Neurocomputing 321 (2018) 227-236

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Stochastic learning in deep neural networks based on nanoscale PCMO m)

device characteristics

Check for

updates |

Anakha V Babu?, Sandip LashkareP, Udayan Ganguly®, Bipin Rajendran®*

aDepartment of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102, USA
b Department of Electrical Engineering, Indian Institute of Technology, Bombay, India

ARTICLE INFO

ABSTRACT

Article history:

Received 27 February 2018

Revised 10 July 2018

Accepted 6 September 2018
Available online 20 September 2018

Communicated by Dr Chenchen Liu

Keywords:

Deep Neural Networks (DNN)
Artificial Neural Networks (ANN)
Non-Volatile memory (NVM)
Stochastic Computing

Memristor

Deep Neural Networks (DNN) have proven to be highly effective in extracting high level abstractions of
input data using multiple neural network layers. However, the huge training times for DNNs in tradi-
tional von-Neumann machines have hindered their ubiquitous adoption in IoT and other mobile comput-
ing platforms. Recently, acceleration of DNN with a time complexity of O(1) was proposed using the
idea of stochastic weight update with resistive processing units (RPU). However, it has been projected
that RPU devices require more than 1000 reliable conductance levels, which is a stringent requirement
to realize in memristive devices. Here, we study the optimization of stochastic learning for DNNs for the
hand-written digit classification benchmark using the characteristics of non-filamentary Pry;Cag3MnO3
(PCMO) devices that are fabricated using a standard lithography process. The electrical characteristics of
these devices exhibit a linear conductance response with an on-off ratio of 1.8 with 26 levels and signif-
icant programming variability. We captured these non-ideal behaviors of experimental PCMO device in
the simulations to demonstrate stochastic learning with O(1) time complexity, achieving a test accuracy
of 88.1% for the hand-written digit recognition benchmark. While the linearity, dynamic range, bit res-
olution, programming variability and the reset rate of the device conductance to account for its limited
dynamic range have to be co-optimized for improving the training efficiency, we show that programming
variability has the paramount role in determining the network performance. We also show that if devices
with reduced programming variability (5x smaller compared to our experimental device) can be devel-
oped keeping all other parameters constant, it is possible to boost the network performance as high as
95%. We also observe that the performance of stochastic DNNs with memristive synapses is independent
of the on-off ratio of the devices for a fixed programming variability. Thus, programming variability rep-
resents a new optimization corner for on-chip learning of stochastic DNNs. Further, we also evaluate the
performance of stochastic inference engines to noise corrupted input test data as a function of the vari-
ability in the memristive devices. We demonstrate that noise-resilient inference engines can be achieved
if 100 bits are used for stochastic encoding during inference even though the expensive network training
can be done with as few as 10 bits. Thus, our studies emphasize the need for optimization of learning
strategies for DNNs based on the non-ideal characteristics of experimental nanoscale devices.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

large data movement between processor and memory [3,4]. In an
effort to mimic the brain’s power efficient and fault tolerant com-

The human brain, with its exceptional structural organization
and efficiency has inspired the development of today’s modern mi-
croprocessors [1,2]. Human brain employs a massively parallel ar-
chitecture based on a large interconnected network of neurons and
synapses (local memory elements) for efficient computation. In
contrast, the performance of conventional microprocessors is lim-
ited by the “von Neumann bottle-neck” for applications involving

* Corresponding author.
E-mail address: bipin@njit.edu (B. Rajendran).

https://doi.org/10.1016/j.neucom.2018.09.019
0925-2312/© 2018 Elsevier B.V. All rights reserved.

putation, neural networks have been explored since 1940s [5-7].
Among these, the second generation Artificial Neural Networks
(ANN) have shown unprecedented success recently. However, train-
ing of deep neural networks is computationally intensive and re-
quires large training times with a time complexity of O(N?) (N is
the number of neurons in any layer) in von-Neumann machines;
hence several hardware approaches have been proposed for ac-
celerating DNN training [8,9]. However, none of these approaches
have mitigated the limitations with respect to power, area and
training time, and hence there are several proposals to employ

https://doi.org/10.1016/j.neucom.2018.09.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.09.019&domain=pdf
mailto:bipin@njit.edu
https://doi.org/10.1016/j.neucom.2018.09.019

228 A.V. Babu et al./Neurocomputing 321 (2018) 227-236

non-volatile memory (NVM) based synapses for efficient acceler-
ation of neural network training and inference [10-13].

Two-terminal memristive devices are an ideal choice for imple-
menting electrical synapses due to its small size, enabling them
to be densely packed in crossbar arrays. Further, thanks to their
low power programming and read characteristics and the abil-
ity to store and retain multiple bits in a single device [14,15],
they offer one possible way to emulate the brain’s connectivity in
hardware. Moreover, it has been numerically estimated that NVM
based on-chip learning systems promise upto 25 x speed up and
3000 x improvement in power compared to GPU (Graphics Pro-
cessing Unit) based implementations [16]. However, most of the
memristive devices being explored today also have non-ideal char-
acteristics such as finite on-off ratio, finite conductance resolution
and has temporal and spatial conductance variability during pro-
gramming and read [17,18]. Therefore, new architectural and device
level optimizations are necessary to obtain the projected perfor-
mance enhancements in hardware.

It has recently been proposed that DNNs can be implemented
using tiled arrays of 2D crossbars of resistive processing units
(RPU), which are memristive devices that can store multiple ana-
log states and also adjust its conductivity based on identical
sequence of voltage pulses [19]. If such crossbar arrays can be
designed and all the weights in the array can be updated in
parallel, the training time can be accelerated by replacing the
vector cross-product operation with AND operation of stochastic
bit streams representing neuronal signals. One of the most chal-
lenging requirements to be satisfied by an ideal RPU device is
that it must be possible to incrementally program it to nearly
1000 reliable conductance states within a dynamic range of 10 by
the application of identical sequence of voltage pulses. This is a
stringent requirement and has not been demonstrated so far on
experimental devices. Prg;Cag3MnO5; (PCMO) based RRAM devices
have been explored for neuromorphic hardware due to its ana-
log conductance response by previous authors. However, most of
these schemes use complex programming methods which cannot
support parallel synaptic communication or updates, which is cru-
cial for obtaining O(1) time complexity operation and hardware
acceleration. In [20], numerical simulations of a 3-layer network
with experimental PCMO characteristics having an on-off ratio of
5 and 256 conductance states showed a recognition accuracy of
90.55% for hand-written digit classification, although pulses with
variable amplitudes were used for device programming. Linear
and symmetric conductance response are shown to improve net-
work performance [20] and several programming strategies have
been explored to compensate for the non-linear and asymmet-
ric conductance response at the cost of higher power and chip
area [21-23].

Towards the goal of attaining parallel synaptic communication
and weight update, we fabricated and characterized PCMO de-
vices specifically optimized for analog and incremental program-
ming upon the application of identical programming pulses. Using
the measured characteristics, we study the performance of DNNs
trained in a stochastic fashion for the exemplary hand-written im-
age recognition task. We then conduct several numerical studies to
determine the crucial device parameters for improving network ac-
curacy and training times. While it is necessary to optimize the lin-
earity, dynamic range, bit resolution, programming variability, and
the frequency of conductance reset to account for the limited dy-
namic range of the synaptic device for improving the training time
and convergence rate of hardware deep networks, we show that
programming variability has the paramount role in determining
the network performance. We also show that if devices with re-
duced programming variability can be developed keeping all other
parameters constant, it is possible to attain close to baseline accu-
racies in PCMO based synaptic hardware.

This paper is organized as follows: We first discuss the basic
ideas of stochastic computing and how it can be used for acceler-
ating DNN training. A 4-layer network for hand-written digit clas-
sification is then analyzed as a benchmark for our studies based on
conventional floating point implementation using stochastic weight
updates. The basic 4-layer network is then extended to a cross-
bar compatible implementation with PCMO device conductances as
the synaptic weights at the crossbar. The performance of stochastic
DNNs is then studied for different optimizations of the PCMO de-
vice characteristics such as programming variability and dynamic
range. Finally, we demonstrate the robustness of stochastic infer-
ence engines using low on-off ratio devices to noise corrupted test
data by using higher precision for network encoding for inference
as compared to training.

2. Stochastic computing

In the stochastic framework for computation, a number x <
[0,1] can be represented as a Bernoulli sequence X =[x, Xp,
X3,...,X y] such that the random variable x has a probability of
P(x;=1) =x, and N is the length of the Bernoulli sequence [24-
26]. In order to compute the product of two scalar quantities a
and b, that are appropriately scaled in the range [0,1], two uncor-
related N bit long Bernoulli sequences representing a, b are cre-
ated such that P(q;=1)=a, P(bj=1)=0>b . Let C represent the
bit-wise logical AND operation of sequences A and B of variables a
and b. Therefore,

P(Ci=1)=P(a,'=l)P(b,‘=l):ab (1)

P(c;=0)=1-P(g;=1)P(bj=1)=1—-ab 2)

Thus the product ¢ = a x b, can be approximately obtained by
the bit-wise logical AND or coincidence detection of the Bernoulli
sequences A, B. The expectation and variance of the binary random
variable C; is E(C;) = ab, Var(C;) = ab(1 — ab) . Let the number rep-
resented by the Bernoulli sequence ¢ = C;,G;,...,Cy be obtained
by averaging the N independent random variables C;,

1 N
C::Rig;q' (3)

ab(1 — ab)
A (4)

The error in the estimated average decreases with the length
of the Bernoulli sequence N. Hence, a key advantage of stochas-
tic representation is that multiplication can be implemented effi-
ciently by using simple logic gates or coincidence detection [27-
29]. Stochastic computing is suitable for applications that can tol-
erate certain level of inexactness such as image processing [30],
error correcting codes [31] as well as in artificial neural networks
[32,33].

= E(c) =ab, Var(c) =

3. DNN training and acceleration

Deep Neural Network (DNN) training is done in two steps - a
forward pass to calculate the activations or the output of all the
neurons in the network, and a backward pass to determine the
weight update required for all the synapses in the network. In for-
ward pass, the input y to neuron j in layer (I+ 1) is calculated
based on the inputs in the previous layer and the synaptic weights
between these two layers, given by

N
+1) _),
yi=o > WX, (5)
i=1

A.V. Babu et al./Neurocomputing 321 (2018) 227-236 229

where o is the non-linear sigmoid activation function. The time
complexity involved in forward pass given in Eq. (5) of DNN train-
ing is O(N?), with N being the number of neurons in each layer.
In the backward pass, the error terms for each layer (I) is calcu-
lated based on the error in the succeeding layer (I + 1) using back
propagation algorithm [34].

N
(I41) (I+1) g (1+2)
8D o S wi Vs (6)
k=1
l 1 Dol
Wl w1 x50 (7)

As before, matrix multiplication in Egs. (6) and (7) has a time
complexity of ®(N?). Each of the weights in layer (I) is updated
by multiplying the error in the succeeding layer (I + 1), the in-
put to layer (I) and learning rate (1) as shown in Eq. (7). Hence,
network training for data intensive applications such as audio and
video analysis can have training times exceeding several days or
months even when implemented in parallel architectures such as
GPUs [35]. In order to accelerate DNN training in hardware, for-
ward pass, backward pass and the weight update operations have
to be executed in parallel. The vector-matrix multiplications in-
volved in the forward and backward pass can be implemented
using crossbar arrays with memristive devices at the cross-point
[36-39].

Recently, a scheme to implement parallel weight update has
been proposed using memristive resistive processing units (RPU)
at the crossbar under the framework of stochastic computing [19].
In the parallel weight update scheme, stochastic pulses of constant
amplitude (and opposite polarity) representing x; and §; are fed
to the crossbar from the row and column respectively. The pulse
amplitude is chosen such that when there is no overlap between
the pulses from the row and column, the device conductance re-
mains un-perturbed, and only during coincidence of these pulses
does the device conductance change. Ideally, the RPU conductance
will change by an integer multiple of minimum allowed conduc-
tance change (Awy,;,) per coincident pulse pair. Thus DNN training
can be done with a time complexity of O(1) using RPU devices at
the cross-point [19].

To perform DNN training with O(1) time complexity using
stochastic computing, simulations suggest that the proposed RPU
device should have more than 1000 reliable conductance states
which is a stringent requirement to meet experimentally. Therefore
the challenge is to achieve DNN training with real device spec-
ifications such as - limited on-off ratio, programming variability
and limited conductance resolution (levels). This paper realizes a
4-layer stochastic DNN for hand-written digit classification using
memristive synapses, whose synaptic behavior is derived from the
electrical characteristics of the fabricated Prg;CagsMnOs; device.
The electrical characteristics of Prg;Cag3MnO3 devices are highly
non-ideal, with a dynamic range in conductance (Gmax/Gmin) of
1.8, 26 discernible levels in this range and significant variability
during programming. We then simulate and analyze the perfor-
mance of stochastic DNNs to various device parameters-such as
on-off ratios, sensitivity to conductance variations and tolerance to
noisy input for inference.

4. Network architecture

A 4-layer deep network is selected for hand-written digit classi-
fication with 784-256-128-10 fully connected neurons in each layer
as shown in Fig. 1 [19,40]. This network is trained with a standard
hand-written digits database (MNIST - Modified National Institute
of Standards and Technology) with 50,000 hand-written digits for
training, 10,000 images for validation and a different set of 10,000
images for testing. Each of the input image has 784 pixel values in

Fig. 1. A 4-layer deep neural network with 784-256-128-10 neurons in each layer
used for hand-written digit classification (Simulated using MATLAB) [40].

10'
_10%F
X
=
o
=
w
107!
Test Set
Training Set
107 . : : ‘
0 5 10 15 20 25 30

Epochs

Fig. 2. Training and test error for floating point DNN with weight update using
Eq. (7). Training and test error decreases with epoch and reaches a maximum test
accuracy of 98%. This network is used as the baseline to determine the bit length
required for stochastic DNNs.

the grey scale and is preprocessed by normalization such that the
input lies in the range [0,1] [41]. The 784 input neurons in the first
layer takes these 784 pre-processed pixel inputs for training. Net-
work learning is done by using multi-class cross entropy objective
function with sigmoid activation function for the hidden layers and
softmax function for the output layer. Batch size of unity is used
for training with the weights updated after every image and the
presentation of entire 50,000 images constitutes 1 epoch. A vari-
able learning rate scheme is used for weight updates and all the
network simulations for training and testing is done using MAT-
LAB.

4.1. Floating point DNN

As a baseline, the network which is trained by the floating
point multiplication (without stochastic encoding) for weight up-
date shown in Eq. (7) is referred to as ‘Floating Point DNN’. Af-
ter 30 epochs of training, we obtain state-of-the-art accuracies
for fully connected networks of similar complexity (98%) (http:
/lyann.lecun.com/exdb/mnist/). The corresponding test and training
error is shown in Fig. 2. This network is used as the base line for
optimizing stochastic DNNs.

http://yann.lecun.com/exdb/mnist/

230 A.V. Babu et al./Neurocomputing 321 (2018) 227-236

102 ;
—o—BL =2 bits
—0—10 bits
50 bits
§ —0—100 bits
‘.6’ 10'F 1
& |
(=]
£
£
s 10%F
[=
10-1 " L 1 L i
0 5 10 15 20 25 30

Epochs

Network BL Test Accuracy
Stochastic 2 95.95%
Stochastic 10 97.74%
Stochastic 50 98.09%
Stochastic 100 | 98.14%
Floating Point 98%

Fig. 3. Training error for stochastic DNN with BL = 2,10, 50,100 bits. BL = 10 bits is a reasonable choice for stochastic DNN (left); Table showing the maximum test
accuracy of floating point and stochastic DNNs for hand-written digit classification. BL = 10 bits is a reasonable choice for stochastic DNN. Shown here is the maximum test

accuracy across 5 different MATLAB iterations (right).

4.2. Stochastic DNN

The network which uses stochastic pulses for forward pass,
backward pass and weight update is referred to as ‘Stochastic
DNN'. During forward pass, the input to each layer is converted
to a stochastic pulse stream of length BL to compute the neuronal
activations. For the backward pass given by Eq. (6), the error in the
succeeding layer (I +2) is converted to a stochastic pulse stream
of length BL for calculating the error in the layer (I + 1). For the
weight update, if x; and §; e [0,1] is represented by Bernoulli se-
quences, then the multiplication of x; and 4; can be implemented
by coincidence detection as explained in section 2. The modified
weight update rule is

BL
D _ 4,0) (+1)
wiy =w;y £B > X A (8)
n=1

where BL is the bit length that is used to approximately represent
the real values in x;, §;, and B is the minimum jump in conduc-
tance that can be programmed into the device and corresponds
to one coincidence event of the sequences x;,, §;,. Based on the
number of coincidences in the two sequences, the network weights
get updated by an integer multiple of B. We first study the opti-
mization of stochastic training of the network as a function of BL
and is shown in Fig. 3.

The learning rates for stochastic DNN and floating point DNN
are kept the same (as explained in [19]) and the corresponding
simulated test accuracies for BL =2, 10,50, 100 bits is shown in
the table in Fig. 3. The table lists the maximum test accuracy of 5
different seeds for the random generator in MATLAB. Since there
is only marginal improvement in test accuracy for BL> 10, BL = 10
bits is used in the rest of the paper.

5. PCMO device as synapse

PCMO based RRAM devices are non-filamentary in nature and
hence exhibit high endurance and low variability compared to the
filamentary switching devices such as those based on HfO, [42].
PCMO devices are favored for neuromorphic hardware due to its
simple structure, fast switching speed and area scalability [43,44].
Therefore, here we choose PCMO device as the memristive synapse
for accelerating stochastic DNNs.

5.1. Device fabrication

The Prg;Cag3MnO3 based RRAM devices were fabricated on
4" Si wafer using a 2 mask lithography process. To isolate the
device from substrate, 300nm thick SiO, was grown by ther-
mal wet oxidation. Ti (20nm)/ Pt (70 nm) was then deposited on

W(70nm)
PCMO (65nm) |

Pt (70nm)
Ti (20nm)
Si0, (300nm)

Si Substrate

Fig. 4. Pry;Cag3MnOs device structure with Tungsten (W) as the top contact and
Platinum (Pt) as the bottom contact.

Si0, byDCsputtering. Ti acts as an adhesion layer between SiO, and
Pt with Pt as the bottom contact for the device. This was followed
by deposition of 65nm thick PCMO alloy using RF sputtering. Dif-
ferent sizes of devices were obtained by defining via-holes of 1 pm
in SiO, by electron beam lithography (EBL). Finally, Tungsten (W)
top contact pads were created using EBL followed by liftoff of W.
The device schematic is shown in Fig. 4. All the electrical measure-
ments were done using Agilent B1500A/B1530A semiconductor an-
alyzer at room temperature.

5.2. Device characterization

The fabricated Prp;Cap3MnO5 device is characterized and the
corresponding resistive switching behavior is shown in Fig. 5(a).
As can be seen from the current-voltage characteristics, significant
non-linearity is observed in the conductance of the device as a
function of voltage. For instance, the ratio n =g(V)/g(V/2) > 50

for the operating region of the device, where g(V) is the con-
ductivity of the device measured at voltage V. This allows PCMO
based crossbar arrays to be used for synaptic and memory appli-
cations without a current limiting diode or access device at every
cross-point, based on a V/2 programming scheme, as explained in
Section 6.1.2 [45,46]. The selectivity of PCMO devices during pro-
gramming greatly depends on the non-linearity in the I-V charac-
teristics and is in-turn determined by the PCMO composition [44].

On the application of positive and negative voltage polarity, the
PCMO RRAM shows SET (i.e. low to high conductance state) and
RESET (i.e. high to low conductance state) switching respectively.
The device is initialized to low conductance state by applying a
RESET pulse with amplitude 2V lasting 1 ms [46]. After initializing,
WRITE pulses of amplitude 2.2 V and duration 100 ns were applied.
A READ pulse (-0.5 V, 5us) follows each WRITE pulse to mea-

A.V. Babu et al./Neurocomputing 321 (2018) 227-236 231

~
o
g
-
o
o

Current (A)
3

10710 . i }
-2 -1 0 1 2
Voltage (volts)

(b) ; x107*
0.81

0.6

G(S)

047

0.2} J

0 5 10 15 20 25 30
pulses

Fig. 5. (a) Current-Voltage characteristics of the fabricated PCMO device exhibiting significant non-linearity. (b) The conductance response of the PCMO device showing the
variability across 5 different measurements on the same device. The approximately linear region of the conductance response from pulse #5 to pulse # 30, with an on-off

ratio of 1.8 and a resolution of 26 states is used for training stochastic DNNs.

O

Fig. 6. Every synapse is represented using 2 PCMO devices scheme such that the effective synaptic weight, G= G* — G~ (left); Illustration of a fully connected crossbar

network with 4 input neurons and 4 output neurons (right).

sure conductance change. The conductance response of PCMO de-
vice across 5 different measurements on the same device is shown
in the Fig. 5(b). The approximate linear region in the conductance
characteristics ranging from pulse number 5 to 30 is utilized for
training stochastic DNNs. The conductance response clearly shows
a variability for repeated measurements and the average program-
ming variability is captured in the simulation of stochastic DNNs.

6. Crossbar compatible implementation

This section describes the details of the crossbar implementa-
tion of the 4-layer network for stochastic DNN training (Fig. 1).

6.1. Two-devices per synapse

As proposed in [47], 2 PCMO devices are used per synapse,
so that both positive and negative weights can be realized in the
network. The synaptic weight is encoded as the difference of the
PCMO device conductances, i.e, Gor = Gt - G~ as shown in Fig. 6.

If the minimum voltage required for increasing the device con-
ductance is Vp, a Vp/2 pulsing scheme is used, where pulses of
+Vp/2 amplitude are used to encode the 1s in the stochastic
streams of the x; in the rows and pulses of amplitude —V,/2 are
used to encode the 1s in the stochastic streams of the §; in the
columns. Thus, when there is a coincidence of 1s in the two pulse
streams, V), voltage drops across the device, perturbing its conduc-
tance. For this pulsing scheme to work accurately, the synaptic de-
vice conductance is un-perturbed for pulses of amplitude +V)/2,
but undergoes conductance transitions for pulses of amplitude V).
This condition is satisfied in PCMO devices as they exhibit a strong
non-linearity as described earlier.

1 23456 78 910
::555:::;VrLayer1

W
32

J
Layer 2 O O

Fig. 7. Crossbar compatible implementation of forward pass (Read mode). The real
valued input to each neuron in any layer is converted to a stochastic pulse stream
and depending on the presence or absence of the pulse, current flows downstream
to layer 2. This configuration is used for inference as it requires only forward pass.

6.1.1. Forward pass

In forward pass, the devices will be operated in read mode and
a voltage smaller than the programming voltage (denoted by Vi)
can be used (Fig. 7). The real valued input that lie in the range
[0,1] is converted to a stochastic pulse stream with BL =10 and
applied to the crossbar wires across the rows. The forward pass
is illustrated in Fig. 7 with 3 neurons in layer 1 and 2 neurons
in layer 2. The stochastic pulse stream has 10 slots (since BL = 10
), and depending on the presence or absence of pulse a current
flows downstream and gets sensed by the sense amplifier. Thus the
forward activation functions can be calculated across all layers in
parallel achieving a time complexity of O(1).

232

A.V. Babu et al./Neurocomputing 321 (2018) 227-236

(b v
gl
0
Vp Wn V\iz
2 O
" Y
_Vp O
H 2 w w
31 32
Layerzo O
0 0
v U1 U’Vp
2 802 =03 2

Fig. 8. Illustration of backward pass. (a) First step of backward pass (Read mode): Matrix multiplication of the error term with the transpose of the weight matrix is done
by feeding the error voltage as stochastic pulses to the column such that the total current is summed across the neurons in layer 2. (b) Second step of backward pass (Write
mode): For updating the weights in layer 1, the error obtained at layer 2 and input to layer 1 is scaled by the learning rate and applied as stochastic pulses through the
crossbar wires. A V,/2 pulsing scheme is used such that the conductance changes only when each device experiences a minimum voltage of V,. In the case of inference, the

configurations shown in (a) and (b) will not be used as no training is involved.

6.1.2. Backward pass

The backward pass involves two steps - illustrated by Eq. (6),
(7) and is demonstrated in Fig. 8 (a), (b). In the first step, ma-
trix multiplication of transpose of the weight matrix with the error
term is achieved by passing the stochastic error voltage pulses as
input to the columns (layer 3) and the currents get summed up
across the rows in layer 2. Since the devices are operated in read
mode, a voltage of V; is used to encode the stochastic pulse stream.
In the second step of back propagation, voltages corresponding to
these current values are then adequately scaled to incorporate the
learning rate and presented across the column as stochastic pulses
as shown in Fig. 8 (b). The input to layer 1 will also be scaled and
subsequently converted to stochastic pulse streams and applied
along the rows. Based on the number of coincidences in the two
pulse streams (across the column and row), the device will experi-
ence an effective voltage of Vj/2 — (-Vp/2) =V, thereby changing
the conductance by an integral multiple of the minimum resolu-
tion B (which in real devices could exhibit significant variability).
As a result, by effectively utilizing the locality and parallelism of
the back propagation algorithm, weight updates can happen in par-
allel across all devices in the crossbar achieving a time complexity
of O(1) [37-39].

Since most of the memristive devices exhibit gradual conduc-
tance change in one direction, we assume a unidirectional weight
update scheme [48]. In this scheme, conductance of the device
will be always increased and the device representing G* (G~) will
be selectively programmed to increase (decrease) the weight. The
weight update schematic is illustrated in Fig 9. If the calculated
incremental weight update (AW) using the back propagation algo-
rithm is positive, then the conductance of G+ (shown in green in
Fig. 9) is increased so that G is increased. On the other hand, if
the weight update required is negative, then the conductance of
G~ is increased to effectively reduce Gy

6.2. Modifications to the 4-layer network

All the PCMO devices in the network are initialized randomly
between the minimum and maximum conductance values. As the
actual device conductance values are not compatible for network
learning, they are appropriately scaled during training. The scaling
factor is absorbed in the calculation of activation functions. Due
to the limited on-off ratio and conductance resolution, the devices
could easily saturate and learning could stop. To avoid this, the de-
vices are reset periodically (data refresh) based on the conductance
values [47]. During reset, if the effective synaptic weight (Ggy) is

Gt G Gt G
+ - + -
AW>0 AW<0

Fig. 9. Unidirectional weight update scheme in 2 PCMO devices per synapse in the
crossbar. When the required weight update (AW) for a synapse > 0, G+ will get
selected and the conductance increases such that Gy = G* — G~ is effectively in-
creased. On the other hand, if AW <0 then G~ is selected for weight increment
and Go;p =G* -G~ is reduced. The device marked green is selected for weight
increment and the unselected is indicated in red. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

positive, then Gt is set to (Gpin + G5y) While G~ is kept to Gpp
such that Gy is unperturbed. Similarly, when Gy is negative, G+
is set to Gy and G~ is set to (Gpiy + Geff). Therefore the effec-
tive weight G.rr = Gt — G~, at any synapse will remain unaffected
after a reset operation.

We study two possible reset mechanisms - conditional reset
and global reset. In conditional reset, the devices are reset when-
ever one of the two devices of the synapse reach the maximum
conductance value and no more increment in conductance is pos-
sible. However, conditional reset requires constant monitoring of
conductance at every synapse. A cost effective solution is hence to
use a global reset in which all the devices are reset after a fixed
number of training steps [49]. We study the optimization of reset
intervals in the subsequent Section 7.1.

A.V. Babu et al./Neurocomputing 321 (2018) 227-236

[«
o
/
/
L

Max. Test Accuracy (%)
~
[3,]

~
o

500 1000 1500

Reset Interval

2000 2500

Fig. 10. Simulated maximum test accuracies for stochastic DNNs with different
choices of reset intervals. An optimum reset interval of 400 is chosen for devices
having a variability ratio of o/B=0.5, 1 and 100 is used for devices with variabil-
ity ratio of o /B=1.5. The accuracy of the experimental PCMO device based network
from Fig. 11 is also shown.

Accuracy

90 T T
_ 857
g
§80 | ~©-Test Set
5 -0 Training Set
o
5]
<

751

70 . . . ,

0 2 4 6 8 10
Epochs

Fig. 11. Simulated test and training accuracy of stochastic DNNs with experimental
PCMO device at the synapse. Shown here is the average response of 3 different
MATLAB iterations. The test accuracy reaches a maximum value of 88.1% after 10
epochs.

7. Network response with PCMO device

The baseline stochastic network is extended to a crossbar
compatible implementation as mentioned in the previous section
with 2 PCMO devices per synapse. Here we simulate stochas-
tic DNNs using Prg;Cag3MnO3 devices, whose synaptic behavior
is determined from the electrical measurements as explained in
Section 5.2. These PCMO devices has an on-off ratio of 1.8 and
approximately only 26 discernible levels including the minimum

Max. Test Accuracy (%)

233

and maximum conductance states. The conductance of the device
varies linearly with pulse number and has a programming vari-
ability associated for each incremental change. The impact of pro-
gramming variability on network performance is studied using the
parameter o /B, where ¢ is the standard deviation of the Gaussian
noise and B is the minimum change in conductance obtainable un-
der the chosen programming conditions. As discussed, the devices
have to be periodically reset to facilitate continuous learning and
the reset interval in turn depends on the amount of programming
variability (o /B).

7.1. Optimization of reset interval

During network training, the devices are periodically reset after
presenting a fixed number of input images to the network. Here
we study the optimization of reset interval for Pry;Cag3MnO3; de-
vices with different programming variability (captured by the pa-
rameter o /B). The optimization of reset interval for o /B=0.5, 1, 1.5
is shown in Fig. 10.

The choice of the reset frequency is based on the network per-
formance. In these simulations, the variability encountered by the
devices during the reset process is assumed to be negligible com-
pared to the programming variability associated with the weight
update as iterative programming schemes can be used at the time
of the infrequent reset operation [50]. Therefore from Fig. 10, the
reset interval is chosen to be 400, 400, 100 for 6/B=0.5, 1 and
1.5, respectively. In the case of devices with low programming vari-
ability having o /B <0.5, the network can tolerate a higher reset
interval with minimum degradation in test accuracy. The conduc-
tance deviation for our experimental PCMO is approximately 1.59 x
the bin-width (B) of the conductance states (o = 1.59B). The train-
ing and test accuracy corresponding to stochastic DNN with PCMO
device is shown in Fig. 11. A reset interval of 100 is used for simu-
lating PCMO based memristive synapses to obtain a maximum test
accuracy of 88.1% after 10 epochs. The inferior performance of the
network from the baseline is due to the increased variability in
programming, causing the device conductance levels to spill over
into the neighboring levels. In order to understand the fundamen-
tal reasons for performance degradation with memristive imple-
mentations and to optimize device and network performance, we
now study the role of specific device characteristics on training and
inference accuracy.

7.2. Sensitivity to conductance variability
Conductance variability is a critical parameter of practical NVM

devices and its effect on the learning of stochastic networks for
hand-written digit classification is discussed here. Repeated pulse

100
95¢
20
85
80
0 0.1 03 05 08 1 1.5 1.59
oIB (PCMO)

Fig. 12. Cartoon illustrating the effect of memristive programming variability with an initial conductance G;, final conductance G; and o representing the standard deviation
of programming noise. (a) Final Conductance (Gy) obtained by a pulse overlap of 2 from the initial conductance (G;) exhibits an underestimate, and (b) represents an
overestimate of Gy [40]; Maximum generalization (test) accuracy of stochastic DNNs (BL = 10) when trained with PCMO devices of different programming variability. Here
o [B is the ratio of standard deviation of the conductance variability to the bin-width of the conductance states (right).

234 A.V. Babu et al./Neurocomputing 321 (2018) 227-236

100

95

85 | 0/B=0.5|
r

Test Accuracy (%)

—+=g/B=1

o/B=1.5

L

80 .
4r 10r 20r

On-off ratio

Fig. 13. Comparison of test accuracy of stochastic DNNs for different on-off ratios
of PCMO device at the crossbar. Here, r denotes the experimental on-off ratio of
1.8. The average test accuracies of three different MATLAB iterations is shown here.
The accuracy is almost independent of the on-off ratio of the device for a fixed o /B
ratio.

SNR = oo SNR =13dB SNR = 3dB
D [[B o
20 20 .;.
10 10
0 0 -
0 10 20 0 10 20 0 10 20

Fig. 14. A sample test image ‘7’ showing the signal to noise ratio (SNR) after intro-
ducing Gaussian noise of different variances. The noise added images are then fed
as input to stochastic DNNs to evaluate the inference response.

measurements on the fabricated Pry;Cag3MnO3 device shows sig-
nificant variations in the conductance values for the same pulse
number (see Fig. 5). The parameter o /B, which is the ratio of the
standard deviation of the PCMO conductance variability to the bin-
width of the conductance levels, is used to study the impact of
programming variability on network performance. An illustration
of memristive programming variability is shown in Fig. 12 [40].
The conductance variations are introduced in the simulations as a
zero mean Gaussian noise with a standard deviation /B = 0.1, 0.3
and so on. The synaptic devices are randomly initialized to any
of the 26 conductance states with programming variability. Except
for the standard deviation of the conductance variations, all the
other parameters such as on-off ratio and number of levels are
kept the same as that of experimental PCMO device. The response
of stochastic DNNs is observed for o/B=0,0.1,0.3,0.8,1,1.5 as
shown in Fig. 12. For /B <0.5, where the standard deviation of

100 T T

[0 = 0.5B (100 bits)
=0.5B (10 bits)

90

=1.5B (100 bits)
[> = 1.5B (10 bits)
801 1

70

Test Accuracy (%)

60

50 -

) 13 3
Signal to Noise Ratio (SNR-dB)

the Gaussian is lesser than the bin-width, the obtained device con-
ductance is close to the desired conductance resulting in close-
to baseline accuracies. With standard deviations close to zero, the
network achieves a test accuracy close to 95% even with a low on-
off ratio of 1.8. This shows that programming variability is criti-
cal for training of stochastic DNNs when compared to on-off ratio
of the memristive devices. When o /B ratio is gradually increased
from 0 to 0.3, the test accuracy remains almost constant and de-
grades by 2% at /B =1 . For o /B > 1, where the standard deviation
is more than the bin-width, the device conductance could easily
jump to the neighboring conductance states thus showing inferior
network performance.

7.3. Impact of on-off ratio

The performance of stochastic DNNs is analyzed for different
on-off ratios of the PCMO devices while keeping the number of
levels and programming variability (o /B) invariant. The device is
assumed to have a resolution of 26 states and different scaling for
the device on-off ratio compared to the experimental value. The
corresponding test accuracy for different on-off ratios (4r, 10r and
20r compared to the baseline experimental on-off ratio of r = 1.8)
is shown in the Fig. 13. It can be noticed that the test accuracy
is largely independent of the on-off ratio of the PCMO devices
when the programming noise is kept fixed. This study illustrates
the need for synaptic devices with minimum programming vari-
ability rather than high on-off ratio. Since programming variability
is inherent to most nanoscale memristive devices, algorithm level
optimizations are necessary to obtain better performance.

8. Inference in the presence of noise

One of the advantages of systems based on stochastic encod-
ing is its inherent tolerance to noise and lesser vulnerability to
variability than their deterministic counterparts [51,52]. Here, we
study the stability of stochastic inference engines by observing
the network response to noise-corrupted test data. The stochastic
DNNs are trained with BL =10 using synaptic devices and these
trained weights corresponding to the best generalization accuracy
is then used for inference analysis [40]. Zero mean Gaussian noise
of variances aiz =0,0.01,0.1 is added to the normalized input im-
ages in the MNIST test set. The noise added input is then limited
in the range [0,1] for evaluating the robustness of stochastic in-
ference engines. A noise corrupted sample image with its corre-
sponding signal to noise ratio (SNR in dB) is shown in the Fig. 14.
Noise resilience for inference is studied for PCMO devices with
programming variability ratios of o /B = 0.5, 1, 1.5. Two variants of
stochastic inference engines are used in our study, one with

4 T
= 0.5B (100 bits)
= B (100 bits)

b
&)

% Improvement in Accuracy
- N
- o N o W

e
@

i

oo 13 3
Signal to Noise Ratio (SNR-dB)

o

Fig. 15. Study of stochastic inference engines to noise corrupted test data using trained weights as a function of the programming variability of the device (¢/B = 0.5, 1
and 1.5) (left); Percentage improvement in test accuracy of stochastic inference engines with BL = 100 when compared to BL = 10 using devices with different conductance
variability. Using inference engines with BL = 100, a remarkable improvement in test accuracy can be noticed for devices with higher programming variability (right).

A.V. Babu et al./Neurocomputing 321 (2018) 227-236 235

BL = 10 and the other BL = 100 even though training is done using
BL =10.

The inference response of PCMO based synapses with different
programming variability to noise added test set is shown in Fig. 15.
The percentage improvement in test accuracy for stochastic infer-
ence engines with BL = 100 over BL = 10 is shown in Fig. 15. It is
observed that as the programming variability increases, stochastic
inference engines with BL = 100 has a superior performance com-
pared to BL = 10. This study shows that even though the expen-
sive network training is performed using as few as 10 bits, the in-
ference accuracy of the network can be improved, especially when
dealing with noisy inputs, just by increasing the bit resolution used
during the relatively in-expensive forward pass operations neces-
sary for inference.

9. Conclusion

In this paper, we discuss the need for non-von Neumann archi-
tecture and a hardware based approach for implementing neuro-
morphic systems with memristive synapses at the crossbar. DNNs
can be trained with a time complexity of O(1) using RPU de-
vices at the crossbar by representing the real-valued neuronal out-
put and feedback terms as stochastic bit-streams. We used a non-
filamentary Prg;Cag3MnO; device to understand the device pa-
rameters that are critical to the performance of stochastic DNNs.
These devices were fabricated using a standard lithography pro-
cess and electrically characterized to determine the on-off ratio,
bit-resolution and programming variability. Using these measured
characteristics, we studied the network performance as a func-
tion of the device parameters such as on-off ratio, frequency of
conductance reset to account for the limited dynamic range and
programming variability. We showed that programming variabil-
ity is paramount to the network performance and demonstrated
that if the conductance variability is kept minimum, network test
accuracies close to 95% is obtainable using PCMO based devices.
Since programming variability is inherent to most nanoscale de-
vices, algorithms that could mitigate these non-ideal characteristics
have to be developed for enhanced network performance. We also
demonstrated approaches to improve network inference accuracy
without incurring significant costs for realizing on-chip learning,
especially for noisy real-world inputs.

Acknowledgment

This research was supported in part by the National Science
Foundation grant 1710009 and CISCO Systems Inc. The authors,
Sandip Lashkare and Udayan Ganguly would like to thank Nano
Mission, Department of Science and Technology and the Depart-
ment of Electronics and IT, Government of India for partially fund-
ing this work. Sandip Lashkare is supported by Intel India Ph.D.
Fellowship. The authors would like to gratefully acknowledge the
comments of the anonymous reviewers which helped improve the

paper.
References

[1] J. von Neumann, First draft of a report on the EDVAC, IEEE Ann. Hist. Comput.
15 (4) (1993) 27-75, doi:10.1109/85.238389.

[2] M. Di Ventra, Y.V. Pershin, The parallel approach, Nat. Phys. 9 (4) (2013) 200-
202, doi:10.1038/nphys2566.

[3] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, K. Yelick, A case for intelligent RAM, Micro IEEE 17 (2) (1997) 34-
44, doi:10.1109/40.592312.

[4] G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy,
Overview of candidate device technologies for storage-class memory, IBM J.
Res. Dev. 52 (4.5) (2008) 449-464, doi:10.1147/rd.524.0449.

[5] W.S. McCulloch, W. Pitts, in: Neurocomputing: Foundations of Research, MIT
Press, Cambridge, MA, USA, 1988, pp. 15-27. http://dl.acm.org/citation.cfm?id=
65669.104377.

[6] F. Rosenblatt, The perceptron: a probabilistic model for information storage
and organization in the brain., Psychol. Rev. 65 (6) (1958) 386-408, doi:10.
1037/h0042519.

[7] W. Maas, Networks of spiking neurons: the third generation of neural network

models, Trans. Soc. Comput. Simul. Int. 14 (4) (1997) 1659-1671. http://dl.acm.

org/citation.cfm?id=281543.281637.

A. Coates, B. Huval, T. Wang, D.J. Wu, A.Y. Ng, B. Catanzaro, Deep learning with

COTS HPC systems, in: Proceedings of the 30th International Conference on

International Conference on Machine Learning - Volume 28'13, JMLR.org, 2013.

http://dl.acm.org/citation.cfm?id=3042817.3043086.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He,]J. Wang, L. Li, T. Chen, Z. Xu, N. Sun,

0. Temam, DaDianNao:a machine-learning supercomputer, in: Proceedings of

the 47th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-47, IEEE Computer Society, Washington, DC, USA, 2014, pp. 609-622,

doi:10.1109/MICRO.2014.58.

[10] B. Rajendran, Y. Liu, J.S. Seo, K. Gopalakrishnan, L. Chang, DJ. Friedman,
M.B. Ritter, Specifications of nanoscale devices and circuits for neuromor-
phic computational systems, IEEE Trans. Electron. Dev. 60 (1) (2013) 246-253,
doi:10.1109/TED.2012.22279609.

[11] D. Kuzum, S. Yu, H.-S.P. Wong, Synaptic electronics: materials, devices and
applications, Nanotechnology 24 (38) (2013) 382001. http://stacks.iop.org/
0957-4484/24/i=38/a=382001.

[12] S.H. Jo, T. Chang, 1. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale mem-
ristor device as synapse in neuromorphic systems, Nano Lett. 10 (4) (2010)
1297-1301, doi:10.1021/n1904092h.

[13] B.L. Jackson, B. Rajendran, G.S. Corrado, M. Breitwisch, G.W. Burr, R. Cheek,
K. Gopalakrishnan, S. Raoux, C.T. Rettner, A. Padilla, A.G. Schrott, R.S. Shenoy,
B.N. Kurdi, C.H. Lam, D.S. Modha, Nanoscale electronic synapses using phase
change devices,]. Emerg. Technol. Comput. Syst. 9 (2) (2013) 12:1-12:20,
doi:10.1145/2463585.2463588.

[14] G. Snider, Instar and outstar learning with memristive nanodevices, Nanotech-
nology 22 (1) (2011) 015201. http://stacks.iop.org/0957-4484/22/i=1/a=015201.

[15] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis,
Integration of nanoscale memristor synapses in neuromorphic computing
architectures, Nanotechnology 24 (38) (2013) 384010. http://stacks.iop.org/
0957-4484/24/i=38/a=384010.

[16] G.W. Burr, P. Narayanan, R.M. Shelby, S. Sidler, I. Boybat, C.d. Nolfo, Y. Leblebici,
Large-scale neural networks implemented with non-volatile memory as the
synaptic weight element: comparative performance analysis (accuracy, speed,
and power), in: Proceedings of the 2015 IEEE international electron devices
meeting (IEDM), 2015, pp. 4.4.1-4.4.4, doi:10.1109/IEDM.2015.7409625.

[17] GW. Burr, RM. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Vir-
wani, M. Ishii, P. Narayanan, A. Fumarola, L.L. Sanches, 1. Boybat, M.L. Gallo,
K. Moon, J. Woo, H. Hwang, Y. Leblebici, Neuromorphic computing using non-
volatile memory, Adv. Phys.: X 2 (1) (2017) 89-124, doi:10.1080/23746149.
2016.1259585.

[18] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H.S.P. Wong, A low energy oxide-based
electronic synaptic device for neuromorphic visual systems with tolerance
to device variation, Adv. Mater. 25 (12) (2013) 1774-1779, doi:10.1002/adma.
201203680.

[19] T. Gokmen, Y. Vlasov, Acceleration of deep neural network training with resis-
tive cross-point devices: design considerations, Front. Neurosci. 10 (2016) 333,
doi:10.3389/fnins.2016.00333.

[20] J.W. Jang, S. Park, G.W. Burr, H. Hwang, Y.H. Jeong, Optimization of conduc-
tance change in Pr;_, CayMnOs-based synaptic devices for neuromorphic sys-
tems, IEEE Electron. Dev. Lett. 36 (5) (2015) 457-459, doi:10.1109/LED.2015.
2418342.

[21] PY. Chen, B. Lin, LT. Wang, TH. Hou, J. Ye, S. Vrudhula, J.s. Seo, Y. Cao,
S. Yu, Mitigating effects of non-ideal synaptic device characteristics for on-chip
learning, in: Proceedings of the 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2015, pp. 194-199, doi:10.1109/ICCAD.2015.
7372570.

[22] A. Fumarola, P. Narayanan, L.L. Sanches, S. Sidler, J. Jang, K. Moon, R.M. Shelby,
H. Hwang, G.W. Burr, Accelerating machine learning with Non-volatile mem-
ory: exploring device and circuit tradeoffs, in: Proceedings of the 2016 IEEE In-
ternational Conference on Rebooting Computing (ICRC), 2016, pp. 1-8, doi:10.
1109/ICRC.2016.7738684.

[23] S. Sidler, I. Boybat, R.M. Shelby, P. Narayanan, J. Jang, A. Fumarola, K. Moon,
Y. Leblebici, H. Hwang, G.W. Burr, Large-scale neural networks implemented
with non-volatile memory as the synaptic weight element: impact of conduc-
tance response, in: Proceedings of the 2016 46th European Solid-State Device
Research Conference (ESSDERC), 2016, pp. 440-443, doi:10.1109/ESSDERC.2016.
7599680.

[24] W.. Poppelbaum, C. Afuso, J.W. Esch, Stochastic computing elements and sys-
tems, in: Proceedings of the Fall Joint Computer Conference November 14-16,
1967,AFIPS '67 (Fall), ACM, New York, NY, USA, 1967, pp. 635-644, doi:10.1145/
1465611.1465696.

[25] B.R. Gaines, Springer US, Boston, MA, 1969, pp. 37-172, doi:10.1007/
978-1-4899-5841-9_2.

[26] S. Gupta, V. Sindhwani, K. Gopalakrishnan, Learning Machines Implemented on
Non-Deterministic Hardware, CoRR abs/1409.2620(2014). arxiv.org/abs/1409.
2620.

[27] A. Alaghi,].P. Hayes, Fast and accurate computation using stochastic circuits,
in: Proceedings of the 2014 Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2014, pp. 1-4, doi:10.7873/DATE.2014.089.

[8

[9

https://doi.org/10.1109/85.238389
https://doi.org/10.1038/nphys2566
https://doi.org/10.1109/40.592312
https://doi.org/10.1147/rd.524.0449
http://dl.acm.org/citation.cfm?id=65669.104377
https://doi.org/10.1037/h0042519
http://dl.acm.org/citation.cfm?id=281543.281637
http://dl.acm.org/citation.cfm?id=3042817.3043086
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/TED.2012.2227969
http://stacks.iop.org/0957-4484/24/i=38/a=382001
https://doi.org/10.1021/nl904092h
https://doi.org/10.1145/2463585.2463588
http://stacks.iop.org/0957-4484/22/i=1/a=015201
http://stacks.iop.org/0957-4484/24/i=38/a=384010
https://doi.org/10.1109/IEDM.2015.7409625
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1002/adma.201203680
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1109/LED.2015.2418342
https://doi.org/10.1109/ICCAD.2015.7372570
https://doi.org/10.1109/ICRC.2016.7738684
https://doi.org/10.1109/ESSDERC.2016.7599680
https://doi.org/10.1145/1465611.1465696
https://doi.org/10.1007/978-1-4899-5841-9_2
http://arxiv.org/abs/1409.2620
https://doi.org/10.7873/DATE.2014.089

236 A.V. Babu et al./Neurocomputing 321 (2018) 227-236

[28] A. Alaghi, J.P. Hayes, On the functions realized by stochastic computing cir-
cuits, in: Proceedings of the 25th Edition on Great Lakes Symposium on VLSI,
GLSVLSI '15, ACM, New York, NY, USA, 2015, pp. 331-336, doi:10.1145/2742060.
2743758.

[29] S. Gupta, K. Gopalakrishnan, in: Revisiting Stochastic Computation: Approxi-
mate Estimation of Machine Learning Kernels, First Workshop on Approximate
Computing Across the System Stack 1-2, 2014.

[30] A. Alaghi, C. Li,]J.P. Hayes, Stochastic circuits for real-time image-processing
applications, in: Proceedings of the 50th Annual Design Automation Confer-
ence, DAC "13, ACM, New York, NY, USA, 2013, pp. 136:1-136:6, doi:10.1145/
2463209.2488901.

[31] Q.T. Dong, M. Arzel, C. Jego, W.J. Gross, Stochastic decoding of turbo codes, IEEE
Trans. Signal Process. 58 (12) (2010) 6421-6425, doi:10.1109/TSP.2010.2072924.

[32] M.L. Alomar, V. Canals, V. Martinez-Moll,].L. Rossell6, Springer International
Publishing, Cham, 2015, pp. 185-196, doi:10.1007/978-3-319-19222-2_16.

[33] J. Li, A. Ren, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, Towards acceleration of
deep convolutional neural networks using stochastic computing, in: Proceed-
ings of the 2017 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC), 2017, pp. 115-120, doi:10.1109/ASPDAC.2017.7858306.

[34] D.E. Rumelhart, G.E. Hinton, RJ. Williams, Learning representations by back-
propagating errors, Nature 323 (1986). 533 EP - 10.1038/323533a0.

[35] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-
scale video classification with convolutional neural networks, in: Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR '14, IEEE Computer Society, Washington, DC, USA, 2014, pp. 1725-1732,
doi:10.1109/CVPR.2014.223.

[36] K. Steinbuch, Die lernmatrix, Kybernetik 1 (1) (1961) 36-45, doi:10.1007/
BF00293853.

[37] D. Niu, C. Xu, N. Muralimanohar, N.P. Jouppi, Y. Xie, Design trade-offs for high
density cross-point resistive memory, in: Proceedings of the 2012 ACM/IEEE
International Symposium on Low Power Electronics and Design, ISLPED '12,
ACM, New York, NY, USA, 2012, pp. 209-214, doi:10.1145/2333660.2333712.

[38] Y. Wang, B. Li, R. Luo, Y. Chen, N. Xu, H. Yang, Energy efficient neural networks
for big data analytics, in: Proceedings of the Conference on Design, Automa-
tion & Test in Europe, DATE '14, European Design and Automation Associa-
tion, 3001 Leuven, Belgium, Belgium, 2014, pp. 345:1-345:2. http://dl.acm.org/
citation.cfm?id=2616606.2617095.

[39] JJ. Yang, D.B. Strukov, D. Stewart R, Memristive devices for computing, Nat.
Nanotechnol. 9 (2013) 13-24. 10.1038/nnano.2012.240.

[40] A.V. Babu, B. Rajendran, Stochastic deep learning in memristive networks, in:
Proceedings of the 2017 24th IEEE International Conference on Electronics, Cir-
cuits and Systems (ICECS), 2017, pp. 214-217, doi:10.1109/ICECS.2017.8292067.

[41] Y. LeCun, L. Bottou, G.B. Orr, K.-R. Miiller, Effiicient BackProp, in: Proceedings
of the Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a
1996 NIPS Workshop, Springer-Verlag, London, UK, UK, 1998, pp. 9-50. http:
//dl.acm.org/citation.cfm?id=645754.668382.

[42] N. Panwar, U. Ganguly, Variability assessment and mitigation by predictive pro-
gramming in Pro;Cag3MnOs3 based RRAM, in: Proceedings of the 2015 73rd
Annual Device Research Conference (DRC), 2015, pp. 141-142, doi:10.1109/DRC.
2015.7175595.

[43] DJ. Seong, M. Hassan, H. Choi,]. Lee,]J. Yoon, J.B. Park, W. Lee, M.S. Oh,
H. Hwang, Resistive-switching characteristics of Al/ Prp;Cag3MnO; for non-
volatile memory applications, IEEE Electron. Dev. Lett. 30 (9) (2009) 919-921,
doi:10.1109/LED.2009.2025896.

[44] P. Kumbhare, U. Ganguly, Ionic transport barrier tuning by composition in
Pro7Cap3MnOs-based selector-less RRAM and its effect on memory perfor-
mance, IEEE Trans. Electron. Dev. 65 (6) (2018) 2479-2484, doi:10.1109/TED.
2018.2827420.

[45] N. Panwar, D. Kumar, N.K. Upadhyay, P. Arya, U. Ganguly, B. Rajendran, Memris-
tive synaptic plasticity in Pro;Cag3MnO3; RRAM by bio-mimetic programming,
in: Proceedings of the 72nd Device Research Conference, 2014, pp. 135-136,
doi:10.1109/DRC.2014.6872334.

[46] P. Kumbhare, I. Chakraborty, A. Khanna, U. Ganguly, Memory performance of
a simple Pry;Cag3MnOs-based selectorless RRAM, IEEE Trans. Electron Dev. 64
(9) (2017) 3967-3970, doi:10.1109/TED.2017.2725900.

[47] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, C. Gamrat, Visual
efficient 2-PCM synapse neuromorphic architecture, IEEE Trans. Electron. Dev.
59 (8) (2012) 2206-2214, doi:10.1109/TED.2012.2197951.

[48] S. Lim, J.H. Bae, J.H. Eum, S. Lee, C.H. Kim, D. Kwon, B.G. Park,].H. Lee, Adap-
tive Learning Rule for Hardware-based Deep Neural Networks Using Electronic
Synapse Devices, ArXiv e-prints (2017).

[49] G.W. Burr, R.M. Shelby, C. di Nolfo, J.W. Jang, R.S. Shenoy, P. Narayanan, K. Vir-
wani, E.U. Giacometti, B. Kurdi, H. Hwang, Experimental demonstration and
tolerancing of a large-scale neural network (165,000 synapses), using phase-
change memory as the synaptic weight element, in: Proceedings of the IEEE
International Electron Devices Meeting (IEDM) 2014, 2014, pp. 29.5.1-29.5.4,
doi:10.1109/IEDM.2014.7047135.

[50] I. Boybat, M.L. Gallo, S.R. Nandakumar, T. Moraitis, T.P. Parnell, T. Tuma, B. Ra-
jendran, Y. Leblebici, A. Sebastian, E. Eleftheriou, Neuromorphic computing
with multi-memristive synapses, CoRR abs/1711.06507 (2017).

[51] B. Moons, M. Verhelst, Energy-efficiency and accuracy of stochastic computing
circuits in emerging technologies, IEEE]J. Emerg. Sel. Top. Circuits Syst. 4 (4)
(2014) 475-486, doi:10.1109/JETCAS.2014.2361070.

[52] W. Qian, X. Li, M.D. Riedel, K. Bazargan, D.J. Lilja, An architecture for fault-
tolerant computation with stochastic logic, IEEE Trans. Comput. 60 (1) (2011)
93-105, doi:10.1109/TC.2010.202.

Anakha V Babu received the B.Tech degree in electronics
and communication engineering from University of Ker-
ala, India, in 2010 and M.tech degree in Microelectron-
ics & VLSI design from the Indian Institute of Technology
Bombay, Mumbai, India, in 2016. She is currently pursu-
ing Ph.D degree in electrical engineering at the New Jer-
sey Institute of Technology, New Jersey, USA. Her current
research interests include bio-inspired computing using
novel memristive devices.

Sandip Lashkare hails from Nanded, Maharashtra, India.
He has received B.Tech from Shri Guru Gobind Singhji
Institute of Engineering and Technology, Nanded in 2011
and M.Tech degree in electrical engineering from IIT Bom-
bay in 2013. He worked in LSI Pvt Ltd (Now Broadcom
Limited) and SILABTECH Pvt. Ltd. from 2013-2015 fo-
cussing on Post Silicon and FPGA Validation of SERDES
IP’s. Presently, he is pursuing the Ph.D. degree at IIT
Bombay. He has authored/co-authored 7 conference and
3 journal papers. His current research interests include
electrical characterization, modeling and development of
brain-inspired computing using novel memories.

Udayan Ganguly received the B.Tech. degree in Metallur-
gical Engineering from the IIT Madras, in 2000 and the
M.S. and Ph.D. degrees in Materials Science and Engineer-
ing at Cornell University, Ithaca, NY, in 2005 and 2006
respectively. In 2006, after a short Postdoctoral Scholar-
ship position at NASA Ames Research, Udayan joined Ap-
plied Materials to serve as the technical lead for Flash
Memory Applications Development at Applied Materials
Front End Product Division, Sunnyvale, CA. He has joined
i Dept. of Electrical Engineering in 2010. He has authored|/

o co-authored 30+ journal, 60+ conference and 20 patents
| ! ~ (applied/granted). His research interests are in semicon-
ductor device physics and processing technologies for ad-
vanced memory, computing, and neuromorphic systems.

Bipin Rajendran received a B. Tech degree from
LLT. Kharagpur in 2000, and M.S. and Ph.D. degrees in
Electrical Engineering from Stanford University in 2003
and 2006, respectively. He was a Master Inventor and Re-
search Staff Member at IBM T.]. Watson Research Center
in New York during 2006-'12 and a faculty member in the
Electrical Engineering Department at LLT. Bombay during
2012-"15. His research focuses on building algorithms, de-
vices and systems for brain-inspired computing. He has
authored over 70 papers in peer-reviewed journals and
conferences, and has been issued 55 U.S. patents. He is
currently an Associate Professor of Electrical & Computer
Engineering at New Jersey Institute of Technology.

https://doi.org/10.1145/2742060.2743758
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0028
https://doi.org/10.1145/2463209.2488901
https://doi.org/10.1109/TSP.2010.2072924
https://doi.org/10.1007/978-3-319-19222-2_16
https://doi.org/10.1109/ASPDAC.2017.7858306
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1007/BF00293853
https://doi.org/10.1145/2333660.2333712
http://dl.acm.org/citation.cfm?id=2616606.2617095
https://doi.org/10.1038/nnano.2012.240
https://doi.org/10.1109/ICECS.2017.8292067
http://dl.acm.org/citation.cfm?id=645754.668382
https://doi.org/10.1109/DRC.2015.7175595
https://doi.org/10.1109/LED.2009.2025896
https://doi.org/10.1109/TED.2018.2827420
https://doi.org/10.1109/DRC.2014.6872334
https://doi.org/10.1109/TED.2017.2725900
https://doi.org/10.1109/TED.2012.2197951
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0047
https://doi.org/10.1109/IEDM.2014.7047135
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
http://refhub.elsevier.com/S0925-2312(18)31080-4/sbref0049
https://doi.org/10.1109/JETCAS.2014.2361070
https://doi.org/10.1109/TC.2010.202

	Stochastic learning in deep neural networks based on nanoscale PCMO device characteristics
	1 Introduction
	2 Stochastic computing
	3 DNN training and acceleration
	4 Network architecture
	4.1 Floating point DNN
	4.2 Stochastic DNN

	5 PCMO device as synapse
	5.1 Device fabrication
	5.2 Device characterization

	6 Crossbar compatible implementation
	6.1 Two-devices per synapse
	6.1.1 Forward pass
	6.1.2 Backward pass

	6.2 Modifications to the 4-layer network

	7 Network response with PCMO device
	7.1 Optimization of reset interval
	7.2 Sensitivity to conductance variability
	7.3 Impact of on-off ratio

	8 Inference in the presence of noise
	9 Conclusion
	 Acknowledgment
	 References

