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Abstract—Mobile crowdsourcing is an emerging crowdsourc-
ing paradigm, which generates large-scale sensing tasks and
sensing data. One of the major issues in mobile crowdsourcing is
how to maximize social welfare through selecting appropriate
sensing tasks for crowd workers and selecting appropriate
workers for sensing tasks such that it can improve the effec-
tiveness and efficiency of mobile crowdsourcing. This paper
proposes an incentive mechanism to maximize social welfare
for mobile crowdsourcing and, respectively, investigates worker-
centric task selection and platform-centric worker selection.
This paper applies an optimization algorithm in task selection
for mobile crowdsourcing systems. A discrete particle swarm
optimization (DPSO) algorithm for worker-centric task selection
is designed to maximize the utilities of workers. In addition,
a platform-centric worker selection method, which integrates
multiattribute auction and two-stage auction, is proposed to
maximize the utility of the platform. The performance of the
proposed incentive mechanism is evaluated through experiments.
The experimental results show that the proposed incentive
mechanism can improve the efficiency and truthfulness of mobile
crowdsourcing effectively.

Index Terms—Incentive mechanism, mobile crowdsourcing,
social welfare, task selection, worker selection.

I. INTRODUCTION

W ITH the rapid development of mobile crowd sens-
ing networks (MCSNs), mobile crowdsourcing (also

known as spatiotemporal crowdsourcing) has become a hot
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research topic in MCSNs. In the traditional crowdsourcing par-
adigm, such as the Amazon Mechanical Turk and oDesk,
the requester first submits a task to the platform and, then,
specifies the payment for crowd workers per task, as well
as the data quality that workers should provide. Mobile
crowdsourcing is an extension of the traditional crowdsourcing
systems where the participants perform their sensing tasks
through sensing information such as images, sounds, locations,
and mobility [1]. Compared with traditional crowdsourcing
systems, mobile crowdsourcing has the following advantages:
broader coverage, higher scalability, and lower deployment
cost [2]. A number of mobile crowdsourcing applications have
emerged in the online-to-offline (O2O) field, such as disaster
monitoring, traffic management, public security, logistics man-
agement, and social media [3], [4]. In mobile crowdsourcing
marketplace, crowd workers are paid to perform tasks using
their mobile devices. For example, crowd workers are recruited
to check product price in supermarkets, or to sense surrounding
environment, including traffic information, remaining parking
lots, and so on [5], [6]. In MCSNs, how to inspire workers to
participate in sensing tasks is an important research content for
improving the efficiency of MCSNs. Therefore, the research
of incentive mechanism is a research hotspot in MCSNs [7].
A mobile crowdsourcing system consists of three compo-

nents: requesters, platform, and crowd workers [8]. When
requesters issue sensing tasks, the platform will assign the
tasks to appropriate workers to maximize the utility of work-
ers. In the next step, the workers who are interested in the
assigned task will submit the bidding profile to the platform.
Based on the auction algorithms, the appropriate workers are
selected by the platform, which can maximize the utility of the
platform. The above two steps compose the incentive mecha-
nism of one mobile crowdsourcing, which can maximize social
welfare. Therefore, how to select tasks and select workers
are very important for the success of a mobile crowdsourcing
system [9].
Task selection and worker selection are the core research

problems in traditional crowdsourcing systems. In recent
years, researchers have proposed many task assignment algo-
rithms to optimize the efficiency of the systems. Generally,
the proposed algorithms can be grouped into two categories:
1) task assignment algorithms based on binary image match-
ing model [10], for which the typical applications include

2329-924X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WANG et al.: OPTIMIZATION AND AUCTION-BASED INCENTIVE MECHANISM TO MAXIMIZE SOCIAL WELFARE 415

Fig. 1. Process of selecting tasks and selecting workers.

real-time car services, such as DiDi taxi and 2) task assign-
ment algorithms based on planning model [11], where the
typical applications include logistics delivery service, such
as Baidu take-out. However, the static task assignment algo-
rithms for traditional crowdsourcing are inappropriate for
mobile crowdsourcing, since they cannot satisfy the real-
time property of mobile crowdsourcing. Thus, dynamic task
assignment methods have become the research focus in mobile
crowdsourcing. In order to maximize social welfare, selecting
appropriate workers to sense tasks was also researched by
scholars. Auction algorithms were widely applied in MCSNs
when designing the worker selection method. However, how to
dynamically select workers in complex spatiotemporal mobile
crowdsourcing should be further researched by scholars [12].
In addition, very few works utilized an optimization algorithm
to analyze the process of task assignment for mobile crowd-
sourcing systems.
In this paper, we investigate a new task assignment mech-

anism for mobile crowdsourcing in order to improve the
performance of mobile crowdsourcing, as well as to inspire
workers to participate in tasks. The incentive mechanism
composed of two phases, i.e., the worker-centric task selection
and the platform-centric worker selection.
The aim of the worker-centric task selection is to maximize

worker’s utility while the central objective is to assign suitable
tasks to a worker in order to maximize his/her utility in one-
time slot [13].
For the platform-centric worker selection, the objective is

to select suitable workers to participate in a sensing task
through an auction in order to maximize the utility of a mobile
crowdsourcing system [14].
Requesters, mobile crowdsourcing platform, and workers

constitute the mobile crowdsourcing system. The role of
the platform includes the information preprocessing module,
the incentive module, and the data processing and feedback
module. The worker-centric task selection and the platform-
centric worker selection submodules in the incentive module
play the key roles in our mobile crowdsourcing system.
In the process of selecting tasks, first, the system selects the

task sets for workers. Then, interested workers upload their
biddings to the platform for participating in the task. In the
end, the platform selects the most suitable worker for each
task [15]. To accomplish the above-mentioned procedures of
incentive mechanism, we develop a new incentive mechanism
to maximize the social welfare of MCSNs. The main contri-
butions of our paper are summarized as follows.
1) In order to adapt to the online MCSNs, and provide

more accurate tasks, we apply an optimization algorithm
when selecting tasks for crowd workers in mobile crowd-
sourcing systems and propose a discrete particle swarm
optimization (DPSO)-based algorithm that maximizes
the utility of workers [16]. Based on the Gaussian white
noise, the DPSO is improved to increase the diversity,
which can avoid generating premature convergence.

2) In order to select more appropriate workers to partic-
ipate in tasks, a novel platform-centric worker selec-
tion method by combining multiattribute auction and
two-stage auction is proposed. The platform-centric
worker selection method takes worker’s data quality,
trust degree, position similarity, and privacy sensitivity
into considerations in the process of auction.

3) The extensive experiments are carried out to evaluate
and compare the performance of our incentive mech-
anism with other methods. The experimental results
verify the advantages of our incentive mechanism.

The process of selecting tasks and selecting workers during
one-time slot is shown in Fig. 1. As shown in Fig. 1, our
proposed incentive mechanism includes two steps, i.e., task
selection step and worker selection step. In one-time slot,
the tasks are issued by the platform for workers. In the first
step (worker-centric task selection), based on the issued tasks
and a worker’s interests, the platform will recommend tasks
for the worker that can benefit the worker. For the selected
tasks, the worker will upload biddings in order to participate
in the interested tasks. In the second step (platform-centric
worker selection), based on the biddings submitted by workers,
the platform will select satisfied crowd workers for the task
that can benefit the task. The worker-centric task selection
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and platform-centric worker selection are the two steps of
the incentive mechanism for a mobile crowdsourcing system.
To assure the bottom-line benefit of workers, each worker
announces a reserve price to sell his/her service. The platform
then selects the set of winners and pays them the payments
that are no lower than the workers’ reserve prices. Through
the proposed incentive mechanism, social welfare could be
maximized.
The rest of this paper is organized as follows. Section II

introduces the related works. Section III describes the design
of the proposed incentive mechanism, which includes worker-
centric task selection and platform-centric worker selection.
Section IV gives the comparison experiments, along with
analysis and discussion of the experimental results. Finally,
Section V draws the conclusion.

II. RELATED WORKS

In recent years, many incentive mechanisms were studied
for MCSNs. Researchers studied the task assignment methods
through considering many factors, such as real-time prop-
erty [17], data quality [18], multiagent environment [19],
social relationship influence [20], trust degree [21], [22],
and privacy aware [23]–[25]. In this section, we discuss and
analyze the related works for task assignment mechanisms and
auction algorithms.

A. Task Assignment Mechanism
The typical task assignment mechanisms include the task

assignment based on matching model and the task assignment
based on the planning model. In task assignment based on
matching model, Kazemi and Shahabi [26] proposed the
method of task assignment query based on binary image
matching in static offline scenario. In this method, the crowd-
sourcing tasks and the participants are regarded as two nonin-
tersecting point sets in a binary image. The method can solve
the task assignment problem of mobile crowdsourcing in the
static offline scenario. However, the authors failed to consider
that a different worker may have different sensing qualities
for different tasks. Therefore, Kazemi et al. [27] further
proposed a quality-constraint task assignment model in order
to guarantee the sensing quality. Considering the conflicting
requirements between different tasks, She et al. [28] proposed
a conflict-aware task assignment method, which can maximize
the utility of a global match. For the application-aware factor,
Zheng et al. [29] studied the task assignment problem based on
the quality of service (QoS), which can significantly improve
the efficiency of task assignment. In addition, Cheng et al. [30]
proposed a reliable diversity-based task assignment method by
not only considering worker’s reliability but also incorporating
worker’s spatiotemporal diversity information. The aforemen-
tioned related works were proposed based on the static offline
scenario. However, for dynamic MCSNs, the above-mentioned
task assignment methods cannot adapt to the online scenario.
Therefore, Tong et al. [6] proposed the mobile microtask
assignment method based on the online bilateral weighted
binary image matching model. Once a new task appears,
the platform will assign the task to the appropriate work-
ers immediately, as well as once a new worker appears,

the platform will also assign appropriate tasks for this
worker immediately. Considering a dynamic online scenario,
She et al. [31] further proposed the conflict-aware task assign-
ment method. Different from a static offline scenario, spa-
tiotemporal conflict will affect the result of task assignment in
a dynamic scenario. Random-threshold-based algorithm [32]
randomly selects tasks that their utilities are not less than
the threshold and add them into the task set. However, this
algorithm performs unsteadily because of the big difference
in utilities when selecting different thresholds.
For the task assignment based on planning model, shortest

distance path query and shortest time path query are the two
main task assignment methods. Luo et al. [33] proposed the
most frequent path method to search for the most frequent
path and perform shortest time path query for task assign-
ment. Su [34] developed a crowd-based route recommendation
system (CrowdPlanner) through applying best path query.
In addition, Demiryurek et al. [35] utilized route planning
method to assign multitask for a worker. Route planning
method aims to maximize a worker’s utility through planning
the route and the order of sensing tasks. The aforementioned
planning-based task assignment mechanism is designed for
only one worker. For route planning of multiworker, She et al.
[28] studied the problem of recommending routes for multiple
workers. Deng et al. [36] also studied the multiworker task
assignment problem and proposed two heuristic frameworks
to solve the problem of task assignment for multiple workers.
In mobile crowdsourcing, few works applied optimization

algorithms in task assignment. However, MCSN is an exten-
sion of traditional wireless sensor network (WSN). In WSNs,
optimization algorithms have been used to optimize the task
assignment. Zhu and Gao [37] proposed a nested optimization
based on Genetic Algorithm (GA) for energy-efficient task
assignment in multihop clusters. However, GA-based task
assignment is not appropriate for large-scale computational
problem. The PSO was improved by scholars to applied
in WSNs, which has faster optimum speed and can effectively
optimize the system parameters [38]. However, PSO can
easily run into local optimum, i.e., the premature convergence
problem, as well as the Ant Colony algorithm [39], [40].
According to the PSO algorithm, Higashi and Iba [41] studied
the PSO algorithm with the ideas of Gaussian mutation, which
can obtain a result superior to GA. The individuals were
selected with the predetermined probability and their positions
were determined with the probability under the Gaussian
distribution.

B. Auction Algorithm
The main auction algorithms applied in mobile crowd-

sourcing systems include reverse auction (RA), combinato-
rial auction (CA), multiattributive auction (MAA), all-pay
auction (AA), double auction (DA), and Vickrey–Clarke–
Groves auction (VCG). Lee and Hoh [42] applied RA into
the incentive mechanisms of MCSNs, which can guarantee
the minimum payment cost and a high participation rate.
Based on DA and the distributed property, Duan et al. [43]
considered both the time factor and the cost factor when
designing the auction algorithm, which allows it to adapt to
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Fig. 2. System model of this mobile crowdsourcing.

the heterogeneity of MCSNs. Feng et al. [44] adopted CA
to inspire the participants. Participants can bid multiple tasks
according to their location and sensing range. The winners will
be determined by the platform based on the overall biddings.
Krontiris and Albers [45] considered both the participation
rate and the data quality based on MAA. In order to increase
the bidding price, participants will improve their data quality
according to the auction feedback results. Luo et al. [46]
proposed AA to inspire workers to participate in the sensing
tasks. AA specifies that the platform will only pay the reward
to the bidder who provides the greatest contribution but not
all the bidders. Yang et al. [47] adopted DA and k-anonymity
privacy protection to inspire users to participate in tasks.
In crowd sensing, participants have different location privacy
sensitivity levels. Thus, DA can inspire the participants with
low location privacy sensitivity to participate with k-anonymity
privacy protection for protecting the location information of
the participants with high location privacy sensitivity [48].
VCG includes allocation rule and updating rule. Gao et al. [49]
improved VCG through adding updating rule, which can
update allocation rule based on user’s trust degree. Our previ-
ous work in [50] proposed improved two-stage auction (ITA)
based on two-stage auction to complete real-time auction
process, which can inspire workers to participate in tasks
efficiently in mobile crowdsourcing.

C. Summary
According to the discussions for the aforementioned meth-

ods, most of the methods failed to comprehensively consider
both worker utility and platform. The multiattribute of workers
(includes historic behaviors and social attribute) and the real-
time arriving property of individuals were not considered in

most of these methods. Therefore, how to design the task
selection mechanisms with better adaptation and effectiveness
is the research focus of this paper. By considering the worker-
centric and platform-centric aspects, we study the DPSO-based
task selection and the auction-based worker selection prob-
lems. Moreover, few works have applied optimization algo-
rithms in mobile crowdsourcing systems to optimize task
selection. Therefore, we propose a DPSO-based task selection
method by considering Gaussian white noise to maximize
worker utility [41], [51]. In addition, by combining mul-
tiattribute auction and the two-stage auction, the proposed
auction-based task selection mechanism can maximize the
utility of the platform.

III. PROPOSED INCENTIVE MECHANISM

Because of the dynamic environment of MCSNs, static
task selection methods cannot adapt well to complex MCSNs.
Therefore, online task selection mechanisms need to be studied
for mobile crowdsourcing systems [52]. Similar to the work
in [50], the proposed task selection mechanism needs to satisfy
the following four properties, i.e., computational efficiency,
individual rationality, profitability, and truthfulness.

A. System Model
In this section, the system model for MCSNs is given first.

In our mobile crowdsourcing system, we divide the timeline
into multiple time slots. In each time slot, the incentive mecha-
nism is carried out. The system model is shown in Fig. 2. From
the system model, it can be seen that the platform dynamically
recommends tasks for workers in the worker-centric task
selection module. In each time slot, we recommend tasks
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TABLE I

DESCRIPTIONS FOR NOTATIONS IN OUR SYSTEM MODEL

for workers based on the optimization algorithm. From the
whole timeline, the tasks are recommended dynamically. In the
platform-centric worker selection module, the bidders are
selected as time goes on. Therefore, the proposed incentive
mechanism is adaptive to the real-time dynamics of mobile
crowdsourcing. The details of the algorithms are shown in
Sections III-B and III-C. The corresponding descriptions for
notations in this section are given by Table I.
Let wi indicate the i th crowd worker. The parameter ϕ j

expresses the j th sensing task in the MCSN. If worker wi is
selected to perform task ϕ j , the utility of wi is computed by
the following equation:

ui j =
{
pi j − ci j , if wi ∈ Win(ϕ j )

0, otherwise
(1)

where Win(ϕ j ) indicates the winner set, i.e., the workers
who can perform ϕ j . In (1), pi j is the payment made by
the platform to wi that performed ϕ j , and ci j is the cost of
wi for performing ϕ j , such as electricity cost, communication
cost, and so on. Let τi indicate the cost of wi in unit time,
thus ci j = τi × ti j , where 0 < τi < 1. In our model, pi j is
calculated using the following equation:

pi j =
ti j
Tj

× B j (2)

where ti j denotes the sensing time that wi spent performing ϕ j ,
Tj is the total sensing time that ϕ j requested, and B j rep-
resents the budget of ϕ j . In our system model, we assume
(B j/Tj ) ≥ 1. The utility of the platform ū j with respect to
ϕ j is given by the following equation:

ū j = Vj (W ) − Pj (W ) (3)

where Vj (W ) = ∑
wi∈Win(ϕ j )

vi j indicates the total income of
platform with respect to ϕ j , and vi j expresses the contribution
that wi brings for platform through sensing ϕ j . Pj (W ) =∑

wi∈Win(ϕ j )
pi j indicates the total payments to the workers

who performed ϕ j .
In the system model, the step of worker-centric task selec-

tion is executed first. The outputs of Algorithm 1 are the
task sets of workers during one-time slot. Then, based on
the outputs, workers submit the biddings to the platform in

Algorithm 1 G-DPSO-Based Worker-Centric Task Selection
Algorithm
Input:

m, Bw
i , c1, c2, ω

Output:
P̃gbest

1: procedure G-DPSO-based worker-centric task selection
2: for each particle xi j do
3: Initialize velocity Ṽ eli and position X̃i for particle xi j ;
4: Evaluate particle xi j and set P̃pbesti = X̃i ;
5: end for
6: P̃gbest = max

{
P̃pbesti

}
;

7: while not stop do
8: for j = 1 to m do
9: Update the velocity and position of particle xi j , and it

should satisfy
∑m

j=1 ci j xi j ≤ Bw
i ;

10: if f (Xi ) > f (P̃pbesti) then
11: P̃pbesti = Xi ;
12: end if
13: if f (P̃pbesti) > f (P̃gbest) then
14: f (P̃gbest ) = f (P̃pbesti);
15: end if
16: end for
17: end while
18: print P̃gbest ;
19: end procedure

the step of platform-centric worker selection (Algorithm 2)
for their interested tasks.

B. Worker-Centric Task Selection Method
How to select appropriate tasks for a crowd worker to

maximize utility is the target of the worker-centric task
selection method [53], [54]. Because of the real-time prop-
erty, offline methods cannot adapt to the online environment
of MCSNs. In addition, DPSO-based algorithm can optimize
the dynamic utility better through comparing with other task
selection methods. Therefore, we improve the DPSO algorithm
to optimize worker utility. We also give the descriptions for
notations appear in this section, which are shown in Table II.
Let Ui represent the total utility of wi in one-time slot,

which is obtained by the following equation:

Ui =
m∑

j=1

ui j . (4)

Therefore, the objective function is max
{
Ui

}
with the con-

straint condition Ci ≤ Bw
i , where Ci represents the total cost

of wi , and Ci =
∑m

j=1 ci j . B
w
i is the budget of wi that includes

the electricity, communication energy.
In order to explain the worker-centric task selection clearly,

we can treat the process of selecting tasks as a 0-1 knapsack
problem. The DPSO algorithm is utilized to solve the problem
of worker-centric task selection. In this paper, we divide time
into multiple time slots, xki j indicates whether ϕ j is selected
by wi in the kth iteration. The value of xki j is determined by



WANG et al.: OPTIMIZATION AND AUCTION-BASED INCENTIVE MECHANISM TO MAXIMIZE SOCIAL WELFARE 419

TABLE II

DESCRIPTIONS FOR NOTATIONS IN THE WORKER-CENTRIC TASK SELECTION MECHANISM

the following equation, where $i indicates the task set of wi .
In DPSO algorithm, xki j represents a particle in its kth iteration,
thus Xk

i indicates the positions of particles, i.e., a feasible
solution in its kth iteration

xki j =
{
1, if ϕ j

assign→ wi

0, otherwise.
(5)

Therefore, the objective function is transformed into the
following equation:

max
{∑m

j=1 ui j x
k
i j

}
. (6)

The corresponding constraint condition is expressed by the
following equation:

m∑

j=1

ci j xki j ≤ Bw
i . (7)

In DPSO algorithm, the position of particle indicates a
feasible solution, thus the fitness function of particle is given
by the following equation:

f (Xk
i ) =

m∑

j=1

vki j x
k
i j (8)

where Xk
i represents the set of particles, i.e., Xk

i = (xki1, x
k
i2,

· · · , xki j , · · · , xkim). The parameter vki j means the contribution
that wi brings to ϕ j in the kth iteration. Therefore, optimiz-
ing f (Xk

i ) through applying DPSO algorithm can optimally
assign tasks for wi . A particle flies in the solution space,
and adjusts its velocity and position based on its experience
and its partners. Therefore, Veli represents the velocity set
of wi , and Velki = (velki1, vel

k
i2, · · · , velki j , · · · , velkim), where

velki j indicates the change of position value for ϕ j in the
kth iteration. According to the value of velki j , we give the

calculation method, which is shown by the following equation:

velki j =
{
0, if xki j = xk−1

i j

xki j , otherwise
(9)

where velki j = 0 indicates that the position of particle remains
unchanged in the kth iteration for ϕ j , and velki j = xki j means
its position will change in the kth iteration. Therefore, one
particle will update its velocity and position based on the
following equations, where Pk−1

pbesti denotes the personal best
value of Xk−1

i , Pk−1
gbest is the global best value, and ω is the

inertia weight

V elki = ω · V elk−1
i + c1 · r1 ·

(
Pk−1
pbesti − Xk−1

i

)

+c2 · r2 ·
(
Pk−1
gbest − Xk−1

i

)
(10)

Xk
i = Xk−1

i + V elki . (11)

The parameter ω can adjust the local and global search
capability, and 0 < ω < 1. Parameters c1 and c2 are the
learning factors (acceleration factors) that express the trust
levels for individual cognition and social cognition, respec-
tively. In our task selection mechanism, the values of c1 and c2
are determined by a mobile crowdsourcing system that cannot
be changed with the change of k. The aforementioned three
parameters are constants and need to satisfy the following
constraint: c1+c2 > 0 and c1+c2−2 ·ω < 2, i.e., a triangular
convergence region that express the relationships among ω,
c1 and c2. The parameters r1 and r2 are two random values,
and r1, r2 ∈ [0, 1]. Because of the dynamics of MCSNs,
new tasks are continually added and the task dimensionality
changes dynamically. In this paper, we use Ṽ el

k−1
i , P̃k−1

pbesti,
X̃ k−1
i , P̃k−1

gbest to represent the corresponding operators after
updating the dimensionality. We set the initial value of the
added dimensionality to be 0, thus each particle updates its
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Fig. 3. Distribution of Gaussian white noise.

velocity and position by the following equations:

V elki = ω · Ṽ el
k−1
i + c1 · r1 ·

(
P̃k−1
pbesti − X̃ k−1

i

)

+c2 · r2 ·
(
P̃k−1
gbest − X̃ k−1

i

)
(12)

Xk
i = X̃ k−1

i + V elki . (13)

Through analyzing the DPSO algorithm, it can be seen that
DPSO algorithm can easily run into local optimum, i.e., the
premature convergence problem [55], [56]. How to avoid
the premature convergence problem is an important research
problem. In order to resolve this problem, we utilize Gaussian
white noise to disturb the extremum, which can enhance the
population diversity and avoid running into local optimum.
The distribution of Gaussian white noise is shown in Fig. 3.
From Fig. 3, it can be seen that the added white noise follow
the normal distribution. Utilizing the Gaussian white noise
to perturb the evolution of population, which can help the
DPSO algorithm jump out of the local optimum and increase
the diversity of population. The velocity updating function is
improved by the following equation, where δk−1

ip and δk−1
ig

indicate the Gaussian disturbed parameters for the personal
best value and the global best value, respectively. In this
algorithm, δk−1

ip and δk−1
ig are generated by the platform for

each iteration. The distributions of δk−1
ip and δk−1

ig follow the
normal distribution as shown in Fig. 3

V elki = ω · Ṽ el
k−1
i + c1 · r1 ·

(
δk−1
ip · P̃k−1

pbesti − X̃ k−1
i

)

+c2 · r2 ·
(
δk−1
ig · P̃k−1

gbest − X̃ k−1
i

)
. (14)

We utilize Gaussian white noise to improve Gaussian white
noise-based-DPSO (G-DPSO), i.e., the G-DPSO is proposed
to optimize the worker-centric task selection in mobile crowd-
sourcing. The proposed G-DPSO-based worker-centric task
selection algorithm for wi is summarized in Algorithm 1. In
this paper, we divide the timeline into many time slots. In
the process of G-DPSO-based worker-centric task selection
algorithm, we optimize the task set for one-time slot. From
the whole timeline, the task is dynamically selected as time
goes on.
From Algorithm 1, the time complexity of the

G-DPSO-based worker-centric task selection algorithm
is O(m × n) in the while-loop (lines 7–17), where n indicates
the maximal number of iterations, and m means the number
of tasks. Since the value of each particle’s position can only
be 0 or 1, the whole solution space is finite. For the specific
problem of mobile crowdsourcing task selection, there are a

large number of infeasible solutions in the solution space,
so the feasible solution space corresponding to the algorithm is
also finite. Assuming that the maximum number of iterations
of the algorithm is infinite, the particle’s position always has
the ability to change and new solutions may be constantly
explored in the better solution domain. Therefore, for the
finite feasible solution space, after the algorithm goes through
an infinite number of iterations, the particle’s position must
be able to traverse all feasible solutions. The current optimal
value is always saved to the next generation population until
the end of the algorithm. Thus, the G-DPSO algorithm has
global convergence in theory. However, in practice, since it is
impossible to make the algorithm carry out infinite iteration
calculations, the algorithm may still fall into local optimum
in the actual optimization calculation. In the proposed
G-DPSO algorithm, we add Gaussian white noise to perturb
the velocity operator in the optimization process. Therefore,
it can increase the diversity of population and avoid it falling
into the local optimum, which is conducive to search for the
global optimum and reduce the probability that the algorithm
falls into the local optimum.

C. Platform-Centric Worker Selection Method
After selecting sensing tasks for workers that can maximize

their utilities, workers will bid the interested tasks through
submitting their biddings to the platform. Therefore, how to
select appropriate crowd workers to sense the task is another
important problem in our mechanism. In order to maximize
the utility of platform, an effective platform-centric worker
selection method is necessary. By combining multiattribute
auction and two-stage auction, the platform-centric worker
selection method is obtained. Multiattribute auction indicates
that buyers not only consider the biddings of bidders but also
consider their data quality, trust degree, location, and other
attributes in the process of auction. In this paper, we combine
multiattribute auction with the ITA [50] to resolve the problem
of unfairness for the first arrived workers and to further
improve the effectiveness of auction.
In a traditional two-stage auction, the bidding process is

provided into two stages. The workers arriving during the
first stage, the platform will reject them to participate in the
task. However, their bidding information will be collected to
compute and generate the auction threshold for the second
stage of auction. Therefore, it is unfair for the early arriving
workers that fail to inspire workers to participate in tasks
further. ITA improves the traditional two-stage auction that
allows the workers arriving during the first stage to participate
in the auction. After collecting the bidding information in the
first stage, the auction threshold is computed dynamically in
the second stage, which can inspire workers to participate in
tasks actively and solve the unfair problem. However, this
method failed to consider the social attribute of workers,
e.g., trust degree and privacy sensibility, which cannot inspire
workers to behave truthfully, and cannot inspire the workers
with high privacy sensibility to participate in the task actively.
In our platform-centric worker selection method, considering
the social attributes of workers, we combine multiattribute auc-
tion and ITA to propose the multi-attribute and ITA (M-ITA)
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TABLE III

DESCRIPTIONS FOR NOTATIONS IN THE PLATFORM-CENTRIC WORKER SELECTION METHOD

algorithm to improve the efficiency of auction. Similarly,
the descriptions for notations appear in this section is given
in Table III.
The attributes in this platform-centric worker selection

include data quality, trust degree, position similarity, and
privacy sensitivity. According to the new sensing task, i.e., the
(m + 1)th sensing task of wi that he/she wants to par-
ticipate in, the following attributes need to be computed:
(qim, trim, di(m+1), pri(m+1)). The attribute qim denotes the
average data quality of wi , and trim denotes the average
trust degree of wi . The values of qim and trim are computed
based on the historical information of wi . The attribute di(m+1)
denotes the position similarity, i.e., wi s distance to the correct
sensing location, and pri(m+1) denotes the privacy sensitivity
that wi requested. The average data quality qim is computed
by the following equation:

qim =

⎧
⎪⎨

⎪⎩

∑m
j=1 q

j
i · β j∑m

j=1 β j
, if m ̸= 0

0, otherwise

(15)

where q j
i indicates the specific data quality of wi for his/her

j th sensing task, and β j is the time decay factor in the j th
sensing task, which is computed based on the Ebbinghaus
Forgetting Curve from psychology. The curve indicates that
the influence of historical information will weaken gradually
with the passage of time, thus, it will decay to 0 in the end.
The parameter β j is given by the following equation based on
the Ebbinghaus Forgetting Curve:

β j =
{
1, if j = m

e− 1
j , else if 1 ≤ j < m.

(16)

Another important factor is the average trust degree trim.
Its calculation is similar to the average data quality, which
is given by the following equation:

trim =

⎧
⎪⎨

⎪⎩

∑m
j=1 tr

j
i · β j∑m

j=1 β j
, if m ̸= 0

0, otherwise

(17)

where tr j
i expresses the specific trust degree of wi for his/her

j th sensing task. In addition, the position similarity di(m+1)
also influence the auction result. Let (xm+1

i , ym+1
i , zm+1

i )
indicate wis position coordinates, and (xm+1

i , ym+1
i , zm+1

i )
indicates the correct sensing position. When the crowd worker
stays in the correct sensing position, di(m+1) = 0. Otherwise,
di(m+1) is computed using cosine similarity as shown in the
following equation:
di(m+1)

= xm+1
i · xm+1

i + ym+1
i · ym+1

i + zm+1
i · zm+1

i√
xm+1
i

2+ym+1
i

2+zm+1
i

2 ·
√
xm+1
i

2+ym+1
i

2+zm+1
i

2
. (18)

In our mechanism, qim and trim are computed by the plat-
form. The workers should announce their privacy sensitivity
pri(m+1) when submitting their biddings to the platform. When
wi receives tasks, he/she will submit his/her biddings that
include bi(m+1), ti(m+1) and pri(m+1) to the platform if he/she
is interested in the task. For the new task, there exists a privacy
sensitivity bound Prm+1, and pri(m+1) should be no bigger
than Prm+1. Therefore, before computing the biddings of wi ,
the platform will calculate the comprehensive score csi(m+1)
of wi based on its multiple attributes. The calculation method
of csi(m+1) is given by the following equation:

csi(m+1) = ω1 · qim + ω2 · trim + ω3 · di(m+1) (19)

where ω1, ω2, and ω3 represent the corresponding weights,
and ω1 + ω2 + ω3 = 1.

In this paper, we combine the multiattribute auction with
ITA [50] to maximize the utility of the platform. The process
of auction is divided into two stages. In a normal two-stage
auction, the first arrived workers will be rejected. The system
then determines the threshold of bidding based on the biddings
submitted by the first arrived workers, which will generate the
unfairness problem for the first arrived workers.
In the ITA algorithm, the first arrived workers also have

a chance to be the winner in the process of auction, thus
eliminating the unfairness problem. Therefore, ITA can inspire
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Algorithm 2M-ITA-Based Platform-Centric Worker Selection
Algorithm
Input:

n, Bm+1, Tm+1, κm+1, CSm+1, Prm+1
Output:

Win(ϕm+1)
1: Stage 1:
2: B ′

m+1 = ⌊ Bm+1

2⌊ln Tm+1⌋ ⌋;
3: T ′

m+1 = ⌊ Tm+1

2⌊ln Tm+1⌋ ⌋;
4: i = 1; Pm+1(W ) = 0; Vm+1(W ) = 0;
5: while Pm+1(W ) ≤ B ′

m+1 do
6: bi(m+1) = bi(m+1); ti(m+1) = ti(m+1); csi(m+1) =

csi(m+1); pri(m+1) = pri(m+1);
7: if csi(m+1) ≥ CSm+1,

bi(m+1)
ti(m+1)

≤ κm+1 and pri(m+1) ≤
Prm+1 then

8: ( ← (
⋃{

i
}
;

9: pi(m+1) ← ti(m+1)
Tm+1

× Bm+1;
10: Pm+1(W ) ← Pm+1(W )+ pi(m+1);
11: Vm+1(W ) ← Vm+1(W ) + vi(m+1);
12: end if
13: i ← i + 1;
14: Update the value of CSm+1;
15: end while
16: Stage 2:
17: j = i ;
18: while Pm+1(W ) ≤ Bm+1 do
19: b j (m+1) = b j (m+1); t j (m+1) = t j (m+1); cs j (m+1) =

cs j (m+1); pr j (m+1) = pr j (m+1);
20: v j (m+1) = Vm+1(W

⋃ {
j
}
) − Vm+1(W ); p j (m+1) =

t j (m+1)
Tm+1

× Bm+1;

21: if v j (m+1)
p j (m+1)

≥ Vm+1(W )
Pm+1(W ) , cs j (m+1) ≥ CSm+1 and

pr j (m+1) ≤ Prm+1 then
22: ( ← (

⋃ {
j
}
;

23: Pm+1(W ) ← Pm+1(W )+ p j (m+1);
24: Vm+1(W ) ← Vm+1(W ) + v j (m+1);
25: Update the values of Vm+1(W )

Pm+1(W ) , CSm+1;
26: end if
27: j ← j + 1;
28: end while

workers to participate in tasks on time, thus improving the
efficiency of auction. For the second stage of ITA, the bid-
ding threshold will be adjusted dynamically. In this paper,
we further improve the ITA algorithm and propose the M-ITA
algorithm by combining the multiattribute auction and ITA.
The M-ITA algorithm is shown in Algorithm 2 with respect
to the (m + 1)th sensing task of wi . In Algorithm 2, κm+1
indicates the threshold of biddings for the (m + 1)th sensing
task of wi , which is determined by the historical experience
of mobile crowdsourcing. CSm+1 represents the threshold of
multiattribute score for the new sensing task, and Prm+1 is
the privacy sensitivity threshold of the new sensing task.
In Algorithm 2, the first stage of the auction is shown from

lines 1 to 15. Different from the traditional two-stage auction
algorithm, workers who arrive in the first stage can also be

accepted by the platform based on their multiple attributes.
In the first stage, the initial thresholds κm+1 and CSm+1 are
given by platform. Based on the initial thresholds, the first
arrived workers can participate in the auction. The bidding
profiles in the first stage will be collected and computed by
platform. At the end of the first stage, the value of CSm+1 is
updated by the following equation. The parameter N1 indicates
the total number of workers in the first stage

CSm+1 =
∑N1

i=1 csi(m+1)

N1
. (20)

The second stage of auction is shown from lines 16 to 28
in Algorithm 2. In this stage, the threshold of biddings is
(Vm+1(W )/Pm+1(W )) and it will dynamically change with
the arriving of workers. In addition, the threshold of mul-
tiattribute score, CSm+1, dynamically changes in this stage
of auction. The value of (Vm+1(W )/Pm+1(W )) is updated
by (21). In this stage of auction, we also give the calculation
method of CSm+1, which is updated by (22)

Vm+1(W )

Pm+1(W ) ( j+1)
= 1

2
(
Vm+1(W )

Pm+1(W ) ( j )
+ v( j+1)(m+1)

p( j+1)(m+1)
) (21)

where (Vm+1(W )/Pm+1(W ))( j+1) means the threshold of bid-
dings for the ( j + 1)th worker, and (Vm+1(W )/Pm+1(W ))( j )
is the threshold of biddings for the j th worker

CS( j+1)
m+1 = 1

2

(
CS( j )m+1 + cs j (m+1)

)
(22)

where CS( j )m+1 and CS( j+1)
m+1 mean the threshold of multiat-

tribute score for the j th and ( j + 1)th workers, respectively.
This proposed M-ITA algorithm not only can resolve the

unfairness problem for the first arrived workers but can also
improve the truthfulness and efficiency of MCSNs further by
considering the multiple attributes of workers.
In order to maximize the final social welfare in one-time

slot, we utilize Walrasian equilibrium in economics to change
the value of payment pi j dynamically. Walrasian equilibrium
is the traditional concept of economic equilibrium, appropriate
for the analysis of commodity markets with flexible prices
and many traders, and serving as the benchmark of efficiency
in economic analysis. The social welfare J , the total utility
of mobile crowdsourcing system, could be expressed by the
following equation:

J =
m∑

i=1

n∑

j=1

ui j +
n∑

j=1

u j . (23)

Therefore, maximizing social welfare is the objective func-
tion of the incentive mechanism, which is shown in (24). The
equal objective function of (24) is shown in (25), i.e., we can
optimize the social welfare by (25)

max J =
m∑

i=1

n∑

j=1

(pi j − ci j )+
n∑

j=1

m∑

i=1

(vi j − pi j ) (24)

min−J =
m∑

i=1

n∑

j=1

(ci j − pi j ) −
n∑

j=1

m∑

i=1

(vi j − pi j ). (25)
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Fig. 4. Example showing the profit of the proposed incentive mechanism.

In (25), the values of ci j and vi j could not be changed
by platform. Hence, dynamically change the value of pi j to
achieve the global optimum and maximize social welfare.
According to the above-mentioned analysis, the proposed
incentive mechanism can dynamically recommend tasks and
select winners in the process of optimization and auction,
which can maximize social welfare.

D. Properties of the Proposed Incentive Mechanism
In this paper, we study the incentive mechanism in order

to maximize social welfare of MCSNs. An effective incen-
tive mechanism needs to have four properties: computational
efficiency, individual rationality, profitability, and truthfulness.
Lemma 1: The proposed incentive mechanism is computa-

tionally efficient.
Proof: The number of tasks is m. The maximum number

of iterations is n. Based on Algorithm 1, the time com-
plexity of the G-DPSO-based worker-centric task selection
algorithm is O(m × n) in the while-loop (lines 7–17). In the
M-ITA-based platform-centric worker selection mechanism
shown in Algorithm 2, assume that n indicates the total
number of bidders, thus the time complexity is at most O(n)
in the while-loop (lines 5–15 and 18–28). According to the
above-mentioned analysis, it can be seen that the proposed
incentive mechanism is computationally efficient.
Lemma 2: The proposed incentive mechanisms are individ-

ually rational.
Proof: If the platform determines that wi is a winner for ϕ j ,

wi will receive payment pi j = (ti j /Tj )×B j from the platform.
In (2), the budget B j and required total sensing time Tj satisfy
the constraint: (Bj/Tj ) ≥ 1. From (2), we can obtain ci j =
τi × ti j , where 0 < τi < 1. Therefore, the utility of wi is
pi j − ci j = ((B j/Tj )− τi )× ti j > 0. According to the above-
mentioned analysis, we can infer that the proposed incentive
mechanism is individually rational.
Lemma 3: The proposed incentive mechanism is profitable.
Proof: According to (3), ū j = Vj (W ) − Pj (W ), where

Vj (W ) = ∑
wi∈Win(ϕ j )

vi j and Pj (W ) = ∑
wi∈Win(ϕ j )

pi j .
For the M-ITA algorithm, an instance to verify this property
of the proposed incentive mechanism is shown in Fig. 4.
In Fig. 4, the mobile phones represent crowd workers, and

the circles represent crowd tasks. Assume the initial value of
(V1(W )/P1(W )) is 1. When w1 participates in the auction,

Fig. 5. Example showing the truthfulness of the proposed incentive
mechanism.

(v1/p1) = (4/3), which satisfies (v1/p1) > (V1(W )/P1(W )),
thus, w1 is selected by the platform. In this stage,
(V1(W )/P1(W )) = (4/3). When w2 participates it the auction,
(v2/p2) = (3/2), which satisfies (v2/p2) > (V1(W )/P1(W )),
thus, w2 is selected by the platform. Therefore, (V1(W )/
P1(W )) = (4+ 3/3+ 2) = (7/5). For w3, (v3/p3) = (4/5)
and (v3/p3) < (V1(W )/P1(W )), thus, w3 cannot be selected
by the platform. For w4, (v4/p4) = (3/2), which satisfies
(v4/p4) > (V1(W )/P1(W )) = (4/3), thus, w4 is selected
by the platform. After this bidding, (V1(W )/P1(W )) =
(4+ 3+ 3/3+ 2+ 2) = (10/7). When w5 participates in the
auction, (v5/p5) = (2/3) and (v5/p5) < (V1(W )/P1(W )),
thus, w5 cannot be selected by the platform. In this auction,
w1, w2, and w4 are selected to be the winners. According
to this task, the platform utility is ū1 = V1(W ) − P1(W ) =
10−7 = 3 > 0. Therefore, the platform has nonnegative utility.
According to the above-mentioned analysis, we can infer that
the proposed incentive mechanism is profitable.
Lemma 4: The proposed incentive mechanism is truthful.
Proof: In the M-ITA-based task selection mechanism shown

in Algorithm 2, multiple attributes are considered when wi
participates in the auction for ϕ j . When participating the
auction, the value of csi(m+1) is calculated by platform,
i.e., csi(m+1) = ω1 · qim + ω2 · trim + ω3 · di(m+1). Therefore,
if wi wants to be the winner of auction, csi(m+1) satisfies the
condition csi(m+1) ≥ CSm+1, i.e., wi should keep the truthful
behaviors in order to get more opportunities to participate in
subsequent tasks. We use an example shown in Fig. 5 to verify
the proposed incentive mechanism is truthful.
In Fig. 5, the mobile phones represent crowd workers, and

the circles represent crowd tasks. In this scenario, we assume
that the three crowd workers act in the target area, thus,
d1 = d2 = d3 = 0. Therefore, the values of csi can express
the truthfulness of crowd workers. A line indicates that a
crowd worker bids for a crowd task. For ϕ1, cs1 > CS1 and
b1 < B1, thus, w1 is selected. Then, w2 participates in the
auction, cs2 > CS1 and b1 + b2 < B1, thus, w2 is selected.
For ϕ2, cs2 > CS2 and b2 < B2, thus, w2 is selected. When
w3 participates in the auction, cs3 < CS, so w3 cannot be
selected in this auction. Similarly, w3 cannot be selected by
ϕ5 because cs3 < CS5. From the instance, it can be inferred
that the crowd workers with low trust degree cannot participate
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TABLE IV

SETTINGS OF EXPERIMENTS

Fig. 6. Comparison results of utilities for the first group of settings.

in the crowd workers, which can guarantee the truthfulness of
the proposed incentive mechanism. According to the above-
mentioned analysis, we can infer that the proposed incentive
mechanism is truthful.

IV. NUMERICAL SIMULATIONS

In this section, comparison experiments are conducted
for evaluating the performances of the proposed incentive
mechanism. For the worker-centric task selection method,
we compared the proposed task selection algorithm G-DPSO
with the Greedy algorithm, DPSO algorithm, GA, and random
threshold algorithm (RT). In our comparison experiments,
the thresholds are set as 0.001 and 0.002 for RT. For the
platform-centric worker selection method, we evaluate the per-
formance of M-ITA by comparing with the ITA algorithm [50],
the auction algorithm in [57] as the general auction (RA), and
the traditional two-stage auction algorithm [58]. All the com-
parison experiments were performed on Windows 10 operating
system with Intel Core (TM) i7-5500U CPU, 8-GB Memory,
and on MATLAB 7.0. In our simulations, we conduct the
event-based simulations, and each evaluation is averaged over
100 instances.

A. Experiments for Worker-Centric Task Selection
For the G-DPSO-based worker-centric task selection algo-

rithm, we conduct three groups of comparison experiments by
comparing with the Greedy-based task selection algorithm, the
G-DPSO-based task selection algorithm, the GA-based task
selection algorithm, and the RT-based task selection algorithm.
The experimental settings are shown in Table IV, where m
indicates the total number of tasks.
According to the first group of settings, the comparison

results for utilities are shown in Fig. 6. Compared with

Fig. 7. Comparison results of P(W ) for the first group of settings.

the Greedy-based, GA-based, and RT-based task selection
algorithms, DPSO and G-DPSO algorithms can maximize the
utility of the worker effectively. In Fig. 6, the x-coordinate
indicates the maximal number of iterations, and y-coordinate
means the utility of the worker. We also design the comparison
experiments according to the cost of the worker, which is
shown in Fig. 7. In Fig. 7, the x-coordinate indicates the
maximal number of iterations, and y-coordinate means the
total payment P(W ). It also can be seen that GA performs
worst through compared with other algorithms. The reason
is that GA is easy to be trapped into local optimum, which
cannot find the global optimum. In addition, GA-based task
selection method has the slowest search speed. As a GA-based
task selection method cannot recommend tasks for workers
effectively, P(W ) is the least compared with the other three
algorithms. Greedy-based algorithm has the most P(W ) com-
pared with the other four algorithms. RT-based task selection
algorithm has lower P(W ) compared with Greedy-based and
DPSO-based algorithms but less utility than other optimization
algorithms except GA-based method. Both the DPSO-based
and G-DPSO-based task selection algorithms can maximize
the utility of the worker (”10” in this experiments), however,
G-DPSO-based algorithm has less P(W ) compared with the
DPSO-based algorithm. Therefore, G-DPSO-based has the
best performance in this group of experiments.
According to the second group of settings, the correspond-

ing comparison results for utilities and P(W ) are shown
in Figs. 8 and 9, respectively. In these experimental settings,
we can see that the performance of G-DPSO-based algorithm
has a significant advantage over the other methods. GA-based
task selection algorithm also has the worst performance com-
pared with other algorithms because of the premature problem
of GA. In addition, it has the slowest search speed.
According to the third group of settings, the comparison

results for utilities and P(W ) are shown in Figs. 10 and 11,
respectively. Based on the experimental results, we can see
that the G-DPSO-based task selection algorithm also performs
the best among the five algorithms. GA-based task selection
algorithm also has the slowest search speed. In addition,
it performs worst compared with other methods.
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Fig. 8. Comparison results of utilities for the second group of settings.

Fig. 9. Comparison results of costs for the second group of settings.

Fig. 10. Comparison results of utilities for the third group of settings.

In addition, we also compare the average utilities under
different budgets, the comparison results are shown in Fig. 12.
From Fig. 12, it can be inferred that G-DPSO-based worker-
centric task selection algorithm can maximize the utility of
the worker effectively, thus it has the best performance. The
comparison results of average P(W ) under different budgets

Fig. 11. Comparison results of costs for the third group of settings.

Fig. 12. Comparison results of utilities.

Fig. 13. Comparison results of P(W ).

are shown in Fig. 13. The G-DPSO-based worker-centric task
selection algorithm, Greedy-based task selection algorithm,
DPSO-based task selection algorithm, and RT-based task
selection algorithm have similar P(W ), and they can maximize
the utility of the worker under acceptable P(W ). From the
experimental results, it can be inferred that the proposed
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TABLE V

SETTINGS FOR PLATFORM-CENTRICWORKER SELECTION

Fig. 14. Comparison results of efficiencies for the first group.

G-DPSO-based worker-centric task selection algorithm has a
faster convergence speed than other optimization algorithms.
According to the above-mentioned experiments, we can

infer that the proposed G-DPSO-based worker-centric task
selection method can maximize utilities of workers effectively.
Through compared with nonoptimization algorithm (RT),
optimization algorithms have better performance, which can
improve the efficiency of MCSNs effectively. We also can see
that the proposed G-DPSO can improve the utilities effectively,
and the average values of P(W ) stay under acceptable range.
Therefore, the proposed G-DPSO can effectively recommend
appropriate tasks for workers, which can inspire workers to
participate in sensing tasks better.

B. Experiments for Platform-Centric Worker Selection
Here, we perform the comparison experiments for M-ITA

algorithm with RA, two-stage auction, and ITA algorithms.
The experimental settings are shown in Table V, which comes
from [50]. In Table V, n represents the total number of
workers.
The experimental results for the three groups of set-

tings are shown in Figs. 14–16, respectively. In Figs. 14–16,
the x-coordinate expresses the transaction time, and the
y-coordinate shows the value of P(W ). The experimental
results reflect the efficiencies of different auction algorithms
applied in mobile crowdsourcing. From the three groups of
experimental results shown in Figs. 14–16, it can be inferred
that ITA and M-ITA have the best performances compared
with the other two algorithms. In Fig. 14, it can be seen that
the two-stage auction performs the worst, it is because the
first batch of workers is rejected by the platform. In the first
group of comparison experiment, Bm = 50 is too limited for
the two-stage auction. Therefore, the two-stage auction has the

Fig. 15. Comparison results of efficiencies for the second group.

Fig. 16. Comparison results of efficiencies for the third group.

worst performance in this experiment. With the increase of Bm ,
the two-stage auction has a better performance than the RA.
The reason is that when Bm is big enough, the influence
of the first arrived workers will decrease. Based on the
experimental results, we can also infer that the efficiency of
ITA is slightly better than M-ITA. It is because we consider
the multiple attributes of workers, i.e., csmi . Some workers will
be eliminated if their comprehensive score cannot satisfy the
condition csmj ≥ CSm . However, by considering multiattribute
of workers, the truthfulness of MCSNs can be guaranteed.
In addition, this algorithm can inspire workers to submit
truthful data to the platform, and can, therefore, improve the
truthfulness and efficiency of MCSNs.
In order to verify the truthfulness of the proposed M-ITA,

we design the comparison experiments on the truthfulness
of mobile crowdsourcing system. When the number of bid-
ders is 60, the comparison result is shown in Fig. 17.
The x-coordinate expresses the number of bidders, and the
y-coordinate indicates the trust degree of mobile crowdsourc-
ing system. From Fig. 17, it can be seen that the proposed
M-ITA has the best performance on truthfulness through
compared with other algorithms. The trust degree of mobile
crowdsourcing under M-ITA can stabilize around 0.8, but ITA
only can stabilize around 0.3.
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Fig. 17. Trust degrees of mobile crowdsourcing under different auction
algorithms, when n = 60.

Fig. 18. Trust degrees of mobile crowdsourcing under different auction
algorithms, when n = 80.

When n = 80, the comparison experiment is also conducted
in this paper. The corresponding experimental result is shown
in Fig. 18, where x-coordinate expresses the number of bid-
ders, and the y-coordinate indicates the trust degree of mobile
crowdsourcing system. From Fig. 18, we can see that the
proposed M-ITA also has the best performance on truthfulness
through compared with other algorithms.
From the above-mentioned experimental results, we can

infer that the proposed M-ITA can guarantee the truthfulness
and efficiency of mobile crowdsourcing system comprehen-
sively. Therefore, M-ITA has the best performance through
compared with the other three auction algorithms. As social
welfare of MCSNs is constituted by worker utility and plat-
form, we can infer that our incentive mechanism has the best
performance according to the above-mentioned experiments.

V. CONCLUSION

With the development of mobile crowdsourcing, how to
assign appropriate tasks for workers has become the main
research focus. This paper proposed an incentive mecha-
nism, i.e., G-DPSO-based worker-centric task selection and
M-ITA-based platform-centric worker selection. The proposed
G-DPSO-based worker-centric task selection method can

maximize worker utility by using the DPSO algorithm with
Gaussian white noise perturbation. The proposed M-ITA-based
platform-centric worker selection method combines multiat-
tribute auction and the ITA algorithm and is able to maxi-
mize the utility of platform effectively. Through comparison
experiments, the effectiveness, efficiency, truthfulness, and
adaptiveness of the proposed incentive mechanism were veri-
fied thoroughly. It was shown convincingly that the proposed
incentive mechanism can improve the truthfulness and the
efficiency of MCSNs.
In future work, we further consider the social attributes

of workers to establish the truthful incentive mechanism for
improving the efficiency of mobile crowdsourcing system
effectively.
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