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Abstract—Soft and continuum robots driven by tendons or
cables have wide-ranging applications, and many mechanics-
based models for their behavior have been proposed. Here we ad-
dress the unsolved problem of predicting robot deflection due to
environmental loads while the axial displacements of the tendon
ends are held constant. We first solve this problem analytically
for a tendon-embedded Euler-Bernoulli beam. Dimensionless
plots describe how tendon stiffness and routing path affect the
robot’s output compliance at any point along its length. Designs
with converging tendons have increased stiffness. Generalizing to
curved shapes and large deflections in 3D, we extend a Cosserat-
rod-based model for tendon-driven robots to handle prescribed
tendon displacements, tendon stretch, pretension, and slack.
We then provide dimensionless plots in the actuated case for
loads in 3D. The analytical formulas and numerically-computed
model are experimentally validated on a prototype robot with
good agreement. Error from static friction is relatively low but
increases for shapes with higher curvatures. The results enable
stiffness analysis of candidate robot designs without significant
modeling effort.

I. INTRODUCTION

From applications in surgery to safe human-robot inter-
action, soft and continuum robots have been increasingly
proposed and researched over the last decade [1]–[4]. For
these flexible manipulators, tendons or cables have been one of
the primary actuation paradigms, and tendon-driven continuum
systems have been used for surgery [5]–[7], space applications
[8], [9], and humanoid robots [10]. A key advantage of a
cable/tendon transmission is that the driving actuators can be
grounded off of the robot structure, thus facilitating smaller
and more agile manipulator designs.

It is well known that in the absence of external loads
from the environment, a continuum robot segment with a
uniform cross section and straight, parallel tendon routing
paths conforms to a constant-curvature shape when actuated
[2], [4], [11], but when under external loads, the shape deforms
and no longer exhibits constant curvature. Mechanics-based
static and dynamic models of the externally loaded behavior
have been derived and validated by several groups [12]–[18].
However, the shape a robot takes when under environmental
loads strongly depends on how the proximal tendon ends are
controlled during loading. For example, the tendon tensions
could be held constant throughout the external load application
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Fig. 1. Above is an example result from our analysis. The deflection
of a tendon-actuated robot under environmental loading varies significantly
depending on whether tendon tensions or the tendon attachment points are
considered constant during load application. In this paper, we analyze robot
deflection under environmental loads and prescribed tendon displacements,
studying the effects of design parameters such as tendon axial stiffness and
routing path.

or otherwise dictated by a monitored tension control system
(e.g. [19], [20]), or the axial displacements of the proximal
tendon end could be dictated and held constant by a servo
actuation system. These two cases generate very different
deflection behavior, as illustrated in Figure 1. When the
tensions are held constant, external loading will cause a change
in the proximal tendon displacements. When the proximal
displacements are held constant, the external loading will
change the tendon tension, and this generally makes the robot
have a lower output compliance. While constant-curvature
kinematics models without external loads are generally based
on prescribed tendon lengths (e.g. [2], [11], [21], [22]), all
existing models for externally-loaded robots have assumed
tendon tensions are the prescribed inputs to the system; none
seek to answer the question of what happens when the axial
tendon displacements are prescribed and held fixed during
environmental loading, aside from a brief exploration in [23].
This historic modeling emphasis on prescribed tension inputs
is somewhat incongruous with the majority of robotic systems
themselves (e.g [5], [9], [11], [16], [24]–[26]) which have
commonly used non-backdrivable, servo-actuation systems
that receive high-level position commands and prescribe the
associated tendon displacements, even if the actuation tension
is ultimately measured.
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Fig. 2. Problem schematic (A) and free-body diagrams (B) used to derive the analytical results, shown here with exaggerated deflections for clarity.

A. Outline and Contributions

In this paper, we seek to remedy this imbalance by providing
models that can predict the deflection of tendon-displacement-
controlled continuum robots under environmental loads. In
Section II, we begin by deriving simple models for the loaded
deflection of initially straight, Bernoulli-Euler beams that are
constrained by displacement-controlled tendons. This analysis
provides analytical formulas and dimensionless plots that
enable an intuitive understanding of the role of tendon stiff-
ness, routing path radius, backbone compressibility, and load
location on the beam’s deflection curve. These results should
be generally useful for predicting and adjusting the properties
of a continuum manipulator during the design process. We
further analytically describe the potential stiffness benefits of
non-parallel tendon routing. We provide additional deflection
formulas for this more general case in Section III, and we
show that routing paths that converge to the neutral axis at
the tip of a robot segment can markedly improve stiffness.
Section IV extends the coupled Cosserat rod/tendon model of
[14] to include prescribed displacement inputs, tendon stretch,
and nonlinear slack, which we accomplish by modifying the
algorithmic structure and boundary conditions of the original
model. This extended model is then implemented to produce
simulation results for external loading of an actuated robot
segment in 3D to extend and further illuminate the principles
of Sections II and III. In Section V, we experimentally validate
the derived deflection formulas and the extended Cosserat
model by measuring the response of prototype structures to
a set of known loading conditions. Section VI discusses our
results and considers possible future work.

II. ANALYTICAL RESULTS FOR SMALL DEFLECTIONS
WITH PARALLEL TENDON ROUTING

In this section, we use classical beam theory to derive
expressions for the deflection of an elastic member under a
transverse external load. The member contains ideal flexible
tendons passed through frictionless guide channels along its
length and affixed at the tip and the base of the member (i.e.
a prescribed displacement of zero), as depicted in Figure 2
for a single tendon. Note that this derivation differs from the
conventional analysis of a beam with non-homogeneous cross
section. Here, the tendon material is allowed to slide axially

within its channel, whereas different material layers are not
permitted to slide with respect to one another in a simple non-
homogeneous beam. We analyze only the straight “unactuated”
state and assume small deflections from it. These assumptions
allow us to obtain simple analytical deflection formulas that
can inform intuition about more complex, actuated scenarios
and guide general design choices. We consider (1) a single
extensible tendon running parallel to the member’s central
line, (2) the limiting case of an inextensible tendon, (3)
backbone compression, and (4) multiple pretensioned tendons.
In Section V, we provide experimental validation of our
derived deflection formulas.

A. Analysis with a Single Stretchable Tendon
The schematic in Figure 2 depicts the variables in our

problem statement. An initially straight, cantilevered elastic
member of length L, Young’s modulus E, and second area
moment I is subjected to a force at a distance z from the
base. Arc length along the member is denoted by s. A flexible
tendon runs though a straight channel at a radial distance r
from the center. The proximal tendon end is fixed in space,
and the tendon has a total spring constant k, which is given in
the figure by the classical formula for axial stiffness in terms
of tendon cross sectional area At, Young’s modulus Et, and
length Lt. The tendon channel is assumed to be frictionless,
which implies that the tendon tension is constant along the
length. For now, we assume the tendon is relaxed when the
member is straight, and in tension when the external load
is applied, but we will consider pretension later when we
examine the case of multiple tendons. If the tendon is pulled,
the member will bend, but our present aim is only to examine
the effect that tendon elasticity and radial location has on the
deflection from this nominal straight state under external loads.

Examining the free-body section diagrams in Figure 2,
we can write a static moment balance and solve for the
internal moment (about the x axis) as a function of arc length.
Assuming small deflection, we obtain

m(s) =

{
F (s− z) + rτ if s < z

rτ if s ≥ z .
(1)

We assume the classical linear constitutive law that the internal
moment is proportional (via the flexural rigidity EI) to the rate
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of change of the tangent angle with respect to arc length,

m(s) = −EI dθ
ds
, (2)

where the negative comes from the sign conventions estab-
lished in Figure 2. Then integrating the moment equation,
enforcing the boundary condition θ(0) = 0, and enforcing
continuity in θ(s) at s = z, we get

−EIθ(s) =

{
1
2Fs

2 + (rτ − Fz)s if s < z

rτs− 1
2Fz

2 if s ≥ z.
(3)

At this point, the tendon reaction tension is unknown, but we
can obtain it from the tendon stretch caused by the deflection
of the beam ∆ = rθL and the tendon spring constant k as

τ = krθL. (4)

Substituting the above into (3) and evaluating at s = L, we
can solve for θL and obtain

θL =
Fz2

2(EI + r2kL)
, (5)

and consequently,

τ =
Fkrz2

2(EI + r2kL)
. (6)

Note that the F and r vectors are designated positive in oppo-
site directions in Figure 2, and the tension will be positive if
this is the case. If not, then the tension computed by the above
expression will be negative, indicating compression, which is
impossible for an ideal flexible tendon. Thus, application of
this analysis must be restricted to cases with either positive
tension or tendons that can support some compressive force
without buckling (e.g. metal rods). With multiple tendons,
pretension can be applied to ensure all the tensions remain
positive during subsequent external loading, and we analyze
this case in the latter part of this section.

Finally, making the small angle approximation θ ≈ dδ
ds ,

we can integrate once more, enforce the boundary condition
δ(0) = 0, and enforce continuity of δ(s) at s = z to obtain

−EIδ(s) =

{
1
6Fs

3 + 1
2 (rτ − Fz)s2 if s < z

1
2rτs

2 − 1
2Fz

2s+ 1
6Fz

3 if s ≥ z.
(7)

Equation (7), when combined with (6), is the most general
form of our result in this section, providing deflection as a
function of arc length, load magnitude, load location, total
member length, flexural rigidity, tendon location, and tendon
stiffness. However, examining some special cases of this result
can also provide some useful insight that can be encapsulated
in simpler formulas. For instance, we can consider the deflec-
tion at the same location where the lateral loading is applied
(s = z). In this case, we get

δ(z) =
Fz3

3EI
−
(

r2kz

EI + r2kL

)
Fz3

4EI
. (8)

For the special case of tip loading (z = L), the tip deflection
is

δtip =
FL3

3EI
−
(

r2kL

EI + r2kL

)
FL3

4EI
. (9)
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Fig. 3. With reference to Figure 2, this plot shows our derived nondi-
mensional relationship between the load’s distance z from the base and the
deflection δ at the point of loading. The red line depicts the classical formula
for the deflection of a solid elastic member while the blue line shows our new
result for the deflection of a member with inextensible actuation tendons.

We see that the classical cantilevered deflection formula
FL3

3EI appears as the first term, and that δtip is equal to this
in the case of k = 0 (no tendon) or r = 0 (tendon located at
the centerline). Increasing either k or r will tend to reduce the
deflection (increase the effective stiffness at the tip), and the
dependence on r2 is illuminating for the purposes of design;
increasing r by a factor of 2 has the same effect as increasing
k by factor of 4.

To illustrate our results in a generally useful way through-
out the paper without specifying manipulator or material
properties, we define the following dimensionless quantities,
representing tendon stiffness, compliance at the loaded point,
and load location, respectively:

α :=
r2kL

EI
σ :=

(
12EI

L3

)
δ

F
ζ :=

z

L
.

The nondimensional form of Equation (8) is then

σ = 4ζ3 − 3

(
α

1 + α

)
ζ4. (10)

When ζ = 1, this equation becomes the dimensionless form
of Equation 9. These dimensionless quantities will be used as
the axes of our plots in this paper, but we will label them
using the full dimensionless expressions for clarity. We plot
the above relationship of dimensionless tip compliance versus
dimensionless tendon stiffness for a parallel tendon in Figure 7
compared to a converging tendon design developed Section III.
The plot shows that the robot’s dimensionless tip compliance
approaches an asymptote of 1 as the tendon stiffness increases
to infinity.

B. Inextensibility

Many models assume the tendons are inextensible (such as
the model in [27]), as there are various cable materials with
a sufficiently high stiffness, and we can consider the effect of
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having an inextensible tendon by letting k →∞. In this case,
we see that

lim
k→∞

θL = 0,

and the deflection at the loaded point is

δ(z) =
Fz3

3EI
−
( z
L

) Fz3
4EI

. (11)

We plot this relationship nondimensionally in Figure 3. From
this, we see that the tip deflection in response to loads at the
tip is

δtip =
FL3

12EI
, (12)

which is depicted in Figure 1. This is exactly one fourth of the
deflection experienced by the same member with no tendons.
Interestingly, and somewhat counter-intuitively, the reaction
tension of an inextensible tendon in response to transverse
external loading is only a function of the path radius, total
length, and the loading; it is not influenced by the member’s
flexural rigidity:

lim
k→∞

τ =
Fz2

2rL
. (13)

In contrast, the tension required to actively bend the member
to a certain angle in free space is proportional to the flexural
rigidity.

C. Backbone Compression

The prior formulas consider only members with an in-
compressible backbone, but for “soft” manipulators and some
catheter robots, the effects of backbone compression are non-
negligible [9], [25]. To model these cases, we define the total
compression force on the backbone cB as

cB = −kB∆B = τ, (14)

where kB is the axial backbone stiffness and ∆B is the axial
stretch of the backbone. This affects the stretch of the tendon
∆. Without backbone compression, ∆ = rθL, but including it
makes

∆ = ∆B + rθL. (15)

The reaction tension can be found by substituting (14) and
(15) into τ = k∆ and isolating τ . This leads to the tip angle
as a function of backbone and tendon stiffness:

θL =
Fz2

2(EI + r2Lkeq)
, (16)

where
keq =

kBk

kB + k
. (17)

Equation (16) is the same form as Equation (5) with a differ-
ent tendon stiffness value. Similarly, expressions for tendon
tension τ and the deflection of the loaded point δ(z) are the
same form as in the incompressible case except with k = keq ,
implying that a compressible backbone acts like a spring in
series with an extensible tendon in this single-tendon case.
Thus, an equivalent stiffness can be used in the equations
presented for the inextensible case in order to handle an axially
compliant backbone.

ϕ=2pi/ni

x

y

F

Fig. 4. Cross section of a continuum robot with equally spaced tendons.

D. Multiple Pretensioned Tendons

The above analysis assumed only a single, initially re-
laxed tendon. However, continuum robots and tendon-actuated
catheters usually employ at least two tendons for bending in
a plane and often three or four symmetrically spaced tendon
channels for bending in two planes, as shown in Figure 4.
For three or more equally spaced tendons, the deflection of an
initially straight, symmetric member will be in the direction
of the lateral load vector, and the deflection will be equal for
unit loads in all lateral directions. If there are n > 2 equally
spaced, equally pretensioned tendons at equal radii r from the
centroidal axis with equal k and equal pretension τp, then the
internal moment in the direction perpendicular to the lateral
load in the cross sectional plane is

m(s) =

{
F (s− z) + rT if s < z

rT if s ≥ z,
(18)

where

T =

n∑
i=1

cos

(
2πi

n

)
τi,

and τi is the tension of the ith tendon in response to the load,
including any pretension. The trigonometric term accounts
for the perpendicular distance from the bending plane to the
tendon location in the cross section. In terms of the deflected
tip angle θL and the pretension τp (equal for all tendons so that
the initial shape is straight), the individual reaction tension τi
is given by

τi = kr cos

(
2πi

n

)
θL + τp. (19)

This is also the correct expression in the case of multiple
tendons with a compressible backbone as long the pretension
is high enough for all tendons to remain in positive tension
during loading. In the interest of space, we do not prove this
here, but it follows from a similar analysis as the previous
section.

By inspection, we see that all terms involving τp cancel
out in T due to the trigonometric coefficients and the equal
spacing of the tendons. Thus, pretension has no affect on
the internal moment and no effect on the displacement under
load. Pretension could increase static frictional forces and
thus indirectly affect stiffness, and it can also eliminate slack
tendons, as we show in Section IV. However, under the ideal
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Fig. 5. A nonparallel tendon routing path is defined by a linear function of
s. The diagram (a) and a prototype (b) depict the particular choice of a=-b/L,
which results in the tendon path converging to the backbone center at the tip
of the segment.

assumptions of no friction and no slack, one cannot make a
tendon-driven manipulator with an elastic, passive backbone
stiffer by increasing tendon pretension, which has also been
observed by Kim et al [28]. Exceptions to this include some
multi-link structures in [28] and pneumatic backbone struc-
tures that stiffen with a combination of increased pressure and
tension [29].

The rest of the derivation follows the single tendon case,
and our result for the displacement at the loaded point is

δ(z) =
Fz3

3EI
−
(

r2kz
∑n
i=1 cos2 φi

EI + r2kL
∑n
i=1 cos2 φi

)
Fz3

4EI
, (20)

where

φi =
2πi

n

as defined in Figure 4. This confirms the intuitive result that
adding more tendons can increase stiffness, but the upper limit
of tip stiffness given by Equation (12) still holds, even if
infinitely many tendons are used.

Again, this result assumes all tendons remain in tension dur-
ing deformation, which is achievable through an appropriate
constant pretension. In the worst-case scenario for potential
slack, where the member deflects purely in the direction of a
single tendon, the required pretension to prevent slack in that
tendon is the same as in Equation (6). All other tendons will
undergo smaller deflections and will thus not experience slack
given equal pretension.

III. NONPARALLEL LINEAR TENDON PATHS

Motivated by the intriguing but limited result that parallel
inextensible tendons increase the stiffness of an elastic member
by a factor of four, we now seek to explore whether further
stiffness gains may be obtained by considering tendon paths
that do not run parallel to the member’s central axis or to
each other. We derive similar formulas to those obtained in
the previous section for parallel tendons, considering inex-
tensibility, multiple pretensioned tendons, and the effect that
nonparallel tendon routing has on the manipulator shape and
required actuation force.
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Fig. 6. This plot shows the nondimensional relationship between a load’s
distance z from the base and the deflection δ at the point of loading for
multiple slopes of nonparallel tendon routing cases, where the tendons are
assumed to be inextensible. The line with a value of a = 0 depicts our
result for the deflection of a member with inextensible parallel tendons, as in
Figure 3 (but note the y-axis scaling difference). Increasing the slope means
terminating the tendon closer to the member’s centerline, which this plot
shows will increase overall stiffness. The bottommost line, where a = −b/L,
represents a tendon that is terminated at the centerline, and the compliance is
exactly zero for loads at the tip under the assumption of inextensible tendons.

We let the tendon channel radius be a linear function of s
(as shown in Figure 5) and restate Equation (1):

m(s) =

{
F (s− z) + r(s)τ if s < z

r(s)τ if s ≥ z,
(21)

where r(s) = as+ b, a is the slope of the tendon path, and b
is the initial radius at the base. After applying the constitutive
law in Equation (2), integration of (21) and enforcement of the
boundary condition θ(0) = 0 and continuity in θ(s) at s = z
yields

−EIθ(s) =

{
1
2 (F + aτ) s2 + (bτ − Fz) s if s < z
1
2aτs

2 + bτs− 1
2Fz

2 if s ≥ z.
(22)

Given the initial assumption of small deflections, we addition-
ally assume that a ≡ dr

ds << 1, and thus the total tendon
stretch ∆ (assuming backbone incompressibility) is

∆ =

∫ L

0

r(s)

(
dθ

ds

)
ds, (23)

where dθ
ds = −m(s)

EI . Integrating this and once more enforcing
the boundary conditions and continuity gives

∆ =
1

EI

[
Fa

6
z3 +

Fb

2
z2 −

(
a2L2

3
+ abL+ b2

)
τL

]
.

(24)
The tendon reaction tension can then be calculated as τ = k∆,
resulting in

τ =
kF
(
az3 + 3bz2

)
6EI + kL (2a2L2 + 6abL+ 6b2)

. (25)
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Fig. 7. This plot shows the relationship between a tendon’s stiffness and the
deflection response to a tip load for both parallel routing and converging
routing. Tendon stretch plays a larger role when a tendon is routed in
a converging manner, but as the tendon stiffness increases, the robot tip
compliance goes to zero (infinite stiffness).

Substituting the tension into (22) and once more integrating,
we obtain the final deflection formula:

−EIδ(s) =

{
1
6 (F + aτ) s3 + 1

2 (bτ − Fz) s2 if s < z
1
6aτs

3 + 1
2bτs

2 − 1
2Fz

2s+ 1
6Fz

3 if s ≥ z.
(26)

Thus, the deflection of the loaded point is

δ(z) =
Fz3

3EI
− τ

6EI

(
az3 + 3bz2

)
, (27)

and for tip loading,

δtip =
FL3

3EI
− τ

6EI

(
aL3 + 3bL2

)
, (28)

where τ is given by (25). When the tendons are assumed to
be inextensible, these equations become:

δ(z) =
Fz3

3EI
−

(
(az + 3b)

2
z

3L (a2L2 + 3abL+ 3b2)

)
Fz3

4EI
(29)

and

δtip =
FL3

3EI
−

(
(aL+ 3b)

2

3 (a2L2 + 3abL+ 3b2)

)
FL3

4EI
. (30)

The plot in Figure 6 shows how increasing the magnitude of
the slope a can increase the overall stiffness of the manipula-
tor, where all other variables remain unchanged.

A. Converging Tendon Path

Figure 6 reveals a special case of nonparallel tendon routing
that has zero tip compliance, which we have named converging
routing; in this case, the tendon path begins at a radial offset of
b at the base and ends at the neutral axis centerline at the tip,
meaning that a = −b/L. As shown by Figure 5, the backbone
and the tendon form a truss-like structure, illustrating why
this design has significantly greater resistance to tip loads

compared to parallel tendon designs. For a single converging
tendon, the deflection at the loaded point simplifies to

δ(z) =
Fz3

3EI
−

((
3bLz2 − bz3

)2
3EI + b2kL

)
kF

12L2EI
, (31)

and the deflection of the end for a tip load is

δtip =
FL3

3EI
−
(

b2kL

3EI + b2kL

)
FL3

3EI
. (32)

Fig. 7 depicts the relationship between tip compliance
and tendon stiffness in dimensionless form for this style of
routing, compared to the same formula for parallel tendons
from Section II. Whereas the parallel tendon case has an
asymptotic tip compliance of 1, with converging tendons the
tip compliance actually approaches zero as tendon stiffness is
increased. This confirms that a converging tendon design could
be significantly stiffer than a parallel tendon design with all
other factors equal, as long as the effective tendon stiffness is
high enough. For dimensionless tendon stiffness greater than
5, a converging-tendon robot will be stiffer than a parallel
tendon robot.

B. Converging Tendon Inextensiblity

Assuming the tendons can be considered inextensible, the
deflection equation reduces further:

δ(z) =
Fz3

3EI
−
( z
L

)(3L− z√
3L

)2
Fz3

4EI
. (33)

Figure 6 depicts Equation (33) (converging) and Equation
(11) (parallel, previously graphed as the blue line in Figure
3) alongside other tendon slope values using this deflection
formula. The deflection with converging routing is smaller
than the parallel case regardless of the load location, and
of particular interest is its ability to handle tip loads, as
it produces a tip deflection of zero regardless of the load
magnitude:

δtip =
FL3

3EI
−
(

2L√
3L

)2
FL3

4EI
= 0. (34)

This is obviously an impractical result, as some tendon stretch
is inevitable, and the effective tendon stiffness must be very
high in order to approach this behavior according to Figure
7. Regardless, the stiffness can be markedly improved; this is
shown experimentally in Section V, where converging tendons
increased stiffness by almost a factor of 2 versus parallel
tendons (i.e. a factor of 8 improvement over the member’s
stiffness with no tendons).

C. Multiple Pretensioned Converging Tendons

For multiple pretensioned tendons that take a converging
path, the derivation for the deflection begins similarly to the
parallel case with Equation (18), where the radius r is defined
as r(s) = as+ b and a = −b/L. The definition of T is then

T =

n∑
i=1

(k∆i + τp) cosφi, (35)
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where φi is defined in Figure 4,

∆i = ∆ cosφi,

and ∆ is as defined in Equation (23). Again, the pretension
terms cancel out in T due to the trigonometric factor and
the equal spacing, and the derivation follows what has been
previously done. The resulting formula for the deflection of
the loaded point is

δ(z) =
Fz3

3EI
−

((
3bLz2 − bz3

)2∑n
i=1 cos2 φi

3EI + b2kL
∑n
i=1 cos2 φi

)
kF

12L2EI
.

(36)

D. Routing Effects on Actuation, Shape, and Design

The significant stiffness advantage of converging routing,
especially the theoretically infinite tip stiffness for inextensible
tendons, raises the question of whether there is any significant
tradeoff associated with a converging tendon design. In par-
ticular, one might suspect that the required actuation force
for articulation of the tip in free space might be increased
by a converging tendon path. In order to characterize this,
we examine the deflection equations without an external load
for both tendon path cases. Taking Equations (3) and (22),
we set the load force to zero, set s = L, and reverse the
sign convention on θ for convenience of expression to find
actuation forces. The parallel tendon actuation force required
to achieve a particular tip angle θL in free space is

τparallel =
EI

rL
θL. (37)

In contrast, the required actuation force for the converging
path is

τconverging = 2
EI

bL
θL. (38)

For two members that have the same initial base offset, (i.e.,
b = r), the converging tendon member requires twice the
actuation force of the member with parallel routing to achieve
the same tip angle.

If we compare the tension required to achieve the same tip
displacement δL in free space, the tradeoff is less significant.
Based on Equations (7) and (26), the required tensions are

τparallel =
2EI

rL2
δL (39)

and
τconverging =

3EI

bL2
δL. (40)

Thus, the converging tendon case only requires 50% greater
actuation force beyond the parallel case. The relative stiffness
gain, however, could potentially be much greater according
to Figure 7, and actuation systems with higher force capacity
and positional precision can easily be designed to handle the
increased requirements.

The routing also affects the actuated and deflected shapes
of the manipulator. The actuated shape of a parallel-routed
manipulator is constant curvature, which has been explored
extensively and summarized in [2]. With a converging tendon
path, actuation creates a shape with linearly varying curvature

Converging

Parallel

Converging

Parallel

Fig. 8. (Top) Both manipulators are actuated to a tip angle of 90◦ with the
constant-curvature shape of the parallel-routed manipulator shown against the
linearly-varying curvature shape of the converging-tendon manipulator. The
parallel manipulator required a tendon displacement 7.1% of its total length to
reach this position while the converging manipulator required 5.3%. (Bottom)
This overlay shows the results when the manipulators were placed under a
0.9 N tip load and actuated back to the zero position as closely as possible.
Clearly, the manipulator with converging tendons recovered its shape much
better than the one that has parallel tendons.

(higher curvature at the base) due to the linearly varying
moment arm of the tendon. This shape is identical to the
shape of a simple cantilevered beam under tip load (for
small deflections) because a tip load also creates a linearly
varying internal moment. Figures 19 and 23 in Section V show
the shape of an externally-loaded manipulator for both path
routing cases. The deflected shape in the parallel case is s-
shaped (maintaining approximately constant tip angle) while
the s-shape is less pronounced in the converging design.

The images in Figure 8 were taken from the attached
video, which also demonstrates shape variations caused by
routing choices. In the first set of clips, both a parallel-
and converging-tendon manipulator are actuated to ±90◦ tip
angles. The parallel-path manipulator produces the expected
constant-curvature shape, but it requires more tendon displace-
ment and less tension to reach the tip angle than does the
converging-routed one. The second set of clips show both
initially straight manipulators placed under a 0.9 N tip load.
From their deflected shapes, they are actuated until their tip
returns to the zero position of the initial state. As can be seen
in the video, the parallel-tendon manipulator deforms further
under the load, which agrees with our analytical results, and
thus it takes much more tendon displacement to return the tip
to its initial position. The video and Figure 8 show that it also
cannot return to its straight, unloaded shape through actuation;
the load causes the s-shape to remain even while actuated.
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Fig. 9. These algorithmic flowcharts depict methods for solving the coupled Cosserat rod/tendon model equations subject to prescribed tendon tensions (top
chart) or prescribed tendon displacements (bottom chart). The top chart is the approach described in [14], and equation numbers with the “†” symbol refer
to that paper. The bottom chart method extends the model of [14] to prescribed tendon displacements with possible tendon slack by including new variables
γi for the unknown slack/tension and additional constraint equations (42) to be satisfied.

Conversely, the converging-tendon manipulator deflects very
little, requires less tendon displacement to return, and restores
its original shape almost completely.

The choice of routing scheme offers clear differences in
stiffness and shape, and it impacts other aspects of robot
design, too. For example, parallel routing offers simpler con-
struction for robots that embed tendons in a thin tube wall,
which is commonly done; a true converging path as defined
here cannot be attained in a robot with a central lumen
since the tendon could not end at the centerline. However,
the non-parallel linear path equations at the start of Section
III describe the deflection of any compliant member with a
linearly sloping tendon, which we call semi-converging, and
such a manipulator is still stiffer overall as shown in Figure
6. Non-constant cross-sections could also be considered, and
the approach taken in this paper can be adapted to the case
where I is a function of arc length s.

IV. MODELING TENDON DISPLACEMENT INPUTS IN
SPATIAL COSSERAT MODEL FRAMEWORK

The above analytical analysis is useful for small deflections
from an initially straight robot shape, and the dimension-
less deflection charts will help designers quickly evaluate
the stiffness of candidate robot designs without significant
modeling effort. However, high-magnitude external loads and
initially curved actuated shapes invalidate the assumptions
used. The true robot behavior will diverge from these an-
alytical predictions as the robot gets further away from a
nominal straight shape (whether due to actuation or external
loads). To address this, we here extend the Cosserat rod model
of tendon-driven robots in [14] to include prescribed tendon
displacement inputs, tendon stretch, pretension, and slack. This
nonlinear model framework is geometrically exact for all robot
configurations and large loads. We will use the notation and
conventions established in [14] for the sake of consistency.

In [14], the model inputs are prescribed tendon tensions
and external loads, and the output is a framed 3D curve
representing position and orientation of the backbone material.
The top flowchart in Figure 9 depicts a typical shooting
algorithm for solving the model equations. A guess for the
values of the reaction forces at the base is iteratively updated

by a general purpose nonlinear solver (e.g. a Levenberg-
Marquardt routine) in order to eventually satisfy the distal
boundary conditions that the sum of forces and moments at
the robot tip is zero for static equilibrium. In order to evaluate
the boundary conditions, the differential equations describing
the tendon robot [14] are integrated from base to tip using
a standard routine for initial value problems (e.g. 4th order
Runge-Kutta). The tendon tensions are inputs in the model in
[14], and they appear in both the differential equations and the
boundary conditions.

In the case of prescribed tendon displacements, the tendon
tensions are initially unknown, and there are additional global
length constraints that are dependent on the tendon displace-
ments q1, ..., qn, measured forward from the initial positions
of the tendon bases. In the deformed manipulator state, the arc
length si along a tendon guide path is implicitly a function of
the unknowns n(0), u(0), and τ1...τn through the following
differential equation:

ṡi =
dsi
ds

= ‖ṗi‖ = ‖u× ri + ṙi + e3‖ ,

where pi(s) ∈ R3 is the global position of the ith tendon,
ri(s) ∈ R3 is the tendon path location with respect to the robot
centerline in the local frame (a predefined function), and u ∈
R3 is the robot curvature vector in the local frame. Note that
throughout this paper, a dotted variable indicates its derivative
with respect to arc length, s. Integrating si along with the other
state variables will give us the total path arc length si(ti) when
the tendon terminates at s = ti. The reference path length sr,i
can be computed similarly using the reference curvature, and
if the reference shape and guide paths are initially straight and
parallel, then sr,i(ti) = ti. By Hooke’s law, and ignoring the
possibility of slack, the tendon arc length si(ti) must be

si(ti) =

{(
1 + τi

(EA)i

)
sr,i(ti) + qi (extensible)

sr,i(ti) + qi (inextensible)
(41)

where (EA)i is the tendon stiffness, τi is the unknown
tendon tension, and qi is a linear actuator displacement to
retract the tendon. These equations must be enforced as an
additional constraint to resolve the unknown tensions. Note,
that in the special case of inextensible tendons, (EA)i →∞,
and the term in parentheses goes to 1. While the assumption
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of inextensibility appears to eliminate tendon tension from the
constraint equation, the tension is still implicitly involved as
an unknown since the deformed path length si is a function
of it, as shown in the equations of [14]. The algorithm
framework depicted in Figure 9 is the same regardless of
whether the tendons are stretchable, and we always solve
for the unknown tendon tension that satisfies the appropriate
constraint equation. Note that the simulations presented in
Figures 1, 11(b) and (c), 17, and 18 all assumed inextensible
tendons, while Figures 12, 13, 15, 14, and 16 considered
compliant tendons, thus demonstrating the model’s ability to
handle both finite and infinite tendon stiffnesses.

In addition to tendon stretch, it is possible to develop slack
in one or more tendons. If slack occurs the integrated path arc
length si(ti) will be less than the actual tendon length. We
can account for this by introducing an unknown variable βi
for the amount of slack. The length constraint is then

si(ti) =

{(
1 + τi

(EA)i

)
sr,i(ti) + qi − βi (extensible)

sr,i(ti) + qi − βi (inextensible)
(42)

The inclusion of slack introduces an additional unknown
variable for each tendon, but we can reduce the number
of unknowns by recognizing that tendon tension and slack
are mutually exclusive and restricted to be positive; that is,
βi > 0 =⇒ τi = 0 and τi > 0 =⇒ βi = 0. Thus, we can
represent both effects with a single unknown variable γi:

τi =

{
γ2i , γi ≥ 0

0, γi < 0
,

βi =

{
0, γi ≥ 0

γ2i , γi < 0
.

(43)

Parameterizing tension and slack with a single, continuous
variable eliminates the need to explicitly identify the appro-
priate constraints during model solves. The squaring of γi is a
choice made so that τi and βi have continuous first derivatives
with respect to γi. The slack constraint residual error is most
simply formulated as

Esi = si(ti) + βi −
(

1 +
τi

(EA)i

)
sr,i(ti)− qi,

but for better scaling of the shooting problem we implement
the error as

Es
∗

i = (1 + τi)E
s
i .

This seems to result in better solver convergence, and we note
that the (1+τi) term will never nullify Ei because τi is positive
semidefinite.

For a robot with n tendons, our approach provides the
right number of equations to solve for the 6 + n unknowns:
u(0), n(0), and γ1...γn, where n(s) ∈ R3 is the internal
force of the backbone. To do this, we modify the shooting
algorithm as shown in the bottom flow chart in Figure 9.
The tension/slack variables γ1...γn are simply appended to
the set of unknowns that is iteratively updated and obtained
by the Levenberg-Marquardt routine. The iteratively updated
variables are all used in the differential equations and boundary

Fig. 10. The analytical formulas of Section II are a good approximation
for initially straight robot shapes under small loads. At larger loads and
significantly curved actuated shapes, the nonlinear Cosserat model should be
used.

condition evaluations, which now include the new constraints
in (41) based on the prescribed displacements q1...qn.

A. Comparison of Analytical Formula to Cosserat Model

As an example, Figure 10 compares the results of the small-
deflection analytical model to the large-deflection 3D model
developed in this section for an initially straight robot shape.
The large-deflection scenarios are not captured well by the
analytical formulas, which motivates the development of the
extended Cosserat model in this section.

B. Spatial Simulation and Discussion

Before providing non-dimensional displacement charts
based on the Cosserat model, we illustrate the use of our new
approach in three simulations computed using the methods de-
scribed above and rendered in Figure 11. The simulated robot
was modeled with an incompressible backbone (Kirchhoff rod)
of length L = 0.1m, diameter 1.04mm, Young’s modulus
E = 210GPa and shear modulus G = 80GPa, and three
equally spaced parallel tendons with guide channels offset
r = 0.01m from the centerline. Computation time using an
unoptimized MATLAB implementation on a standard laptop
computer with i7 processor is typically the order of 1 second
or less, depending on how close the initial guess is to the
solution, but note that optimized implementations of Cosserat
rod models can run in real-time as demonstrated in [30]. Figure
11 (a) and (b) show a manipulator actuated to a 90◦ tip angle
by inextensible tendons. Transverse and vertical loads are then
applied, and the plot compares the resulting deformed shape in
the case of prescribed displacements and prescribed constant
tension. This affirms the main conclusion of our analytical
results of previous sections and extends it to the actuated
case: prescribed tendon displacements significantly increase
the output stiffness.
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(a) (b)
(c)

Fig. 11. In each plot, simulations of tendon-driven manipulators are shown where the initial actuated tip angle is 90◦. A load is applied, and the
resulting displacements are calculated and compared using both prescribed tensions and prescribed displacements. (a) and (b) show single-inextensible
tendons manipulators with in-plane loads while (c) has three evenly-spaced, stretchable tendons with an out of plane load.

C. Sensitivity to Tendon Stiffness in Special Loading Cases

We now use our model to illustrate the fact that in certain
special cases, even a very small amount of tendon stretch can
significantly affect a robot’s loaded shape. In Figure 11 (c),
we simulate an out-of-plane load applied to the same initial
configuration with three symmetrically spaced, stretchable
tendons. The out-of-plane loading causes torsion as well as
bending, and the torsion is a significant contributor to the
overall shape and amount of tip deflection. However, torsion
has a minimal effect on the stretch of individual tendons.
These two observations imply that only highly stiff tendons
can mitigate the significant torsional effects caused by out-of-
plane loads, and this is illustrated in the plot. For the in plane
loads, increasing the dimensionless tendon stiffness beyond
r2kL
3EI = 50 has a negligible effect, but in the out-of-plane

load case, the plot shows a significant deflection difference
between r2kL

3EI = 50 and r2kL
3EI = 50 × 103. Since robots

encounter such loads in many practical scenarios, this example
underscores the importance of actually modeling the tendon
stretch (and/or similar effects such as backbone compression)
in order to accurately predict robot performance.

Further, we can conceive another a special case in which
tendon inextensibility actually creates a paradox. Figure 12
considers three straight tendons on a straight, incompressible
backbone subjected to a pure axial moment at the tip. If we
keep increasing the tendon stiffness, the torque/displacement
curve becomes more nonlinear, and we see larger resistance
for finite displacements, but the slope at zero is apparently
unaffected. In the limit as tendon stiffness approaches infinity,
the member cannot exhibit any finite angular displacement
(since any angular displacement of the tip must either elongate
the tendons or compress the backbone), yet the slope of the
torque/displacement curve at zero remains constant, and if
there is zero angular displacement, geometry dictates that
neither the backbone material nor the tendons can possibly
provide a resistance torque to balance the applied moment,
creating a singular paradox. This again shows the importance
of modeling tendon and backbone compliance, even if they are
small, in order to avoid singularities introduced by assuming

-0.2 -0.1 0 0.1 0.2

Tip Displacement Angle (rad)
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τ

Fig. 12. A torque is applied at the end effector of a three-tendon robot with an
incompressible backbone in the straight configuration. There is a singularity
limc→0 ∂θ/∂τ = 0. Interestingly, the slope at θ = 0 is constant regardless
of the tendon compliance.

zero axial strain in both the backbone and tendons.

D. Dimensionless Deflection Plots for the 3D Actuated Case

We now provide dimensionless stiffness plots for a typical
3D actuated case, analogous to the analytical results using the
planar small-deflection assumptions in the previous section.
These plots are generated by the Cosserat model with param-
eters given in the previous section and for a robot actuated
to a 90◦ tip angle and subjected to loads in the transverse
(horizontal) direction in the bending plane, the axial (vertical)
direction in the bending plane, and loads orthogonal to the
bending plane (out-of-plane), as depicted by the force arrows
in the Figures below. Following the discussion in the previous
section, we note that poor numerical conditioning in the case
of inextensible tendons caused convergence issues in some
cases, so a high dimensionless stiffness of 8.29 × 106 was
used instead. Figures 13, 15, and 14 show the dimensionless
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F
z

Fig. 13. This plot shows the dimensionless compliance for forces applied
in the transverse in-plane direction for a robot actuated so that the tip is bent
90◦. The dimensionless tendon stiffness is 8.29× 106.

Fz

Fig. 14. This plot shows the dimensionless compliance for forces applied
in the axial in-plane direction for a robot actuated so that the tip is bent 90◦.
The dimensionless tendon stiffness is 8.29× 106.

compliance (for small loads) at a loaded point z in each
load direction (transverse, axial, and out-of-plane). As in the
previous analytical results, the robot’s stiffness increases with
converging tendon routing, except in the out-of-plane load,
where the routing path seems to have a negligible effect.

The effect of tendon stiffness in the 3D model is further
examined in Figure 16, which shows the relationship of tendon
stiffness to tip compliance in the three directions for a robots
with a single tendon (in both parallel and converging cases)
actuated to a 90◦ tip angle. For the axial loading direction,
the converging tendon design results in greater tip stiffness if
the dimensionless tendon stiffness is larger than 15. For the
transverse loading direction, the converging design is stiffer
for all tendon stiffnesses. The effect of tendon stiffness and
routing path for loads in the out-of-plane direction is nearly
imperceptible, but the results from the simulations in Figure

z

x
F

Fig. 15. This plot shows the dimensionless compliance for forces applied
in the out-of-plane direction for a robot actuated so that the tip is bent 90◦.
The dimensionless tendon stiffness is 8.29× 106.

Fig. 16. This chart shows simulated results for the robot tip compliance
versus dimensionless tendon stiffness for both parallel and converging designs
in the 3D case where the robots are actuated to a 90◦ tip angle and subjected
to loads in the axial, transverse, and out-of-plane directions. The results with
the spatial rod model match the analytical results in Figure 7.

11 suggest that these lines do have a small slope.

E. Simulation with Slack

We also provide an example simulation where a tendon
becomes slack during external loading by implementing the
methods described in this section. In certain circumstances,
it is possible for external loads to induce tendon slack, and
this can significantly affect the displacement. While robots
with opposing tendons can generally avoid slack by employing
a fixed amount of pretension, robot segments with a single
tendon or with tendons only on one side have no redundancy
available for pretension to exploit, and thus slack is more
likely to occur. Such a scenario is illustrated in Figure 17.
An incompressible robot backbone has a single inextensible
tendon with a prescribed displacement such that the tip is
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Fig. 17. A simulated tendon robot is actuated to 90◦, and the actuator position
is locked. Initially, the robot maintains its orientation under an increasing
tip force, but a sufficiently large tip force results in tendon slack, and the
orientation is no longer constrained. After the load induces tendon slack, the
tip compliance is about 3 times greater than when the tension was taught.

Fig. 18. Repeating the simulation of Figure 17 with an additional opposing
tendon yields a drastically different result. Due to a constant pretension, both
tendons remains in tension and continue to constrain the tip orientation to
90◦ resulting in much less displacement at 0.5 N.

brought to a 90◦ angle. When a vertical external load is
applied, the tendon initially remains in tension, and the tip
angle remains at 90◦ while the tip displaces downward. Above
the critical load of 3.6N, the tendon tension goes to zero, slack
is induced, and the tip is free to rotate. In the induced-slack
regime, the compliance at the tip is a factor of 3 higher than
it was when the tendon remained in tension. To illustrate the
benefit of employing opposing tendons, the same simulation
experiment is shown in Figure 18 with two opposing tendons
and enough pretension to avoid the load-induced slack in the
shorter tendon. The avoidance of slack results in a signifi-
cantly smaller deflection at 0.5N and constant tip orientation
throughout the loading.

(a)

(b)

Converging Tendon

Parallel Tendon

(c)

Fig. 19. Shown are the tendon-embedded structures, dimensioned in (a),
used in the experimental validation of the analytical models, where the loads
were applied at eight evenly spaced points along the member length (the inner
corners of the 8 most distal tendon supports). The radial offset in (a) is the
offset for the parallel tendon structure and the initial offset in the converging
structure, and the terminal offset for the converging tendon is also shown. The
markers used to track deflection are shown in (b), and the overlaid image in
(c) shows both structures under a 0.5N tip load; the parallel-routed member
deflects around twice as much as the converging-routed one.

For the simulations used to generate Figures 17-18, the
robot backbone length is L = 0.2m and the tendon offset is
0.01m. The Young’s modulus and shear modulus are 207GPa
and 79.6GPa respectively, and the diameter of the backbone
is 0.8mm.

V. VALIDATION OF MODELS

A. Validation of 2D Analytical Models

We have validated the formulas from Sections II and III in
a set of experiments where known weights were hung from
a cantilevered elastic member with tendon guide channels,
shown in Figure 19, for both a member with parallel tendon
routing and one with converging tendon routing. Aside from
the tendon paths, the members and experimental procedures
were identical between the two routing cases, and the dimen-
sions are provided in Figure 19(a). They were 3D printed
using Amphora ColorFabb HT on a MakeIt-Pro M printer. The
members had a square cross section of 3 mm side length. Ten
evenly spaced, tendon guides were added with tendon routing
holes at a radius of 8 mm from the centerline for the parallel
tendon case and holes beginning at the base with a radius of
8 mm and ending at the tip with a radius of 1.875 mm for the
converging case. The tendon guide on the tip was 3 mm thick
to mitigate deformation of the support at the point at where the
tendons were attached, and all others were 2 mm thick, making
the total length 201 mm. Ending the converging tendon exactly
at the centerline (as specified in Section III) would diminish
the structural integrity of the tip, as the tendon hole would have
cut through the member’s cross-section, so instead, the distal
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Fig. 20. Data from the loading experiments for the parallel routing case are
shown with the curves of the analytical formulas.

end of the converging tendon was terminated with the smallest
offset from the centerline that could be created without cutting
through the member. We installed a single tendon (size 69
Kevlar thread) through the top set of guides on each member.

For each routing case, we performed eight baseline mea-
surements with no tendon attached, measuring the deflection
due to a 20-gram calibration weight hung at various locations
along the robot length. The load locations were at evenly
spaced points along the member (i.e. at each tendon guide
except the two closest to the base). Unique markers were
attached to each of the the tendon guides that were used in
the loading as shown in Figure 19(b), and a MicronTracker
(Claron Technology, USA) was used to capture displacement
data at all 8 points on the member for each load. We calibrated
the effective flexural rigidity EI of the member by performing
a least squares fit of the data from these 8 displacement
experiments. The result is shown by the red dashed line in
Figures 20 and 21. In the parallel tendon case, the resulting
calibrated rigidity of EI = 11.2× 103 N mm2 was just over
5% higher than the nominal value computed from the cross
section dimensions and an E of 1.575 GPa for ColorFabb
HT. In the converging tendon case, the calibrated rigidity was
found to be EI = 11.3×103 N mm2, which is just 6% higher
than the nominal value.

Next, we rigidly attached the tendons to an Omega LC70
3-10 load cell with a 3D printed bracket, pulling the tendon
taught enough to avoid slack while not inducing bending in the
structure before fixing it to the bracket. The force data was read
using a SparkFun Load Cell Amplifier HX711 and an Arudino
Mega 2560, and the readings were streamed through the
Arduino IDE serial monitor. The load cell was then anchored
to a rigid base, and we performed the same eight displacement
tests on both members, except a 50g weight was used to apply
the forces. To calibrate each effective tendon spring constant
k, we performed a least squares fit of the data from these 8
experiments for each member, using its previously calibrated
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Fig. 21. Experimental data for the converging routing case is shown alongside
the curve for the analytical formula. The tendon-less member data that was
used for the calibration of EI is shown in red.
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Fig. 22. For each applied load and load location, the tendon tension was
measured. The model-predicted curves use Equations (6) and (25), which
do not account for friction, and the calibrated EI and k values from the
experiment. These results show that friction can be safely neglected for the
model of our setup, at least in the initially straight case. As the robot becomes
more curved, friction plays an increasing role as indicated by Figure 25

value of EI . The resulting prediction is compared to the data
in Figures 20, 21, and 23. For the member with a parallel
tendon, the calibrated value of k was 4.5 N/mm, resulting
in the nondimensional parameter r2kL

EI = 5.03. We note that
the actual Kevlar thread has a much higher stiffness than this
calibrated value, so the calibration is likely accounting for
other factors that create an effect similar to a reduced tendon
stiffness, such as finite clearance between the tendon and the
guide holes, axial compression of the central backbone (which
we showed in Section II can be modeled by an effective
tendon stiffness), and compliance of other structures such as
the tendon guide where the tendon was fixed at the tip. For



14

the member with a converging tendon, the calibrated tendon
stiffness was k = 8.55 N/mm (making for a dimensionless
tendon stiffness of 9.52). The effective stiffness is lower in
the parallel routing case due to a small amount of bending
in the final tendon guide where the tendon is fixed at the
tip. In the converging case, there is practically no bending
in the final guide because the moment arm is nearly zero,
another advantage of the converging tendon design that affects
stiffness.

Finally, we cross-validated the performance of our cali-
brated model on a third, independent set of 8 data points
for each robot, which were generated with a different weight
(20g) hung at each point on both members with fixed tendon
displacements. These data agreed with the prediction of the
model using the two previously calibrated parameters EI and
k, as shown in Figure 20 (parallel tendons) and Figure 21
(converging tendons). The tendon force data, averaged from
100 points taken during each loading scenario, can be seen
in Figure 22. The predicted model again uses the calibrated
EI and k, and the measured tensions follow closely to the
prediction. If friction were a significant factor, the measured
tension would be much different from our model prediction,
as we do not account for it; thus, the tension measurements
illustrate that our assumption of neglecting friction is valid for
our test system.

Figure 23 shows the experimental data from the 20-gram
and 50-gram weights superimposed on the theoretical ma-
nipulator shapes for the last four loading cases in Cartesian
space. Integration of the sine and cosine of theta (Equations
(3) and (22) with their respective equations for τ substituted
in) with respect to arc length produces the theoretical curve in
each case. These equations also used the respective calibrated
EI and k values from the experiment for the parallel and
converging shapes. The plotted experimental data points show
the measured deflection in the y-axis of the eight tracked
points at the appropriate x location calculated by integration
to the load arc length. The plots demonstrate the loaded
shape differences between the two routing paths; the parallel
path produces an s-shape when deflected, and the converging
tendon path produces smaller deflection along the entire length
of the manipulator than the parallel path for the same load. In
particular, the converging tendon design is shown to be stiffer
than the parallel design by a factor of two, which is consistent
with the deflection formulas and the gains predicted by Figure
7 at the calibrated effective tendon stiffnesses.

B. Validation of 3D Model for In-Plane Loads

We also validated the 3D numerical Cosserat model using
members of the same geometry and fabrication method as the
prior experiments. A motor mount structure was made with 3D
printed parts, and Dynamixel MX-28 servo motors were used
to actuate each member using a single tendon, as shown in
Figure 24. Tests were carried out with the robots at a 30◦ and
60◦ tip angle. The motor was gripped in a vice and clamped
to the table to ensure stability. A tracking marker was placed
on the tip and at the base of the robot in order to measure
tip deflection in the robot base frame. The MicronTracker was
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Fig. 23. Shown here are the shapes of parallel- and converging-routed
prototypes when loaded at different points along the manipulator. For a load
of 0.2 N and 0.5 N on each manipulator, the shape was found by integrating
the equations for θ(s) with respect to arc length. The circles on each plot
represent the experimental data of the y-displacement of the measured points
plotted at the correct arc length; the solid circles are the 0.2 N data, and the
rings are the 0.5 N data.

used to capture displacement data as the tip was loaded in
the axial (vertical) direction using weights of 10 to 50 grams
in 10-gram increments. The direction of loading was such
that tendon slack could develop, but it was not observed at
these magnitudes of tip forces. The deflection data is shown
in Figure 25.

The frictionless model predicts the deflection well for
the tests carried out at a 30◦ tip angle and slightly less
accurately in the 60◦ actuated case. While the predicted
stiffness difference between the parallel and converging cases
is well matched, the data shows slightly stiffer behavior than
the model prediction. This discrepancy is likely due to the
stiffening effects of static friction between the guide holes
and the tendon, which is not considered in our models.
We note that these robots were not specifically designed to
minimize tendon channel friction. The further the robot is
actuated, the more pronounced frictional effects will be, so
designs that are intended for larger ranges of motion may
benefit from lubricious materials for the tendon channels or
friction-reducing coatings. The effects of static friction can
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(a) (b)

Fig. 24. The robots were actuated to 30◦ and 60◦ and loaded. The parallel
robot is shown in (a) unloaded, and (b) shows the converging-routed robot
under a 0.2-N load, both actuated to a 60◦ tip angle.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-6

-5

-4

-3

-2

-1

0
10-3

Parallel (Experiment)
Converging (Experiment)
Parallel (Predicted)
Converging (Predicted)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-0.02

-0.015

-0.01

-0.005

0

Parallel (Experiment)
Converging (Experiment)
Parallel (Predicted)
Converging (Predicted)

Fig. 25. The robots were actuated to 30◦ and 60◦ tip angles and loaded
in the axial direction. The results agree well with our model prediction for
the 30-degree case, but friction in the 60-degree case causes slightly less
deflection than predicted. This points to the need for including friction when
lubricious materials or friction-reducing coatings are unavailable for robots
that are actuated to high angular displacements.

also potentially be reduced by “dithering” during robot control
as described in [11].

VI. CONCLUSIONS AND LIMITATIONS

This paper has explored the behavior of continuum robots
driven by prescribed tendon displacements under external
loads. Using Bernoulli-Euler beam equations, we derived
analytical equations for the loaded deflections of a compliant
member embedded with one or more tendons. This provided

useful insight into the role of tendon stretch, backbone com-
pression, and tendon location on the overall stiffness. We ad-
ditionally investigated non-parallel routing paths and showed
that using a converging tendon path can significantly increase
the stiffness of the member along its entire length, though it
also increases the required actuation force for tip articulation
and induces a shape with linearly varying curvature. We
believe that the effects of non-parallel tendon routing can
be exploited to improve continuum robot design by creating
stronger, more controllable robots, and we hope that the results
herein will serve designers well as a tool for selecting design
parameters and control schemes.

To account for large-deflection scenarios, we extended the
general Cosserat rod / tendon model to accept prescribed
tendon displacement inputs, which is useful for simulating
the majority of tendon-driven manipulators, which are tendon-
displacement controlled. The model extension also newly
accounts for tendon slack, stretch, and pretension. Simulations
show that accurately predicting out-of-plane loading requires
modeling the tendon stretch, and that load-induced slack can
increase compliance. We used the extended model to generate
numerically-simulated results for nondimensional compliance
in x, y, and z directions along the length of an actuated
robot with various tendon routings. Similarly, we explored how
the nondimensional tendon stiffness affects the compliance
of an actuated robot in all three directions for parallel and
converging routing schemes. Finally, we validated the ana-
lytical models with a set of experiments using a 3D-printed
member, an optical tracking system, a force sensor, and known
weights, showing that friction is negligble when considering
small deflections from an initially straight shape. We validated
the Cosserat model using position-dictated actuation for two
actuated shapes (30◦ and 60◦ tip angle) and 5 external load
magnitudes. The results showed that the model, which does
not include friction, predicts the externally-loaded shape of the
robot well when actuated to 30◦, but friction plays a larger role
as curvature increases, and the results for 60◦ agree well but
begin to display the limitations of our model.

One limitation of this study has been that we neglected
static tendon friction in all the models and analysis for the
sake of tractability. Static friction can effectively stiffen a
tendon-driven robot, and this effect is greater at larger tensions
and configurations with higher curvatures, as our experimental
results showed. Modeling and estimation of tendon friction in
robots without external loads has been recently addressed in
[31], and those results may eventually be adaptable to models
with external loading in the future.
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