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BBrain-inspired computing is 
attracting considerable attention because 
of its potential to solve a wide variety of 
data-intensive problems that are difficult 
for even state-of-the-art supercomput-
ers to tackle. The ability of the human 
brain to process visual and audio inputs 
in real time and make complex logical 
decisions by consuming a mere 20 W 
makes it the most power-efficient com-

putational engine known to man. While 
state-of-the-art digital complimentary 
metal–oxide–semiconductor (CMOS) 
technology permits the realization of 
individual devices and circuits that mimic 
the dynamics of neurons and synapses in 
the brain, emulating the immense paral-
lelism and event-driven computational 
architecture in systems with comparable 
complexity and power budget as the 

brain, and in real time, remains a formi-
dable challenge.

In the past decade, machine learn-
ing algorithms inspired by the brain’s 
capability to learn and adapt based on 
the information it receives have made 
significant strides in achieving superhu-
man performance for several benchmark 
pattern recognition and analysis tasks [1]. 
These algorithms have caused a paradigm 
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shift from the static stored program algo-
rithmic approach to a more data-driven 
adaptive model development approach to 
make decisions or predictions. Based on 
the underlying statistical relationships of 
the observed data, these models adapt to 
make more accurate predictions. 

Machine-learning algorithms range 
from simple linear regression models 
to multilayered deep neural networks 
(DNNs). DNNs are a class of artif i-
cial neural networks (ANNs) that have 
achieved considerable success in recent 
years due to the development of efficient 
training algorithms, improved compu-
tational capabilities, and access to vast 
troves of training data. Such DNNs 
mimic the high-level organizational 
architecture of the brain because the 
processing units (neurons) are stacked 
in layers, with adjacent layers intercon-
nected via adjustable weights (synapses). 
Each neuron receives a weighted sum 
of outputs from a subset of neurons in 
the previous layer and creates an output 
based on a nonlinear transformation. 
The weights of the network are trained 
to perform specific tasks based on the 
input data in a supervised or unsuper-
vised manner. 

With unsupervised learning, the data 
fed to the network has no labels and is 
used to extract general features from the 
data. In supervised learning, the network 
is trained with a labeled set of training 
data and the mismatch between network 
response and the label is used to determine 
a weight update that will minimize the 
error. Stochastic gradient descent (SGD)-
based back-propagation algorithms [2] are 
commonly used for supervised training of 
multilayer (deep) neural network architec-
tures. The multilayer structure combined 
with the nonlinear processing of neurons 
enables DNNs to tackle complex classifica-
tion problems. Typical artificial neurons 

use differentiable nonlinearities for the 
ease of back-propagation-based weight 
update determination.

However, the nonlinear dynamics of 
neurons in the human brain are more 
complex. In a simplif ied picture, each 
neuron integrates the current it receives 
via the receptors on its dendrites, caus-
ing its membrane potential to rise above 
the resting potential. When the potential 
exceeds a threshold, an action poten-
tial, or spike, is issued, which propagates 
along the axon of the neuron. The axons 
are connected to the downstream neu-
rons via synaptic junctions; the spikes 
will then induce currents proportional 
to the synaptic strength in the post-
synaptic neurons. Each neuron in the 
human neocortex receives input spikes 
from approximately 104 other neurons, 
with each neuron spiking at a sparse rate 
between 0.1 and 100 Hz [3], [4]. This 
parallelism and sparse activity combined 
with the temporal integration property 
is believed to make the brain a pow-
er-eff icient and error-tolerant decision 
maker. Artificial spiking neural networks 
(SNNs) attempt to mimic the previously 
mentioned features of the brain such as 
spike-based data encoding, event-trig-
gered processing, and temporal process-
ing of data to realize energy-eff icient 
learning networks [5].

A key requirement of brain-inspired 
neural networks is the ability to pro-
cess several streams of data and its fea-
tures in parallel. Studies indicate that 
there is a direct correlation between the 
computational capabilities of these net-
works and their size (depth), and the 
amount of data used to train them [6], 
[7]. As a result, neural network training 
is computationally intensive and con-
sumes huge amounts of time and ener-
gy. Furthermore, because of the large 
number of network parameters and size 

of the training data, network training 
using conventional Silicon microproces-
sors involves constant shuttling of data 
between the physically separated proces-
sor and its memory units, making the 
von Neumann bottleneck a significant 
limitation in achieving good perfor-
mance. Also, the temporal processing of 
parallel data streams in SNNs makes sim-
ulating them in the conventional com-
puter architecture very time consuming. 

Platforms based on f ield-program-
mable gate arrays, embedded processors, 
and graphical processing units (GPUs) 
have been employed for the simulation 
of large SNNs and DNNs [8]. However, 
they are often power hungry, less scal-
able, and limited by the high data trans-
fer rates, making them highly inefficient 
compared to the human brain. However, 
recent progress in nanoscale materials 
and devices has opened up possibilities 
for developing compact memory device 
arrays that are amenable to data storage, 
modification, and in-memory computa-
tion, buoying the hope for a single-chip 
or system-level solution that implements 
large neural networks approaching the 
efficiency of the brain.

In this article, we describe some key 
modeling aspects of SNNs and review 
the various physical aspects of the 
nanoscale devices that could be exploit-
ed to develop energy-eff icient parallel 
architectures for implementing these 
networks. We also discuss key advanc-
es toward realizing such brain-inspired 
devices and the challenges in the path to 
full-system demonstrations.

SNNs
Neural network models can be classi-
fied into three generations, as illustrated 
in Figure 1. These networks mimic the 
multilayered architecture of the human 
brain with its high-fan-out connectivity, 
though the behavior of the neurons dif-
fers significantly in the three generations. 
In the first generation perceptron, the 
output of a neuron is binary (0, 1) and is 
obtained by a simple thresholding of the 
weighted synaptic input. In the second 
generation models extensively used in 
deep learning today (commonly referred 
to as ANNs), the output of a neuron can 
be a real number, obtained as a weighted 
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synaptic input and transformed using a 
nonlinear function such as the tanh or 
the sigmoid function. These network 
models are highly efficient for process-
ing stored data or snapshots of events. 
However, for processing temporal real-
time data, the human brain offers an 
eff icient signal-encoding paradigm in 
which information is encoded in the time 
of binary spike events. Essentially, each 
neuron can be thought of as a leaky inte-
grator of the input current, and the inte-
grated signal is used to determine the 
time of spike [9].

While the behavior of real neu-
rons is mediated by complex ion chan-
nel dynamics, we will now describe the 
essential mechanisms of spike initiation 
and how these are used to inspire the 
development of simplified neuron models 
capturing some essential signal encod-
ing characteristics. We will also discuss 
the plasticity behavior and associated 
models for synapses, as it is crucial to 
understanding the learning mechanisms 
necessary for creating SNNs capable of 
performing useful cognitive tasks.

NEURON MODELS
The f irst complete, biologically plau-
sible model of the spiking neuron was 
developed by Hodgkin and Huxley, and 
incorporates the detailed dynamics of 
the membrane potential and the Na, K, 
and leak ion channels in a set of four cou-
pled differential equations [10]. However, 
this model is not suitable or necessary for 
engineering applications, and several sim-
plified models have been proposed based 
on model-order-reduction strategies. The 

second-order model proposed by Izhikev-
ich [11] and the adaptive exponential 
integrate-and-fire (IF) model proposed 
by Brette and Gerstner [12] are suffi-
ciently rich to capture most of the spiking 
dynamics observed in biological neurons.

The most computationally simple 
spiking-neuron model is that of the leaky 
integrate-and-fire (LIF) model [13]. The 
LIF model represents the potential of 
a neuron as the voltage across a capaci-
tor connected in parallel with a leaky 
conductance path and is charged by 
incoming input currents. The membrane 
potential ( )V t  evolves according to the 
differential equation

( )
( ( ) ) ( ).C dt

dV t
g V t E I tL L syn=- - + �(1)

When ( )V t  exceeds a threshold ,VT

a spike is issued and transmitted to the 
downstream synapses; the membrane 
potential is reset to its resting value EL  
after the spike. C  and gL  model the 
membrane’s capacitance and leak con-
ductance, respectively. Biological neurons 
enter a refractory period immediately after 
a spike is issued, during which another 
spike cannot be issued. This can be imple-
mented by holding the membrane poten-
tial at ( )V t EL=  for a short refractory 
period, ,tref  after the issue of a spike. Note 
that the LIF model is a special case of 
the more general Spike Response Model 
commonly used in neuroscience literature 
[14]. IF neuron models, which neglect 
the leak term, are also used in different 
SNN demonstrations, where they oper-
ate by directly integrating the incoming 
spikes [15], [16].

SYNAPSE MODELS
While neurons issue spikes that are the 
tokens of information processing in the 
brain, it is the conductivity of synaptic 
junctions and its modulation that deter-
mines the communication pathways in 
the brain. Synapses are junctions between 
the axon of a transmitter neuron and the 
dendritic terminals of the receptor neu-
rons. These junctions regulate the flow 
of signals between the neurons through 
the issue of neurotransmitters [17]. The 
released neurotransmitters bind to the 
postsynaptic neuron, allowing ionic cur-
rent to flow into the downstream neuron 
and it is this feature that is essentially 
modeled in artificial neural models.

In the first two generations of neu-
ral network models, synaptic strength is 
modeled as a real number (positive or 
negative) and is adjusted based on various 
learning rules to optimize a cost function. 
In artificial SNNs, the synapse is typi-
cally modeled as a filter, which converts 
incoming spikes to postsynaptic current 
waveforms, and is scaled by a real-valued 
synaptic strength. The filter kernel of the 
synapse, ( ),ta  is typically modeled using 
a single or double-decaying exponential 
function or a low-pass filter response [18], 
[19]. The spikes arriving at a synapse hav-
ing a strength (weight) w  will generate a 
postsynaptic current ( )I tsyn6 @ in its down-
stream neuron, given by the expressions

	 ( ) ( ) ( )c t t t t
i

i )d a= -/ � (2)

and

	 ( ) ( ),I t w c tsyn #= � (3)
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FIGURE 1 Three generations of neural network models. 
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where ti  denotes the time of issue of 
the ith  incoming spike and )  is the 
convolution operator. Note that there 
is a strong nonlinearity between the 
times of spikes issued by the LIF neu-
ron and the times of spikes arriving on 
its incoming synapses, due to the reset 
after each spike. In (2) and (3), the syn-
aptic current does not depend on the 
membrane potential of the postsynaptic 
neuron, although this is an approxima-
tion, as it is indeed a function of the 
difference between the reversal potential 
and the membrane potential of the post-
synaptic neurons in biological networks.

Biological synapses and axons have a 
delay associated with them for transport-
ing spikes to the downstream neurons 
[20]. Several efforts on developing learn-
ing algorithms have also made use of 
these delays as adjustable parameters in 
addition to the synaptic weights [21], 
[22]. It has also been shown that the 
presence of synaptic delays in SNNs 
increases their information capacity [23], 
[24]. Various neuromorphic chips emu-
lating SNNs also implement axonal and 
synaptic delays as programmable features 
of the network [25], [26].

GENERALIZED LINEAR MODELS
While the previously described models are 
useful engineering abstractions for emulat-
ing network behavior, they fail to capture 
the statistical characteristics of spike trains 
obtained from intra/extracellular physi-
ological readings. Considering the fact 
that neurons exhibit stochastic variability, 
probabilistic models are exhaustively used 
in neuroscience literature [28]. In an effort 
to capture the statistical dynamics of bio-
logical neurons, generalized linear models 
(GLMs) based on a linear-nonlinear Pois-
son model have been proposed [29]. In 
GLMs, linear functions of the spike stimu-
lus (input) and generated spike history are 
nonlinearly transformed to determine the 
spike response of the neuron, as shown in 
Figure 2(a). GLMs have been successful in 
mimicking single, as well as multispiking, 
neuronal readings from different regions of 
the brain [27], [29], and [30] [Figure 2(b)–
(e)]. Moreover, these models may allow for 
the development of mathematically trac-
table forms of learning rules for SNNs [31].

SYNAPTIC PLASTICITY
Neurobiological studies have shown that 
the strength of the synapses undergoes 

changes depending on the activity patterns 
of its upstream and downstream neurons 
[17]. Depending on the nature of the exci-
tation, some synaptic modifications last 
only for a few seconds or minutes (short-
term plasticity), whereas some changes 
persist for much longer durations (long-
term plasticity) [9]. One of the most prom-
inent adaptation rules was given by D. O. 
Hebb, who postulated that the strength 
of the synaptic connection between two 
neurons is proportional to their correlated 
spiking rates or activities [32].

However, a drawback of this rule is 
that there is no mechanism to bound the 
weights under the conditions of persis-
tent firing. The Spike-timing-dependent 
plasticity (STDP) rule can address this 
issue [33] because the weights get updat-
ed according to the precise timings of 
spikes from the pre-(tpre) and post-(tpost) 
synaptic neurons in a specific learning 
window. There are several studies show-
ing that such timing-dependent plasticity 
rules could be used in spiking networks 
for supervised and unsupervised learning 
tasks [18], [34]–[36].

Inspired by biologically observed plas-
ticity behaviors that involve the effect of 
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FIGURE 2 (a) A generalized linear model in which a neuron’s spiking rate, y(t), is nonlinearly determined by a linear function of input stimulus and 
spike history. By adjusting the shape of the stimulus and feedback kernels, a wide variety of neuronal behaviors can be generated, such as (b) 
tonic spiking, (c) phasic spiking, (d) tonic bursting, and (e) phasic bursting [27].
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neuro-modulators in addition to pre- and 
postsynaptic traces on synaptic strength 
adaptation, other learning rules have been 
proposed [37]. For instance, the Super-
Spike supervised learning rule [38] incor-
porates the error, postsynaptic neuron 
membrane potential, and presynaptic 
spike trace for calculating weight updates. 
Since standard backpropagation uses the 
same weights for both forward and back-
ward pass, which is not biologically plausi-
ble, a new learning scheme called feedback 
alignment has been proposed: one set of 
synaptic weights is used for forward pass 
and a different, randomly chosen set is 
used for backward error propagation [39]. 
This rule has been applied to train SNNs 
in an online manner, although further 
improvements are necessary to improve 
network performance [40].

In addition to these biologically in
spired learning schemes, there have been 
numerous efforts to derive learning rules 
for SNNs analytically [41]–[43]. Eff i-
cient methods have also been proposed 
to convert deep networks trained using 
backpropagation to their equivalent spik-
ing versions [15], [16], [19], [44]. SNNs 
obtained using these approaches have 
shown state-of-the-art inference accura-
cies for the benchmark ImageNet clas-
sif ication problem [44]. Highlighting 
the benefits of SNNs in terms of ener-
gy eff iciency, a near-two-times reduc-
tion in the number of operations has 
been reported compared to deep ANNs 
for benchmark problems based on the 
MNIST (Modified National Institute of 
Standards and Technology) and CIFAR-
10 (Canadian Institute For Advanced 
Research) databases.

Even though signif icant str ides 
have been made in developing learning 
algorithms for SNNs, further work is 
required to demonstrate that deep spik-
ing networks can eff iciently use the 
temporal dimension for information 
encoding and learning and to quanti-
fy their performance metrics for large 
benchmark problems.

SIGNAL ENCODING
Analogous to the brain efficiently sam-
pling real-world information using our 
sense organs, real-time data must be 
encoded into spikes for the SNNs for 

further processing. A straightforward 
approach might be to use a rate-coding 
scheme in which real numbers are scaled 
and translated into the rate of arrival of 
spikes, which can be fed to SNNs. How-
ever, rate codes are inefficient and slow 
since the neurons must effectively wait 
for a certain duration to estimate the 
firing rate and make decisions. Hence, 
several schemes have been proposed in 
which information is encoded using the 
precise spike timings, inspired by the 
brain [45], [46]. 

Latency codes encode information in 
the time to first spike after a reference 
signal. In its most efficient form, only 
the first spike is relevant and the spik-
ing neuron could be shut off by inhibi-
tion until the onset of the next stimulus. 
Phase codes are a variant of this rule in 
which the reference signal is a period-
ic oscillation and the phase of the spike 
with respect to the oscillation encodes the 
information. Such background oscilla-
tions have been observed in hippocampus, 
visual cortex, and other brain areas [47]. 

Multiplexed codes with multiple cod-
ing schemes could also be used to encode 
complementary information in different 
time scales. For example, short time-scale 
phase information may be multiplexed 
with long-duration spike rates. A recent 
work suggests using a variant of STDP 
known as fatiguing STDP to learn in 
the presence of multiplexed codes such 
as timing and rate [48]. Moreover, the 
noise in spike codes may be reduced by 
using homogeneous populations of neu-
rons to represent the same information 
(population coding).

Inspired by these encoding mecha-
nisms in the brain, hardware sensors have 
also been used for event-based represen-
tations. The dynamic vision sensor cam-
era encodes only pixel-level changes from 
motion, instead of sending entire frames 

at a fixed rate [49]. Similarly, the silicon 
cochlea chip generates activity patterns in 
different frequency ranges in an address 
event representation format from stereo 
audio signals [50].

SPECIAL-PURPOSE HARDWARE
The high-fanout architecture in the brain 
(and also in ANNs) enables multiple 
streams of data that encode different spa-
tial and temporal entities to be integrated 
in parallel to make decisions. Howev-
er, modern computers are designed for 
sequential processing based on the von 
Neumann architecture. While central 
processing units (CPUs) and GPUs can 
be used to simulate this parallelism by 
sequential processing of information and 
storing the intermediate results in memo-
ry, this is highly inefficient for simulating 
large networks, which has prompted the 
search for better architectural implemen-
tations for emulating brain-inspired net-
works efficiently.

There are two energy-intensive opera-
tions in neural network emulation: 1) 
parallel signal propagation, which is 
weighted according to synaptic strength 
and summed based on network con-
nectivity, and 2) event-driven updates of 
synaptic weights across multiple layers 
of the network. Various neuromorphic 
chips have been demonstrated over the 
past five years that achieve these opera-
tions by trying to address the von Neu-
mann bottleneck [25], [26], [51], [52]. 
The architecture in most of these chips is 
based on a tiled array of crossbars, where 
small blocks of synaptic memory arrays 
(using SRAM cells) are tiled in a two-
dimensional array, such that networks for a 
wide variety of applications can be mapped 
onto them. Figure 3 illustrates the tiled-
array concept used in the million-neuron 
TrueNorth chip from International Busi-
ness Machines Corporation (IBM) and 

GLMs have been successful in mimicking 
single, as well as multispiking, neuronal 

readings from different regions of the brain.
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the high-level architecture of the digital 
CMOS Loihi learning chip developed by 
Intel using a 14-nm CMOS process for 
realizing SNNs.

While these CMOS-based designs 
illustrate the potential and feasibility 
of using these special-purpose chips for 
implementing a wide variety of cogni-
tive tasks [53], high-level design studies 
suggest that signif icant improvements 
in eff iciency are possible if nanoscale 

devices could be engineered specifically 
for emulating the function of neurons 
and synapses [54]. Nanoscale cross-
point arrays, with neuronal devices 
at the periphery and resistive memory 
devices as synapses, have been used to 
implement ANNs (nonspiking) for pat-
tern classification problems [55], [56]. 
These networks perform matrix multi-
plication of neuronal inputs (Vj  denot-
ing the output of neuron j  in the input 

layer) with the synaptic weights (Gij  
denotes the conductivity of the synapse 
between neuron j  in the input layer 
to neuron i  in the output layer) utiliz-
ing Kirchhoff’s law of current addition 
according to the relation

	 .I G Vi ij j
j

=/ � (4)

The use of crossbars reduces the mul-
tiplication complexity from ( )NO 2  to 
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( ),1O  where N  is the number of neu-
rons in a layer (Figure 4).

The tiled crossbar-array architecture 
is ideally suited to implement large spik-
ing networks because the computation 
within the core can be performed in the 
analog domain and the only signal to 
be transmitted between cores are binary 
spike events. Neurons in a core can con-
nect to synapses in other cores by storing 
the target axonal addresses in a lookup 
table and utilizing an on-chip routing 
network. The routing network could 
be asynchronous or driven by a high-
speed clock (compared to the emulation 
dynamics of the neurons and synapses), 
ensuring that all spikes are routed to its 
destinations faithfully accounting for any 
synaptic delays [57], [58].

MEMRISTIVE DEVICES
There have been extensive efforts direct-
ed toward engineering nanoscale devices 
supporting programmable, nonvolatile 
resistance states for solid-state memory 
applications. Some of these devices also 
exhibit memristive history-dependent 
current versus voltage (I-V) characteris-
tics [64], making them ideal candidates 
for representing the IF dynamics of neu-
rons as well as the plastic synaptic state 
in neuromorphic circuits. Note that the 
key signature of memristance is a pinched 
hysteresis in the I-V response of the 
device [65]. Next, we discuss some of the 
emerging nanoscale device technologies 
that exhibit such desirable characteristics.

PHASE-CHANGE MEMORY
Phase-change memory (PCM) is one 
of the most mature nonvolatile memo-
ry technologies today and is based on 
chalcogenide alloys such as GeTe and  
Ge2Sb2Te5, [66], [67]. The reversible 
electrical-resistance switching based on 
phase transition in these materials was 
discovered by Ovshinsky in 1968 [68]. 
If large currents (with densities exceed-
ing 106  A/cm2) are passed through 
polycrystalline-thin films of the material 
(typically <100-nm thick) sandwiched 
between inert metal electrodes suff i-
cient to raise the temperature above 
the melting point (>600 °C), and if the 
input excitation is subsequently removed 
quickly (within a few nanoseconds), the 

molten region can be quenched into an 
amorphous volume [Figure 5(a)]. Since 
the resistivity of the amorphous phase 
of the material is much higher compared 
to the crystalline phase, the device is 
effectively switched to a high-resistance 
state by this electrical pulse. In the high-
resistance state, if the applied voltage 
is such that the electric field across the 
amorphous volume exceeds a critical 
field, the device exhibits a negative dif-
ferential resistance transition accompa-
nied by a rapid increase in the current 
through the device. With appropriately 
chosen programming pulses that raise 
the film temperature above the crystalli-
zation temperature (but below the melt-
ing point), the amorphous region can 
be annealed back to its polycrystalline 
phase, and the low-resistance state of the 
device can be restored.

PCM dev ices exh ibit excel lent 
endurance (>1012 programming cycles) 
and retention (>10 years at 85 °C) char-
acteristics [69], [70]. The switching 
speed of the device lies in the range 

of a few tens to hundreds of nanosec-
onds. Furthermore, the crystallization 
of the amorphous volume could be 
implemented in an incremental manner 
by using partial-crystallization puls-
es, enabling the device conductance to 
be gradually increased to higher lev-
els. However, the melt-quench process 
is less gradual, making it diff icult to 
reduce the conductance levels gradu-
ally. As a result, a single PCM cell could 
be used to mimic gradual potentiation 
observed in biological synapses. 

If two PCM devices are used in a 
differential conf iguration (i.e., Geff =

),G G-+ -  then both gradual potentia-
tion and depression can be achieved, by 
incrementally increasing one of the G+ 
or G- devices with a periodic reinitial-
ization of the conductance of saturat-
ed devices [71]. There are many studies 
showing gradual conductance evolution 
and STDP behavior in PCM devices [72] 
[73] and using them for supervised and 
unsupervised training of ANNs [74] and 
SNNs [75].
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Neurons in a core can connect to synapses 
in other cores by storing the target axonal 

addresses in a lookup table and utilizing  
an on-chip routing network.
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RESISTIVE RANDOM- 
ACCESS MEMORY
Resist ive random-access memory 
(RRAM ) devices exhibit conduc-
tance modulation based on electric 
field-driven rearrangement of mobile-
charged species in a dielectric mate-
rial sandwiched between two metal 
electrodes [76]. The electrochemical 
process mediating the conduction 
modulation can be anion induced or 
cation induced. Anion-type RRAMs 
are characterized by low-resistance 
conductance pathways formed by the 
migration of oxygen vacancies. This 
low-resistance state can be reversed 
by applying an electric f ield in the 
opposite direction causing the re
combination of oxygen ions with the 
vacancies and switching the device 
back to a high-resistance state. Anion-
type RRAMs often require an inert 
electrode, which are oxygen-ion active 
or can act as an oxygen-ion reservoir 
during resistance switching. Dielec-
tric thin films such as ,TiOx  ,HfOx  

,SiOx  ,TaOx  ,AlOx  and WOx  have 
demonstrated this kind of oxygen-
vacancy-mediated resistive switching.

Cation-type RRAM s are often 
characterized by a metallic filament 
connecting the top and the bottom 
metal electrodes following a redox 
reaction; they are also referred to as 
conductance bridge RAM (CBRAM) 
devices [Figure 5(b)] [77]. These 
devices require an active top elec-
trode, e.g., Ag (silver) and Cu (cop-
per), whose ions are mobile in the 
dielectric under an applied field. Dur-
ing electrical programming, the metal 
ions will oxidize, migrate into the 
dielectric, and will get reduced at the 
other electrode, forming a filamen-
tary path. A reversal of the applied 
field will result in ionic motion in the 
opposite direction, breaking the fila-
ment and switching the device back to 
a high-resistance state. CBRAMs have 
a high on-off ratio with lower operat-
ing voltages, compared to that of the 
oxygen-vacancy RRAMs.

The low-resistance conductance 
paths formed in the dielectrics are 
nanoscale filaments, which result in the 
observation of quantized-conductance 
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states [61], [76], and [78]. RRAMs are 
extensively researched for their grad-
ual conductance change and as synaptic 
devices [79]. The material combination, 
device geometry, interface effects, doping, 
annealing, and other fabrication techniques 
could be engineered to attain gradual 
resistance transitions in these devices [80], 
[81]. For example, W/Al/Pr0.7Ca0.3MnO3 
(PCMO)/Pt-based RRAM show a gradual 
conductance change due to the oxidation 
and reduction of AlOx  at the Al/PCMO 
interface [82], and this dielectric-based 
device has been used for STDP demon-
strations using biomimetic programming 
waveforms [83]. In a recent work, the fila-
mentary pathway was confined to engi-
neered dislocations in a SiGe epitaxial layer, 
resulting in gradual conductance changes 
in the device and improvements in reten-
tion, reliability, and endurance [84].

MAGNETIC RAM
Magnetic RAMs store information in the 
relative orientation of the magnetization 
of two ferromagnetic plates separated by a 
thin insulating material resulting in a mag-
netic tunnel junction (MTJ) [85]. One 
of the plates is of fixed magnetic orienta-
tion, while the other is a free layer, whose 
magnetic orientation can be altered by 
an external field. The plates could be in 
parallel or antiparallel orientation at equi-
librium, resulting in a high or low conduc-
tance state respectively for the junction. 
The magnetization of the layer is retained 
in the absence of an applied voltage, allow-
ing stable binary data storage in the device.

A variant of the MRAM is the spin-
transfer torque (STT) RAM, with lower 
power consumption and more scalability. 
When directed to the free layer, a spin-
polarized current, which is created by 
passing it through the fixed magnetic 
layer, results in spin-angular momen-
tum exchange because of the interaction 
between the spins of local magnetization 
of the layer and that of the free electrons. 
The free-layer magnetic orientation can 
be switched to a parallel or antiparallel 
state depending on the direction of the 
current [86], [87]. While STT-RAMs 
predominantly show binary states, there 
has also been an increased effort in mak-
ing domain wall (DW)-based devices to 
store multiple states [88].

Furthermore, by either adjusting the 
programming-current amplitude or the 
pulsewidth below the critical conditions 
for switching, the probability of switch-
ing can be tuned [Figure 5(c)] [62], [89], 
[90]. This probabilistic switching behav-
ior could be used to realize a gradual 
conductance change or STDP in a syn-
apse composed of multiple devices con-
figured in a parallel configuration [91].

FERROELECTRIC RAM
Ferroelectric RAMs use a thin layer of 
ferroelectric material sandwiched between 
two metal electrodes. The ferroelec-
tric polarization state of the material is 
switched between two stable states for 
conventional solid-state memory applica-
tions [92]. Multiple regions of different 
polarization vectors called ferroelectric 
domains may be present in a ferroelectric 
sample [93]. Recently it has been demon-
strated that the resistance of BaTiO3(2 nm)/
La0.67Sr0.33MnO3(30-nm)-based ferro-
electric tunnel junctions can be tuned 
based on the relative fraction of the fer-
roelectric domains that points toward 
one electrode or the other [94]. It is pos-
sible to alter the domain population by 
the application of electrical pulses to the 
electrodes, thereby tuning the electrical 
resistivity. This concept has been used to 
mimic synaptic plasticity in supertetrago-
nal BiFeO3 tunnel barriers using electri-
cal programming waveforms [95].

ORGANIC MEMORIES
Memristors based on organic compounds 
are attractive because of the possibil-
ity of inexpensive solution-processing-
based fabrication and chemical tunability 
of their properties. These devices have 
an organic thin film that is sandwiched 
between electrodes. Because of the com-
plex nature of the compounds involved, 
the physics behind the switching mecha-
nism is often unclear. Structural changes, 
redox reaction, and field-driven polariza-
tion have been proposed to explain the 
switching transitions in these materials 
[63], [96], [97]. However, except for a 
recent demonstration [Figure 5(d)] [63], 
these devices generally suffer from low 
endurance and stability.

In a study based on organic terpyri-
dyl-iron polymer-based memristor [96] 

gradual conductance changes, short-term 
potentiation and long-term potentiation 
have been demonstrated, taking advan-
tage of the drift of the programmed states. 
Although these devices require high 
switching voltages (~3 V) and long (mil-
lisecond) switching times, such explo-
rations demonstrate the feasibility of 
realizing the complex dynamics of syn-
apses and neurons in potentially inexpen-
sive hardware platforms.

NANOSCALE SPIKING NEURONS
While there has been extensive research 
to mimic the complex dynamics of neu-
rons using subthreshold CMOS circuits 
[101], nanoscale device-based approach-
es offer the potential for further reduc-
tions in area and power, with significant 
enhancements to the scalability of neu-
romorphic designs. Recently, there have 
been a few single-device designs and 
demonstrations to mimic the behavior of 
leaky IF neurons.

INSULATOR-METAL  
TRANSITION NEURONS
Two-terminal devices based on transi-
tion-metal oxides such as VO2 and NbO2, 
exhibit insulator-metal transition (IMT) 
mediated by thermally or electrically trig-
gered phase transitions in nanosecond 
time scales [102]. This phase transition is 
volatile, and as the triggering source (volt-
age/temperature) falls below a threshold, 
the device switches back to its initial state. 
This behavior could be used to design 
oscillatory circuits [Figure 6(a)] and have 
been proposed to mimic the neuronal 
spiking behavior [98], [103]. The leaky-
integration behavior could be incorpo-
rated by using an R—C low-pass filter at 
the gate of the access transistor connected 
to the IMT device. As the integrated gate 
voltage exceeds a threshold, the device 
switches between a high-resistance insu-
lating phase to a low-resistance metal-
lic phase in an oscillatory manner until 
the gate voltage subsides below a certain 
threshold. IMT-based neurons have been 
used as stochastic sampling machines to 
improve the generalization accuracy in 
MNIST handwritten image classification 
problems and project a 30-times power 
reduction compared to a 22-nm CMOS-
ASIC implementation [104].
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PCM NEURONS
Similarly, PCM-based stochastic neu-
rons have been proposed in which the 
phase configuration of the chalcogen-
ide film is used to represent the neuron 
membrane potential [Figure 6(b)] [99]. 
The input current integrated by an LIF 
neuron is supplied as short crystalliz-
ing pulses, which gradually reduces the 
amorphous volume inside the device and 
can represent the integration behavior of 
the membrane potential. Once the device 
conductance analogous to the membrane 
potential crosses a threshold, the device 
is reset by a RESET programming pulse. 
Separate devices could be used for excit-
atory and inhibitory input accumulation; 

therefore, a single neuron may be com-
posed of more than one PCM device. 
Mechanisms external to the device 
dynamics are necessary to incorporate 
the neuron leak. Since the crystallization 
process in PCM devices is stochastic, 
the overall IF dynamics of the neuron is 
also stochastic.

RRAM NEURONS
Based on the previously described inte-
gration and reset principle, RRAMs have 
also been shown to mimic the features 
of a spiking neuron when operated in 
the low-current regime [105]. Recently, 
PCMO-based RRAM devices have been 
demonstrated as (IF) neurons in SNNs 

for solving a pattern classification prob-
lem [Figure 6(c)] [100]. These devices 
have also been able to mimic the spike 
frequency adaptation characteristics of 
biological neurons.

SPINTRONIC NEURONS
Various forms of neuronal behaviors rang-
ing from simple-step (nonspiking) neu-
rons to stochastic-spiking neurons have 
been demonstrated in spin-based devices 
[88]. Studies have shown that domain 
wall (DW)-based devices have an input 
current-integrating feature through the 
motion of the DW making them ideal for 
mimicking an IF-spiking neuron. More 
than a 1,000-fold reduction in energy 
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consumption for MNIST and CIFAR-10 
image classification compared to 45-nm 
CMOS-based designs have been projected 
using a hybrid device-circuit-architecture 
co-simulation framework.

MTJ-based spintronic oscillators 
have been used to mimic biological neu-
rons and interneuron communication 
through magnetic-field coupling [106]. 
They have also been experimentally dem-
onstrated for spoken digit-recognition 
tasks with accuracies close to state-of-
the-art neural networks.

NANOSCALE SYNAPSES
Synapses and their plasticity are key to 
memory, learning, and adaptation in 
neural networks. From an information 
storage perspective, biological synapses 
in the hippocampus are estimated to 
be capable of storing 26 distinguish-
able synaptic states, corresponding to 
4.7 bits [108]. The excitatory postsynap-
tic current measurement in [33] suggests 
that synaptic conductivity can support a 
dynamic range (on-off ratio) of at least 
50. In addition to STDP, short-term 
plasticity observed in synapses also seem 
to have computational roles in biological 
networks [109]. While the true compu-
tational advantages of STDP and simi-
lar biological learning mechanisms are 
still unclear, there are attempts to relate 
STDP-like rules to SGD-based super-
vised learning algorithms [110]–[112]. 
In this section, we review how some of 
these synaptic properties can be efficient-
ly implemented by the various nanoscale 
devices discussed previously.

Because of their ability to retain a 
programmed state and modulate their 
conductivity in an activity- or history-
dependent manner, memristive devices 
are ideally suited to represent plastic syn-
apses in hardware implementations. It 
is desirable that the device exhibit sym-
metric and gradual conductance changes 
with an appropriate choice of program-
ming pulses so that they naturally accu-
mulate the conductance changes dictated 
by local spike events.

Most experimental memristors whose 
conductance can be programmed to 
analog states are modulated by atomic/
ionic rearrangement, which is stochas-
tic and prone to read noise. Examples 

of  memristive devices that exhibit grad-
ual conductance change include PCM 
and RRAMs based on PCMO, ,HfOx  

,TiOx  and so on. Irrespective of the 
device geometry, material systems, and 
the switching mechanisms, none of these 
experiments have demonstrated more 
than 4–5 bits per device. Furthermore, 
the conductance change achievable with 
simple programming pulses is state 
dependent and asymmetric. However, 
such stochasticity may not be too detri-
mental for implementing online learn-
ing systems; in fact, similar stochastic 
characteristics are measured in biological 
synapses as well and may very well play a 
key role in fuzzy information processing 
in the brain. Both artif icial and spik-
ing neural networks may also leverage 
this stochasticity to perform useful com-
putations, as the final decisions of the 
network are dependent on the relative 
magnitude and overall distribution of a 
large number of synapses, rather than the 
absolute value of any single device.

On the other hand, memristors based on 
spin orientation and filamentary switch-
ing can only be reliably programmed 
to two states. These binary devices also 
exhibit probabilistic switching behav-
iors around their switching threshold 
and could be exploited to realize gradual 
conductance change and STDP behavior 
in a multimemristor configuration [91]. 
External random number generators and 
pulse amplitude modulation have been 
suggested to control the binary switch-
ing probability of CBRAM  and have 
been used in feature extraction networks 
[113], [114]. In another recent study, 
two binary MTJ devices whose switching 

probabilities were externally controlled 
were used to implement a synapse, with 
one of the devices implementing short-
term plasticity while the other imple-
mented long-term plasticity [115].

The key to realizing plastic synaps-
es using memristive devices to achieve 
online learning is to convert the weight 
updates requested by the training algo-
rithm into reliable conductance changes 
in the device using suitable programming 
waveforms (Figure 7). In STDP-based 
training, spike-timing intervals must be 
transformed into amplitudes and polarity 
of the effective programming pulses. 

One way to achieve this is to use two 
waveforms of carefully designed shapes 
to be applied from the two terminals 
of the device so that the conductance is 
altered only when they overlap in time. 
The programming waveform could be 
engineered to realize arbitrary forms of 
STDP characteristics [116], [117]. This 
approach has been used for PCM- [73], 
OxRAM - [118], CBRAM - [79], and 
PCMO- [83] based devices. The knowl-
edge of underlying device physics and 
operating characteristics is essential to 
design effective programming waveforms 
that achieve the desired plasticity behav-
ior in an energy-efficient manner. 

Another approach used to achieve 
successful training with memristive 
device arrays is to program the devices 
only if the desired change is comparable 
to the update granularity of the device 
[119]. The smaller changes requested by 
the training algorithm could be accumu-
lated in the digital memory until it is suf-
ficiently large to be reliably programmed 
to the device.

The key to realizing plastic synapses using 
memristive devices to achieve online learning 
is to convert the weight updates requested by 

the training algorithm into reliable conductance 
changes in the device using suitable 

programming waveforms.
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NETWORK IMPLEMENTATION
Neural networks are currently simulated 
on von Neumann machines with train-
ing acceleration offered by the parallel 
processing cores of GPUs. There are two 
main motives behind the quest for build-
ing dedicated neuromorphic hardware: 
1) acceleration of machine-learning algo-
rithms for large real-world applications 
and 2) in-the-field learning for energy- 
and memory-constrained embedded 
applications. While power-hungry and 
bulky GPU clusters are clearly not suit-
able for the latter application, they are 
nonoptimal even for the former appli-
cation considering the training times 
for large networks and their associated 
power budgets. Therefore, dedicated 
hardware capable of emulating neural 
network operations in parallel in an 
accelerated and energy-efficient manner 
could transform both enterprise comput-
ing and intelligent embedded Internet of 
Things (IoT) platforms.

For hardware applications, SNNs have 
certain advantages compared to their sec-
ond-generation counterparts, especially 
for processing real-time data. Spike-based 
information encoding enables sparse 
representations of real-world data, and 
the communication of network tokens 
(spikes) through on-chip routing net-
works is clearly much more efficient than 
transporting real-valued activation val-
ues. However, the temporal dynamics of 
spiking neurons are more complex than 
ANNs and call for more dedicated paral-
lel processors. 

The SpiNNaker project, which is 
attempting to create a parallel network 
of 1 million ARM (advanced reduced-
instruction set computer machine) cores 
capable of simulating a billion neurons, 
is one approach to achieve this using 
existing technologies [122]. IBM’s True-
North chip for SNNs is a parallel com-
puting platform with 1 million spiking 
neurons and 256 million nonplastic-
SRAM  synapses fabricated in 28-nm 
CMOS [25]. By using event-based spike 
communication and optimized low-
leakage transistor technology for fabri-
cation, the platform has demonstrated 
approximately 105-times improvement 
in energy per event in computational 
eff iciency compared to conventional 
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CPUs for network emulation. However, 
this system does not support on-chip 
learning, since multibit synapses can-
not be incorporated even in state-of-
the-art technology nodes for such large 
networks within a reasonable silicon area. 
In contrast, Intel’s Loihi chip fabricated 
in 14-nm CMOS supports several on-
chip learning rules with up to 9 bits for 
each synaptic weight but can only emu-
late networks with up to 130,000 neu-
rons and 130 million synapses [26].

Herein lies the promise and poten-
tial of hardware solutions based on 
nanoscale devices. Using these nanoscale 
devices, the synaptic cell area can be 
made as small as 4F2 [123] and an IF 
neuronal-device area can be reduced to 
225F2 [124], resulting in integration den-
sities exceeding 108 neurons/cm2 and 
1010 synapses/cm2 in 10-nm nodes (F = 
29  nm). Nonvolatile-memory crossbar-
memory arrays can perform the large 
vector-matrix multiplications in ( )1O  
complexity. This enables the parallel-sig-
nal propagation in real time in the analog 
domain. Additionally, the programmabil-
ity of these nonvolatile memory devices 
makes on-chip learning feasible. It is pos-
sible to envision large, multilayered SNNs 
using tiled crossbar arrays in which the 
synaptic communication and adaptation 
is done in analog mode, and communica-
tion between cores is implemented using 
digital peripheral circuitry.

Numerous studies have demonstrated 
small SNNs on special hardware using 
memristive devices as synaptic storage 
elements and also as spiking neuronal 
units for various classification problems. 
The initial demonstration of PCM as a 
crossbar-compatible synaptic device for 
SNN has been reported in several works 
using device-conductance-response 
models [71], [72], [125]. On-chip STDP 
learning was demonstrated recently in a 
90-nm neuromorphic chip with 256 × 
256 PCM cells configured as analog syn-
apses, as illustrated in Figure 8(a) [120].

RRAM devices have also been used 
to mimic the biological mechanisms of 
precise timing-based synaptic-weight 
updates in a network of spiking neu-
rons [126]. Compared to PCM-based 
arrays, optimized RRAMs [as shown in 
the inset of Figure 8(b)] are projected to 

show energy-efficiency improvements by 
a factor of 100–1,000 [121].

Based on a hybrid device-circuit-archi-
tecture co-simulation framework, it has 
been projected that an all-spin SNN neu-
romorphic system as an inference engine 
[Figure 8(c)] can have more than 1,000-
times energy efficiency and more than a 
100-times speedup compared to a 45-nm 
CMOS baseline for multilayer SNN 
architectures for classification on datasets 
such as MNIST, CIFAR-10, and SVHNs 
(street-view house numbers) [127].

FUTURE OUTLOOK
The spike-based architecture of the 
human brain enables the efficient encod-
ing of real-time data, and parallel- and 
event-driven communication between 
neurons in a high fan-out network. 
These features also make SNNs attractive 
candidates for hardware implementation 
of cognitive computing applications.

However, in terms of computation-
al capability demonstrations, SNNs lag 
behind their second-generation counter-
parts today. This could be attributed to 
the following factors: the powerful SGD-
based back-propagation algorithms are 
not directly applicable to spiking neurons 
due to their nondifferentiable dynam-
ics; and secondly, the inherent nature 
of SNNs to process data as time-series 
events and the temporal integration of 
LIF neurons make simulating these net-
works in conventional computational 
systems highly time consuming, thus 
preventing the implementation and test-
ing of large network architectures and 
algorithms. Hence, developments in the 
domain of parallel computational archi-
tectures including dedicated hardware 
implementations that could accelerate 
SNN simulations may also advance their 
learning algorithms.

The computational capabilities of 
the SNNs are a relatively less-explored 
domain, though recent results are highly 
promising. For instance, starting from 
the initially chaotic networks of spiking 
neurons, SNNs can be trained to imple-
ment a wide variety of complex cognitive 
tasks such as reproducing the singing 
behavior of songbirds and encoding and 
replaying a movie scene [128]. Using 
the temporal domain for information 

encoding also endows a higher repre-
sentational power for spiking networks; 
a single binary threshold neuron with k 
inputs can store 2k bits of information 
[129], while a spiking neuron can store 
up to 3k bits of information [130].

However, the true potential of SNNs 
for ubiquitous IoT and other embed-
ded and enterprise applications can be 
realized only if dedicated parallel and 
energy-efficient hardware solutions can 
be developed. Though significant prog-
ress has been made on many fronts, sev-
eral challenges remain before large-scale, 
multiarray, crossbar-based nanodevice 
platforms for SNNs become a reality. 
The following are a few of these hard-
ware-related challenges.

1)	 Novel devices for supporting massive-
ly parallel and adaptive networks: 
While there is a significant body 
of work on building nanoscale 
memristive devices for mimick-
ing STDP-like plasticity or sup-
porting gradual weight updates, 
further work is required to mimic 
other key functionalities such as 
current integration at the periph-
ery, stochastic neuronal spiking 
with automatic reset and refrac-
tory period after spike, synaptic 
delays, and structural plasticity 
that enables new connections to 
be made (or deleted) between 
neurons based on activity. Today, 
these functions are implemented 
using large CMOS circuits and 
simply optimizing the crossbar 
memory for synapses will make 
these peripheral circuits the effi-
ciency limiting factor. Compact, 
nanoscale single-device solutions 
at the energy scales of biology 
for these functions will be neces-
sary to build truly integrated and 
interconnected networks of neu-
rons and synapses.

2)	 Improving the learning capacity 
of synapses: Conductance change 
granularity is a key factor in deter-
mining the trainability of hard-
ware neural networks. The process 
of training is often a search over 
an error space created in hyperdi-
mensions of synaptic weights by 
taking small increments along the 
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direction of the gradient. Depend-
ing on the complexity of the error 
surface, the step size needs to be 
small enough to reach the optima, 
and the device must support sym-
metric updates in both directions 
of conductance changes based on 
simple programming pulses. If 
devices with tunable delays can 
be designed, this may add a new 
dimension for improving the learn-
ing capacity of spiking networks 
[23], [24]. While mixed precision 
architecture in which a high-preci-
sion CMOS gradient accumulator 
compensates for the reduced-device 
precision may be used to address 
this issue, a nanoscale device-level 
solution is highly desirable.

3)	 Improving system-level reliability: 
All memristive devices that rely 
on atomic or ionic rearrangement 
exhibit intradevice and interdevice 
variability in terms of resistance 
levels, programming voltages, 
and limited programming endur-
ance and retention times. While 
materials and device optimization 
as well as better fabrication tech-
nologies could address some of 
these issues to a certain extent, 
algorithmic- and architectural-
level innovations that can mitigate 
these limitations that are inherent 
at the nanoscale will be crucial to 
guaranteeing system-level perfor-
mance and reliability.

With sufficient investments in inter-
disciplinary research, we are optimis-
tic that these challenges can be met 
and the long-awaited dream of reverse 
engineering the brain to build intelli-
gent machines that can be ubiquitously 
deployed in the field may well be realized 
in the near future.
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