BRAIN-INSPIRED COMPUTING IS
attracting considerable attention because
of its potential to solve a wide variety of
data-intensive problems that are difficult
for even state-of-the-art supercomput-
ers to tackle. The ability of the human
brain to process visual and audio inputs
in real time and make complex logical
decisions by consuming a mere 20 W
makes it the most power-efficient com-
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Examining the role of nanoscale devices.

putational engine known to man. While
state-of-the-art digital complimentary
metal-oxide—semiconductor (CMOS)
technology permits the realization of
individual devices and circuits that mimic
the dynamics of neurons and synapses in
the brain, emulating the immense paral-
lelism and event-driven computational
architecture in systems with comparable
complexity and power budget as the

brain, and in real time, remains a formi-
dable challenge.

In the past decade, machine learn-
ing algorithms inspired by the brain’s
capability to learn and adapt based on
the information it receives have made
significant strides in achieving superhu-
man performance for several benchmark
pattern recognition and analysis tasks [1].
These algorithms have caused a paradigm
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Machine-learning algorithms range from
simple linear regression models
to multilayered deep neural networks.

shift from the static stored program algo-
rithmic approach to a more data-driven
adaptive model development approach to
make decisions or predictions. Based on
the underlying statistical relationships of
the observed data, these models adapt to
make more accurate predictions.

Machine-learning algorithms range
from simple linear regression models
to multilayered deep neural networks
(DNNs). DNNs are a class of artifi-
cial neural networks (ANNs) that have
achieved considerable success in recent
years due to the development of efficient
training algorithms, improved compu-
tational capabilities, and access to vast
troves of training data. Such DNNs
mimic the high-level organizational
architecture of the brain because the
processing units (neurons) are stacked
in layers, with adjacent layers intercon-
nected via adjustable weights (synapses).
Each neuron receives a weighted sum
of outputs from a subset of neurons in
the previous layer and creates an output
based on a nonlinear transformation.
The weights of the network are trained
to perform specific tasks based on the
input data in a supervised or unsuper-
vised manner.

With unsupervised learning, the data
ted to the network has no labels and is
used to extract general features from the
data. In supervised learning, the network
is trained with a labeled set of training
data and the mismatch between network
response and the label is used to determine
a weight update that will minimize the
error. Stochastic gradient descent (SGD)-
based back-propagation algorithms [2] are
commonly used for supervised training of
multilayer (deep) neural network architec-
tures. The multilayer structure combined
with the nonlinear processing of neurons
enables DNNGs to tackle complex classifica-
tion problems. Typical artificial neurons
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use differentiable nonlinearities for the
ease of back-propagation-based weight
update determination.

However, the nonlinear dynamics of
neurons in the human brain are more
complex. In a simplified picture, each
neuron integrates the current it receives
via the receptors on its dendrites, caus-
ing its membrane potential to rise above
the resting potential. When the potential
exceeds a threshold, an action poten-
tial, or spike, is issued, which propagates
along the axon of the neuron. The axons
are connected to the downstream neu-
rons via synaptic junctions; the spikes
will then induce currents proportional
to the synaptic strength in the post-
synaptic neurons. Each neuron in the
human neocortex receives input spikes
from approximately 10% other neurons,
with each neuron spiking at a sparse rate
between 0.1 and 100 Hz [3], [4]. This
parallelism and sparse activity combined
with the temporal integration property
is believed to make the brain a pow-
er-efficient and error-tolerant decision
maker. Artificial spiking neural networks
(SNNGs) attempt to mimic the previously
mentioned features of the brain such as
spike-based data encoding, event-trig-
gered processing, and temporal process-
ing of data to realize energy-efficient
learning networks [5].

A key requirement of brain-inspired
neural networks is the ability to pro-
cess several streams of data and its fea-
tures in parallel. Studies indicate that
there is a direct correlation between the
computational capabilities of these net-
works and their size (depth), and the
amount of data used to train them [6],
[7]. As a result, neural network training
is computationally intensive and con-
sumes huge amounts of time and ener-
gy. Furthermore, because of the large
number of network parameters and size

of the training data, network training
using conventional Silicon microproces-
sors involves constant shuttling of data
between the physically separated proces-
sor and its memory units, making the
von Neumann bottleneck a significant
limitation in achieving good perfor-
mance. Also, the temporal processing of
parallel data streams in SNNs makes sim-
ulating them in the conventional com-
puter architecture very time consuming.

Platforms based on field-program-
mable gate arrays, embedded processors,
and graphical processing units (GPUs)
have been employed for the simulation
of large SNNs and DNNs [8]. However,
they are often power hungry, less scal-
able, and limited by the high data trans-
fer rates, making them highly inefficient
compared to the human brain. However,
recent progress in nanoscale materials
and devices has opened up possibilities
for developing compact memory device
arrays that are amenable to data storage,
modification, and in-memory computa-
tion, buoying the hope for a single-chip
or system-level solution that implements
large neural networks approaching the
efficiency of the brain.

In this article, we describe some key
modeling aspects of SNNs and review
the various physical aspects of the
nanoscale devices that could be exploit-
ed to develop energy-efficient parallel
architectures for implementing these
networks. We also discuss key advanc-
es toward realizing such brain-inspired
devices and the challenges in the path to
full-system demonstrations.

SNNs

Neural network models can be classi-
fied into three generations, as illustrated
in Figure 1. These networks mimic the
multilayered architecture of the human
brain with its high-fan-out connectivity,
though the behavior of the neurons dif-
fers significantly in the three generations.
In the first generation perceptron, the
output of a neuron is binary (0, 1) and is
obtained by a simple thresholding of the
weighted synaptic input. In the second
generation models extensively used in
deep learning today (commonly referred
to as ANN:G), the output of a neuron can
be a real number, obtained as a weighted



synaptic input and transformed using a
nonlinear function such as the tanh or
the sigmoid function. These network
models are highly efficient for process-
ing stored data or snapshots of events.
However, for processing temporal real-
time data, the human brain offers an
efficient signal-encoding paradigm in
which information is encoded in the time
of binary spike events. Essentially, each
neuron can be thought of as a leaky inte-
grator of the input current, and the inte-
grated signal is used to determine the
time of spike [9].

While the behavior of real neu-
rons is mediated by complex ion chan-
nel dynamics, we will now describe the
essential mechanisms of spike initiation
and how these are used to inspire the
development of simplified neuron models
capturing some essential signal encod-
ing characteristics. We will also discuss
the plasticity behavior and associated
models for synapses, as it is crucial to
understanding the learning mechanisms
necessary for creating SNNs capable of
performing useful cognitive tasks.

NEURON MODELS

The first complete, biologically plau-
sible model of the spiking neuron was
developed by Hodgkin and Huxley, and
incorporates the detailed dynamics of
the membrane potential and the Na, K|
and leak ion channels in a set of four cou-
pled differential equations [10]. However,
this model is not suitable or necessary for
engineering applications, and several sim-
plified models have been proposed based
on model-order-reduction strategies. The

second-order model proposed by Izhikev-
ich [11] and the adaptive exponential
integrate-and-fire (IF) model proposed
by Brette and Gerstner [12] are suffi-
ciently rich to capture most of the spiking
dynamics observed in biological neurons.

The most computationally simple
spiking-neuron model is that of the leaky
integrate-and-fire (LIF) model [13]. The
LIF model represents the potential of
a neuron as the voltage across a capaci-
tor connected in parallel with a leaky
conductance path and is charged by
incoming input currents. The membrane
potential V(#) evolves according to the
differential equation

Aav(t)

Cplt

=—g1(V(#) = Er) + L (2). (1)

When V(z) exceeds a threshold Vr,
a spike is issued and transmitted to the
downstream synapses; the membrane
potential is reset to its resting value Ej,
after the spike. C and gr model the
membrane’s capacitance and leak con-
ductance, respectively. Biological neurons
enter a refractory period immediately after
a spike is issued, during which another
spike cannot be issued. This can be imple-
mented by holding the membrane poten-
tial at V(#) = Ep for a short refractory
period, ter, after the issue of a spike. Note
that the LIF model is a special case of
the more general Spike Response Model
commonly used in neuroscience literature
[14]. TF neuron models, which neglect
the leak term, are also used in different
SNN demonstrations, where they oper-
ate by directly integrating the incoming
spikes [15], [16].

SYNAPSE MODELS

While neurons issue spikes that are the
tokens of information processing in the
brain, it is the conductivity of synaptic
junctions and its modulation that deter-
mines the communication pathways in
the brain. Synapses are junctions between
the axon of a transmitter neuron and the
dendritic terminals of the receptor neu-
rons. These junctions regulate the flow
of signals between the neurons through
the issue of neurotransmitters [17]. The
released neurotransmitters bind to the
postsynaptic neuron, allowing ionic cur-
rent to flow into the downstream neuron
and it is this feature that is essentially
modeled in artificial neural models.

In the first two generations of neu-
ral network models, synaptic strength is
modeled as a real number (positive or
negative) and is adjusted based on various
learning rules to optimize a cost function.
In artificial SNNs, the synapse is typi-
cally modeled as a filter, which converts
incoming spikes to postsynaptic current
waveforms, and is scaled by a real-valued
synaptic strength. The filter kernel of the
synapse, o), is typically modeled using
a single or double-decaying exponential
function or a low-pass filter response [18],
[19]. The spikes arriving at a synapse hav-
ing a strength (weight) w will generate a
postsynaptic current [ Iya(#)] in its down-
stream neuron, given by the expressions

5(t)=26(t—ti)*a(t) (2)
and

Lyn(2) = wX ¢(2), (3)
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Second Generation—

Deep Learning

(1) |

Third Generation—
SNN

x4(t) |

y(t)

Time

Three generations of neural network models.
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where # denotes the time of issue of
the /" incoming spike and = is the
convolution operator. Note that there
is a strong nonlinearity between the
times of spikes issued by the LIF neu-
ron and the times of spikes arriving on
its incoming synapses, due to the reset
after each spike. In (2) and (3), the syn-
aptic current does not depend on the
membrane potential of the postsynaptic
neuron, although this is an approxima-
tion, as it is indeed a function of the
difference between the reversal potential
and the membrane potential of the post-
synaptic neurons in biological networks.

Biological synapses and axons have a
delay associated with them for transport-
ing spikes to the downstream neurons
[20]. Several efforts on developing learn-
ing algorithms have also made use of
these delays as adjustable parameters in
addition to the synaptic weights [21],
[22]. It has also been shown that the
presence of synaptic delays in SNNs
increases their information capacity [23],
[24]. Various neuromorphic chips emu-
lating SNNs also implement axonal and
synaptic delays as programmable features
of the network [25], [26].

Stimulus Filter

GENERALIZED LINEAR MODELS

While the previously described models are
useful engineering abstractions for emulat-
ing network behavior, they fail to capture
the statistical characteristics of spike trains
obtained from intra/extracellular physi-
ological readings. Considering the fact
that neurons exhibit stochastic variability,
probabilistic models are exhaustively used
in neuroscience literature [28]. In an effort
to capture the statistical dynamics of bio-
logical neurons, generalized linear models
(GLMs) based on a linear-nonlinear Pois-
son model have been proposed [29]. In
GLMs, linear functions of the spike stimu-
lus (input) and generated spike history are
nonlinearly transformed to determine the
spike response of the neuron, as shown in
Figure 2(a). GLMs have been successful in
mimicking single, as well as multispiking,
neuronal readings from different regions of
the brain [27], [29], and [30] [Figure 2(b)-
(¢)]. Moreover, these models may allow for
the development of mathematically trac-
table forms of learning rules for SNNs [31].

SYNAPTIC PLASTICITY

Neurobiological studies have shown that
the strength of the synapses undergoes

Nonlinearity

Stochastic
Spiking

changes depending on the activity patterns
of its upstream and downstream neurons
[17]. Depending on the nature of the exci-
tation, some synaptic modifications last
only for a few seconds or minutes (short-
term plasticity), whereas some changes
persist for much longer durations (long-
term plasticity) [9]. One of the most prom-
inent adaptation rules was given by D. O.
Hebb, who postulated that the strength
of the synaptic connection between two
neurons is proportional to their correlated
spiking rates or activities [32].

However, a drawback of this rule is
that there is no mechanism to bound the
weights under the conditions of persis-
tent firing. The Spike-timing-dependent
plasticity (STDP) rule can address this
issue [33] because the weights get updat-
ed according to the precise timings of
spikes from the pre-(fpre) and post-(fpost)
synaptic neurons in a specific learning
window. There are several studies show-
ing that such timing-dependent plasticity
rules could be used in spiking networks
for supervised and unsupervised learning
tasks [18], [34]-[36].

Inspired by biologically observed plas-
ticity behaviors that involve the effect of
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(a) A generalized linear model in which a neuron’s spiking rate, y(t), is nonlinearly determined by a linear function of input stimulus and
spike history. By adjusting the shape of the stimulus and feedback kernels, a wide variety of neuronal behaviors can be generated, such as (b)
tonic spiking, (c) phasic spiking, (d) tonic bursting, and (e) phasic bursting [27].
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neuro-modulators in addition to pre- and
postsynaptic traces on synaptic strength
adaptation, other learning rules have been
proposed [37]. For instance, the Super-
Spike supervised learning rule [38] incor-
porates the error, postsynaptic neuron
membrane potential, and presynaptic
spike trace for calculating weight updates.
Since standard backpropagation uses the
same weights for both forward and back-
ward pass, which is not biologically plausi-
ble, a new learning scheme called feedback
alignment has been proposed: one set of
synaptic weights is used for forward pass
and a different, randomly chosen set is
used for backward error propagation [39].
This rule has been applied to train SNNs
in an online manner, although further
improvements are necessary to improve
network performance [40].

In addition to these biologically in-
spired learning schemes, there have been
numerous efforts to derive learning rules
for SNNs analytically [41]-[43]. Effi-
cient methods have also been proposed
to convert deep networks trained using
backpropagation to their equivalent spik-
ing versions [15], [16], [19], [44]. SNNs
obtained using these approaches have
shown state-of-the-art inference accura-
cies for the benchmark ImageNet clas-
sification problem [44]. Highlighting
the benefits of SNNs in terms of ener-
gy efficiency, a near-two-times reduc-
tion in the number of operations has
been reported compared to deep ANNs
for benchmark problems based on the
MNIST (Modified National Institute of
Standards and Technology) and CIFAR-
10 (Canadian Institute For Advanced
Research) databases.

Even though significant strides
have been made in developing learning
algorithms for SNNs, further work is
required to demonstrate that deep spik-
ing networks can efficiently use the
temporal dimension for information
encoding and learning and to quanti-
ty their performance metrics for large
benchmark problems.

SIGNAL ENCODING

Analogous to the brain efficiently sam-
pling real-world information using our
sense organs, real-time data must be
encoded into spikes for the SNNs for

GLMs have been successful in mimicking
single, as well as multispiking, neuronal
readings from different regions of the brain.

further processing. A straightforward
approach might be to use a rate-coding
scheme in which real numbers are scaled
and translated into the rate of arrival of
spikes, which can be fed to SNNs. How-
ever, rate codes are inefficient and slow
since the neurons must effectively wait
for a certain duration to estimate the
firing rate and make decisions. Hence,
several schemes have been proposed in
which information is encoded using the
precise spike timings, inspired by the
brain [45], [46].

Latency codes encode information in
the time to first spike after a reference
signal. In its most efficient form, only
the first spike is relevant and the spik-
ing neuron could be shut oft by inhibi-
tion until the onset of the next stimulus.
Phase codes are a variant of this rule in
which the reference signal is a period-
ic oscillation and the phase of the spike
with respect to the oscillation encodes the
information. Such background oscilla-
tions have been observed in hippocampus,
visual cortex, and other brain areas [47].

Multiplexed codes with multiple cod-
ing schemes could also be used to encode
complementary information in different
time scales. For example, short time-scale
phase information may be multiplexed
with long-duration spike rates. A recent
work suggests using a variant of STDP
known as fatiguing STDP to learn in
the presence of multiplexed codes such
as timing and rate [48]. Morcover, the
noise in spike codes may be reduced by
using homogeneous populations of neu-
rons to represent the same information
(population coding).

Inspired by these encoding mecha-
nisms in the brain, hardware sensors have
also been used for event-based represen-
tations. The dynamic vision sensor cam-
era encodes only pixel-level changes from
motion, instead of sending entire frames

at a fixed rate [49]. Similarly, the silicon
cochlea chip generates activity patterns in
different frequency ranges in an address
event representation format from stereo
audio signals [50].

SPECIAL-PURPOSE HARDWARE

The high-fanout architecture in the brain
(and also in ANNs) enables multiple
streams of data that encode different spa-
tial and temporal entities to be integrated
in parallel to make decisions. Howev-
er, modern computers are designed for
sequential processing based on the von
Neumann architecture. While central
processing units (CPUs) and GPUs can
be used to simulate this parallelism by
sequential processing of information and
storing the intermediate results in memo-
ry, this is highly inefficient for simulating
large networks, which has prompted the
search for better architectural implemen-
tations for emulating brain-inspired net-
works efficiently.

There are two energy-intensive opera-
tions in neural network emulation: 1)
parallel signal propagation, which is
weighted according to synaptic strength
and summed based on network con-
nectivity, and 2) event-driven updates of
synaptic weights across multiple layers
of the network. Various neuromorphic
chips have been demonstrated over the
past five years that achieve these opera-
tions by trying to address the von Neu-
mann bottleneck [25], [26], [51], [52].
The architecture in most of these chips is
based on a tiled array of crossbars, where
small blocks of synaptic memory arrays
(using SRAM cells) are tiled in a two-
dimensional array, such that networks for a
wide variety of applications can be mapped
onto them. Figure 3 illustrates the tiled-
array concept used in the million-neuron
TrueNorth chip from International Busi-
ness Machines Corporation (IBM) and
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(a) The architecture of the TrueNorth chip indicating the close integration of memory and processor, along with an event-driven commu-
nication network [25] and (b) the micro architecture of a Loihi Neuromorphic core showing the functionalities of different units [26].

the high-level architecture of the digital
CMOS Loihi learning chip developed by
Intel using a 14-nm CMOS process for
realizing SNNs.

While these CMOS-based designs
illustrate the potential and feasibility
of using these special-purpose chips for
implementing a wide variety of cogni-
tive tasks [53], high-level design studies
suggest that significant improvements
in efficiency are possible if nanoscale
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devices could be engineered specifically
for emulating the function of neurons
and synapses [54]. Nanoscale cross-
point arrays, with neuronal devices
at the periphery and resistive memory
devices as synapses, have been used to
implement ANNs (nonspiking) for pat-
tern classification problems [55], [56].
These networks perform matrix multi-
plication of neuronal inputs (V; denot-
ing the output of neuron 7 in the input

layer) with the synaptic weights (Gj
denotes the conductivity of the synapse
between neuron j in the input layer
to neuron ¢ in the output layer) utiliz-
ing Kirchhoff’s law of current addition
according to the relation

L= GV (4)
J

The use of crossbars reduces the mul-
tiplication complexity from O(N?) to



O(1), where N is the number of neu-
rons in a layer (Figure 4).

The tiled crossbar-array architecture
is ideally suited to implement large spik-
ing networks because the computation
within the core can be performed in the
analog domain and the only signal to
be transmitted between cores are binary
spike events. Neurons in a core can con-
nect to synapses in other cores by storing
the target axonal addresses in a lookup
table and utilizing an on-chip routing
network. The routing network could
be asynchronous or driven by a high-
speed clock (compared to the emulation
dynamics of the neurons and synapses),
ensuring that all spikes are routed to its
destinations faithfully accounting for any
synaptic delays [57], [58].

MEMRISTIVE DEVICES

There have been extensive efforts direct-
ed toward engineering nanoscale devices
supporting programmable, nonvolatile
resistance states for solid-state memory
applications. Some of these devices also
exhibit memristive history-dependent
current versus voltage (I-V) characteris-
tics [64], making them ideal candidates
for representing the IF dynamics of neu-
rons as well as the plastic synaptic state
in neuromorphic circuits. Note that the
key signature of memristance is a pinched
hysteresis in the I-V response of the
device [65]. Next, we discuss some of the
emerging nanoscale device technologies
that exhibit such desirable characteristics.

PHASE-CHANGE MEMORY

Phase-change memory (PCM) is one
of the most mature nonvolatile memo-
ry technologies today and is based on
chalcogenide alloys such as GeTe and
GesSbaTes, [66], [67]. The reversible
electrical-resistance switching based on
phase transition in these materials was
discovered by Ovshinsky in 1968 [68].
If large currents (with densities exceed-
ing 10 A/cm?) are passed through
polycrystalline-thin films of the material
(typically <100-nm thick) sandwiched
between inert metal electrodes suffi-
cient to raise the temperature above
the melting point (>600 °C), and if the
input excitation is subsequently removed
quickly (within a few nanoseconds), the

Neurons in a core can connect to synapses
in other cores by storing the target axonal
addresses in a lookup table and utilizing
an on-chip routing network.

molten region can be quenched into an
amorphous volume [Figure 5(a)]. Since
the resistivity of the amorphous phase
of the material is much higher compared
to the crystalline phase, the device is
effectively switched to a high-resistance
state by this electrical pulse. In the high-
resistance state, if the applied voltage
is such that the electric field across the
amorphous volume exceeds a critical
field, the device exhibits a negative dif-
ferential resistance transition accompa-
nied by a rapid increase in the current
through the device. With appropriately
chosen programming pulses that raise
the film temperature above the crystalli-
zation temperature (but below the melt-
ing point), the amorphous region can
be annealed back to its polycrystalline
phase, and the low-resistance state of the
device can be restored.

PCM devices exhibit excellent
endurance (>1012 programming cycles)
and retention (>10 years at 85 °C) char-
acteristics [69], [70]. The switching
speed of the device lies in the range

Input Neurons

Synapse
Layer

(a)

of a few tens to hundreds of nanosec-
onds. Furthermore, the crystallization
of the amorphous volume could be
implemented in an incremental manner
by using partial-crystallization puls-
es, enabling the device conductance to
be gradually increased to higher lev-
els. However, the melt-quench process
is less gradual, making it difficult to
reduce the conductance levels gradu-
ally. As a result, a single PCM cell could
be used to mimic gradual potentiation
observed in biological synapses.

If two PCM devices are used in a
differential configuration (i.c., Gex =
G"—G"), then both gradual potentia-
tion and depression can be achieved, by
incrementally increasing one of the G*
or G~ devices with a periodic reinitial-
ization of the conductance of saturat-
ed devices [71]. There are many studies
showing gradual conductance evolution
and STDP behavior in PCM devices [72]
[73] and using them for supervised and
unsupervised training of ANNs [74] and
SNNs [75].

Memristor
Crosssbar Array

L °
O

Peripheral Neuron Circuits

(a) Neural networks are brain-inspired computational models designed for parallel
processing and decision making and (b) crossbar arrays with memristive devices at the junc-
tions can efficiently implement this parallel connectivity, synaptic communication, and plastic-

ity in hardware.
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The electrical switching behavior of (a) a PCM [59], [60], (b) an RRAM [61], (c) an STT-RAM probabilistic switching response [62], and (d) an organic memristor [63]. The organic memristor has

a film of [Ru(L)3](PFs)2 sandwiched between indium tin oxide (ITO) and ITO or Au electrodes on a yttria-stabilized zirconia (YSZ) substrate.

RESISTIVE RANDOM-

ACCESS MEMORY

Resistive random-access memory
(RRAM) devices exhibit conduc-
tance modulation based on electric
field-driven rearrangement of mobile-
charged species in a dielectric mate-
rial sandwiched between two metal
electrodes [76]. The electrochemical
process mediating the conduction
modulation can be anion induced or
cation induced. Anion-type RRAMs
are characterized by low-resistance
conductance pathways formed by the
migration of oxygen vacancies. This
low-resistance state can be reversed
by applying an electric field in the
opposite direction causing the re-
combination of oxygen ions with the
vacancies and switching the device
back to a high-resistance state. Anion-
type RRAMs often require an inert
electrode, which are oxygen-ion active
or can act as an oxygen-ion reservoir
during resistance switching. Dielec-
tric thin films such as TiO., HfO.,
SiO., TaOy, AlO., and WO, have
demonstrated this kind of oxygen-
vacancy-mediated resistive switching.

Cation-type RRAMs are often
characterized by a metallic filament
connecting the top and the bottom
metal electrodes following a redox
reaction; they are also referred to as
conductance bridge RAM (CBRAM)
devices [Figure 5(b)] [77]. These
devices require an active top elec-
trode, e.g., Ag (silver) and Cu (cop-
per), whose ions are mobile in the
dielectric under an applied field. Dur-
ing clectrical programming, the metal
ions will oxidize, migrate into the
dielectric, and will get reduced at the
other electrode, forming a filamen-
tary path. A reversal of the applied
field will result in ionic motion in the
opposite direction, breaking the fila-
ment and switching the device back to
a high-resistance state. CBRAMs have
a high on-off ratio with lower operat-
ing voltages, compared to that of the
oxygen-vacancy RRAMs.

The low-resistance conductance
paths formed in the dielectrics are
nanoscale filaments, which result in the
observation of quantized-conductance



states [61], [76], and [78]. RRAMs are
extensively researched for their grad-
ual conductance change and as synaptic
devices [79]. The material combination,
device geometry, interface effects, doping,
annealing, and other fabrication techniques
could be engineered to attain gradual
resistance transitions in these devices [80],
[81]. For example, W/Al/Pro7Cao.sMnO3
(PCMO)/Pt-based RRAM show a gradual
conductance change due to the oxidation
and reduction of AlO. at the Al/PCMO
interface [82], and this dielectric-based
device has been used for STDP demon-
strations using biomimetic programming
waveforms [83]. In a recent work, the fila-
mentary pathway was confined to engi-
neered dislocations in a SiGe epitaxial layer,
resulting in gradual conductance changes
in the device and improvements in reten-
tion, reliability, and endurance [84].

MAGNETIC RAM

Magnetic RAMs store information in the
relative orientation of the magnetization
of two ferromagnetic plates separated by a
thin insulating material resulting in a mag-
netic tunnel junction (MT]) [85]. One
of the plates is of fixed magnetic orienta-
tion, while the other is a free layer, whose
magnetic orientation can be altered by
an external field. The plates could be in
parallel or antiparallel orientation at equi-
librium, resulting in a high or low conduc-
tance state respectively for the junction.
The magnetization of the layer is retained
in the absence of an applied voltage, allow-
ing stable binary data storage in the device.

A variant of the MRAM is the spin-
transfer torque (STT) RAM, with lower
power consumption and more scalability.
When directed to the free layer, a spin-
polarized current, which is created by
passing it through the fixed magnetic
layer, results in spin-angular momen-
tum exchange because of the interaction
between the spins of local magnetization
of the layer and that of the free electrons.
The free-layer magnetic orientation can
be switched to a parallel or antiparallel
state depending on the direction of the
current [86], [87]. While STT-RAMs
predominantly show binary states, there
has also been an increased effort in mak-
ing domain wall (DW)-based devices to
store multiple states [88].

Furthermore, by either adjusting the
programming-current amplitude or the
pulsewidth below the critical conditions
for switching, the probability of switch-
ing can be tuned [Figure 5(c)] [62], [89],
[90]. This probabilistic switching behav-
ior could be used to realize a gradual
conductance change or STDP in a syn-
apse composed of multiple devices con-
figured in a parallel configuration [91].

FERROELECTRIC RAM

Ferroelectric RAMs use a thin layer of
ferroelectric material sandwiched between
two metal electrodes. The ferroelec-
tric polarization state of the material is
switched between two stable states for
conventional solid-state memory applica-
tions [92]. Multiple regions of different
polarization vectors called ferroelectric
domains may be present in a ferroelectric
sample [93]. Recently it has been demon-
strated that the resistance of BaTiO3(2 nm)/
Lao.67Sr0.33Mn0O3(30-nm)-based ferro-
electric tunnel junctions can be tuned
based on the relative fraction of the fer-
roelectric domains that points toward
one electrode or the other [94]. It is pos-
sible to alter the domain population by
the application of electrical pulses to the
electrodes, thereby tuning the electrical
resistivity. This concept has been used to
mimic synaptic plasticity in supertetrago-
nal BiFeOs3 tunnel barriers using electri-
cal programming waveforms [95].

ORGANIC MEMORIES

Memristors based on organic compounds
are attractive because of the possibil-
ity of inexpensive solution-processing-
based fabrication and chemical tunability
of their properties. These devices have
an organic thin film that is sandwiched
between electrodes. Because of the com-
plex nature of the compounds involved,
the physics behind the switching mecha-
nism is often unclear. Structural changes,
redox reaction, and field-driven polariza-
tion have been proposed to explain the
switching transitions in these materials
[63], [96], [97]. However, except for a
recent demonstration [Figure 5(d)] [63],
these devices generally suffer from low
endurance and stability.

In a study based on organic terpyri-
dyl-iron polymer-based memristor [96]

gradual conductance changes, short-term
potentiation and long-term potentiation
have been demonstrated, taking advan-
tage of the drift of the programmed states.
Although these devices require high
switching voltages (~3 V) and long (mil-
lisecond) switching times, such explo-
rations demonstrate the feasibility of
realizing the complex dynamics of syn-
apses and neurons in potentially inexpen-
sive hardware platforms.

NANOSCALE SPIKING NEURONS

While there has been extensive research
to mimic the complex dynamics of neu-
rons using subthreshold CMOS circuits
[101], nanoscale device-based approach-
es offer the potential for further reduc-
tions in area and power, with significant
enhancements to the scalability of neu-
romorphic designs. Recently, there have
been a few single-device designs and
demonstrations to mimic the behavior of
leaky IF neurons.

INSULATOR-METAL

TRANSITION NEURONS

Two-terminal devices based on transi-
tion-metal oxides such as VO3 and NbO,
exhibit insulator-metal transition (IMT)
mediated by thermally or electrically trig-
gered phase transitions in nanosecond
time scales [102]. This phase transition is
volatile, and as the triggering source (volt-
age/temperature) falls below a threshold,
the device switches back to its initial state.
This behavior could be used to design
oscillatory circuits [Figure 6(a)] and have
been proposed to mimic the neuronal
spiking behavior [98], [103]. The leaky-
integration behavior could be incorpo-
rated by using an R—C low-pass filter at
the gate of the access transistor connected
to the IMT device. As the integrated gate
voltage exceeds a threshold, the device
switches between a high-resistance insu-
lating phase to a low-resistance metal-
lic phase in an oscillatory manner until
the gate voltage subsides below a certain
threshold. IMT-based neurons have been
used as stochastic sampling machines to
improve the generalization accuracy in
MNIST handwritten image classification
problems and project a 30-times power
reduction compared to a 22-nm CMOS-
ASIC implementation [104].
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PCM NEURONS

Similarly, PCM-based stochastic neu-
rons have been proposed in which the
phase configuration of the chalcogen-
ide film is used to represent the neuron
membrane potential [Figure 6(b)] [99].
The input current integrated by an LIF
neuron is supplied as short crystalliz-
ing pulses, which gradually reduces the
amorphous volume inside the device and
can represent the integration behavior of
the membrane potential. Once the device
conductance analogous to the membrane
potential crosses a threshold, the device
is reset by a RESET programming pulse.
Separate devices could be used for excit-
atory and inhibitory input accumulation;
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therefore, a single neuron may be com-
posed of more than one PCM device.
Mechanisms external to the device
dynamics are necessary to incorporate
the neuron leak. Since the crystallization
process in PCM devices is stochastic,
the overall IF dynamics of the neuron is
also stochastic.

RRAM NEURONS

Based on the previously described inte-
gration and reset principle, RRAMs have
also been shown to mimic the features
of a spiking neuron when operated in
the low-current regime [105]. Recently,
PCMO-based RRAM devices have been
demonstrated as (IF) neurons in SNNs

for solving a pattern classification prob-
lem [Figure 6(c)] [100]. These devices
have also been able to mimic the spike
frequency adaptation characteristics of
biological neurons.

SPINTRONIC NEURONS

Various forms of neuronal behaviors rang-
ing from simple-step (nonspiking) neu-
rons to stochastic-spiking neurons have
been demonstrated in spin-based devices
[88]. Studies have shown that domain
wall (DW)-based devices have an input
current-integrating feature through the
motion of the DW making them ideal for
mimicking an IF-spiking neuron. More
than a 1,000-fold reduction in energy



consumption for MNIST and CIFAR-10
image classification compared to 45-nm
CMOS-based designs have been projected
using a hybrid device-circuit-architecture
co-simulation framework.

MT]J-based spintronic oscillators
have been used to mimic biological neu-
rons and interneuron communication
through magnetic-field coupling [106].
They have also been experimentally dem-
onstrated for spoken digit-recognition
tasks with accuracies close to state-of-
the-art neural networks.

NANOSCALE SYNAPSES

Synapses and their plasticity are key to
memory, learning, and adaptation in
neural networks. From an information
storage perspective, biological synapses
in the hippocampus are estimated to
be capable of storing 26 distinguish-
able synaptic states, corresponding to
4.7 bits [108]. The excitatory postsynap-
tic current measurement in [33] suggests
that synaptic conductivity can support a
dynamic range (on-off ratio) of at least
50. In addition to STDP, short-term
plasticity observed in synapses also seem
to have computational roles in biological
networks [109]. While the true compu-
tational advantages of STDP and simi-
lar biological learning mechanisms are
still unclear, there are attempts to relate
STDP-like rules to SGD-based super-
vised learning algorithms [110]-[112].
In this section, we review how some of
these synaptic properties can be efficient-
ly implemented by the various nanoscale
devices discussed previously.

Because of their ability to retain a
programmed state and modulate their
conductivity in an activity- or history-
dependent manner, memristive devices
are ideally suited to represent plastic syn-
apses in hardware implementations. It
is desirable that the device exhibit sym-
metric and gradual conductance changes
with an appropriate choice of program-
ming pulses so that they naturally accu-
mulate the conductance changes dictated
by local spike events.

Most experimental memristors whose
conductance can be programmed to
analog states are modulated by atomic/
ionic rearrangement, which is stochas-
tic and prone to read noise. Examples

The key to realizing plastic synapses using
memristive devices to achieve online learning
is to convert the weight updates requested by

the training algorithm into reliable conductance
changes in the device using suitable
programming waveforms.

of memristive devices that exhibit grad-
ual conductance change include PCM
and RRAMs based on PCMO, HfO.,
TiO., and so on. Irrespective of the
device geometry, material systems, and
the switching mechanisms, none of these
experiments have demonstrated more
than 4-5 bits per device. Furthermore,
the conductance change achievable with
simple programming pulses is state
dependent and asymmetric. However,
such stochasticity may not be too detri-
mental for implementing online learn-
ing systems; in fact, similar stochastic
characteristics are measured in biological
synapses as well and may very well play a
key role in fuzzy information processing
in the brain. Both artificial and spik-
ing neural networks may also leverage
this stochasticity to perform useful com-
putations, as the final decisions of the
network are dependent on the relative
magnitude and overall distribution of a
large number of synapses, rather than the
absolute value of any single device.

On the other hand, memristors based on
spin orientation and filamentary switch-
ing can only be reliably programmed
to two states. These binary devices also
exhibit probabilistic switching behav-
iors around their switching threshold
and could be exploited to realize gradual
conductance change and STDP behavior
in a multimemristor configuration [91].
External random number generators and
pulse amplitude modulation have been
suggested to control the binary switch-
ing probability of CBRAM and have
been used in feature extraction networks
[113], [114]. In another recent study,
two binary MT] devices whose switching

probabilities were externally controlled
were used to implement a synapse, with
one of the devices implementing short-
term plasticity while the other imple-
mented long-term plasticity [115].

The key to realizing plastic synaps-
es using memristive devices to achieve
online learning is to convert the weight
updates requested by the training algo-
rithm into reliable conductance changes
in the device using suitable programming
waveforms (Figure 7). In STDP-based
training, spike-timing intervals must be
transformed into amplitudes and polarity
of the effective programming pulses.

One way to achieve this is to use two
waveforms of carefully designed shapes
to be applied from the two terminals
of the device so that the conductance is
altered only when they overlap in time.
The programming waveform could be
engineered to realize arbitrary forms of
STDP characteristics [116], [117]. This
approach has been used for PCM- [73],
OxRAM- [118], CBRAM- [79], and
PCMO- [83] based devices. The knowl-
edge of underlying device physics and
operating characteristics is essential to
design effective programming waveforms
that achieve the desired plasticity behav-
ior in an energy-efficient manner.

Another approach used to achieve
successful training with memristive
device arrays is to program the devices
only if the desired change is comparable
to the update granularity of the device
[119]. The smaller changes requested by
the training algorithm could be accumu-
lated in the digital memory until it is suf-
ficiently large to be reliably programmed
to the device.
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combination of multiple binary switching devices per synapse [91], and (d) short- and long-term plasticity in the atomic switch [107].

NETWORK IMPLEMENTATION

Neural networks are currently simulated
on von Neumann machines with train-
ing acceleration offered by the parallel
processing cores of GPUs. There are two
main motives behind the quest for build-
ing dedicated neuromorphic hardware:
1) acceleration of machine-learning algo-
rithms for large real-world applications
and 2) in-the-field learning for energy-
and memory-constrained embedded
applications. While power-hungry and
bulky GPU clusters are clearly not suit-
able for the latter application, they are
nonoptimal even for the former appli-
cation considering the training times
for large networks and their associated
power budgets. Therefore, dedicated
hardware capable of emulating neural
network operations in parallel in an
accelerated and energy-efficient manner
could transform both enterprise comput-
ing and intelligent embedded Internet of
Things (IoT) platforms.

For hardware applications, SNNs have
certain advantages compared to their sec-
ond-generation counterparts, especially
for processing real-time data. Spike-based
information encoding enables sparse
representations of real-world data, and
the communication of network tokens
(spikes) through on-chip routing net-
works is clearly much more efficient than
transporting real-valued activation val-
ues. However, the temporal dynamics of
spiking neurons are more complex than
ANNSs and call for more dedicated paral-
lel processors.

The SpiNNaker project, which is
attempting to create a parallel network
of 1 million ARM (advanced reduced-
instruction set computer machine) cores
capable of simulating a billion neurons,
is one approach to achieve this using
existing technologies [122]. IBM’s True-
North chip for SNNs is a parallel com-
puting platform with 1 million spiking
neurons and 256 million nonplastic-
SRAM synapses fabricated in 28-nm
CMOS [25]. By using event-based spike
communication and optimized low-
leakage transistor technology for fabri-
cation, the platform has demonstrated
approximately 105-times improvement
in energy per event in computational
efficiency compared to conventional



CPUs for network emulation. However,
this system does not support on-chip
learning, since multibit synapses can-
not be incorporated even in state-of-
the-art technology nodes for such large
networks within a reasonable silicon area.
In contrast, Intel’s Loihi chip fabricated
in 14-nm CMOS supports several on-
chip learning rules with up to 9 bits for
cach synaptic weight but can only emu-
late networks with up to 130,000 neu-
rons and 130 million synapses [26].

Herein lies the promise and poten-
tial of hardware solutions based on
nanoscale devices. Using these nanoscale
devices, the synaptic cell area can be
made as small as 4F2 [123] and an IF
neuronal-device area can be reduced to
225F2 [124], resulting in integration den-
sities exceeding 108 neurons/cm?2 and
1010 synapses/cm? in 10-nm nodes (F =
29 nm). Nonvolatile-memory crossbar-
memory arrays can perform the large
vector-matrix multiplications in O(1)
complexity. This enables the parallel-sig-
nal propagation in real time in the analog
domain. Additionally, the programmabil-
ity of these nonvolatile memory devices
makes on-chip learning feasible. It is pos-
sible to envision large, multilayered SNNs
using tiled crossbar arrays in which the
synaptic communication and adaptation
is done in analog mode, and communica-
tion between cores is implemented using
digital peripheral circuitry.

Numerous studies have demonstrated
small SNNs on special hardware using
memristive devices as synaptic storage
clements and also as spiking neuronal
units for various classification problems.
The initial demonstration of PCM as a
crossbar-compatible synaptic device for
SNN has been reported in several works
using device-conductance-response
models [71], [72], [125]. On-chip STDP
learning was demonstrated recently in a
90-nm neuromorphic chip with 256 x
256 PCM cells configured as analog syn-
apses, as illustrated in Figure 8(a) [120].

RRAM devices have also been used
to mimic the biological mechanisms of
precise timing-based synaptic-weight
updates in a network of spiking neu-
rons [126]. Compared to PCM-based
arrays, optimized RRAMs [as shown in
the inset of Figure 8(b)] are projected to

show energy-efficiency improvements by
a factor of 100-1,000 [121].

Based on a hybrid device-circuit-archi-
tecture co-simulation framework, it has
been projected that an all-spin SNN neu-
romorphic system as an inference engine
[Figure 8(c)] can have more than 1,000-
times energy efficiency and more than a
100-times speedup compared to a 45-nm
CMOS baseline for multilayer SNN
architectures for classification on datasets
such as MNIST, CIFAR-10, and SVHNs
(street-view house numbers) [127].

FUTURE OUTLOOK

The spike-based architecture of the
human brain enables the efficient encod-
ing of real-time data, and parallel- and
event-driven communication between
neurons in a high fan-out network.
These features also make SNNs attractive
candidates for hardware implementation
of cognitive computing applications.

However, in terms of computation-
al capability demonstrations, SNNs lag
behind their second-generation counter-
parts today. This could be attributed to
the following factors: the powerful SGD-
based back-propagation algorithms are
not directly applicable to spiking neurons
due to their nondifferentiable dynam-
ics; and secondly, the inherent nature
of SNNs to process data as time-series
events and the temporal integration of
LIF neurons make simulating these net-
works in conventional computational
systems highly time consuming, thus
preventing the implementation and test-
ing of large network architectures and
algorithms. Hence, developments in the
domain of parallel computational archi-
tectures including dedicated hardware
implementations that could accelerate
SNN simulations may also advance their
learning algorithms.

The computational capabilities of
the SNNs are a relatively less-explored
domain, though recent results are highly
promising. For instance, starting from
the initially chaotic networks of spiking
neurons, SNNs can be trained to imple-
ment a wide variety of complex cognitive
tasks such as reproducing the singing
behavior of songbirds and encoding and
replaying a movie scene [128]. Using
the temporal domain for information

encoding also endows a higher repre-
sentational power for spiking networks;
a single binary threshold neuron with %
inputs can store 2% bits of information
[129], while a spiking neuron can store
up to 3/ bits of information [130].
However, the true potential of SNNs
for ubiquitous IoT and other embed-
ded and enterprise applications can be
realized only if dedicated parallel and
energy-efticient hardware solutions can
be developed. Though significant prog-
ress has been made on many fronts, sev-
eral challenges remain before large-scale,
multiarray, crossbar-based nanodevice
platforms for SNNs become a reality.
The following are a few of these hard-
ware-related challenges.
1) Novel devices for supporting massive-
ly parallel and adaptive networks:
While there is a significant body
of work on building nanoscale
memristive devices for mimick-
ing STDP-like plasticity or sup-
porting gradual weight updates,
further work is required to mimic
other key functionalities such as
current integration at the periph-
ery, stochastic neuronal spiking
with automatic reset and refrac-
tory period after spike, synaptic
delays, and structural plasticity
that enables new connections to
be made (or deleted) between
neurons based on activity. Today,
these functions are implemented
using large CMOS circuits and
simply optimizing the crossbar
memory for synapses will make
these peripheral circuits the effi-
ciency limiting factor. Compact,
nanoscale single-device solutions
at the energy scales of biology
for these functions will be neces-
sary to build truly integrated and
interconnected networks of neu-
rons and synapses.

*)
—

Improving the learning capacity
of synapses: Conductance change
granularity is a key factor in deter-
mining the trainability of hard-
ware neural networks. The process
of training is often a search over
an error space created in hyperdi-
mensions of synaptic weights by
taking small increments along the
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direction of the gradient. Depend-
ing on the complexity of the error
surface, the step size needs to be
small enough to reach the optima,
and the device must support sym-
metric updates in both directions
of conductance changes based on
simple programming pulses. If
devices with tunable delays can
be designed, this may add a new
dimension for improving the learn-
ing capacity of spiking networks
[23], [24]. While mixed precision
architecture in which a high-preci-
sion CMOS gradient accumulator
compensates for the reduced-device
precision may be used to address
this issue, a nanoscale device-level
solution is highly desirable.

3) Improving system-level reliability:
All memristive devices that rely
on atomic or ionic rearrangement
exhibit intradevice and interdevice
variability in terms of resistance
levels, programming voltages,
and limited programming endur-
ance and retention times. While
materials and device optimization
as well as better fabrication tech-
nologies could address some of
these issues to a certain extent,
algorithmic- and architectural-
level innovations that can mitigate
these limitations that are inherent
at the nanoscale will be crucial to
guaranteeing system-level perfor-
mance and reliability.

With sufficient investments in inter-
disciplinary research, we are optimis-
tic that these challenges can be met
and the long-awaited dream of reverse
engineering the brain to build intelli-
gent machines that can be ubiquitously
deployed in the field may well be realized
in the near future.

ACKNOWLEDGMENTS

This work was supported in part by the
CAMPUSENSE project grant from
CISCO Systems Inc., the Semiconductor
Research Corporation, and the Nation-
al Science Foundation grant 1710009.
S. R. Nandakumar gratefully acknowl-
edges IBM Research Zurich for hosting
him as a research intern at the time this
article was written.

ABOUT THE AUTHORS

S.R. Nandakumar (ns599@njit.edu) is
with the New Jersey Institute of Tech-
nology, Newark.

Shruti R. Kulkarni (stk68@njit.edu)
is with the New Jersey Institute of Tech-
nology, Newark.

Anakha V. Babu (av442@njit.edu) is
with the New Jersey Institute of Tech-
nology, Newark.

Bipin Rajendran (bipin@njit.edu) is
with the New Jersey Institute of Tech-
nology, Newark.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learn-
ing,” Nature, vol. 521, pp. 436—444, May 2015.

[2] P. Werbos, “Beyond regression: New tools for pre-
diction and analysis in the behavioral sciences,”
Ph.D. dissertation, Harvard Univ., Cambridge,
MA, 1974.

[3] S. Shoham, D. H. O’Connor, and R. Segev, “How

silent is the brain: Is there a ‘dark matter” problem

in neuroscience?” J. Comparative Physiol. A, vol.
192, pp. 777-784, Aug. 2006.

B. Wang, W. Ke, J. Guang, G. Chen, L. Yin, S.

Deng, Q. He, Y. Liu, T. He, R. Zheng, Y. Jiang,

X. Zhang, T. Li, G. Luan, H. Lu, D. Haid-

ong, M. Zhang, X. Zhang, and Y. Shu, “Fir-

ing frequency maxima of fast-spiking neurons in
human, monkey, and mouse neocortex,” Frontiers
Cellular Neurosci., vol. 10, p. 239, Oct. 2016.

[5] W. Maas, “Networks of spiking neurons: The third
generation of neural network models,” Neural
Netw., vol. 10, no. 9, pp. 1659-1671, Dec. 1997.

[6] O. Russakovsky, J. Deng, H. Su, J. Krause, S.

Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Kho-

sla, M. Bernstein, A. C. Berg, and L. Fei-Fei,

“ImageNet large scale visual recognition chal-

lenge,” Int. J. Comput. Vision, vol. 115, pp. 211-

252, Dec. 2015.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta,

“Revisiting unreasonable effectiveness of data in
deep learning era,” in Proc. IEEE Int. Conf. Com-

puter Vision, 2017, pp. 843-852.

[8] S. R. Kulkarni, A. V. Babu, and B. Rajendran,
“Spiking neural networks—Algorithms, hardware
implementations and applications,” in Proc. 60th
Int. IEEE Midwest Symp. Circuits and Systems
(MWSCAS), Aug. 2017, pp. 426-431.

[9] P. Dayan and L. Abbott, Theoretical Newroscience:
Computational and Mathematical Modeling of
Nenral Systems. Cambridge, MA: MIT Press,
2001.

[10]JA. L. Hodgkin and A. F. Huxley, “A quantitative
description of membrane current and its applica-
tion to conduction and excitation in nerve,” J.
Physiol., vol. 117, pp. 500-544, Aug. 1952.

[11]E. M. Izhikevich and G. M. Edelman, “Large-
scale model of mammalian thalamocortical sys-
tems,” Proc. Nat. Acad. Sci., vol. 105, no. 9, pp.
3593-3598, 2008.

[12]R. Brette and W. Gerstner, “Adaptive exponential
integrate-and-fire model as an effective descrip-
tion of neuronal activity,” J. Neurophysiol., vol.
94, no. 5, pp. 3637-3642, 2005.

[13]L. F. Abbott, “Lapicque’s introduction of the
integrate-and-fire model neuron (1907),” Brain
Res. Bulletin, vol. 50, pp. 303-304, Nov.-Dec.
1999.

[14]W. Gerstner, R. Ritz, and J. L. van Hemmen,
“Why spikes? Hebbian learning and retrieval of
time-resolved excitation patterns,” Biol. Cybern.,
vol. 69, pp. 503-515, Sept. 1993.

[15] B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeiffer.
(2016). Theory and tools for the conversion of

[4

S|

analog to spiking convolutional neural networks.
arXiv. [Online]. Available: https://arxiv.org/
abs/1612.04052

[16]P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu,
and M. Pfeiffer, “Fast-classifying, high-accura-
cy spiking deep networks through weight and
threshold balancing,” in Proc. IEEE Int. Joint
Conf. Neural Networks (IJCNN), 2015, pp. 1-8.

[17]W. Gerstner and W. M. Kistler, Spiking Neuron
Models: Single Neurons, Populations, Plasticity.
Cambridge, U.K.: Cambridge Univ. Press, 2002.

[18]F. Ponulak and A. Kasiriski, “Supervised learn-
ing in spiking neural networks with ReSuMe:
Sequence learning, classification, and spike shift-
ing,” Neural Comput., vol. 22, pp. 467-510, Feb.
2010.

[19]E. Hunsberger and C. Eliasmith. (2016). Training
spiking deep networks for neuromorphic hard-
ware. arXiv. [Online]. Available: https://arxiv
.org/abs/1611.05141

[20]R. Miledi, “The measurement of synaptic delay,
and the time course of acetylcholine release at the
neuromuscular junction,” Proc. Roy. Soc. Lond. B,
vol. 161, no. 985, pp. 483-495, 1965.

[21]A. Taherkhani, A. Belatreche, Y. Li, and L. P.
Maguire, “DL-ReSuMe: A delay learning-based
remote supervised method for spiking neurons,”
IEEE Trans. Newral Netw. Learn. Syst., vol. 26,
pp. 3137-3149, Dec. 2015.

[22]B. Schrauwen and J. Van Campenhout, “Improv-
ing spikeprop: Enhancements to an error-back-
propagation rule for spiking neural networks,” in
Proc. 15th ProRISC Workshop, 2004.

[23]E. M. Izhikevich, “Polychronization: Computa-
tion with spikes,” Neural Comput., vol. 18, no. 2,
pp. 245-282,2006.

[24]W. Maass and A. M. Zador, “Dynamic stochastic
synapses as computational units,” Neural Com-
put.,vol. 11, no. 4, pp. 903-917, 1999.

[25]P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S.
Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N.
Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo,
S. K. Esser, R. Appuswamy, B. Taba, A. Amir,
M. D. Flickner, W. P. Risk, R. Manohar, and D.
S. Modha, “A million spiking-neuron integrated
circuit with a scalable communication network
and interface,” Science, vol. 345, no. 6197, pp.
668-673,2014.

[26]M. Davies, N. Srinivasa, T. H. Lin, G. Chinya,
Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N.
Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines, R.
Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y. H. Weng, A. Wild, Y.
Yang, and H. Wang, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE
Micro, vol. 38, pp. 82-99, Jan. 2018.

[27]A. I. Weber and J. W. Pillow, “Capturing the
dynamical repertoire of single neurons with gen-
eralized linear models,” Newural Comput., vol. 29,
no. 12, pp. 3260-3289, 2017.

[28]]. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simon-
celli, and E. J. Chichilnisky, “Prediction and
decoding of retinal ganglion cell responses with a
probabilistic spiking model,” J. Neurosci., vol. 25,
no. 47, pp. 11,003-11,013, 2005.

[29]]. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M.
Litke, E. J. Chichilnisky, and E. P. Simoncelli,
“Spatio-temporal correlations and visual signaling
in a complete neuronal population,” Nazure, vol.
454, pp. 995-999, Aug. 2008.

[30]B. Babadi, A. Casti, Y. Xiao, E. Kaplan, and L.
Paninski, “A generalized lincar model of the
impact of direct and indirect inputs to the lateral
geniculate nucleus,” J. Vision, vol. 10, pp. 22-22,
Aug. 2010.

[31] A. Bagheri, O. Simeone, and B. Rajendran. (2017,
Oct.). Training probabilistic spiking neural net-
works with first-to-spike decoding. arXiv. [Online].
Available: https://arxiv.org,/abs/1710.10704

[32]D. Hebb, Organization of Behavior. New York:
Wiley, 1949.

[33]G. Q. Bi and M.-M. Poo, “Synaptic modifications
in cultured hippocampal neurons: Dependence

SEPTEMBER 2018 | IEEE NANOTECHNOLOGY MAGAZINE | 33



on spike timing, synaptic strength, and postsyn-
aptic cell type,” J. Neurosci., vol. 18, pp. 10,464
10,472, Dec. 1998.

[34]P. U. Dichl and M. Cook, “Unsupervised learning
of digit recognition using spike-timing-dependent
plasticity,” Frontiers Comput. Neurosci., vol. 9, no.
99, 2015. doi: 10.3389/fncom.2015.00099.

[35]S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe,
and T. Masquelier, “STDP-based spiking deep
convolutional neural networks for object recog-
nition,” Neural Netw., vol. 99, pp. 56-67, Mar.
2017.

[36]A. Tavanaei and A. S. Maida, “Multi-layer unsu-
pervised learning in a spiking convolutional
neural network,” in Proc. IEEE Int. Joint Conf.
Neural Networks (IJCNN), May 2017, pp. 2023—
2030.

[37]N. Frémaux and W. Gerstner, “Neuromodulated
spike-timing-dependent plasticity, and theory of
three-factor learning rules,” Frontiers Neural Cir-
cuits, vol. 9, p. 85, Jan. 2016.

[38]F. Zenke and S. Ganguli. (2017). Superspike:
Supervised learning in multi-layer spiking neu-
ral networks. arXiv. [Online]. Available: https://
arxiv.org/abs/1705.11146

[39]T. P. Lillicrap, D. Cownden, D. B. Tweed, and C.
J. Akerman, “Random synaptic feedback weights
support error backpropagation for deep learn-
ing,” Nature Commun., vol. 7, Nov. 2016. doi:
10.1038/ncomms13276.

[40]E. Hunsberger, “Spiking deep neural networks:
Engineered and biological approaches to object
recognition,” Ph.D dissertation, Depart. Syst.
Design Eng., University of Waterloo, Ontario,
Canada, 2018.

[41]N. Anwani and B. Rajendran, “NormAD—Nor-
malized approximate descent based supervised
learning rule for spiking neurons,” in Proc. IEEE
Int. Joint Conf. Neural Networks (IJCNN), July
2015, pp. 1-8.

[42]]. H. Lee, T. Delbruck, and M. Pfeiffer, “Training
deep spiking neural networks using backpropaga-
tion,” Fromtiers Neurosci., vol. 10, p. 508, Nov.
2016.

[43]P. O’Connor and M. Welling. (2016). Deep spik-
ing networks. arXiv. [Online]. Available: https://
arxiv.org/abs/1602.08323

[44]B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and
S.-C. Liu, “Conversion of continuous-valued deep
networks to efficient event-driven networks for
image classification,” Frontiers Newrosci., vol. 11,
p. 682, Dec. 2017.

[45]C. D. Billimoria, R. A. DiCaprio, J. T. Birming-
ham, L. F. Abbott, and E. Marder, “Neuro-
modulation of spike-timing precision in sensory
neurons,” J. Newrosci., vol. 26, pp. 5910-5919,
May 2006.

[46]S. J. Ryan, D. E. Ehrlich, A. M. Jasnow, S. Daft-
ary, T. E. Madsen, and D. G. Rainnie, “Spike-
timing precision and neuronal synchrony are
enhanced by an interaction between synaptic inhi-
bition and membrane oscillations in the amygda-
la,” PLoS ONE, vol. 7, Apr. 2012. doi: 10.1371/
journal.pone.0035320.

[47]S. Panzeri, N. Brunel, N. K. Logothetis, and C.
Kayser, “Sensory neural codes using multiplexed
temporal scales,” Trends Newrosci., vol. 33, pp.
111-120, Mar. 2010.

[48]T. Moraitis, A. Sebastian, I. Boybat, M. L. Gallo,
T. Tuma, and E. Eleftheriou, “Fatiguing STDP:
Learning from spike-timing codes in the presence
of rate codes,” in Proc. IEEE Int. Joint Conf. Neu-
ral Networks (IJICNN), 2017, pp. 1823-1830.

[49]C. Brandli, R. Berner, Y. Minhao, L. Shih-Chii,
and T. Delbruck, “A 240 x 180 130 dB 3 us
latency global shutter spatiotemporal vision sen-
sor,” IEEE J. Solid-State Circuits, vol. 49, pp.
2333-2341, Oct. 2014.

[50]S. C. Liu, A. Van Schaik, B. A. Minch, and T. Del-
bruck, “Asynchronous binaural spatial audition
sensor with 2 x 64 x 4 Channel output,” IEEE
Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp.
453-464,2014.

34 | IEEE NANOTECHNOLOGY MAGAZINE | SEPTEMBER 2018

[51]]. Gehlhaar, “Neuromorphic processing: A new
frontier in scaling computer architecture,” in
Proc. 19th Int. Conf. Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 2014, pp. 317-318.

[52]N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F.
Stefanini, D. Sumislawska, and G. Indiveri, “A
reconfigurable on-line learning spiking neuro-
morphic processor comprising 256 neurons and
128k synapses,” Frontiers Neurosci., vol. 9, pp.
141, Apr. 2015.

[53]S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cas-
sidy, R. Appuswamy, A. Andreopoulos, D. J.
Berg, J. L. McKinstry, T. Melano, D. R. Barch, C.
di P. Nolfo, A. Datta, B. Amir, M. Taba, D. Flick-
ner, and D. S. Modha, “Convolutional networks
for fast, energy-efficient neuromorphic comput-
ing,” Proc. Nat. Acad. Sci., vol. 113, no 41, pp.
11,441-11,446, 2016.

[54]B. Rajendran, Y. Liu, J. Seo, K. Gopalakrishnan, L.
Chang, D. Friedman, and M. Ritter, “Specifica-
tions of nanoscale devices & circuits for neuromor-
phic computational systems,” IEEE Trans. Electron
Devices, vol. 60, no. 1, pp. 246-253, 2013.

[55]G. Tayfun and Y. Vlasov. (2016). Acceleration of
deep neural network training with resistive cross-
point devices. arVix. [Online]. Available: https://
arxiv.org/abs/1603.07341

[56]T. Gokmen, M. Onen, and W. Haensch. (2017).
Training deep convolutional neural networks
with resistive cross-point devices. arXiv. [Online].
Available: https://arxiv.org/abs/1705.08014

[57]S. Ambrogio, N. Ciocchini, M. Laudato, V. Milo,
A. Pirovano, P. Fantini, and D. Ielmini, “Unsu-
pervised learning by spike timing dependent
plasticity in phase change memory (PCM) syn-
apses,” Fromtiers Newrosci., vol. 10, Mar. 2016.
doi: 10.3389/fnins.2016.00056.

[58]S. B. Eryilmaz, S. Joshi, E. Neftci, W. Wan, G.
Cauwenberghs, and H.-S. P. Wong, “Neuromor-
phic architectures with electronic synapses,” in
Proc. 17th Int. Symp. Quality Electronic Design
(ISQED), 2016, pp. 118-123.

[59]M. J. Breitwisch, “Phase change memory,” in Proc.
2008 Int. Interconnect Technology Conf., 2008, pp.
219-221.

[60]A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A.
Kostylev, A. Benvenuti, and R. Bez, “Low-field
amorphous state resistance and threshold voltage
drift in chalcogenide materials,” IEEE Trans. Elec-
tron Devices, vol. 51, no. 5, pp. 714-719, 2004.

[61]S. R. Nandakumar, M. Minvielle, S. Nagar, C.
Dubourdieu, and B. Rajendran, “A 250 mV Cu/
Si02/W memristor with half-integer quantum
conductance states,” Nano Lett., vol. 16, pp.
1602-1608, Mar. 2016.

[62]A. F. Vincent, J. Larroque, N. Locatelli, N. B.
Romdhane, O. Bichler, C. Gamrat, W. S. Zhao,
J. O. Klein, S. Galdin-Retailleau, and D. Quer-
lioz, “Spin-transfer torque magnetic memory as
a stochastic memristive synapse for neuromorphic
systems,” IEEE Trans. Biomed. Circuits Syst., vol.
9, no. 2, pp. 166-174, 2015.

[63]S. Goswami, A. J. Matula, S. P. Rath, S. Hed-
strom, S. Saha, M. Annamalai, D. Sengupta, A.
Patra, S. Ghosh, H. Jani, S. Sarkar, M. R. Mota-
pothula, C. A. Nijjhuis, J. Martin, S. Goswami, V.
S. Batista, and T. Venkatesan, “Robust resistive
memory devices using solution-processable metal-
coordinated azo aromatics,” Nature Mater., vol.
16, pp. 1216-1224, Oct. 2017.

[64]L. Chua, “Memristor—The missing circuit ele-
ment,” IEEE Trans. Civcuit Theory, vol. 18, no. 5,
pp. 507-519, 1971.

[65]L. Chua, “Resistance switching memories are
memristors,” Appl. Phys. A, Mater. Sci. Process.,
vol. 102, no. 4, pp. 765-783, 2011.

[66]H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. .
Reifenberg, B. Rajendran, M. Asheghi, and K. E.
Goodson, “Phase change memory,” Proc. IEEE,
vol. 98, pp. 2201-2227, Dec. 2010.

[67]G. W. Burr, M. J. Brightsky, A. Sebastian, H.
Y. Cheng, J. Y. Wu, S. Kim, N. E. Sosa, N.

Papandreou, H. L. Lung, H. Pozidis, E.
Eleftheriou, and C. H. Lam, “Recent progress
in phase-change memory technology,” IEEE J.
Emery. Select. Topics Circuits Syst., vol. 6, pp.
146-162, June 2016.

[68]S. R. Ovshinsky, “Reversible electrical switching
phenomena in disordered structures,” Phys. Rev.
Lett, vol. 21, pp. 1450-1453, Nov. 1968.

[69]S. Lai and T. Lowrey, “Oum—A 180 nm non-
volatile memory cell element technology for stand
alone and embedded applications,” in Proc. IEEE
Int. Electron Devices Meeting (IEDM), Technical
Dig, 2001, pp. 36.5.1-36.5.4.

[70]A. Pirovano, A. Redaelli, F. Pellizzer, F. Otto-
galli, M. Tosi, D. Ielmini, A. Lacaita, and R. Bez,
“Reliability study of phase-change nonvolatile
memories,” IEEE Trans. Device Mater. Rel., vol.
4, pp. 422-427, Sept. 2004.

[71]M. Suri, O. Bichler, D. Querlioz, O. Cueto, L.
Perniola, V. Sousa, D. Vuillaume, C. Gamrat, and
B. DeSalvo, “Phase change memory as synapse for
ultra-dense neuromorphic systems: Application to
complex visual pattern extraction,” in Proc. IEEE
Int. Electron Devices Meeting (IEDM), 2011, pp.
441-444.

[72]D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H.-S.
P. Wong, “Nanoelectronic programmable syn-
apses based on phase change materials for brain-
inspired computing,” Nano Lett., vol. 12, no. 5,
pp. 2179-2186, 2012.

[73]B. L. Jackson, B. Rajendran, G. S. Corrado, M.
Breitwisch, G. W. Burr, R. Cheek, K. Gopal-
akrishnan, S. Raoux, C. T. Rettner, A. Padilla,
A. G. Schrott, R. S. Shenoy, B. N. Kurdi, C. H.
Lam, and D. S. Modha, “Nano-scale electronic
synapses using phase change devices,” ACM J.
Emerg. Technol. Comp. Syst., vol. 9, no. 2, p. 12,
2013.

[74] G. Burr, R. Shelby, C. di Nolfo, J. Jang, R. She-
noy, P. Narayanan, K. Virwani, E. Giacometti,
B. Kurdi, and H. Hwang, “Experimental dem-
onstration and tolerancing of a large-scale neural
network (165,000 synapses), using phase-change
memory as the synaptic weight element,” in Proc.
IEEE Int. Electron Devices Meeting (IEDM),
2014, pp. 29.5.1-29.5.4.

[75]S. R. Nandakumar, I. Boybat, M. L. Gallo, A.
Sebastian, B. Rajendran, and E. Eleftheriou,
“Supervised learning in spiking neural networks
with MLC PCM synapses,” in Proc. 75th Annu.
Device Research Conf. (DRC), 2017, pp. 1-2.

[76]R. Waser and M. Aono, “Nanoionics-based resis-
tive switching memories,” Nature Mater., vol. 6,
pp- 833-840, Nov. 2007.

[77]M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J.
Schumann, R. Symanczyk, K. Ufert, and G.
Muller, “Conductive bridging RAM (CBRAM):
An emerging non-volatile memory technology
scalable to sub 20 nm,” in Proc. IEEE Int. Elec-
tron Devices Meeting (IEDM), 2005, pp. 754-757.

[78]X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J.
Zhang, and R. W. Li, “Observation of conduc-
tance quantization in oxide-based resistive switch-
ing memory,” Adv. Mater., vol. 24, no. 29, pp.
3941-3946,2012.

[79]S. R. Nandakumar and B. Rajendran, “Synaptic
plasticity in a memristive device below 500 mv,”
ECS Trans., vol. 77, no. 2, pp. 31-37, 2017.

[80]1. Valov, R. Waser, J. R. Jameson, and M. N.
Kozicki, “Electrochemical metallization mem-
ories—fundamentals, applications, prospects,”
Nanotechnology, vol. 22, p. 254003, July 2011.

[81]7. J. Yang, D. B. Strukov, and D. R. Stewart,
“Memristive devices for computing,” Nature
Nanotechnol., vol. 8, no. 1, pp. 13-24, 2013.

[82]S. Park, J. Noh, M.-L. Choo, A. M. Sheri, M.
Chang, Y.-B. Kim, C. J. Kim, M. Jeon, B.-G. Lee,
B. H. Lee, and H. Hwang, “Nanoscale RRAM-
based synaptic electronics: Toward a neuromor-
phic computing device,” Nanotechnology, vol. 24,
p. 384009, Sept. 2013.

[83]N. Panwar, D. Kumar, N. Upadhyay, P. Arya, U.
Ganguly, and B. Rajendran, “Memristive synaptic



plasticity in PCMO RRAM by bio-mimetic pro-
gramming,” in Proc. 72nd Annu. Device Research
Conf. (DRC), 2014, pp. 135-136.

[84]S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y.
Chen, H. Yeon, S. Yu, and J. Kim, “SiGe epitaxial
memory for neuromorphic computing with repro-
ducible high performance based on engineered
dislocations,” Nature Mater., vol. 17, pp. 1-6,
Jan. 2018.

[85]N. Locatelli, V. Cros, and J. Grollier, “Spin-torque
building blocks,” Nature Mater., vol. 13, no. 1,
pp. 11-20, 2014.

[86]D. C. Ralph and M. D. Stiles, “Spin transfer
torques,” J. Magn. Magn. Mater., vol. 320, no. 7,
pp. 1190-1216, 2008.

[87]T. Kawahara, K. Ito, R. Takemura, and H. Ohno,
“Spin-transfer torque RAM technology: Review
and prospect,” Microelectron. Rel., vol. 52, no. 4,
pp. 613-627,2012.

[88]A. Sengupta and K. Roy, “A vision for all-spin
neural networks: A device to system perspective,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63,
no. 12, pp. 2267-2277, 2016.

[89] A. E. Vincent, J. Larroque, N. Locatelli, N. B.

Romdhane, O. Bichler, C. Gamrat, W. S. Zhao,
J.-O. Klein, S. Galdin-Retailleau, and D. Quer-
lioz, “Spin-transfer torque magnetic memory as a
stochastic memristive synapse for neuromorphic
systems,” IEEE Trans. Biomed. Circuits Syst., vol.
9, no. 2, pp. 166-174, 2015.

[90] U. Roy, T. Pramanik, L. F. Register, and S.
K. Banerjee, “Write error rate of spin-transfer-
torque random access memory including micro-
magnetic effects using rare event enhancement,”
IEEE Trans. Magn., vol. 52, no. 10, pp. 1-6,
2016.

[91] A. Singha, B. Muralidharan, and B. Rajendran,
“Analog memristive time dependent learning
using discrete nanoscale RRAM devices,” in
Proc. 2014 Int. Joint Conf. Neural Networks
(IJCNN), pp. 2248-2255.

[92] V. Garcia and M. Bibes, “Ferroelectric tunnel
junctions for information storage and process-
ing,” Nature Commun., vol. 5, pp. 1-12, 2014.

[93] J. Guyonnet, Ferroelectric Domain Walls. Swit-
zerland: Springer, 2014.

[94] A. Chanthbouala, V. Garcia, R. O. Cherifi, K.
Bouzchouane, S. Fusil, X. Moya, S. Xavier, H.
Yamada, C. Deranlot, N. D. Mathur, M. Bibes,
A. Barthélémy, and J. Grollier, “A ferroelectric
memristor,” Nature Mater., vol. 11, pp. 860-
864, Oct. 2012.

[95] S. Boyn, J. Grollier, G. Lecerf, B. Xu, N.
Locatelli, S. Fusil, S. Girod, C. Carrétéro, K.
Garcia, S. Xavier, J. Tomas, L. Bellaiche, M.
Bibes, A. Barthélémy, S. Saighi, and V. Garcia,
“Learning through ferroclectric domain dynam-
ics in solid-state synapses,” Nature Commun.,
vol. 8, pp. 1-7, Apr. 2017.

[96] X. Yang, C. Wang, J. Shang, C. Zhang, H. Tan,
X.Yi, L. Pan, W. Zhang, F. Fan, Y. Liu, Y. Chen,
G. Liu, and R.-W. Li, “An organic terpyridyl-
iron polymer based memristor for synaptic plas-
ticity and learning behavior simulation,” RSC
Advances, vol. 6, no. 30, pp. 25,179-25,184,
2016.

[97] T. Berzina, A. Smerieri, M. Bernab, A. Pucci, G.
Ruggeri, V. Erokhin, and M. P. Fontana, “Opti-
mization of an organic memristor as an adaptive
memory clement,” J. Appl. Phys., vol. 105, no.
12, May 2009.

[98] M. Jerry, W. Y. Tsai, B. Xie, X. Li, V. Naray-
anan, A. Raychowdhury, and S. Datta, “Phase
transition oxide neuron for spiking neural net-
works,” in Proc. 74th Annu. Device Research
Conf. (DRC), 2016, pp. 1-2.

[99] T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian,
and E. Eleftheriou, “Stochastic phase-change
neurons,” Nature Nanotechnol., vol. 11, no. 8,
pp. 693-699, 2016.

[100] S. Lashkare, S. Chouhan, T. Chavan, A. Bhat, P.
Kumbhare, and U. Ganguly, “PCMO RRAM
for integrate-and-fire neuron in spiking neural

networks,” IEEE Electron Device Lett., vol. 39,
no. 4, pp. 484-487, Apr. 2018.

[101] G. Indiveri, B. Linares-Barranco, T. J. Ham-
ilton, A. van Schaik, R. Etienne-Cummings,
T. Delbruck, S.-C. Liu, P. Dudek, P. Hafliger,
S. Renaud, J. Schemmel, G. Cauwenberghs, J.
Arthur, K. Hynna, F. Folowosele, S. Saighi, T.
Serrano-Gotarredona, J. Wijekoon, Y. Wang,
and K. Boahen, “Neuromorphic silicon neuron
circuits,” Frontiers Nenrosci., vol. 5, May 2011.
doi: 10.3389/fnins.2011.00073.

[102] M. Son, J. Lee, J. Park, J. Shin, G. Chot, S. Jung,
W. Lee, S. Kim, S. Park, and H. Hwang, “Excel-
lent selector characteristics of nanoscale VO2
for high-density bipolar ReRAM applications,”
IEEE Electron Device Lett., vol. 32, no. 11, pp.
1579-1581, 2011.

[103] K. Moon, E. Cha, D. Lee, J. Jang, J. Park, and
H. Hwang, “ReRAM-based analog synapse and
IMT neuron device for neuromorphic system,”
in Proc. Int. Symp. VLSI Technology, Systems and
Applications (VLSI-TSA), 2016, pp. 1-2.

[104] M. Jerry, A. Parihar, B. Grisafe, A. Raychow-
dhury, and S. Datta, “Ultra-low power proba-
bilistic IMT neurons for stochastic sampling
machines,” in Proc. Int. Symp. VLSI Technology,
Systems and Applications (VLSI-TSA), June 2017,
T186-T187.

[105] J. Woo, D. Lee, Y. Koo, and H. Hwang, “Dual
functionality of threshold and multilevel resistive
switching characteristics in nanoscale hfo2-based
RRAM devices for artificial neuron and synapse
elements,” Microelectron. Eng., vol. 182, pp. 42—
45, Oct. 2017.

[106] J. Torrejon, M. Riou, F. A. Araujo, S. Tsune-
gi, G. Khalsa, D. Querlioz, P. Bortolotti, V.
Cros, K. Yakushiji, A. Fukushima, H. Kubota,
S. Yuasa, M. D. Stiles, and J. Grollier, “Neuro-
morphic computing with nanoscale spintronic
oscillators,” Nature, vol. 547, no. 7664, p. 428,
2017.

[107] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe,
J. Gimzewski, and M. Aono, “Short-term plas-
ticity and long-term potentiation mimicked in
single inorganic synapses,” Nature Mater., vol.
10, pp. 591-595, June 2011.

[108] T. M. Bartol, C. Bromer, J. Kinney, M. A.
Chirillo, J. N. Bourne, K. M. Harris, and T. J.
Sejnowski, “Nanoconnectomic upper bound on
the variability of synaptic plasticity,” eLife, vol. 4,
Nov. 2015. doi: 10.7554 /eLife.10778.

[109] Z. Rotman, P.-Y. Deng, and V. A. Klyachko,
“Short-term plasticity optimizes synaptic infor-
mation transmission,” J. Newurosci., vol. 31, no.
41, pp. 14,800-14,809, 2011.

[110] Y. Dan and M.-M. Poo, “Spike timing-depen-
dent plasticity: From synapse to perception,”
Physiological Rev., vol. 86, pp. 1033-1048, July
2006.

[111] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mes-
nard, and Z. Lin. (2016, Aug.). Towards bio-
logically plausible deep learning. arXiv. [Online].
Available: http://arxiv.org/abs/1502.04156

[112] Y. Bengio, T. Mesnard, A. Fisher, S. Zhang,
and Y. Wu. (2015, Sept.). An objective function
STDP. arXiv. [Online]. Available: http://arxiv
.org/abs/1509.05936

[113] M. Suri, D. Querlioz, O. Bichler, G. Palma,
E. Vianello, D. Vuillaume, C. Gamrat, and B.
DeSalvo, “Bio-inspired stochastic computing
using binary CBRAM synapses,” IEEE Trans.
Electron Devices, vol. 60, pp. 2402-2409, July
2013.

[114] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and
H.-S. P. Wong, “Stochastic learning in oxide
binary synaptic device for neuromorphic com-
puting,” Frontiers Neurosci., vol. 7, p. 186, Oct.
2013.

[115] G. Srinivasan, A. Sengupta, and K. Roy, “Mag-
netic tunnel junction based long-term short-term
stochastic synapse for a spiking neural network
with on-chip STDP learning,” Scientific Rep.,
vol. 6, pp. 1-13, June 2016.

[116] S. Saighi, C. G. Mayr, T. Serrano-Gotarredona,
H. Schmidt, G. Lecerf, J. Tomas, J. Grollier, S.
Boyn, A. F. Vincent, D. Querlioz, S. La Barbera,
F. Alibart, D. Vuillaume, O. Bichler, C. Gamrat,
and B. Linares-Barranco, “Plasticity in memris-
tive devices for spiking neural networks,” Fron-
tiers Neurosci., vol. 9, pp. 1-16, Mar. 2015.

[117] N. Panwar, B. Rajendran, and U. Gangu-
ly, “Arbitrary spike time dependent plasticity
(STDP) in memristor by analog waveform engi-
neering,” IEEE Electron Device Lett., vol. 38,
pp. 740-743, June 2017.

[118] Y.-F. Wang, Y.-C. Lin, I.-T. Wang, T.-P. Lin, and
T.-H. Hou, “Characterization and modeling of
nonfilamentary Ta/TaOx/TiO2/Ti analog syn-
aptic device,” Scientific Rep., vol. 5, p. 10,150,
Sept. 2015.

[119] S. R. Nandakumar, M. Le Gallo, I. Boybat, B.
Rajendran, A. Sebastian, and E. Eleftheriou.
(2017, Dec.). Mixed-precision training of deep
neural networks using computational memory.
arXiv. [Online]. Available: https://arxiv.org/
abs/1712.01192

[120] S. Kim, M. Ishii, S. Lewis, T. Perri, M. Bright-
Sky, W. Kim, R. Jordan, G. Burr, N. Sosa, A.
Ray, J.-P. Han, C. Miller, K. Hosokawa, and C.
Lam, “NVM neuromorphic core with 64k-cell
(256-by-256) phase change memory synaptic
array with on-chip neuron circuits for continu-
ous in-situ learning,” in Proc. IEEE Int. Electron
Devices Meeting (IEDM), 2015, p. 17.

[121] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and
H. S. P. Wong, “A neuromorphic visual sys-
tem using RRAM synaptic devices with sub-pj
energy and tolerance to variability: Experimen-
tal characterization and large-scale modeling,”
in Proc. Int. Electron Devices Meeting (IEDM),
2012, pp. 10.4.1-10.4 4.

[122] S. B. Furber, F. Galluppi, S. Temple, and L. A.
Plana, “The SpiNNaker project,” Proc. IEEE,
vol. 102, pp. 652-665, May 2014.

[123] B. Chen, X. Wang, B. Gao, Z. Fang, J. Kang, L.
Liu, X. Liu, G-q Lo, and D-I Kwong, “Highly
compact (4F2) and well behaved nano-pillar
transistor controlled resistive switching cell for
neuromorphic system application,” Scientific
Rep.,vol. 4, p. 6863, May 2015.

[124] V. Ostwal, R. Meshram, B. Rajendran, and U.
Ganguly, “An ultra-compact and low power neu-
ron based on SOI platform,” in Proc. Int. Symp.
VLSI Technology, Systems and Application (VLSI-
TSA), 2015, pp. 1-2.

[125] D. Garbin, M. Suri, O. Bichler, D. Querlioz, C.
Gamrat, and B. DeSalvo, “Probabilistic neu-
romorphic system using binary phase-change
memory (pem) synapses: Detailed power con-
sumption analysis,” in Proc. 13th IEEE Int. Conf.
Nanotechnology (IEEE-NANO), 2013, pp. 91-94.

[126] D. Garbin, O. Bichler, E. Vianello, Q. Raf-
hay, C. Gamrat, L. Perniola, G. Ghibaudo, and
B. DeSalvo, “Variability-tolerant convolutional
neural network for pattern recognition applica-
tions based on oxram synapses,” in Proc. IEEE
Int. Electron Devices Meeting (IEDM), 2014, pp.
28.4.1-2844.

[127] A. Sengupta, A. Ankit, and K. Roy, “Perfor-
mance analysis and benchmarking of all-spin
spiking neural networks (special session paper),”
in Proc. Int. Joint Conf. Neural Networks
(IJCNN), 2017, pp. 4557-4563.

[128] W. Nicola and C. Clopath, “Supervised learning
in spiking neural networks with FORCE train-
ing,” Nature Commun., vol. 8, no. 1, pp. 1-15,
2017.

[129] D. MacKay, Information Theory, Inference and
Learning Algorithms. Cambridge, U.K.: Cam-
bridge Univ. Press, 2003.

[130] R. Gutig and H. Sompolinsky, “The tempotron:
A neuron that learns spike timing-based deci-
sions,” Nature Neurosci., vol. 9, pp. 420-428,
Mar. 2006.

N

SEPTEMBER 2018 | IEEE NANOTECHNOLOGY MAGAZINE | 35



