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Phase-change memory (PCM) is an emerging non-volatile memory technology that is based on
the reversible and rapid phase transition between the amorphous and crystalline phases of certain
phase-change materials. The ability to alter the conductance levels in a controllable way makes
PCM devices particularly well-suited for synaptic realizations in neuromorphic computing. A key
attribute that enables this application is the progressive crystallization of the phase-change material
and subsequent increase in device conductance by the successive application of appropriate electri-
cal pulses. There is significant inter- and intra-device randomness associated with this cumulative
conductance evolution, and it is essential to develop a statistical model to capture this. PCM also
exhibits a temporal evolution of the conductance values (drift), which could also influence applica-
tions in neuromorphic computing. In this paper, we have developed a statistical model that describes
both the cumulative conductance evolution and conductance drift. This model is based on extensive
characterization work on 10 000 memory devices. Finally, the model is used to simulate the super-
vised training of both spiking and non-spiking artificial neuronal networks. Published by AIP
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. INTRODUCTION

Phase-change memory (PCM) is arguably the most
advanced emerging non-volatile memory technology.! PCM
is based on the property of certain materials, such as
Ge,Sb, Tes, that exhibit a significant difference in resistivity
depending on whether they are in the ordered crystalline
phase or the disordered amorphous phase. In a PCM device,
a tiny volume of such a material is sandwiched between two
metal electrodes. A typical device structure is shown in the
cross-sectional TEM image in Fig. 1(a). By the application
of suitable electrical pulses and subsequent Joule heating, it
is possible to reversibly alter the phase-configuration of the
material within the device. Pulses that result in an increase in
the size of the amorphous region are typically referred to as
RESET pulses. In this case, the application of the pulse
results in melting of a critical volume of the material which
is then rapidly quenched to induce glass transition. The
pulses that reduce the size of the amorphous region
are referred to as SET pulses. Here, the temperature reached
within the device is favorable for crystallization [see
Fig. 1(b)].* Typically, the SET pulses that induce partial
crystallization of the material are referred to as partial SET
pulses and all these pulses are collectively referred to as
programming pulses.

The electrical resistance/conductance of the device
will depend on the resulting phase-configuration. In fact, it is
possible to achieve a continuum of resistance values in a
single device and this can be exploited for neuromorphic
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applications. For example, as shown in Fig. 1(c), PCM
devices organized in a crossbar configuration can be used
to emulate the synaptic elements in an artificial neural
network.>* The synaptic weights are captured by the conduc-
tance values of the PCM devices. The inputs from one layer
of neurons are weighted by these conductance values (via
Ohm’s law) and the resulting current along the columns
serves as inputs to the next layer of neurons. During the train-
ing of a neural network, the initial conductance values are
typically chosen randomly, which are then modified (synaptic
plasticity) via some appropriate learning rule. The program-
ming pulses can be used to alter the conductance values
during the training process. Unlike RESET pulses, which
cause an abrupt transition to lower conductance values, the
successive application of a partial SET pulse results in a
more progressive increase in the conductance value. This
cumulative evolution of conductance is highly beneficial for
neuromorphic applications. Hence, often in PCM, only the
partial SET pulses are used to implement synaptic plasticity
rules.* To avoid the use of RESET pulses, PCM devices are
organized in a differential configuration.” A comprehensive
understanding of this accumulative behavior across a large
number of devices is central to the realization of large-scale
neural networks. Besides crystallization, there are other
structural dynamics at play in PCM devices. These devices
exhibit a temporal evolution of conductance values after the
application of each programming pulse. This is attributed to
a spontaneous structural relaxation of the material® and could
also play a key role in neuromorphic computing.

In this article, we present a comprehensive model
of PCM devices that captures the accumulative behavior,
conductance drift, and read noise. Extensive experimental
characterization of 10 000 PCM devices has been performed
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FIG. 1. (a) TEM image of a mushroom-type PCM device. Amorphous
dome (Amor-GST) inside the crystalline (Cryst-GST) dielectric is visible.
(b) Pictorial representation of the programming pulses and the resulting rela-
tive temperature for RESET, SET, partial SET, and read operation in PCM.
(c) Schematic illustration of the application of PCM devices as synaptic ele-
ments in neuromorphic computing. A crossbar array of PCM devices could
be used to represent the connection strengths in a neural network layer.

to develop this statistical model. Finally, we demonstrate the
efficacy of this model by using it to match experimentally
observed array level characteristics and to train spiking and
non-spiking artificial neural networks.

Il. DEVICE CHARACTERIZATION AND MODELING

For device characterization, we used mushroom-type
PCM devices fabricated in the 90 nm technology node.” The
phase-change material is doped Ge,Sb,Tes (GST). A proto-
type chip comprising 3 x 10° devices was used in the study.®
Individual devices are addressed via word lines and bit lines,
and the devices have access transistors in series. The devices
are programmed using current pulses of designated amplitude
and width generated in the peripheral circuits. The conduc-
tances are read by applying a 0.3 V read pulse and the result-
ing current is read using an 8-bit analog to digital converter
(ADC). The ADC is calibrated to span a conductance range
between 0.1 uS and 27 uS.

First, the device conductances were initialized to a
distribution close to 0.1uS using iterative programming.’
Subsequently, we applied 20 partial SET pulses of 90uA
amplitude and 50 ns duration. After the application of each
pulse, devices are read 50 times. In addition, an immediate
conductance measurement is performed approximately 100 ns
after the programming pulse. However, subsequent measure-
ments are obtained at time intervals in the order of seconds.
As a result, consecutive programming pulses were applied
with an average interval of 38.6s for the 10000 devices.
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FIG. 2. The measured conductance evolution in a single device in accor-
dance with the application of 20 consecutive partial SET pulses. The
time instances of programming events are illustrated by the arrows.
After the application of each pulse, the device conductance is measured
50 times.

The resulting conductance evolution, except for the immedi-
ate read after 100 ns, for one such representative device is
shown in Fig. 2. In Secs. I A-II C, we will use all the
measurements from the 10 000 devices (barring a few whose
conductances which were outside the ADC limits) to develop
the statistical model.

A. Accumulative behavior

First, we characterized the accumulative behavior arising
from the successive application of partial SET pulses. To
decouple the accumulative behavior from conductance drift,
the 50th read measurement was used. The distribution of the
conductance values as a function of the pulse number is
shown in Fig. 3(a). It can be seen that the average conduc-
tance change is high at low conductance values and it gradu-
ally reduces as the conductance values increase. It can also be
seen that there is significant randomness associated with the
conductance values. This is mostly attributed to the inherent
randomness associated with the crystallization process.'”'" In
fact, the inter- and intra- device variability in the array has
been observed to be of comparable magnitude.'*™'*

To obtain a quantitative description of this behavior, we
studied how the conductance change arising from the appli-
cation of a single SET pulse depends on the conductance
state of the device prior to the application of the pulse as
well as the device’s programming history. The devices were
split into different groups based on their conductance values.
Each group corresponds to a conductance interval of 1 uS. For
each group, the mean (u,;) and standard deviation (oac)
of the conductance change due to the application of a single
programming pulse is plotted against the mean conductance
(ug) of each group [see Figs. 3(b) and 3(c)]. The data points
are generated only for those groups with 100 or more
devices. This is repeated for the conductance values mea-
sured after the application of each programming pulse.
In Figs. 3(b) and 3(c), each color corresponds to a single
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FIG. 3. (a) The statistics of cumulative conductance evolution as a function of the number of partial SET pulses. The error bars indicate one standard deviation.
(b) The mean u,; and (c) standard deviation o of conductance change as a function of the average initial conductance y; for each programming pulse. The
initial conductance distribution for each programming pulse is divided into smaller intervals and yg, u,g, and oag are determined separately for each interval.
Each data point in (b) and (c) corresponds to an average of measurements from at least 100 devices. Also depicted are the fit lines used to obtain the model
parameters. [(d), (e)] The same data points of 1, and o¢ are plotted as a function of the pulse number with a constant added for data points corresponding to
a single u; interval. The dependency of u,; and oag on pulse number is approximated using an exponential function with a decay constant of 2.6.

programming pulse with the red color indicating the first
pulse and the blue color the 20th pulse. We observe that
there is a negative correlation between i, and p; suggesting
a linear decrease in the conductance change as the device
conductance increases. In addition, in a particular conduc-
tance range, the conductance change observed seems to
decrease with increasing number of applied pulses. This
behavior can be captured using a linear fit of a negative slope
to map the relation between u,; and u; for any particular
pulse number. Furthermore, the dependency on the pulse
number is encoded in the y intercept of this linear fit. It can
be seen that for any given conductance value, the extent of
conductance change induced by a single partial SET pulse
reduces significantly with increasing number of applied
pulses. This could be captured using an exponential empiri-
cal relation [Figs. 3(d) and 3(e)].

It can be seen that the behavior of oag is also very
similar to that of u,; except that there is a positive correla-
tion with the u; in this case. Therefore, the mean and
standard deviation of the AG is modeled, respectively, using
lines of negative and positive slopes and with an intercept
which is an exponential function of the pulse number (p) as
in the following equations [also in Figs. 3(b) and 3(c)]:

Hag = miG + (c1 +Aje ), ey

oac = MG + (c3 + Age /%), @)

where the fit parameters m;, my, ¢, c2, Aj, Az, and a are
—0.084, 0.091, 0.880, 0.260, 1.40, 2.15, and 2.6, respectively.

B. Conductance drift and read noise

In this section, we model the conductance drift in the
devices arising from structural relaxation. For this, we use
the 50 read measurements obtained after the application of
each SET pulse. The mean conductance evolution after each
programming event as a function of time is plotted in
Fig. 4(a). The response is fitted using the model,'>'®

G() = G(Ty) (Ti0> . 3)

According to Eq. (3), if the device conductance, G(Tp), is
known at time T} after programming, the conductance at any
time ¢ can be estimated with the knowledge of the drift coef-
ficient, v. The estimated v from the fit lines have a mean
value of 0.04 [Fig. 4(a) inset]. Note that the logarithmic
dependence on time suggests that after programming, the
conductance drift slows down with time. We observe that
the partial SET pulses result in a state that drifts, with a drift
coefficient that decreases with increasing conductance
Ue(To). The application of a partial SET pulse re-initiates
structural relaxation and conductance drift. Hence, we specu-
late that each partial SET pulse creates a new unstable glass
state because of the atomic rearrangement that occurs upon
its application, which then structurally relaxes to an energeti-
cally more favorable amorphous state.®'”

In addition to the conductance drift, there are also signif-
icant fluctuations in the conductance values (read noise)
mostly arising from the 1/f noise exhibited by amorphous
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FIG. 4. (a) The average conductance
evolution after each programming
pulse obtained by the 50 read operation
is fitted using Eq. (3). The estimated
drift-coefficient, v, is shown in the
inset. (b) The read noise measured
from the device array is plotted as a
function of the average device conduc-
tance. The linear fit used to estimate
read noise for the model in a state-
dependent manner is also shown.
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phase-change materials.'® To model this, we estimated the
noise from the last ten reads from the fifty read measure-
ments. The objective was to decouple the read noise from the
conductance drift. The standard deviation of the zero-mean
read noise is plotted as a function of the mean conductance
[see Fig. 4(b)]. It can be seen that the read noise increases
with the device conductance. The read noise standard devia-
tion, o,¢, for the device conductance range is modeled using
the linear relation,

0,6 = m3G + c3, 4)
where m3; = 0.03 and ¢z = 0.13.

C. The overall model description and validation

In this section, we combine the various elements of the
model describing the accumulative behavior, conductance
drift, and read noise to generate a complete statistical model
and validate it based on the experimental data. The objective
is to capture the evolution of conductance values for a large
collection of devices after a certain time 7 after program-
ming with an arbitrary number of partial SET pulses. More
specifically, we would like to determine the device conduc-
tance G() at any time ¢, which has been initialized to approx.
0.14S, and is subjected to a sequence of 90uA, 50 ns pro-
gramming pulses with arbitrary time intervals between them.

To simulate this, three quantities are recorded per device:
(a) Gi(Tp), the conductance after Ty time after the ith pro-
gramming pulse for i =0, 1,2..., (b) Pyen, a quantity that
captures the programming history, and (c) £,, the time of the
last programming event. #, is initialized to zero. Based on the
chosen initial conductance value Gy(Ty), Ppen is initialized
t0 Premo = e P0/% where po is the effective number of pulses
applied to reach the initial conductance Gy(Tp). py is zero for
initialization around 0.1 xS and p, for higher values of con-
ductance is determined from the average conductance evolu-
tion curve shown in Fig. 3(a). The effective number of pulses
versus conductance can be approximated empirically as

po = 0.027ud — 0.1542 + 0.81 g, (5)

for conductance ranging from 0.1 uS to around 8 uS. After
initialization, for the Nth programming event, P, is first

6 8 10

b (S)

updated as Pemn = Puemn—1¢~ /% for N=1,2, .... Then
G(t), which has seen N programming pulses can be deter-
mined as follows:

Upgy, = miGn-1(To) + (¢1 + A1Pmem)s (6)
oaGy = maGy_1(To) + (c2 + A2 Ppiem), @)
AGN = lizg, + OaGuXs 3)

Gn(To) = Gn-1(To) + AGy, &)

-V
G(1) = Gy(To) (ﬂ) + ng. (10)
Ty

Here, y represents a Gaussian random number of mean zero
and variance 1. Another zero mean Gaussian random vari-
able ng, captures the conductance fluctuations arising from
PCM noise, whose standard deviation is calculated based on
the instantaneous conductance state as dictated by the linear
fit in Eq. (4) [also in Fig. 4(b)]. All the model parameters are
listed in Table I. Please note that the conductance values pre-
dicted by the model are in uS.

First, the model is used to validate the same experimental
data that was used to generate the model parameters. In partic-
ular, the model is used to generate the distribution of conduc-
tance values as a function of the number of programming
pulses. As shown in Fig. 5, the mean and variance match
remarkably well with experimental data. It can also be seen
that the distributions themselves are remarkably similar.
Figures 6(a)-6(c) show the conductance distribution from
the 50th read after initialization, after the application of 5 pro-
gramming pulses, and after the application of 20 programming

TABLE I. The model parameters.

Symbol Value Symbol Value Symbol Value
m —0.084 c 0.880 Ay 1.40

my 0.091 1) 0.260 A, 2.15

a 2.6 Ty 38.6s v 0.04

m3 0.03 c3 0.13
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FIG. 5. (a) The distribution of conductance values obtained using the model
as a function of the number of partial SET pulses and match with experimen-
tal device data. (b) The mean of the conductance as a function of the pulse
number. (c) The standard deviation of the conductance as a function of the
pulse number.

pulses, respectively. The model also matches the correlation
coefficient observed between G and AG for the pulses
applied. From Figs. 6(e) and 6(f), it can be seen that the
statistical model also captures the individual device behavior
remarkably well.

Additional measurements were performed where the
devices are programmed with 20 programming pulses,
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however, with varying time intervals between the application
of each pulse. The time interval was determined based on the
number of reads performed and in the current experiment,
each read process took approximately 1s for the 10000
devices. Figure 7 shows the programming events in time
(top) and the resulting evolution of the mean conductance of
the 10000 devices (bottom). The spikes in the programming
event plot correspond to the application of partial SET pulse
and the device conductances are read at all other time
instances. As discussed earlier, it can be seen that with the
application of each programming pulse, the drift process is
re-initiated. Another interesting observation is that the net
change in conductance seems to be independent of structural
relaxation. There is some evidence that structural relaxation
slows down crystal growth rate.” But at least in these devices
and these time scales, this does not seem to be significant.
The final conductance values at the end of programming
seem to converge to similar conductance levels independent
of the rate of programming. Hence, our proposed model
is able to capture this behavior remarkably well with the
additional incorporation of Eq. (3).

lll. SPIKING NEURAL NETWORK WITH MODELED
PCM-SYNAPSES

The developed model could be used to simulate training
behavior of neural networks and other possible learning
systems which require adaptive weights. To illustrate this, we
train a spiking neural network (SNN) and a non-spiking
artificial neural network (ANN) with PCM based synapses
whose conductance modulations are emulated by the model
and discuss the effect of device behavior such as limited
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FIG. 6. The distribution of conductance values after (a) initialization, (b) the application of 5 programming pulses, and (c) the application of 20 programming
pulses. It can be seen that there is a remarkable agreement between the experimental distribution and that predicted by the model. (d) The correlation coefficient
between G and AG after the application of each programming pulse calculated based on the model and is compared with the experimental measurement. The
conductance evolution of individual devices as measured experimentally (e) and as predicted by the model (f).
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FIG. 7. The 10000 PCM devices are programmed using sequences of 20
current pulses of 90 #A and 50ns width. The number of read operations
performed after each programming event is varied resulting in different time
intervals between the programming events. The resulting conductance evolu-
tion during all the read operations is illustrated. The proposed model captures
the experimentally observed behavior remarkably well.

granularity and stochasticity in the training. The PCM devices
are assumed to be arranged in a crossbar array representing the
connection strength between adjacent layers of neurons as in
Fig. 1(c). The crossbar arrangement enables them to perform
the weighted summation necessary for the dataflow through
the network in constant time irrespective of the layer size.
SNNs are third generation neural networks that attempt
to mimic biological neural network behavior. Biological
neurons integrate their input over time in analog domain,
while communicating with other neurons via spikes, enabling
highly energy efficient signal encoding and processing.
In SNNs, this neuronal behavior is typically emulated using a

(@)
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leaky-integrate and fire (LIF) model. The LIF neuron could
be represented as a leaky capacitor that integrates incoming
currents, with the integration reset when the voltage across the
capacitor exceeds a threshold, and a spike is sent to the down-
stream neurons. This continuous time behavior makes the
training and inference of SNNs in conventional digital hard-
ware extremely inefficient. Non-volatile memory array based
synapse networks with dedicated neuronal circuits at the
periphery could potentially provide a more efficient non-von
Neumann architecture for SNN implementation and training.

An example SNN is shown in Fig. 8(a). It has one LIF
output neuron receiving 500 spikes streams via input
synapses. The network is expected to generate a desired
spike pattern from the inputs which is generated here from
a Poisson random process for illustrative purposes. The
network spike input and the desired output spike response
are illustrated in Fig. 8(b). In response to each spike
input, synapses generates currents modeled by the expression
Iyn = W x (e /71 — ¢71/72) as a function of time, ¢, where W
is the synaptic strength. The task of the supervised learning
algorithm is to adjust the weights such that the observed
spikes match a desired pattern. One weight adjustment rule
for SNNs that has been demonstrated recently is the
NormAD algorithm,"® which provides the network weight
updates AW as

- N
AW = rj e(t) ii(t)
o [ld@]

dt, (11)

where r is the learning rate, T is the duration of the training
pattern, and e(?) is the difference between the desired and
observed output spike trains. d(r) is obtained by convolving
the synaptic current (/i) with an approximate impulse
response of the LIF circuit.
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FIG. 8. (a) The spiking neural network used for the training simulation. Two PCM devices in the differential configuration used for the synapse is also shown.
(b) Raster plot of input spike streams (top) and the desired spike streams from the output neuron (bottom). The observed spikes during each training epoch are
plotted over the desired spike trains. The observed spikes are within 0.7 ms of the desired instances after 40 epochs of training. (c) Conductance evolution of a
few synapses during the training illustrating the drift and read noise of PCM devices. (d) The final weight distribution from the PCM synapses along with the
weights from a floating point (FP-64 bit) training is shown for reference. (¢) The correlation between the desired and observed spike trains after 40 epochs with

the PCM synapse is similar to that using floating point synapses.
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The network synapses are realized using the PCM
model. Because of the abrupt RESET behavior of the device,
each synapse is realized using two PCM devices G, and
G, in differential configuration such that W = B(G, — G,),
where f is a scaling factor.” Hence, synaptic potentiation is
achieved by applying a partial SET pulse to G, and depres-
sion is achieved by applying a partial SET pulse to G,. This
unidirectional programming often causes the device pairs to
saturate preventing any further weight update. Hence, an
occasional weight refresh is performed, based on the follow-
ing criteria. If G, or G, > G,, and |G, — G,| < 0.25G,,
where G, is a threshold, both the devices are RESET, and the
conductance difference is programmed to the device which
had the higher conductance. For the hardware implementa-
tion, the RESET pulse shape could be determined from the
PCM programming curve.>*° Here, the stochastic RESET
behavior is simulated using an abrupt conductance transition
to a distribution of mean 1 xS and standard deviation 0.5 uS.

For the training, the device conductances are initialized
to a distribution around 2uS with a standard deviation of
0.5uS. During each training epoch, the 400 ms long spike
sequences are presented to the network and the weight
updates are computed. The scaling factor S is chosen to
match the PCM based weight distribution to that obtained
from an equivalent network trained with floating-point synap-
tic weights [Fig. 8(d)]. While this scaling enables PCM
based synapses to represent the desired weight range, the
achievable weight updates are limited by the device granular-
ity. Furthermore, we assume the states of the individual
devices are unknown to determine the optimum program-
ming pulse. Hence, the estimated weight updates are con-
verted to programming pulses by assuming an average
conductance change of 0.75 uS for each partial SET pulse (as
the 7.5uS conductance range used in our study is typically
reached within 10 pulses). The resulting conductance evolu-
tions during training for a few synapses are shown in
Fig. 8(c). As we see here, the PCM synapses drift and have
read noise while computing the weight updates. The conduc-
tance programming is without any read-verify operation and
is stochastic, which will simplify the system implementation
and accelerate the training process. The training performance
is evaluated based on a correlation between the desired and
observed spike trains'® and is plotted in Fig. 8(e). The corre-
sponding numbers from a training assuming floating point
synapses are shown for reference. In spite of the stochastic
nature of PCM weight updates and conductance drift
after programming, the SNN incorporating these devices
exhibit training performance that is at par with the baseline
software network.

IV. DEEP LEARNING WITH MODELED
PCM-SYNAPSES

Now, we discuss the training of an artificial neural
network (ANN) whose synapses are realized using the PCM
differential configuration. The network is designed for
the benchmark handwritten digit recognition task, based on
28 x 28 gray-scale images from the MNIST dataset. The
dataset has 60 000 training images and 10000 test images.

J. Appl. Phys. 124, 152135 (2018)

In this exercise, we attempt to modify the standard backpro-
pagation training algorithm to account for the limited device
granularity and its effect is analyzed.

The network used for the task is shown in Fig. 9(a),
which has two fully connected weight layers. The input layer
neurons are linear; the hidden layer and the output layer
neurons perform a logistic function on their inputs. The
neuron responses are often termed as their activations. The
training is performed using the backpropagation algorithm,
an adaptation of gradient descent for multi-layer ANNs. The
first stage of training, known as forward propagation,
involves presenting the image pixels at the input layer and
determining the output layer response. Out of the ten output
neurons, the one corresponding to the input image is
expected to have the highest neuron activation. The actual
response is compared with the original class label and an
aggregate network error is determined. The algorithm tries to
minimize the error by adjusting the weights in the network.
For this, the gradient of the error function with respect to
each weight in the network is determined using the backpro-
pagation algorithm. This involves sending the error computed
in the last layer to the previous layers successively through
the corresponding synaptic weights. If x; is the neuron activa-
tion of the pre-neuron from forwarding propagation and J;,
the error computed at the input of post-layer neuron of any
weight during backpropagation, then desired weight-update
for the synapse between these neurons can be computed as

AWU = 7’].)6,'.5], (12)

where 77 is a suitably chosen learning rate. The weighted
summation or the matrix-vector multiplication necessary for
the forward and backward propagation can be realized using
the same crossbar array of devices, by feeding the vector as
voltages, respectively, along the word line or bit line and
reading the matrix-multiplication results as currents along the
corresponding bit line or word line, respectively.

During each epoch of the training, the network is pre-
sented with 60000 training images and weight updates are
computed using Eq. (12) after each image. Software training
of the ANN with high precision floating point weights gives
around 98% classification accuracy on the test set. Typically,
AW/W < 1073 for most of the AWs during this training.
However, the PCM devices used for the synaptic implemen-
tation has a state-dependent and stochastic conductance
update with very limited precision. Hence, when such non-
volatile memory arrays are used for neural network training,
transferring the desired weight updates becomes a major
challenge. There are different proposals in the literature to
solve this issue of low precision synapses by either using an
additional memory for gradient accumulation®"** or using
more complex synapse structures.'*** However, the addi-
tional overheads in these approaches constrain the maximum
computational efficiency achievable in crossbar array based
training architectures for neural networks. Here, we analyze
the effect of the PCM response in training, where the weights
are realized using two PCMs in differential configuration and
the weight updates are implemented using single-shot
programming pulses applied to the device model. Hence, the
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FIG. 9. (a) The artificial neural network used for handwritten digit classification based on the MNIST dataset. (b) The network weights are implemented using
2 PCMs in differential configuration [W = B(G, — G,)]. The conductance evolutions of the device pairs from few synapses are shown for the training duration.
(c) The neuron activations and errors have been scaled to determine the weight update probability. The average number of weight updates per image in the two
weight layers during the training for two chosen scaling factors are shown. (d) The test accuracies for the two update probabilities. The P(update)=p updated a
smaller number of synapses using limited precision and stochastic PCM models and achieved higher test accuracies faster.

main ambiguity is in converting the desired weight updates
into programming pulses. Due to the large disparity in the
desired granularity of AW and the observed AG from
the device, a linear mapping between the two will lead the
network to rarely experience any weight update. To solve
this issue, we used a scaled version of the x and ¢ to repre-
sent the probability to apply a programming pulse to the
connected device. By adjusting the scaling factor, we could
control the number of devices getting programmed in the
network during each update. For illustration, we conducted
two training experiments, where the update probabilities are
p and 5p, where p is a suitably chosen scaling factor. During
training, we assumed, 1us computation delay per crossbar
array resulting in a total training time of 2.26 s for 20 epochs.
The conductance drift and read noise were re-evaluated after
every training image during the simulations and a weight
refresh was performed after every 1000 images [Fig. 9(b)].
Due to the probabilistic nature of the weight updates, out of
the 278 260 weights in the ANN, only a small fraction of the
total weights received updates after every image. The average
number of devices updated after each image is shown in
Fig. 9(c) for the two update probabilities. The corresponding
classification accuracy of the network on the test set, which
is not used for training is in Fig. 9(d). The training experi-
ment that received lesser programming updates achieved
higher accuracy and converged faster. In contrast to the
high-precision software based training which has the flexibil-
ity to choose arbitrary learning rates, the weight updates in a
low-precision device (such as the PCM synapse) are limited
to the programming granularity of the device within its

conductance range. The probabilistic sparse update scheme
we use here could be viewed as an alternative approach to
implement backpropagation, where instead of controlling the
update of individual devices, the distance traveled on the
error surface is chosen by controlling the number of devices
being updated at any time. However, the limited device preci-
sion, non-linearity, and stochasticity seem to limit the
maximum test accuracy achievable in this network to approxi-
mately 83%, which is comparable to experimentally observed
training result in a similar network using PCM devices.”*

While the training performance obtained in the simula-
tion may seem subpar to the high-precision training, it is
worth noting that biological synapses are stochastic and have
state-dependent conductance update similar to the nano-scale
non-volatile memory devices.”> Some studies also suggest
that they have a limited precision (~4.6 bit).° Training algo-
rithms designed assuming floating point precision for the
network weights are not optimized for the limited precision
weights. Considering the possible computational advantages
of non-volatile memory based neural network implementa-
tions, adaptations or innovations of algorithms are necessary
accounting the underlying architecture and hardware limita-
tions. In such studies, the model we presented, which takes
into account the device dynamics and variabilities, will be
highly useful.

V. DISCUSSION

Now, we analyze the possible computational advantages
of PCM based implementation of neural networks compared
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to the existing von Neumann architectures. We will also
discuss how our modeling approach is applicable to other
phase change material systems and how it might be affected
by device scaling.

In a crossbar based matrix-vector multiplying unit, the
PCM device acts as both local memory and an analog multi-
plier. The array structure enables them to perform standard
O(N?) complex matrix-vector multiplications in O(1) com-
plexity with reduced data movement irrespective of the
matrix size. The PCM devices are estimated to have 2- to
3-bit digital precision®’ and higher if some stochasticity
could be tolerated. The area of a PCM cell with an access
transistor is ~25 F? (where F corresponds to the minimum
lithographic pitch in a technology node), which could be
reduced to ~6F? with a suitable diode based access
device.”® On the other hand, one bit SRAM area is > 120 F2
and the area of a 16-bit multiply-accumulate (MAC) required
for neural network architectures is at least three orders of
magnitude higher.”®?° This results in trade-offs between the
number of parallel computing units and on-chip memory for
hardware implementations of neural networks using conven-
tional CMOS technology. Since the available silicon real
estate per die is limited, energy-hungry off-chip memory
access becomes essential for storing the network parame-
ters.’® On the other hand, due to their in-memory computa-
tion capability, crossbar arrays are estimated to outperform
modern graphics processing units (GPUs) by four orders of
magnitude.®’ This is particularly advantageous for SNNs, as
they need continuous time simulation, which calls for more
analog and inherently parallel architectures.> The computa-
tional efficiency of the crossbar array could be maintained to
a large extent in the ANN training if its weight-update stage
could also be performed directly on the array devices, based
on the coincidence of stochastic pulses that represent the neu-
ronal activations and backpropagated errors. However, this
necessitates ~ 10-bit update precision for the device to achieve
state-of-the-art training accuracies.”’ Most of the non-volatile
memory devices today are binary, while a few devices includ-
ing the PCM offers a few extra bits of precision.

However, recent results suggest that lack of precision in
the non-volatile memory could be compensated by an accom-
panying higher-precision unit.>'™** The granularity of the
synapse could also be improved by using multiple devices
per synapse.'* In order to study such approaches for larger
and more complex neural network problems, compact
models that reliably capture the device statistics are required.
The model presented in this paper serves this purpose.
Furthermore, the insights developed from such training
explorations could also be used to determine the specifica-
tions for future devices.

The model we presented here is based on doped
Ge,Sb;Tes in a mushroom structure fabricated in the 90 nm
technology. This model is largely data-driven and is not
based on specific material properties. The key aspects of the
model are the negative correlation of the u,; and positive
correlation of the oag with the average current state i
[Figs. 3(b) and 3(c)]. An intuitive explanation for these
observations is as follows. Phase change memory devices
have a chalcogenide sandwiched between a top electrode and
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a bottom electrode, with one of the contacts making a narrow
contact (in both mushroom and pore PCM structures) with
the dielectric acting as a point of heating. The temperature
distribution within a PCM cell is decided by many factors
such as thermal and electrical resistance and the specific heat
capacity of the cell materials. Typically, the temperature
distribution along the vertical symmetry axis is a skewed
parabola with the maximum temperature located slightly
above the heating contact in properly designed devices.*~*
Furthermore, the crystal growth velocity in PCM increases
monotonically until it reaches a peak crystallization tempera-
ture.”> Though this peak temperature may depend on the
material, in the partial SET pulse driven gradual conductance
change operation, the programming pulses are chosen to
operate below this temperature. Therefore, when a device ini-
tialized with a RESET operation is subjected to partial SET
pulses, the point of maximum crystal growth will be around
the point of maximum temperature. This results in large
conductance change for the first few pulses. For further pro-
gramming pulses of the same amplitude, assuming that the
temperature distribution remains more or less unchanged and
that the crystalline-amorphous boundary has moved to lower
temperature regions due to earlier crystal growth, every
subsequent programming will result in smaller conductance
increase. This conductance saturation is captured in the
model by the point where u,; versus ug; crosses zero. This
zero-crossing behavior also makes the model bounded in its
conductance range, even when simulated with a large
sequence of pulses. The increase in the programming noise at
higher conductance states may be attributed to the higher var-
iability in the number of trap-states within the reduced
volume of the amorphous region as sub-threshold conduction
in these devices are trap-mediated.™

While Ge,Sb,Tes is the most commonly used material
in PCM devices, other chalcogenide alloys have been
explored for improved properties such as faster crystalliza-
tion, reduced drift, and lower programming currents.*®>’
However, the qualitative description of the temperature distri-
bution and the modeling approach we presented here is
expected to remain valid in different phase change material
systems provided the conductance modulation is driven by
Joule heating and have similar crystal growth dynamics. For
example, comparable partial SET conductance accumulation
behavior has been reported in GeTe based PCMs. 38 Hence,
the model we presented could be tuned to capture the gradual
crystallization behavior if sufficient statistics on device char-
acteristics are available. Phase change memory devices have
also been demonstrated to be scalable via ab initio simula-
tions>>** and experiments.*’ The temperature profile within
the scaled devices remain more or less the same under
constant voltage scaling,*? and hence similar state-dependent
conductance modulation behavior under partial SET pro-
gramming pulses could be expected in them as well.
However, the scaling of the electrode contact area reduces
the amorphous volume involved in the conductance modula-
tion, which could result in reduced granularity and higher
stochasticity. For a given trap density, the changes in this
smaller amorphous region could lead to higher programming
noise. The ability of a PCM cell to provide gradual
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conductance state will also depend on the cell design. For
example, in a mushroom cell, if the peak temperature point is
too far away from the heater electrode, the amorphous region
will not cover the heater unless very high powers are applied,
effectively making multi-level operation almost impossible.*
Therefore, the model could possibly be tuned to adapt to
different phase change materials and technology nodes with
sufficient data, provided the devices are not binary and have
state dependent gradual conductance change.

VI. CONCLUSION

Phase-change memory devices are poised to play a key
role in neuromorphic computing, in particular as synaptic ele-
ments in artificial neural networks. A cumulative increase in
conductance value with the successive application of partial
SET pulses is one of the key enablers for this functionality.
In this article, through extensive characterization of thou-
sands of PCM devices, we have developed an accurate statis-
tical model that captures this accumulative behavior. This
model also captures other attributes such as conductance drift
arising from the structural relaxation of the phase-change
materials. We demonstrated the efficacy of the model for
training of artificial neural networks and discussed the impor-
tance of such statistical models for neuromorphic system
emulations. The proposed model can be a powerful tool for
the exploration of various neuromorphic algorithms.
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