absorbed in the calculation of activation functions. Due

to the limited on-off ratio and conductance resolution, the devices

could easily saturate and learning could stop. To avoid this, the de-

vices are reset periodically (data refresh) based on the conductance

values [47] . During reset, if the effective synaptic weight ( G eff) is
ositive, then G 
+ is set to ( G min + G e f f ) while G 

− is kept to G min

uch that G eff is unperturbed. Similarly, when G eff is negative, G 
+ 

s set to G min and G 
− is set to ( G min + G e f f ). Therefore the effec-

ive weight G e f f = G 
+ − G 

−, at any synapse will remain unaffected

fter a reset operation. 

We study two possible reset mechanisms - conditional reset

nd global reset. In conditional reset, the devices are reset when-

ver one of the two devices of the synapse reach the maximum

onductance value and no more increment in conductance is pos-

ible. However, conditional reset requires constant monitoring of

onductance at every synapse. A cost effective solution is hence to

se a global reset in which all the devices are reset after a fixed

umber of training steps [49] . We study the optimization of reset

ntervals in the subsequent Section 7.1 . 
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Fig. 10. Simulated maximum test accuracies for stochastic DNNs with different 

choices of reset intervals. An optimum reset interval of 400 is chosen for devices 

having a variability ratio of σ / B = 0.5, 1 and 100 is used for devices with variabil- 

ity ratio of σ / B = 1.5. The accuracy of the experimental PCMO device based network 

from Fig. 11 is also shown. 

Fig. 11. Simulated test and training accuracy of stochastic DNNs with experimental 

PCMO device at the synapse. Shown here is the average response of 3 different 

MATLAB iterations. The test accuracy reaches a maximum value of 88.1% after 10 

epochs. 
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. Network response with PCMO device 

The baseline stochastic network is extended to a crossbar

ompatible implementation as mentioned in the previous section

ith 2 PCMO devices per synapse. Here we simulate stochas-

ic DNNs using Pr 0.7 Ca 0.3 MnO 3 devices, whose synaptic behavior

s determined from the electrical measurements as explained in

ection 5.2 . These PCMO devices has an on-off ratio of 1.8 and

pproximately only 26 discernible levels including the minimum
ig. 12. Cartoon illustrating the effect of memristive programming variability with an init

f programming noise. (a) Final Conductance ( G f ) obtained by a pulse overlap of 2 fro

verestimate of G f [40] ; Maximum generalization (test) accuracy of stochastic DNNs ( BL =
/ B is the ratio of standard deviation of the conductance variability to the bin-width of t
nd maximum conductance states. The conductance of the device

aries linearly with pulse number and has a programming vari-

bility associated for each incremental change. The impact of pro-

ramming variability on network performance is studied using the

arameter σ / B , where σ is the standard deviation of the Gaussian

oise and B is the minimum change in conductance obtainable un-

er the chosen programming conditions. As discussed, the devices

ave to be periodically reset to facilitate continuous learning and

he reset interval in turn depends on the amount of programming

ariability ( σ / B ). 

.1. Optimization of reset interval 

During network training, the devices are periodically reset after

resenting a fixed number of input images to the network. Here

e study the optimization of reset interval for Pr 0.7 Ca 0.3 MnO 3 de-

ices with different programming variability (captured by the pa-

ameter σ / B ). The optimization of reset interval for σ / B = 0.5, 1, 1.5

s shown in Fig. 10 . 

The choice of the reset frequency is based on the network per-

ormance. In these simulations, the variability encountered by the

evices during the reset process is assumed to be negligible com-

ared to the programming variability associated with the weight

pdate as iterative programming schemes can be used at the time

f the infrequent reset operation [50] . Therefore from Fig. 10 , the

eset interval is chosen to be 40 0, 40 0, 10 0 for σ/B = 0 . 5 , 1 and

.5, respectively. In the case of devices with low programming vari-

bility having σ / B ≤0.5, the network can tolerate a higher reset

nterval with minimum degradation in test accuracy. The conduc-

ance deviation for our experimental PCMO is approximately 1.59 ×
he bin-width ( B ) of the conductance states ( σ = 1 . 59 B ). The train-

ng and test accuracy corresponding to stochastic DNN with PCMO

evice is shown in Fig. 11 . A reset interval of 100 is used for simu-

ating PCMO based memristive synapses to obtain a maximum test

ccuracy of 88.1% after 10 epochs. The inferior performance of the

etwork from the baseline is due to the increased variability in

rogramming, causing the device conductance levels to spill over

nto the neighboring levels. In order to understand the fundamen-

al reasons for performance degradation with memristive imple-

entations and to optimize device and network performance, we

ow study the role of specific device characteristics on training and

nference accuracy. 

.2. Sensitivity to conductance variability 

Conductance variability is a critical parameter of practical NVM

evices and its effect on the learning of stochastic networks for

and-written digit classification is discussed here. Repeated pulse
ial conductance G i , final conductance G f and σ representing the standard deviation 

m the initial conductance ( G i ) exhibits an underestimate, and (b) represents an 

 10 ) when trained with PCMO devices of different programming variability. Here 

he conductance states (right). 
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Fig. 13. Comparison of test accuracy of stochastic DNNs for different on-off ratios 

of PCMO device at the crossbar. Here, r denotes the experimental on-off ratio of 

1.8. The average test accuracies of three different MATLAB iterations is shown here. 

The accuracy is almost independent of the on-off ratio of the device for a fixed σ / B 

ratio. 

Fig. 14. A sample test image ‘7’ showing the signal to noise ratio (SNR) after intro- 

ducing Gaussian noise of different variances. The noise added images are then fed 

as input to stochastic DNNs to evaluate the inference response. 
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measurements on the fabricated Pr 0.7 Ca 0.3 MnO 3 device shows sig-

nificant variations in the conductance values for the same pulse

number (see Fig. 5 ). The parameter σ / B , which is the ratio of the

standard deviation of the PCMO conductance variability to the bin-

width of the conductance levels, is used to study the impact of

programming variability on network performance. An illustration

of memristive programming variability is shown in Fig. 12 [40] .

The conductance variations are introduced in the simulations as a

zero mean Gaussian noise with a standard deviation σ/B = 0 . 1 , 0 . 3

and so on. The synaptic devices are randomly initialized to any

of the 26 conductance states with programming variability. Except

for the standard deviation of the conductance variations, all the

other parameters such as on-off ratio and number of levels are

kept the same as that of experimental PCMO device. The response

of stochastic DNNs is observed for σ/B = 0 , 0 . 1 , 0 . 3 , 0 . 8 , 1 , 1 . 5 as

shown in Fig. 12 . For σ / B < 0.5, where the standard deviation of
Fig. 15. Study of stochastic inference engines to noise corrupted test data using trained

nd 1.5) (left); Percentage improvement in test accuracy of stochastic inference engines w

variability. Using inference engines with BL = 100 , a remarkable improvement in test acc
he Gaussian is lesser than the bin-width, the obtained device con-

uctance is close to the desired conductance resulting in close-

o baseline accuracies. With standard deviations close to zero, the

etwork achieves a test accuracy close to 95% even with a low on-

ff ratio of 1.8. This shows that programming variability is criti-

al for training of stochastic DNNs when compared to on-off ratio

f the memristive devices. When σ / B ratio is gradually increased

rom 0 to 0.3, the test accuracy remains almost constant and de-

rades by 2% at σ/B = 1 . For σ / B > 1, where the standard deviation

s more than the bin-width, the device conductance could easily

ump to the neighboring conductance states thus showing inferior

etwork performance. 

.3. Impact of on-off ratio 

The performance of stochastic DNNs is analyzed for different

n-off ratios of the PCMO devices while keeping the number of

evels and programming variability ( σ / B ) invariant. The device is

ssumed to have a resolution of 26 states and different scaling for

he device on-off ratio compared to the experimental value. The

orresponding test accuracy for different on-off ratios (4 r , 10 r and

0 r compared to the baseline experimental on-off ratio of r = 1 . 8 )

s shown in the Fig. 13 . It can be noticed that the test accuracy

s largely independent of the on-off ratio of the PCMO devices

hen the programming noise is kept fixed. This study illustrates

he need for synaptic devices with minimum programming vari-

bility rather than high on-off ratio. Since programming variability

s inherent to most nanoscale memristive devices, algorithm level

ptimizations are necessary to obtain better performance. 

. Inference in the presence of noise 

One of the advantages of systems based on stochastic encod-

ng is its inherent tolerance to noise and lesser vulnerability to

ariability than their deterministic counterparts [51,52] . Here, we

tudy the stability of stochastic inference engines by observing

he network response to noise-corrupted test data. The stochastic

NNs are trained with BL = 10 using synaptic devices and these

rained weights corresponding to the best generalization accuracy

s then used for inference analysis [40] . Zero mean Gaussian noise

f variances σ 2 
i 

= 0 , 0 . 01 , 0 . 1 is added to the normalized input im-

ges in the MNIST test set. The noise added input is then limited

n the range [0,1] for evaluating the robustness of stochastic in-

erence engines. A noise corrupted sample image with its corre-

ponding signal to noise ratio (SNR in dB) is shown in the Fig. 14 .

oise resilience for inference is studied for PCMO devices with

rogramming variability ratios of σ / B = 0.5, 1, 1.5. Two variants of

tochastic inference engines are used in our study, one with
 weights as a function of the programming variability of the device ( σ/B = 0 . 5 , 1 

ith BL = 100 when compared to BL = 10 using devices with different conductance 

uracy can be noticed for devices with higher programming variability (right). 
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L = 10 and the other BL = 100 even though training is done using

L = 10 . 

The inference response of PCMO based synapses with different

rogramming variability to noise added test set is shown in Fig. 15 .

he percentage improvement in test accuracy for stochastic infer-

nce engines with BL = 100 over BL = 10 is shown in Fig. 15 . It is

bserved that as the programming variability increases, stochastic

nference engines with BL = 100 has a superior performance com-

ared to BL = 10 . This study shows that even though the expen-

ive network training is performed using as few as 10 bits, the in-

erence accuracy of the network can be improved, especially when

ealing with noisy inputs, just by increasing the bit resolution used

uring the relatively in-expensive forward pass operations neces-

ary for inference. 

. Conclusion 

In this paper, we discuss the need for non-von Neumann archi-

ecture and a hardware based approach for implementing neuro-

orphic systems with memristive synapses at the crossbar. DNNs

an be trained with a time complexity of O(1 ) using RPU de-

ices at the crossbar by representing the real-valued neuronal out-

ut and feedback terms as stochastic bit-streams. We used a non-

lamentary Pr 0.7 Ca 0.3 MnO 3 device to understand the device pa-

ameters that are critical to the performance of stochastic DNNs.

hese devices were fabricated using a standard lithography pro-

ess and electrically characterized to determine the on-off ratio,

it-resolution and programming variability. Using these measured

haracteristics, we studied the network performance as a func-

ion of the device parameters such as on-off ratio, frequency of

onductance reset to account for the limited dynamic range and

rogramming variability. We showed that programming variabil-

ty is paramount to the network performance and demonstrated

hat if the conductance variability is kept minimum, network test

ccuracies close to 95% is obtainable using PCMO based devices.

ince programming variability is inherent to most nanoscale de-

ices, algorithms that could mitigate these non-ideal characteristics

ave to be developed for enhanced network performance. We also

emonstrated approaches to improve network inference accuracy

ithout incurring significant costs for realizing on-chip learning,

specially for noisy real-world inputs. 
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