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We discuss the cosmological implications of the string swampland conjectures for late-time cosmology,

and test them against a wide range of state of the art cosmological observations. The refined de Sitter

conjecture constrains either the minimal slope or the curvature of the scalar potential, and depends on two

dimensionless constants. For constants of size one or larger, tension exists between observations, especially

the Hubble constant, and the slope and curvature conjectures at a level of 4.5σ and 2.3σ, respectively.

Smaller values of the constants are permitted by observations, and we determine upper bounds at varying

confidence levels. We also derive and constrain the relationship between cosmological observables and the

scalar field excursion during the acceleration epoch, thereby testing the distance conjecture.

DOI: 10.1103/PhysRevD.99.083518

There is currently a vibrant debate in string theory about

whether space-times with positive cosmological constant

are compatible with quantum gravity. If metastable de Sitter

space-times are part of the swampland, namely the set of

backgrounds that are incompatible with quantum gravity

[1], then the implications for dark energy and late-time

cosmology are quite striking. Specifically the observed

dark energy (DE) must be time-dependent.

What we know today is that four-dimensional or higher

de Sitter space-times are ruled out as solutions of the

10 or 11 fundamental supergravity theories [2,3], and

as solutions of type I/heterotic supergravity together with

the leading higher derivative couplings [4,5], and as

solutions of heterotic world sheet conformal field theory

[6]. This is compelling evidence that de Sitter space-time

cannot be found in regions of parametric control in string

theory. This same conclusion can also be argued from

entropy considerations in regimes of weak coupling in

string theory [7].

On the other hand, there most definitely exist landscapes

of supersymmetric flux vacua in string theory with

Minkowski space-times. These landscapes were originally

constructed in F-theory/type IIB string theory [8], but

duality leads to similar supersymmetric landscapes in the

heterotic and type I strings. It is worth stressing that these

landscapes are perturbative constructions that can certainly

be destabilized by nonperturbative quantum effects.

There are an enormous number of such F-theory back-

grounds. Each background is constructed from a given

elliptic Calabi-Yau 4-fold together with a choice of compat-

ible flux and branes, subject to a charge tadpole condition

[9,10]. Recent estimates of the number of compactification

geometries provide lower bounds of 10755 [11], and of

103000 from a recent Monte-Carlo based estimate [12].

On the other hand, a single given geometry has been

estimated to support of 10272 000 distinct flux vacua [13].

The above statements are largely without controversy.

The issue of turning the enormous complexity of

Minkowski flux vacua into a landscape of metastable de

Sitter solutions is far more controversial. The most popular

approaches are based on type IIB flux backgrounds which

break supersymmetry [14]. Quantum corrections to the

low-energy effective action are estimated as if such back-

grounds are static solutions of string theory. Unfortunately,

such backgrounds are not static solutions of string theory

[15]. Quantum effects in string theory, particularly non-

perturbative effects but even loop corrections, have to be

computed around a meaningful solution of string theory.

Currently no such time-dependent solution is known. If

any solution could be constructed from that initial value

data, it is likely to be strongly coupled in either the far

future or the far past. The structure of quantum corrections

to the space-time effective action would require an under-

standing of that strongly coupled background. This is the

basic problem with type IIB landscape proposals. For

related comments as well as a different perspective, see

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP

3
.

PHYSICAL REVIEW D 083518 (2019)

2470-0010 2019 99(8) 083518(10) 083518-1 Published by the American Physical Society



[16,17]. Under the assumption that this fundamental

problem can somehow be evaded, there are many additional

issues concerning uplifting type IIB constructions to de

Sitter space-time reviewed in [18], with some very recent

analysis found, e.g., in [19–21].

Conspicuously absent in the preceding discussion is any

mention of type IIA or M-theory landscapes of vacua.

In both these cases, even the basic ingredients for evading

the supergravity no-go theorems are poorly understood.

Duality certainly suggests that those ingredients should

exist, but the analogues of the higher derivative contribu-

tions to both the type IIB tadpole conditions and equations

of motion are more complicated; for the tadpole, the

contributions are determined by both the choice of flux

and metric rather than metric alone [22]. There are

interesting attempts to stabilize moduli and construct de

Sitter landscapes for compactifications of M-theory on 2

manifolds without flux [23,24]. However, it seems likely

that flux will again be essential for understanding the

structure of generic compactifications in this corner of

string theory.

The other approach has been to propose constructions in

massive IIA. The older approaches use large volume

Calabi-Yau manifolds as starting points [25]. These

approaches fail to solve the equations of motion of massive

IIA [22]. There are attempts to rescue such approaches by

using ingredients like smeared orientifolds. However,

orientifolds are defined as quotients of weakly coupled

string theory, and they are not smeared. For recent

discussions of this and related type IIA issues, see e.g.,

[26–32]. Very recently, de Sitter solutions of massive IIA

have been proposed without smearing orientifolds [33].

The status of these de Sitter constructions will depend on

whether one can make sense of O8-planes in a theory like

massive IIA, which does not have a perturbative world

sheet description.

Given the murky status of de Sitter constructions in

string theory today, one could adopt one of the following

viewpoints:

(a) There is sufficient complexity in the space of string

vacua and sufficient ingredients that a landscape of de

Sitter solutions, although hard to exhibit, is inevitable.

(b) De sitter space-time is part of the swampland, and dark

energy must be time-dependent.

(c) We do not have enough theoretical understanding yet

to make a determination.

This work is concerned with possibility (b), which has been

codified in the swampland conjectures [7,34,35], with

further discussion found in [36], and an alternative con-

jecture found in [37]. The first of these conjectures provides

a simple and powerful constraint on the scalar potentials

that can emerge from string theory. It is a bold and

provocative claim with observational consequences that

merits serious investigation. The second conjecture is far

less provocative with far more theoretical support, and

constrains the validity of effective field theory for large

scalar field excursions:

(i) C1: The refined dS conjecture requires that any

scalar field potential from string theory obeys either,

C1.1
j 0j

≡ λ≳ 1

or

C1.2 2

00
≡ 2 ≳ 1 1

(ii) C2: The distance conjecture constrains field excur-

sions to be small in Planck units over cosmic history

if one wishes to trust effective field theory,

Δϕ
≡ ≲ 1 2

Whatever constitutes dark energy, it must behave quite

closely to a pure cosmological constant with λ 0,

and we want to determine whether the swampland con-

jectures are already in tension with observation. The main

alternative to pure vacuum energy is some version of

quintessence [38]. See [39] for a different dark energy

model with a turning point in , and [40] for a strongly-

coupled monodromy scenario satisfying the swampland

conjectures. Quintessence models are relatively easily

embedded in supergravity [41], but are much harder to

construct in string theory; see, e.g., [42]. Such models are

also accompanied by a host of well-known phenomeno-

logical problems; for a very recent discussion and refer-

ences, see [43]. In the absence of detected deviations from a

cosmological model with a cosmological constant Λ and

cold dark matter (ΛCDM), cosmological observations will

place upper limits on the constants λ and involved in these

conjectures. We will test the classes of potentials that place

the weakest bounds on these quantities to arrive at the most

conservative assessment of these conjectures.

While observational bounds on λ have been recently

examined in the context of C1.1 [38,44,45], we complete

the study of the observational viability of the C1 conjecture

with an assessment of as well. We treat all cosmological

observables exactly both at the background level and at the

linear perturbation level, improving on the constraints of

[45]. In addition, we do not employ proxy statistics used in

[38,44]. We also carefully address the dependence of the

constraints on the data used, especially the Hubble con-

stant, in light of observational discrepancies on its value

within theΛCDMmodel. Finally we determine quantitative

observational bounds on field excursion both in conjunc-

tion with C1, and in the context of C2 alone using dark

energy reconstruction techniques.

This paper is organized as follows: in Sec. II we discuss

the potentials involved in testing the swampland

MARCO RAVERI, WAYNE HU, and SAVDEEP SETHI PHYS. REV. D 083518 (2019)

083518-2



conjectures and their implications for field excursion; in

Sec. III we detail the cosmological datasets that we use to

obtain the constraints presented in Sec. IV. We summarize

our findings in Sec. V.

The C1 conjecture asserts a minimum value for the

scaled slope, λ, or curvature, 2, of the potential. The

limiting cases which provide the least deviation from the

successful ΛCDM cosmology are the potentials that keep

either of the two parameters constant across cosmic history.

For C1.1, assuming λ is constant and a single field model

leads to an exponential potential:

ϕ exp λϕ 3

where is the scale of the potential. Notice that this

potential always fails condition C1.2. However because C1

can be satisfied either through C1.1 or C1.2, the exponen-

tial potential can still be compatible with C1.

For C1.2, assuming 2 is constant leads instead to a

cosine potential:

ϕ cos ϕ 4

where is the potential scale, and we have not considered

an additional overall phase because it does not influence the

cosmological evolution. Notice that this potential always

fails condition C1.1 but can still be compatible with C1.

Both classes of potential are well motivated from string

theory. Supersymmetric models naturally tend to give

potentials of this type. For example, race-track models

with superpotentials involving multiple gaugino conden-

sates give rise to both classes of potentials. However, it is

not unreasonable to expect the low-energy physics to only

involve potentials of type Eq. (4) for several axions with

other modes massed up at a high scale. Models with

100 axions with potentials that consist of sums of

cosines like Eq. (4) can lead to complicated and rich

potential landscapes, which are still amenable to analysis

[46,47]. In this work, we will restrict to the simplest case of

a single field model.

The C1 conjecture in either form excludes the ΛCDM

cosmology since it is recovered only for a flat potential

where λ 0. In addition, the second conjecture, C2,

when paired with C1 provides an interesting internal

tension with cosmology [38]. Given a potential with a

finite first derivative, the field must roll by at least a finite

amount during the past cosmological history. A large

second derivative would also generally imply a finite first

derivative except for certain finely tuned initial conditions.

To calculate the amount of roll during the past expansion

history, consider the cosmological Klein-Gordon equation

for the field ϕ , where ≡ ln is the -folds of the

expansion:

ϕ00
!

3

0"

ϕ0 1

2 ϕ
0 5

The primes represent derivatives with respect to the argu-

ment, , and ≡ is the Hubble parameter which

damps the evolution of the field.

Assuming that ϕ0 is finite at → , Eq. (5) has the

implicit solution

ϕ0
3

Z

˜

3 ˜

ϕ
6

so that the total field excursion can be written as:

Δϕ

Z

0 3
Z

˜

3 ˜

ϕ
7

In general the total field excursion depends on the

potential. The minimum amount of excursion comes from

potentials where the field is nearly frozen by Hubble drag in

the radiation and matter dominated epochs and only

released during the final e-folds of the expansion during

the acceleration epoch. These models are known as thawing

models. In this case, given the tight current observational

constraints in the acceleration epoch, it is usually a good

approximation to assume that 0 ϕ const and that

can be approximated by the flat ΛCDM expansion history.

We can then integrate Eq. (6) and rewrite this in terms of λ

evaluated around the thawing epoch:

jΔϕj λ

3

#

1
ffiffiffiffiffiffiffi

ΩΛ

p ln

!

1
ffiffiffiffiffiffiffi

ΩΛ

p

1
ffiffiffiffiffiffiffi

ΩΛ

p
"

2

%

8

Here ΩΛ ρΛ ρtot is the fraction of the total energy

density today in Λ for the assumed ΛCDM expansion

history. While this approximation represents a linearization

in a small λ around ΛCDM such that for the scalar field DE

limλ→0ΩDE ΩΛ, we shall see that this approximation

works across the whole range allowed by the data for an

exponential potential. This is because of a cancellation

between the nonlinearity of the roll and theΩDE λ required

by CMB data. Therefore, when applying Eq. (8) below, we

shall always employ ΩΛ 0.69, which is the best fit for

ΛCDM. This results in the linear relation

jΔϕj 0.29λ 9

which is steeper than the one reported in [38] of jΔϕj
λΩDE 3 0.23λ by a small, but as we shall see below,

significant amount.

Note that the same formula allows us to compute the

roll between any two epochs as well. To compute jΔϕj
from to some other epoch , we simply make the

replacement
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ΩΛ → ΩΛ

ΩΛ 0

ΩΛ 0 1 ΩΛ 0 3
10

which is the fraction of the total density in the cosmological

constant. We can then take differences of these computa-

tions to find the roll between any two epochs that are well

after radiation domination.

Since thawing models produce the least amount of field

excursion, they provide the most incisive combination of

the C1 and C2 conjectures since the field must roll by at

least some minimal amount for a given λ for C1.1 and

λ ϕ 0 for C1.2. However if we consider C2 alone,

then we require a more general relationship between the

field excursion and cosmological observables. For any

canonical scalar field dark energy, we can express

jϕ0j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 DE

ρDE
2

r

11

where DE DE ρDE is the equation of state parameter

for the dark energy. Assuming that the rest of the matter is

in CDM and the known standard model particles, we can in

principle infer DE and ρDE from expansion history

measurements that determine and then integrate ϕ0

to find the field excursion within the well-measured e-folds.

Current observations are not yet sufficiently precise to

fully reconstruct during the acceleration epoch

without prior assumptions on its functional form, or

equivalently the functional form of ϕ . We can however

use reconstruction techniques with very weak priors, as in

[48], to constrain the DE equation of state as a function of

time. This can then be converted to scalar field quantities

and in particular the field excursion using Eq. (11) (see,

e.g., [49]) once we impose that DE 1. We will also use

this reconstruction to study the robustness of our con-

clusions on C1 from the two limiting cases to a generic

form of the potential.

In the reconstruction approach, field excursions can be

directly computed only between epochs where we have

precision distance measurements. In this context, we

consider only field excursion between redshifts 0

and 1.5 since the latter roughly coincides with the

maximum redshift of available supernovae measurements.

To test the swampland conjectures discussed in the

previous section we will use several cosmological datasets.

As a baseline we use the measurements of the CMB

temperature and polarization power spectra at small angular

scales from the Planck satellite [50,51] with the addition of

the large scale temperature and E & B mode polarization

measurements. We add the Planck 2015 full-sky lensing

potential power spectrum reconstruction [52] in the multi-

pole range 40 l 400. We denote the dataset combining

these three probes as CMB.

To highlight the power of distance-redshift measure-

ments in testing these conjectures we consider the Pantheon

Supernovae sample [53], that we denote as the SN dataset,

and distance-ladder measurement of the Hubble constant

from [54], that we indicate as the 0 dataset.

When combining all cosmological datasets together, for

completeness, we also employ the following data: the CMB

temperature spectrummeasurements at small angular scales

from the South Pole Telescope [55] for multipoles

l 2500; the measurements of the galaxy weak lensing

shear correlation function as provided by the Canada-

France-Hawaii Telescope Lensing Survey (CFHTLenS)

[56] with ultraconservative cuts [57] that make

CFHTLenS data insensitive to the modeling of nonlinear

scales; measurements of the baryon acoustic oscillation

(BAO) scale from BOSS DR12 [58], the SDSS Main

Galaxy Sample [59] and 6dFGS [60]. We refer to the

complete data set compilation as ALL.

To produce cosmological predictions and compare them

to data, we use the EFTCAMB and EFTCOSMOMC codes

[61–63], modifications to the Einstein-Boltzmann code

CAMB [64] and the Markov Chain Monte Carlo

(MCMC) code COSMOMC [65] respectively, implementing

the quintessence models involved in testing the swampland

conjectures. The quintessence module will be made pub-

licly available in the next release of the EFTCAMB code.

For the parameters of the quintessence models, we take

priors that are flat in the given parameter across a range that

is as uninformative as possible. In each case we include the

standard 6 parameters of the ΛCDMmodel: baryon density

Ω
2, cold dark matter density Ω

2, scalar amplitude

and tilt , optical depth to reionization τ and the angular

size of the sound horizon θ . We also include all the

recommended parameters and priors describing systematic

effects in the datasets. We fix the sum of neutrino masses to

the minimal value (e.g., [66]).

For the exponential potential, we supplement these

parameters with an additional one, λ, which is allowed

to vary in the range [0,10]. Note that the potential scale

and the initial field position are degenerate and both are

absorbed into θ . For both the exponential and cosine

models, Hubble friction at early times is so large for the

allowed cosmological parameters that arbitrary initial

kinetic energy is rapidly dissipated and the field effectively

reaches the frozen state after a small number of e-folds. For

this reason the initial kinetic energy of the field is not a

relevant parameter for either model.

For the cosine potential, we have twoparameters: and the

amplitude of the cosine. We vary in the range [0.001,10].

The lower bound on is taken to be much less than values of

interest for C1.2. Its presence improves convergence of the

Monte Carlo sampling of the posterior, but on its own does

not affect our conclusions. For 1, the potential is so close

to flat that the amplitude is unconstrained. The upper bound
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is chosen to be uninformative when paired with the restric-

tions on the amplitude which we now discuss.

We rescale the cosine amplitude in units of DE density

0 ρDE 0 so that 0 is allowed to vary in the range

[1.001,10]. The upper bound is taken to be sufficiently high

that it is uninformative for 0.001 once all data are

considered. Since energy is covariantly conserved, values

of 0 1 are not possible if the field begins at rest. We

impose a slightly higher limit to remove a special fine tuned

case that would avoid observational constraints, at least at

the background level. If the initial field value is set at or

very close to the peak, then it will remain there and be

indistinguishable from a cosmological constant.

This is an unstable equilibrium and at some point even

cosmological perturbations will destabilize it. To avoid

such an unphysical situation we take 0 1.001, which

corresponds to forbidding an initial phase ϕ 0.0447.

For a random phase 0 π , which accounts for reflection

symmetry about the origin, this corresponds to about 1.4%

of the parameter space but note that our prior is flat in the

range defined by 0. We verify that variations around these

two cuts do not impact the final results presented later so

long as the priors are taken to be flat in 0.

For the choice of the weak prior for reconstruction we

follow the quintessence discussion in [67]. We highlight

here that, in the redshift range that we use to report field

excursion results 0 1.5 , the equation of state of DE is

allowed by the prior to freely oscillate four times around its

mean while faster variations are disfavored by the prior.

We first discuss the results for the exponential potential

and their implications for C1.1. The cosmology of the

exponential potential is characterized by the field starting

deep in radiation domination, frozen in a position in field

space by Hubble drag. As Hubble friction decreases at late

times the field “thaws” and starts to roll down the potential,

gaining kinetic energy and raising the dark energy equation

of state DE, in tension with data in the acceleration regime.

The ΛCDM model is recovered only as λ → 0, which is

inconsistent with C1.1.

As we can see from Table I, when testing the exponential

model with CMB only observations, the constraints on λ

allow O 1 values, compatible with C1.1, as a result of the

geometric degeneracy between ΩDE and λ at a fixed

distance to recombination required by the measurements.

It is possible to offset distance changes due to a large value of

λ by lowering the value ofΩDE which then lowers theHubble

constant. For this reason, when we combine CMB measure-

ments with direct measurements of the Hubble constant,

which prefer a value that is even larger than the one required

for ΛCDM, we strongly constrain the parameter λ as a result

of the tension between the two measurements.

This effect is also driving some of the constraints in the

literature, and should be born in mind when interpreting

results, especially should the 0 tension be resolved by

currently unknown systematics. Our analysis differs from

[38,44,45] because we consider all available datasets and

examine the robustness of results to various combinations.

These include tests both at the level of the cosmological

background and at the level of perturbations; we do not

include any additional approximations in the cosmological

treatment, nor in extracting model constraints from proxy

parametrizations for DE . Our results on C1.1 are in

general qualitative agreement with the results of [38,45].

Note that the tension with 0 measurements is generic to

thawing models, or more generally those quintessence

models where the physics at recombination is unmodified

from ΛCDM. The CMB then constrains the physical matter

density ρ and distance to , the redshift of recombination,
R

0
directly. Since DE 1, the dark energy

can only redshift faster than a cosmological constant.

Therefore, for a fixed distance, its contribution to the

present energy density must be smaller, and hence 2

0

ρ 0 ρDE 0 must also be smaller.

Even though CMB 0 data provide the largest com-

ponent of the overall constraint, large values of λ are also

disfavored by CMB and supernovae measurements. Since

the SN likelihood is marginalized over an overall calibra-

tion, it does not constrain the Hubble constant but rather the

shape of the distance redshift relation . This makes the

conclusion that λ 1 is disfavored by cosmological

observations more robust, as it comes from both the

normalization and shape of .

As we combine all datasets together the results only

tighten slightly compared with the CMB 0 constraint.

The probability of exceeding the value of λ 1 parallels this

trend, as can be seen from Table I, and becomes negligible

TABLE I. The marginalized constraints on the parameters of the exponential potential relevant for the C1.1 and C2 swampland

conjectures, for different cosmological dataset combinations.

Data set

λ jΔϕj jΔϕj 1.5

λ 168% (95%) C.L. 68% (95%) C.L. 68% (95%) C.L.

CMB λ 1.1 1.9 jΔϕj 0.33 0.52 jΔϕj 1.5 0.29 0.45 38% (0.9σ)

CMB SN λ 0.38 0.64 jΔϕj 0.11 0.19 jΔϕj 1.5 0.10 0.17 0.017% (3.8σ)

CMB 0 λ 0.29 0.56 jΔϕj 0.08 0.16 jΔϕj 1.5 0.07 0.15 0.008% (3.9σ)

ALL λ 0.28 0.51 jΔϕj 0.08 0.15 jΔϕj 1.5 0.07 0.14 0.0006% (4.5σ)
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as we combine CMB observations with low redshift dis-

tance measurements, reaching a value equivalent to a 4.5σ

exclusion with the ALL dataset combination. We compute

here the effective number of standard deviations that we

would associate to an event of given probability as σ ≡
ffiffiffi

2
p

Erf 1 1 to aid the interpretation of the statistical

significance of the reported results. Thus our estimates in

highly excluded regions is limited by the finite MCMC

sample.

Since the exponential case corresponds to a thawing

model, the total field excursion converges over the whole

cosmological evolution and we report its upper bound in

Table I. From Fig. 1, we see that it is tightly correlated with

λ as predicted by Eq. (9). Note that if we use the slope

reported in [38], the small difference is highly significant

due to the tight correlation between the two parameters

imposed by the data. Interestingly, our linear prediction is

also robust to λ O 1 , where we would expect to have

nonlinear corrections to Eq. (8) because they are partially

compensated by the change in ΩDE λ required to fix the

distance to recombination. As we can clearly notice in

Fig. 1, the correlation between these two parameters is set

by CMB observations which define the geometric degen-

eracy direction. The allowed width orthogonal to this

direction reflects the small uncertainty on the distance to

recombination, while the extent of the degeneracy is limited

by the data in the acceleration regime.

Given that C1.1 with λ≳ 1 is ruled out by observations,

we now turn to whether the dS conjecture can instead be

satisfied through C1.2 using the cosine potential.

The cosine model also falls into the class of thawing

models. To provide the necessary ingredient to drive

cosmic acceleration the field has to start its evolution deep

in radiation domination close to the positive maximum of

the potential, where it is frozen by Hubble friction. As

Hubble drag relaxes the field starts rolling down across a

region in potential that corresponds to a tachyonic mass. A

tachyonic j j≳ 0 would generally cause this rolling to

violate observational constraints on acceleration.

Similarly to the exponential potential, we can see from

Table II, that CMB only observations would allow very

large values of as a result of the geometric degeneracy. On

the other hand combining CMB measurements with dis-

tance-redshift data disfavors large values of since they

generally imply a substantial deviation from DE 1.

The probability that exceeds one follows the same

qualitative behavior as λ in the exponential potential and

falls as we add the distance-redshift data. Notice that the

distribution of is highly non-Gaussian because of a

degeneracy between 0 and in determining the dark

energy equation of state or equivalently, as we shall see, the

local slope of the potential. This implies that the 95% C.L.

bound is significantly larger than twice the 68% C.L. one.

This can also be clearly appreciated in the upper panel of

Fig. 2. In the lower panel we show the joint marginalized

posterior of the parameter and total field excursion which

are almost uncorrelated once data in the acceleration epoch

is included.

In spite of this lack of correlation, the cosine model still

falls into the thawing class where Eq. (8) holds. The lack of

correlation reflects the ability for a single value of to take

FIG. 1. The marginalized probability distribution of the param-

eter λ of the exponential potential relevant for the C1.1 dS

conjecture and the joint marginalized distribution of λ and total

field excursion relevant for the C2 distance conjecture. The

dashed line is the relation between these two parameters predicted

by Eq. (9). The darker and lighter shades correspond respectively

to the 68% C.L. and the 95% C.L. regions.

TABLE II. The marginalized constraints on the parameters of the cosine potential relevant for the C1.2 and C.2 swampland

conjectures, for different cosmological dataset combinations.

Data set

λeff jΔϕj jΔϕj 1.5

168% (95%) C.L. 68% (95%) C.L. 68% (95%) C.L. 68% (95%) C.L.

CMB 2.3 3.1 λeff 1.4 2.2 jΔϕj 0.51 0.66 jΔϕj 1.5 0.47 0.63 50% (0.6σ)

CMB SN 0.25 1.4 λeff 0.40 0.71 jΔϕj 0.11 0.19 jΔϕj 1.5 0.10 0.16 8.5% (1.7σ)

CMB 0 0.17 0.84 λeff 0.31 0.58 jΔϕj 0.09 0.16 jΔϕj 1.5 0.08 0.15 3.3% (2.1σ)

ALL 0.16 0.73 λeff 0.29 0.53 jΔϕj 0.08 0.15 jΔϕj 1.5 0.07 0.14 1.9% (2.3σ)
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on different values for the local slope of the potential. We

extract the slope of the potential at the thawing epoch by

averaging λ for the cosine potential and weighting it by

ΩΛ from the best fitΛCDMmodel. We verify that other

choices do not result in appreciable differences. We refer to

the resulting quantity as λeff which should serve as a proxy

for the λ in Eq. (8), and is computed using

λeff ≡

R

λ ΩΛ
R

ΩΛ

12

In Fig. 3 we show the joint marginalized posterior of λeff
and total field excursion. These two parameters are now

strongly correlated and follow almost exactly the relation in

Eq. (9) written in terms of λeff . The limits imposed by the

data also agree well between the exponential and the cosine

models as we can see by comparing Tables II and I. The

difference near λeff 0 reflects the fact that initial con-

ditions where the field starts at the top of the cosine

potential require fine tuning, and are downweighted with

our choice of priors.

Upper limits on λeff are robust because in thawing

models, observations mainly constrain one parameter: λ

at the thawing epoch, for which λeff is a proxy. This also

explains why the marginal distribution of in Fig. 2 is so

non-Gaussian and leads to weaker constraints on the dS

conjecture C1.2 for the cosine than constraints on C1.1 for

the exponential potential. The physical reason for this is as

follows: sufficiently close to the peak of the cosine

potential, it becomes indistinguishable from a cosmological

constant at the background level, even for large values of .

To estimate the amount of tuning required to allow a

given value of we can use the constraints on λ from the

exponential potential. In the cosine model:

λeff tan ϕ tan ϕ Δϕ

tan ϕ 0.29λeff 13

where ϕ is the initial field position and we have employed

Eq. (9) to estimate the amount of roll from the initial value.

We can now take constraints for λ from the exponential

potential, leverage on the fact that for the cosine potential

constraints on λ and λeff are very close, and invert Eq. (13)

to obtain the amount of initial condition tuning needed for a

given :

ϕ 0.29 λeff arctan

!

λeff
"

14

As an example, if we take the 95% C.L. bound from the

ALL dataset λeff λ 0.51, we would require ϕ π

0.1 for 1.

This effect is clearly seen in Fig. 4 where we show the

joint distribution of initial condition tuning and as a cloud

of points, colored by their value of λeff and cut at the

95% C.L. bound on λ of the ALL dataset for the

FIG. 2. The marginalized probability distribution of the param-

eter of the cosine potential, relevant for the C1.2 dS conjecture,

and the joint marginalized distribution of and total field

excursion relevant for the C2 distance conjecture. The darker

and lighter shades correspond respectively to the 68% C.L. and

the 95% C.L. regions.

FIG. 3. The marginalized probability distribution of λeff for both

the exponential and cosine potentials together with its joint

marginalized distribution with total field excursion for the ALL

dataset. The dashed line is the relation between these two

parameters predicted by Eq. (9). The darker and lighter shades

correspond respectively to the 68%C.L. and the 95%C.L. regions.
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exponential potential. We can see that Eq. (14) matches the

95% C.L. bound very well. This further justifies the use of

the exponential model constraint on λ to estimate the tuning

of the cosine model in Eq. (14). For large values of there

is a small discrepancy that is due to nonlinearities in λeff in

the evolution of field roll.

Extreme values of are then downweighted by two

effects: our flat prior on 0 gradually disfavors tuned

solutions and a hard tuning cut at ϕ π 0.014 avoids

extreme values that would slow the convergence of the

parameter estimation chains.

Although our results are robust to the prior ranges for the

ALL dataset, they do depend on the shape of the prior. Were

there to be a physical reason to favor the tuned cases where

the field remains stuck at the top of the potential, then larger

values of would be allowed by the data, as quantified in

Fig. 4. Conversely, were there some reason that the prior

should be flat in log , then the posterior bounds on would

tighten. For any given choice of prior, our technique of

adopting the exponential potential constraint on λeff pro-

vides a simple means of estimating implications for .

We conclude that C1.2 with 1 is also disfavored by

the data, except for fine tuned and unstable initial con-

ditions. Hence the data is in tension with both versions of

the C1 dS conjecture.

Next we investigate the robustness of these results to

allowed changes in the potential obtained by reconstructing

DE from the data. We first remark that even allowing

an arbitrary potential, there is no significantly better fit to

the data than the ΛCDM model.

In the reconstruction, where both λ and become time

dependent, we extract their minimum value to assess C1

and compare their constraint to the limiting cases. For both

λ and , we find that the constraints from reconstruction are

tighter for both parameters, making the two limiting

potentials the most conservative assessment of the dS

conjecture. In both cases the reason is as follows: at a

given λmin, the field will generally cross into regions of

larger λ that would result in larger deviations from ΛCDM.

As derived from the general reconstruction these extra

deviations are not favored by the data making the model

with a given λmin more, or at least equally, disfavored with

respect to the exponential with λ λmin. A similar argu-

ment can be made for and the cosine potential.

Finally we consider field excursion from reconstruction.

Unlike for the thawing class of models, reconstruction

allows potentials where the field rolls significantly at high

redshift. This is not as well constrained by the data and so

we focus on the amount of roll between 1.5 and the

present. The corresponding constraints for the exponential

and cosine potentials are reported in Tables I and II

respectively, and follow accurately the behavior given by

Eq. (8). In these thawing models, the datasets a robust

upper bound on the amount of roll between these two

epochs, Δϕ 1.5 0.07 0.14 at 68% (95%) C.L. that is

only slightly smaller than the total excursion.

For the more general case of reconstruction, we have a

weaker upper limit: Δϕ 1.5 0.18 0.22 at 68% (95%)

C.L. In the reconstruction no potential is assumed a priori

but a smoothness criterion for the equation of state has to be

assumed, as in [48,67]. To understand whether the prior is

limiting this determination we run a prior only chain that

results in much larger allowed field excursions of

Δϕ 1.5 1.22 1.6 at 68% 95% C.L. We also verify

that the data likelihood decreases as expected between

Δϕ 1.5 0.18 and Δϕ 1.5 0.22 showing that the con-

straint reflects the preference of the data not the prior. As a

further check, note that for a constant DE a bound on

Δϕ 1.5 0.22 corresponds to DE 0.95 which is

roughly the level at which such deviations are allowed

with current data.

In this paper we studied the cosmological implications of

the refined de Sitter (C1) and distance (C2) swampland

conjectures that have been proposed in literature. The C1

conjecture depends on two dimensionless constants λ .

We have determined which piece of experimental evi-

dence contributes most to data constraints on these con-

jectures. We found that the strongest constraints are driven

by the synergy between CMB observations fixing the

distance to recombination, and both the normalization and

shape of the distance redshift relation. The normalization,

FIG. 4. The joint marginalized distribution of initial condition

tuning and for the cosine potential and the ALL dataset. Models

are cut based on their value of λeff at the 95% C.L. bound from the

exponential potential, resulting in models shown with

λeff 0.51. The density of points is proportional to the joint

PDF and the color represents the value of λeff . The dashed line

represents the amount of tuning needed to stabilize a given value

of given by Eq. (14). The solid line represents the tuning cut that

we enforce.
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or Hubble constant, is especially powerful in establishing

constraints since these quintessence models exacerbate the

already existing tension in ΛCDM.

Overall we found that, combining most of the available

cosmological datasets, λ 0.51 and 0.73 at the

95% confidence level. Both results are obtained by directly

computing cosmological predictions for the quintessence

models involved, without approximations, and properly

comparing them to the data. In this respect the result on λ

settles the discussion in the literature on the assessment of

C1.1, and extends these results to the complete current

refined de Sitter conjecture C1. Only specially fine-tuned

initial conditions, where the field starts at the unstable

maximum of the potential, can evade the bound on .

As a benchmark for the tension between these conjec-

tures and cosmological observations, we computed the

probability that λ and can exceed one and find that for the

most complete data compilation: λ 1 0.0006%, or

equivalently disfavored at a statistical significance higher

than 4.5σ and limited by our sampling of the tails of the

distribution; 1 1.9%, or equivalently disfavored

at the 2.3σ level. Even without the Hubble constant

measurements, these results remain significant.

We have also derived a general and accurate relationship

between λ and field excursion that applies to the whole

class of thawing quintessence models. For these models,

the observations place an upper bound at 95% C.L.

of jΔϕj 0.15 .

To comment on the robustness of these results to changes

in the form of the potential, we have considered non-

parametric reconstructions of the equation of state of DE

and its projection on quintessence models. We have verified

that in this general setup, the exponential and cosine

potentials are the limiting cases for the two parts of the

C1 conjecture.

We discussed the relationship between field excursion and

directly observable quantities, and used the reconstruction

results to compute field excursion in the observable data

range. At 95% C.L., this results in jΔϕj 1.5 0.22 .

The field excursion results that we have found exhibit no

tension with the distance conjecture, which is the swamp-

land conjecture on the firmest theoretical footing. How one

views the results on λ depends on what one considers to

be 1 , and the confidence level one is willing to assume.

At the 95% C.L., the constraints λ 0.51 0.73 are

not particularly troubling. One could easily imagine a more

precise conjecture emerging from string theory involving

dimensionless numbers of that size. At the 68% C.L. where

the constraints take the form λ 0.28 0.16 , the

numbers start to look a little more in need of some theoretical

explanation.
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