Collapsible Contracts: Fixing a Pathology of Gradual Typing

DANIEL FELTEY, Northwestern University, USA

BEN GREENMAN, Northeastern University, USA
CHRISTOPHE SCHOLLIERS, Ghent University, Belgium
ROBERT BRUCE FINDLER, Northwestern University, USA
VINCENT ST-AMOUR, Northwestern University, USA

The promise of gradual typing is that programmers should get the best of both worlds: the static guarantees
of static types, and the dynamic flexibility of untyped programming. This is an enticing benefit, but one that,
in practice, may carry significant costs. Significant enough, in fact, to threaten the very practicality of gradual
typing; slowdowns as high as 120x are reported as arising from gradual typing.

If one examines these results closely, though, it becomes clear that the costs of gradual typing are not
evenly distributed. Indeed, while mixing typed and untyped code almost invariably carries non-trivial costs,
many truly deal-breaking slowdowns exhibit pathological performance. Unfortunately, the very presence of
these pathological cases—and therefore the possibility of hitting them during development—makes gradual
typing a risky proposition in any setting that even remotely cares about performance.

This work attacks one source of large overheads in these pathological cases: an accumulation of contract
wrappers that perform redundant checks. The work introduces a novel strategy for contract checking—
collapsible contracts—which eliminates this redundancy for function and vector contracts and drastically
reduces the overhead of contract wrappers.

We implemented this checking strategy as part of the Racket contract system, which is used in the
Typed Racket gradual typing system. Our experiments show that our strategy successfully brings a class of
pathological cases in line with normal cases, while not introducing an undue overhead to any of the other
cases. Our results also show that the performance of gradual typing in Racket remains prohibitive for many
programs, but that collapsible contracts are one essential ingredient in reducing the cost of gradual typing.
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1 GRADUAL TYPING, BUT AT WHAT COST?

The literature on gradual typing presents three fundamentally different opinions on how to combine
statically typed and dynamically typed code [Chung et al. 2018; Greenman and Felleisen 2018]. One
approach is to erase types at runtime [Bierman et al. 2014; Bracha and Griswold 1993; Chaudhuri et

Authors’ addresses: Daniel Feltey, Northwestern University, USA, daniel.feltey@eecs.northwestern.edu; Ben Green-
man, Northeastern University, USA, benjaminlgreenman@gmail.com; Christophe Scholliers, Ghent University, Belgium,
Christophe.Scholliers@UGent.be; Robert Bruce Findler, Northwestern University, USA, robby@eecs.northwestern.edu;
Vincent St-Amour, Northwestern University, USA, stamourv@eecs.northwestern.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART133
https://doi.org/10.1145/3276503

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 133. Publication date: November 2018.



http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276503
https://doi.org/10.1145/3276503

133:2 D. Feltey, B. Greenman, C. Scholliers, R. Findler, and V. St-Amour

al. 2017]. A second approach is to guard the boundaries between typed and untyped regions with
first-order checks [Muehlboeck and Tate 2017; Rastogi et al. 2015; Roberts et al. 2018; Vitousek
et al. 2017; Wrigstad et al. 2010]. A third approach is to enforce types with higher-order con-
tracts [Allende et al. 2013; Tobin-Hochstadt et al. 2017; Williams et al. 2017]. Each approach offers
different static guarantees and performance consequences as well as tradeoffs in expressiveness
and flexibility [Greenman and Felleisen 2018].

Among the various strategies, the higher-order approach to gradual typing is the only one known
to provide strong guarantees without limiting the expressiveness of dynamically typed code. In
a higher-order system such as Typed Racket, a programmer can start with a dynamically typed
codebase, add static type checking to any one module, and benefit from both type soundness and
correct blame [Tobin-Hochstadt et al. 2017]. Type soundness guarantees that any runtime violation
of the static types is detected as early as possible during the execution of the program; correct
blame guarantees that every such violation is attributed to exactly one boundary between a static
type annotation and a dynamically typed value. In other words: when a runtime mismatch between
a static type and an untyped value occurs, the error message reports the two relevant parties.

Unfortunately, a system that implements the higher-order approach must augment the semantics
of a program in order to enforce types and track blame information. The net cost of these additions
can be extremely high; Takikawa et al. [2016] report that freely adding types to a Typed Racket
program can lead to slowdowns of over two orders of magnitude. This means that programmers must
be extremely careful when mixing typed and untyped code in practice, because some combinations
may render their program unacceptably slow.

One scenario in which these extreme slowdowns arise is when a higher-order value repeatedly
crosses between statically typed and dynamically typed regions of code. Since types are enforced
with higher-order contracts, each boundary-crossing wraps the value in a new contract. These
layers of indirection can change the asymptotic complexity of a program.

Inspired by Greenberg [2015]’s bold, theoretical claims that contracts (with correct blame) never
need more than a constant amount of space, we developed a better runtime representation for
contracts that supports a merging operation. That merging operation makes it possible to eliminate
the redundancy that results from the above failure mode and brings the overhead of redundant
boundary-crossings down to the more reasonable, common case overhead.

We validate our approach by integrating our contract system into Racket [Flatt and PLT 2010] and
Typed Racket, a full-fledged, mature gradual typing system. To evaluate the effect of our strategy,
we measured our implementation following the state-of-the-art gradual typing benchmarking
methods. Our results confirm that our approach yields significant speedups in programs that
exhibit the redundant-wrapping pathology, and that our approach’s extra bookkeeping imposes
only 14% overhead in the worst case. In short, we identify one specific pathology of sound gradual
typing and show how to eliminate it. Our results also confirm that more work needs to be done;
our work solves only some of the problems that the benchmark programs exhibit.

The rest of the paper starts by illustrating the pathology we target with an example, and introduces
some of the constraints a valid cure must satisfy in section 2. Section 3 presents our approach
informally, and section 4 and section 5 describe it formally. Section 6 describes the additional
constraints that arise from implementing the new checking strategy in an existing, production-
quality contract system, and presents key optimizations that help to minimize the cost of the
strategy. Section 7 presents the results of our performance experiments, section 8 surveys related
work, and section 9 concludes.
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2 CONTRACTS GET A BAD WRAP

To motivate our improvements to the run-time support for contracts, this section works through
the behavior of a Quicksort algorithm written in Racket that uses contracts.

Section 2.1 gives a high level overview of contracts, focusing on the data structures and contracts
most relevant to the implementation of Quicksort. Section 2.2 presents the core components of
the implementation and analyzes the performance problem that contracts impose on Quicksort.
Section 2.3 discusses the concept of blame in detail to understand how it constrains possible
solutions to this performance problem. Section 2.4 further illustrates the problem posed by repeated
contract wrapping. Finally, section 2.5 reviews the challenges that must be overcome to avoid the
build up of contract wrappers.

2.1 Higher-Order Contracts in a Nutshell

The Quicksort implementation we consider accepts a mutable vector and sorts it in place. Before
getting into sorting itself, let us first introduce the basics of vectors and contracts in Racket.

The two primary operations on vectors are vector-ref, which accesses an element from the
vector, and vector-set!, which modifies the vector, updating the element at a given position.
Vectors and vector operations admit a simple pictorial representation that we use to help explain
the performance problem. We show vectors with vertical sequences of boxes, each containing an
element of the vector. Vector operations are represented with thick arrows that indicate the flow
of a value leaving or entering a vector. In this representation when vector-ref is called values
leave to the right. Values enter a vector from the left when using vector-set!. The image below
illustrates these operations on a vector containing the values 5 and 3 at indices @ and 1. The thin
arrow shows the result of the vector-set! operation.

2w 1]
] 57 [

Contracts serve two purposes: ensuring that a value meets a specification and assigning blame to
the program component at fault when such a specification is not met. Ordinary contract checking,
i.e., for first-order functions, corresponds to the evaluation of two boolean-valued expressions: a
pre-condition and a post-condition. Pre-conditions and post-conditions are respectively evaluated
just before and after the function is called. When pre-conditions fail, blame is assigned to the caller,
when post-conditions fail, blame is assigned to the function itself. This simple story breaks down for
higher-order functions and shared mutable state. In particular, simply checking that the contents of
a vector satisfy a contract when passed to or returned from a function can lead to incorrect blame
assignment. The problem is that a third party may have access to the vector via a shared reference
and may mutate the vector separately from any function call or return.

Consider the two program components in figure 1. The counter.rkt component provides
the function init, which returns a reference to a shared vector, and the function inc!, which
increments the element in the vector (note that inc! is buggy; we return to this point later). The
definition of init uses Racket’s provide/contract form to attach a contract to the function. In
this case, init promises that it returns a value satisfying the (vectorof positive?) contract.
This contract ensures that the return value is a vector containing only positive numbers.

The code in counter-client.rkt uses init to access the vector, storing it in the local variable v.
It then uses inc! to increment the value in the vector, extracts the value, binding it to x, and then
takes the reciprocal of x. If it were not for the bug in inc!, this should print out 1/2.

Because of the bug, however, inc! puts 0 into the vector, which violates the contract that
counter-client.rkt is relying on. Racket’s contract checker catches this violation and correctly
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counter.rkt counter-client.rkt
1 | #lang racket 1 | #lang racket
2 | (provide/contract 2 | (require "counter.rkt")
3| [init (-> (vectorof positive?))] 3
4| [inc! (-> void?)]1) 4 | (define v (init))
5 5| (inc!)
6 | (define shared (vector 1)) 6 | (define x (vector-ref v 0))
7 7 | (display (/ 1 x))
8 | (define (init) 8
9 shared) 9
10 10
11 | (define (inc!) 11
12 (define x (vector-ref shared 0)) 12
13 (vector-set! shared 0 (- x 1)))

Fig. 1. Using vectors for shared state

assigns blame to counter.rkt. A simplistic, incorrect contract checker would simply check that
the vector contains positive numbers when init returns and do no further checks, leading to a
division by zero in this case. Racket’s contract checker, however, wraps the vector (just like it does
for higher-order functions) and then checks the contracts when the vector’s elements are accessed.

Note that this wrapping is an essential aspect of contract checking. In particular, modification of
the vector bound to shared by counter.rkt is not required to obey contracts that might accrue on
other references to the vector. This separation keeps contracts optimistic, ensuring that violations
are signaled only when a module actually observes a bad value via a reference that has a contract on
it. This behavior of contracts has another benefit, namely it allows references to the same vector to
be seen by different parties with different contracts, which enables more opportunities for contract
composition. And finally, it ensures that blame assignment is correct [Dimoulas et al. 2012].

An important consequence of that wrapping, however, is that values that accumulate multiple
contracts—be it as a result of passing through multiple contract boundaries, or passing through
the same boundary multiple times—will also accumulate wrappers. Accessing the original value
requires going through all these wrappers, with their associated checks.

We can enrich our pictorial representation of vectors to also represent contracted vectors. We
add striped and solid bars to the sides of a vector in order to represent the contract that wraps a
vector. These bars represent the contract checks that occur on every vector-ref and vector-set!
operation on the vector. The shading of the bars represents the component that is blamed for a
contract violation. The striped bars typically represent checks that are the responsibility of client
code, whereas the solid bars represent checks for which the component producing the vector is
responsible. The images below depict contracted variants of the vectors from the previous diagrams.

5 2 2 5 2
3% 3 3 3

2.2 Not-So-Quick Sort

Equipped with this understanding of vectors and contracts, this section turns to the impact of
contracts on an implementation of Quicksort. This version of Quicksort sorts a vector of 2D points
where a point is represented by a vector of exactly two elements. For simplicity, we use the contract
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(vectorof (vectorof integer?)) to enforce this invariant instead of a more specific contract,
although the development in this section would be the same with more specific contracts supported
by Racket’s contract system.

(provide/contract

[quicksort! (-> (vectorof (vectorof integer?)) void?)1)
;3 The details of the implementation of Quicksort are standard
;; and elided in order to focus on those components which are
;3 interesting from the perspective of contract checking.

Sorting a vector of points requires a comparison function on points. Our Quicksort implementa-
tion uses the following lex-order? function, which consumes two points and returns true if the
first point is lexicographically smaller than the second.

(define (lex-order? u v)
(define u@ (vector-ref u 0))
(define ul (vector-ref u 1))
(define v@ (vector-ref v 0))
(define v1 (vector-ref v 1))
(or (< u0@ vo)
(and (= ud vo) (< ul v1))))

This definition is unremarkable; it simply extracts the values from each point (u and v) and
compares them. If u or v happen to have contracts, however, calling lex-order? will trigger
contract checks for each call to vector-ref. In particular, if each of u and v each have n wrappers
requiring that they be vectors of integers, then there will be 4n checks that the elements are integers.

The other necessary piece of the Quicksort implementation is a function to swap elements of the
vector being sorted. The definition of this function, swap!, appears below. Like the definition of
lex-order?, the definition of swap! is straightforward, but if the v argument to swap! is wrapped
with the (vectorof (vectorof integer?)) contract then every call to swap! will build up
wrappers on the values contained in v. More precisely, when vi is defined, a contract check needs
to happen to ensure that the extracted value obeys the contract on the vector. In this case, however,
the contract is not simply that the contents are integers but it is itself a vector contract. Accordingly,
the contract checker wraps the result of vector-ref with a contract. The same thing happens
when vi is assigned as one of the elements of the outer vector, resulting in a second contract being
attached to vi prior to it being added to the outer vector. This unfortunate build-up of contracts is
what causes the terrible performance in this implementation of Quicksort.

(define (swap! v i j)
(define vi (vector-ref v i))
(define vj (vector-ref v j))
(vector-set! v i vj)
(vector-set! v j vi))

To see how the problem develops more precisely, consider this series of pictures representing
the evolution of the contracts during one run of our Quicksort implementation.
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This diagram shows the state of the vector passed to Quicksort as well as its state following
each call to swap!. Every call to swap! adds two layers of contract wrappers to the elements being
swapped: one when the element is extracted from the vector, and a second when the element is put
back into the vector. Once the vector has been sorted, the maximum number of wrappers on an
element of the vector is 6 with an average of 4 wrappers. Somewhat more surprising, however, is
the number of times the integer? predicate is called as a result of sorting. The implementation of
lex-order? suggests that there should be approximately four times as many calls to the integer?
predicate as there are calls to lex-order?. In this particular run of Quicksort, the trace produces 6
calls to lex-order?, but 168 calls to integer?. The extra wrappers cause extra, redundant checks,
taking us well beyond simply four additional checks per call to lex-order?.
Although these statistics may not seem overly prohibitive towards the use of contracts, consider
a larger input to Quicksort. On a randomly ordered vector of 1,000 points, a call to Quicksort can
wrap the inner vectors an average of 21 times, call lex-order? 11,793 times, and call the integer?
predicate 134,741,104 times. In this case the performance impact of contracts is severe.

2.3 Wrapping Up Blame

The execution of Quicksort produces a vector of vectors repeatedly wrapped with contracts that
perform the same checks. Because they perform identical checks, a single wrapper would suffice
to guard each inner vector in this case. Intuitively, it seems that keeping only the first wrapper
would alleviate the performance problem of contracts in general. Unfortunately, keeping only that
one would be incorrect. The issue lies in managing the information required to correctly assign
blame when a violation occurs. If the contract system were to keep only one of the wrappers, blame
assignment could shift from a guilty module to an innocent one.

To better understand the issue of blame assignment and how it interacts with multiple wrappers,
consider the contrived program in figure 2. It is not a well-designed vector program, but it allows
us to focus on the essence of proper blame assignment for contracts on (possibly shared) vectors.
The inc-each.rkt component provides a function inc-each! that takes a reference to a vector,
increments each element of the vector by one and returns a reference to the given vector. A vector
passed to inc-each! receives two contract wrappers, the first when passed as an argument to the
function and the second when the function returns. Each of these wrappers corresponds to different
configurations of blame, however. Within the body of inc-each!, the inc-each-client.rkt
component is blamed if the vector produces a non-integer value (when vector-ref is called).
When inc-each! returns and the second wrapper is added, inc-each! becomes responsible for
ensuring that the resulting vector contains integers. Mutation reverses the flow of values and thus
reverses the responsibilities [Strickland et al. 2012]. Within the body of inc-each!, the function
itself is responsible for inserting only integers into the vector and when the function returns the
client also gains this responsibility. The image below depicts the client’s call to inc-each!, where
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inc-each.rkt inc-each-client.rkt
1 | #lang racket 1 | #lang racket
2 | (provide/contract 2 | (require "inc-each.rkt")
3| [inc-each! 3
4 (-> (vectorof integer?) 4 | (define v1 (vector 5 3))
5 (vectorof integer?))1) 5| (define v2 (inc-each! v1))
6 6 | (vector-set! vl 0 "bad")
7 | (define (inc-each! v) 7 | (vector-ref v2 0)
8 (for ([i (in-range (vector-length v))1) 8
9 (define vi (vector-ref v i)) 9
10 (vector-set! v i (+ 1 vi))) 10
11 V)

Fig. 2. Interaction between mutable state and blame assignment using vector contracts

the solid blue wrappers represent checks for which inc-each.rkt is responsible and the striped
blue wrappers represent checks for which inc-each-client.rkt is responsible.

inc-each.rkt
5 | 55> 156 5 6
/ |
323+ (+13)>40 3 4

Consider the code in inc-each-client.rkt. On line 4 the client creates a new vector, v1,
and passes it to inc-each! on line 5, binding the result to v2. Note that the vector v1 is an
uncontracted alias of the contracted vector v2 returned by inc-each!. On line 6 the client modifies
the vector at index 0 to contain the string "bad". Because this operation is performed on the
original, uncontracted reference to the vector, there is no contract violation. Finally, the client
attempts to access the element at index @ of v2. The vector v2 has passed through two boundaries
so the value that is extracted from the vector now must travel through those boundaries too. In this
case, the first contract check is the client’s responsibility and a contract violation is raised blaming
inc-each-client.rkt for producing the value "bad" instead of an integer, just as we would hope.

Despite the fact that the two contracts on v2 check the same invariants, they each assign blame
to different components. Thus, removing the inner wrapper would change the blame assignment
in this example, incorrectly blaming inc-each.rkt. Similarly, removing the outer wrapper would
shift the blame from the client to the server for failing to insert integers into the vector v2. Indeed,
it is commonly the case that the blame associated with incorrectly mutating a vector is different
than the blame associated with extracting an incorrect value from a vector.

Even worse, if there are multiple distinct contract wrappers on a value, but with some of the
checks duplicated, removing redundant wrappers could change the order in which contracts are
checked, which might result in incorrect blame, but could also result in failures in the code that
does the contract checking itself. In particular, the code that implements the checks for one contract
might depend on another contract being satisfied. In short, simply removing contract wrappers is
not an acceptable solution for the problem of contract build-up.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 133. Publication date: November 2018.



133:8 D. Feltey, B. Greenman, C. Scholliers, R. Findler, and V. St-Amour

bubble.rkt bubble-client.rkt
1 | #lang racket 1 | #lang racket
2 | (define bubble/c 2 | (require "bubble.rkt")
3 (recursive-contract 3
4 (vector/c bubble/c) 4 | (define (self-assign n)
5 #:chaperone)) 5 (let loop ([n nl]
6 6 [vec vec])
7 | (define vec (vector #f)) 7 (unless (zero? n)
8 8 (vector-set! vec 0 vec)
9 | (provide/contract 9 (loop (- n 1)
10 | [vec bubble/c]) 10 (vector-ref vec 0)))))

Fig. 3. Exponentially Many Wrappers

2.4 How Bad Can It Get?

These additional contract wrappers can change the asymptotic complexity of the program. For
example, if each iteration of a loop adds a contract to a value and then checks all of the contracts,
the checking adds an extra factor of n. But it can get significantly worse than that.

Consider the program in figure 3, an example of Takikawa et al. [2015] adapted to vector contracts.
It shows a program where the wrapping grows exponentially with the number of iterations of a loop.
To understand why, first consider the initial export from bubble. rkt. It is a vector with a single
wrapper that holds the bubble/c contract. Next, imagine what happens on the first iteration of the
loop. The vector is inserted into itself, which means that the reference inside the vector now has
two bubble/c wrappers. Then it is removed, which adds a third wrapper. On the second iteration
of the loop, we start with a reference that has three wrappers. When we insert it into itself, each of
those three wrappers puts another copy on, for a total of six wrappers. Then, when the reference is
extracted, another three wrappers are put on, and we go around the loop again, this time with a
reference that has nine wrappers. Each time around the loop, we are (asymptotically) tripling the
number of wrappers, leading to an exponential slowdown. While this example is distilled to its
essence, we have seen this exponential behavior in real programs.

2.5 Wrapping up the Bad Wrap

Overall this section illustrates, using Racket’s vectors, how wrappers can accumulate and lead to a
large number of redundant contract checks, with all the performance overhead that ensues. It is
clear that reducing this performance impact requires a way to both reduce the amount of wrappers
attached to a given value and eliminate redundant contract checks. Unfortunately, the need to
preserve correct blame defeats the straightforward approach of removing contract wrappers. These
constraints demand a solution that can reduce the number of wrappers and elide unnecessary
contract checks without sacrificing correct blame assignment.

3 UNWRAPPING THE SOLUTION

This section presents the two central aspects of our technique for reducing the performance impact
of contracts: a new representation of contracts and a way to merge contracts to avoid redundant
contract checks that our representation enables. Together, these two innovations prevent contract
wrappers from building up on values by dropping contracts that are guaranteed never to fail.
Applied to the Quicksort example from the previous section, this approach limits the buildup
of contracts on any vector to a single wrapper. Section 3.1 introduces the new data structure
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square-each.rkt _5
1 | #lang racket 3
2 | (provide/contract
3| [square-each
4 (-> (vectorof integer?)
5 (vectorof nonnegative-integer?))1])
6 | (define (square-each v) .integer?, blames server
7 (for ([i (in-range (vector-length v))1)
8 (define vi (vector-ref v i)) ezyinteger?, blames client
9 (vector-set! v i (* vi vi)))
10 v) . nonnegative-integer?,

blames server

square-each-client.rkt
QZ}nonnegative—integer?,
1 | #lang racket blames client
2 | (require "square-each.rkt")

3 | (square-each (vector -5 3))

Fig. 4. Running example: squaring the elements of a mutable vector

representation of contracts and section 3.2 describes an operation that merges the structures, thus
eliminating redundant contracts.

3.1 Representing Contracts

A natural implementation of contracts is to add wrappers to each vector where the wrapper consists
of a reference to the original vector, plus some information about the contract. This representation
is, indeed, the one that Racket’s contract system used before this work. Unfortunately, such an
implementation does not provide a straightforward means of manipulating multiple contracts on
the same value at once, such as combining multiple contract wrappers into one. Our solution is to
represent contracts as explicit data structures that make such manipulations natural.

Our representation for a contract is a tree whose interior nodes correspond to vector contracts
and whose leaf nodes correspond to the contracts on the elements of the innermost vectors. Each
interior node has two children; the right child contains the information necessary to perform
contract checking when accessing elements and the left child contains the information necessary
to perform contract checking when modifying the vector.

As an example, here is our representation of the vector of vectors contract from the Quicksort
example of the previous section.

The root of the tree has two children, indicating that elements that are accessed from the outer
vector and stored in it must be vectors; accordingly there are four leaf nodes. Reading from left
to right, the leaf nodes represent the contracts for: mutating elements of a vector inserted into
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the external vector, accessing elements from such a vector, mutating elements of a vector that is
extracted from the outer vector, and accessing elements from such a vector. Notice that the leaf
nodes are colored and shaded in two distinct ways. These markings represent blame, just as the
striped and solid colors in the previous section did. Blame assignment follows the flow of values, so
the bottom right, where elements of the inner vector are flowing out of a vector extracted from the
vector has the same blame as the bottom left, where values assigned to a vector that was assigned
into the outer vector.

Figure 4 shows some code that serves as a running example for the remainder of this section.
The square-each.rkt component presents the implementation of a function which, when given
a vector of integers, produces a vector of non-negative integers by squaring each element of the
vector. Because the function square-each returns a reference to its argument, the vector it returns
is wrapped in two layers of contracts as the image in the upper right of the figure shows, using the
notation introduced in the previous section.

Here is a picture of the result vector and its contract:

The contract is represented as a reference to the vector (shown with an arrow in the picture) and a
tree. In this case, because the vector has passed through two boundaries, the vector contract has
two children in each leaf node. The key in figure 4 indicates which checks these correspond to.
They are checked in order, from left to right. Note that the order of the colors are reversed between
the children, corresponding to the reversal of the flow of values for mutation and access of vectors.

In the general case, the leaves contain multiple contracts, capturing the multiple contract bound-
aries that the vector has passed through.

3.2 Merging Contracts

Of course, simply collecting all of the contracts in leaf nodes does not solve the performance
problem. What we need is a mechanism to limit the redundancy that appears in the leaves. For this
purpose, we use an operation called merge. It accepts two trees and combines them into a single
tree, eliminating the redundancy in the contracts in the process.

When merging the trees, maintaining correct blame assignment for the remaining contracts is
subtle. To see how the blame plays out, consider how the merging operation is performed on the
contracts we saw in the previous subsection, focusing on the moment when the vector is returned
by square-each. The two contracts in play then are the two on the left-hand side of this equation.
The right-hand side shows the result contract.

@@ @0]

The first argument to the merging operation is the new contract to be added to the vector (shown
with red contracts in the leaves, following the key in figure 4) and the second one is the contract
that is already on the vector.
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A simple merge function would simply keep all four of the contracts on the leaves, as was shown
in the previous section. One of them is redundant, however, and can be dropped. To understand
why one (and only one) is redundant, it is important to consider the order in which the contracts
are checked, factoring in the blame assignment. First, notice that the red contracts are “outside” the
blue contracts, meaning that accesses to the vector will check the blue contract first, but mutations
to the vector will check the red contract first. The checks happen in this order so that they follow
the flow of values in the program. In particular a value that is already inside the vector first exits
from the blue wrapping of the vector and, if that contract check succeeds, exits through the red
contract check. In contrast, when a value is inserted into the vector, it first passes through the red
contract and, if that check succeeds, then passes through the blue contact.

Since the red contract subsumes the blue one, by checking the red one first, we know that the
blue one cannot fail. Thus, we can eliminate the solid blue circle in the left child of the merged
result. In the other order, however, when we have checked the blue one, we do not yet know if the
red one will fail or not; the red contract is more stringent than the blue one. Therefore, we have to
keep both circles in the right subtree of the merged result—either of them may fail and raise blame.

In general, when we merge two contract trees, some of the leaves in the tree may be redundant
and will be dropped in this manner. For the Quicksort example from section 2, our library never
has more than one contract in any leaf node.

With blame properly taken into account we still need a procedure to determine, in the gen-
eral case, when a specific contract is actually redundant. For this purpose, Racket provides the
function contract-stronger?. It accepts two contracts as arguments and returns true when the
first contract is guaranteed to accept no more values than the second contract. This function is
conservative, however, as Racket’s contract system allows the programmer to supply arbitrary
predicates. In practice, most of the interesting flat contracts in most programs either repeatedly use
the same predicate (in which case contract-stronger? trivially succeeds), or use combinators
that contract-stronger? understands.

4 A MODEL FOR CONTRACT WRAPPING, WITH REDUNDANCY

In order to more precisely present the solution sketched out in the previous section, the following
two sections present formal models of contract checking. The models are designed for exposition;
they hew closely to our implementation, providing a precise picture of which contracts we check
and how exactly we check them. This section matches how Racket checked contracts before our
work, possibly creating many wrappers around vectors. The model omits functions (although our
implementation handles them) because vectors are sufficient to cover all of the essential issues.

The left-hand side of figure 5 presents the syntax for a core language with vectors and contracts.
Programs, P, comprise a sequence of simplified module definitions. Each one is meant to suggest a
module in Racket that exports the defined function, d, with the contract (-> cte ... cte) and implicitly
imports other modules to bind the variables from other modules that it refers to. The notation
for the contract consists of an -> (meant to evoke Racket’s function contract combinator, but it
is fixed syntax in this model), a sequence of contracts, ctc ..., describing the inputs, and finally
a single contract describing the result of the function. Each definition, d, gives the function its
name, f, accepts the parameters x ..., and has a body e. Expressions, e, include real number literals,
variables, let expressions, vector and numeric operations, and function calls. Contracts, cte, include
a vectorof contract form as well as the flat contracts any/c, which accepts all values, and real-in,
which accepts real numbers within a specified range.
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P ::=(programm ... ex=....lol(blamef)l (mongctc e)
m ::= (module (-> ete ... cte) d) ¥ ::= finite maps from o to (vector v ...
d::=(define (fx..)e) vo=rle¢*

ex=rixl(ifoeee) G*

(Lot (Ix ¢] .) ) n= (mong (vectorof ctc) 6%) |l 6

6 ::= store locations
| (vectore..) | (vec-ope..)

E =
l(ope..)l(fe..)f | ([i]fe Ece)
vec-op ::= vector-ref | (let ([x V] ... [x E] [x e] ...) &)

| vector-set!
| vector-length
op:=+Il-1*xI<
r ::= real numbers
n ::= natural
x ::= identifiers
f, g ::= function-names
function-names ::= identifiers
ctc ::= (vectorof ctc) | flat-ctc
flat-ctc ::= (real-inrr)lany/c

| (vectorv..Ee..)
| (vec-opv..Ee..)
[(opv..Ee.)
Ifv..Ee..)

| (mon{cte E)

Fig. 5. A core language with vectors

Each module, m, establishes a contract boundary between the module itself and the code that
uses its exported function. To properly assign blame, expressions that can fail or raise a blame error
are labeled, f, with the name of the function in which they appear.’

The right-hand side of figure 5 presents the extensions to the core language to support evaluation.
The grammar of expressions is extended with store locations, 6, blame expressions, and the mon
form, which enforces contracts. A store, X, maps store locations to vectors of values. Values include
real number literals, r, and possibly-wrapped store locations, 6*. Each possibly-wrapped store
location may be a mon expression with a vector contract, or it may be a normal store location. The
set of evaluation contexts, E, are standard for a call-by-value language.

The reduction semantics for the language operates over triples of the form (X, P, e). Expressions
reduce in the context of a store, X, and a set of module definitions, P. Figure 6 presents the reduction
rules for non-contract forms of the language in figure 5. The [let-subst] rule substitutes the values
of let-bound variables in the body expression. The [if0-0] and [if0-else] rules cover if@ expressions.
The [delta] rule delegates to the d function (not shown) to handle the arithmetic operations. The
[v-ref], [v-set!], and [v-len] rules handle accessing, mutating, and computing the length of a vector,
respectively. They delegate to three metafunctions—lookup, update, and length (not shown)—that
manipulate the store and an address in the corresponding manner. The [v-alloc] rule finds a fresh
address and extends the store X with it.

Figure 7 presents the reduction rules for contracts. The [v-ref-ctc], [v-set!-ctc], and [v-len-ctc] rules
cover accessing, mutating, and computing the length of contracted vectors. When accessing an
element, vector-ref performs the operation on the uncontracted value and then adds a monitor
around the extracted element. When mutating the vector, the newly inserted element is guarded
with the element contract. Note that the blame labels are switched, following the reversal of the
flow of values. The vector-length operation ignores the contract.

IThis labeling mimics how the implementation behaves; it annotates cross-module variable references with blame informa-
tion as part of the compilation process.
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(X, P,E[(let (x V] ..) &) —> (Z,P,E[e{x < V,..}]) [let-subst]
(Z,P,E[(if0 0 ¢, &)]) —> (X, P,E[e/]) [if0-0]
(Z,P,E[(if0 Ve e)]) —> (X,P,E[e.]) wherev#0 [if0-else]
(Z,P.E[(opr..)) —> (Z,P,E[8[(opr ..)]D [delta]

(X, P,E[(vector-ref e n)]) — (X, P,E[v]) where n <length[X, 6], v =1lookup[X, o, n] [v-ref]

(X, P,E[(vector-set! 6 N Vi) ) —> &', P, E[V]) [v-set!]

where ... < length[X, 6], (X', v) = update[X, 6, N, Vser]
(X, P,E[(vector-length 6)]) —> (X, P, E[length[X, o]]> [v-len]
(X, P,E[(vectorv ..)]) — X', P,E[c]) where (X', 6) = alloc[X, (vector v ...)] [v-alloc]

Fig. 6. Reduction rules for non-contract forms

(X, P,E[(vector-length (mong (vectorof cte) 6%))]) —> [v-len-ctc]
X, P,E[(vector-length ¢*)])

(X, P,E[(vector-ref (mong (vectorof ctc) 6*)v)]) —> [v-ref-ctc]
(Z, P, E[(mon{ cte (vector-ref ¢* v))])

(Z,P,E[(vector-set! (monfa, (vectorof ctc) 6%) Viuer Vie)]) —> [v-set!-ctc]

(X, P,E[(vector-set! 6* Vi (mon% cte vi)) )

(Z,PE[(fv..)8]) —> (X, P,E[(let ([x (mon ctes V)] ...) (monf et €))]) [call]
where f # g, (module (-> cteyom ... cte,) (define (fx ..)e)) e P

&, P E[(fv.)]) — &, P,Ele{x<V,..}D [call-self]
where (module (-> ctcym ... €tey,,) (define (fx ...)e)) P

(Z,P,E[(monf{ any/c V)]) —> (X, P,E[v]) [mon-any/c]
(X, P, E[(mong (real-inr, ry) v)]) — (X, P,E[v]) where v € [r, Il [mon-real-in-pass]

(X, P, E[(mong (real-inr, ry) v)]) — (X, P, E[(blame f)]) where v & [r}, I'4] [mon-real-in-fail]
(Z, P, E[(monf (vectorof ctc) r)]) —> (X, P, E[(blame f)]) [mon-vectorof-fail]

(X, P,E[(blame g)]) —> (X, P, (blame g)) where E # [] [lift-blame]

Fig. 7. Reduction rules for contract forms

The function application rule, [call], also performs contract checking. It reduces to a 1et expression
that checks each argument contract and checks that the result satisfies the codomain contract. The
side-condition guarantees that the call is crossing a module boundary, and thus contracts must be
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e::=....|(mon cctce) cte ;= .... lccte
v:=rlao | (mon cvec o) cvec ::= (cvectorof ccte ccte)f
E:=....|(mon cctc E) ccte ::=cvec | (leaf le ...)

le ::= flat-ctcf | cvec

Fig. 8. Extensions to the vector language to support collapsible contracts.

checked. The [call-self] rule covers the situation where no boundary is crossed, and thus no contract
checking happens [Findler and Felleisen 2002].

The remaining rules cover mon expressions. The [mon-any/c] rule drops any/c contracts, because
they always succeed. The real-in contract succeeds when the value under contract is a real number
in the right range and otherwise raises a blame error in rules [mon-real-in-pass] and [mon-real-in-fail]
respectively. The [mon-vectorof-fail] rule shows that the application of a vector contract to a non-
vector raises blame. There is no reduction rule for the application of a vector contract to a store
location because such an expression is already a value. The final rule, [lift-blame], handles reductions
for blame expressions. When a blame expression is encountered in the process of evaluation the
current context is discarded and that blame expression is the result of the entire program.

5 A SECOND MODEL FOR CONTRACT WRAPPING, SANS REDUNDANCY

The model in section 4 faithfully presents the semantics of vector contract checking, but suffers from
the wrapper buildup problem described in section 2. This section introduces a formal model of the
contract trees from section 3 in order to precisely explain the construction of the data structure and
its merge operation. This language is significantly smaller than the language our implementation
supports, but the description here captures exactly how our implementation avoids redundant
contracts and provides a faithful predictor for specific programs.

Figure 8 presents the extensions to the language of section 4 necessary to support contract trees.
The values, v, are now real number literals, store locations, and store locations guarded by a single
contract tree. Unlike the language in section 4 where contract wrappers might pile up, this language
ensures that a value has at most one contract wrapper.

The syntax of contracts is extended to include collapsible contracts, cete, representing the contract
trees described in section 3. A collapsible contract is either an interior node representing a vectorof
contract (the cvec non-terminal) or a leaf containing a list of leaf elements, le. The interior nodes
representing vector contracts hold two children, each a collapsible contract. To match the structure
of the diagrams from section 2 and section 3, the left child is the contract for vector-set! and the
right child is the contract for vector-ref. The le nonterminal represents leaves, and includes flat
contracts with attached blame labels, as expected, but it also includes vector contracts. A vector
contract can appear in a leaf node as a result of merging when it meets a non-vector contract.

The other significant change to the syntax of the language is the addition of a mon construct
without blame labels. Instead, the blame labels are on the nodes of contract trees.

Figure 9 presents the reduction rules for the language with collapsible contracts. The metafunc-
tions used by the reduction rules appear in figure 10.

The [mon-vectorof-base] rule handles the conversion between a vectorof contract and the equiva-
lent collapsible contract via the reify-contract metafunction. Given a vector contract and two blame
parties, reify-contract builds a collapsible contract by recursively constructing collapsible contracts
for each configuration of blame and combining them into a collapsible contract. Flat contracts are
converted directly into leaf nodes.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 133. Publication date: November 2018.



Collapsible Contracts: Fixing a Pathology of Gradual Typing 133:15

(X, P, E[(mong (vectorof ctc) 6)]) —> (X, P, E[(mon cvec 6)]> [mon-vectorof-base]
where cvec = reify-contract[(vectorof cte), f, g]

(X, P, E[(mong (vectorof ctc) (mon cvee, 6))]) —> [mon-vectorof-comp]
(X, P, E[(mon cvec; (mon cvec; 6))]) where cvec; = reify-contract[(vectorof ctc), f, g
(X, P, E[(mon cvec; (mon cvec; 6))]) —> <X, P, E[(mon cvec,, 6)]> [mon-vectorof-merge]

where cvec,, = merge[cvec;, cvec,]

(X, P, E[(vector-length (mon (cvectorof ecte, ccte,)f 6))]) —> [v-len-ctc]
(X, P,E[(vector-length o))

(X, P, E[(vector-ref (mon (cvectorof ccte, ccte,)f 6) v)]) —> [v-ref-ctc]
(X, P, E[(mon cctc, (vector-ref 6 v))])

(X, P, E[(vector-set! (mon (cvectorof ccte, cetey)f 6) Viner Vie) ) —> [v-set!-ctc]

(X,P,E[(vector-set! 6 V. (mon ccte, vy,))])

(X, P, E[(mon (cvectorof ccte, cetey)f r)]) —> <X, P, E[(blame f)]) [mon-cctc-fail]
(X, P, E[(mon (leaf) v)]) — (X, P,E[v]) [leaf-0]
(X, P, E[(mon (leaf flat-ctc'le ...) v)]) —> (X, P, E[(mon (leaf le ...) (mon{ flat-ctc v))]) [flat]

(X, P,E[(mon (leaf cvecle ...) v)]) —> (X, P, E[(mon (1eaf le ...) (mon cvec v))]) [leaf-cvec]

Fig. 9. Reduction rules for collapsible contracts

The [mon-vectorof-comp] rule handles the application of a traditional vector contract to a value
guarded by a collapsible contract. The outer contract application is converted into the application
of a collapsible contract just as in the [mon-vectorof-base] rule.

The [mon-vectorof-merge] rule implements the contract merging process described in section 3.
When one mon expression is nested in another, their contracts are merged and they are replaced
with a single mon expression guarding a value with a collapsible contract.

The [v-ref-ctc], [v-setl-ctc], and [v-len-ctc] rules mirror those presented in section 4 for vector op-
erations on contracted vectors. For vector-ref operations, the operation is performed on the
uncontracted vector and the result is guarded with the right child of the contract tree. Similarly
for vector-set! operations, the modification is performed on the uncontracted vector and the
value to be inserted is guarded with the contract stored in the left child of the contract tree. The
vector-length operation is performed on the uncontracted vector as in the previous section. The
[mon-ccte-fail] rule handles the application of a collapsible contract to a non-vector value by simply
signaling a blame error.

Finally, the rules [leaf-0], [flat], and [leaf-cvec] handle contract application of leaf nodes. Applying
the contract corresponding to a leaf node sequentially applies each contract stored in the leaf. The
merge metafunction tries to ensure that leaves do not contain redundant flat contracts.

Figure 10 contains the merge metafunction. It consumes two collapsible contracts and produces
a new collapsible contract. The first argument of merge is the newer contract being attached to
a value, and the second is the original contract, already attached to the value. The clauses of the
merge metafunction are ordered to resolve any overlap between the cases.
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reify-contract[(vectorof cte), f, g = (cvectorof reify-contract[ctc, g, f]
reify-contract[ctc, f, gl)f
reify-contract[flat-ctc, f, g] = (leaf flat-ctc’)
merge[(cvectorof ccte,; cete,))f, = (cvectorof merge[cctc,., ccte,,]
(cvectorof cetey; cetey)t] merge[ccte,,, ccte,,])k:
merge[(leaf), (leaf ley, ...)] = (leaf le,y ...)

merge[(leaf le,.. le,o. ...), (leaf le,, ...)] = merge[(leaf le,or ...), (Leaf le,, ...)]
where 3 le € (le,; ...) s.t. le <le,.,

merge[(leaf le,.. 1€, ...), (Leaf le,, ...)1 = merge[(leaf le,q. ...), (1eaf le,q ... 1e,.,)]
merge[cvec, ccte] merge[(leaf cvec), ccte]

merge[ccte, cvec] merge[ccte, (leaf cvee)]

[ru, x] S [ri2, Y2
[any/c] [real-in]

le < any/cf (real-inr; ry)f < (real-in rp )t

Fig. 10. Merging, reifying, and relating collapsible contracts

Merging two collapsible vector contracts produces a new collapsible vector contract where
the corresponding left and right child contracts (with subscripts “s” and “g” for “set” and “get”)
have been merged. In order to maintain correct blame assignment, the order of arguments in the
recursive call on the left children is swapped, mirroring the reversal of the flow of values.

Merging two leaf nodes must preserve all contracts that can raise blame and drop all redundant
contracts. The merging process for leaves assumes that all redundant contracts have been eliminated
from each leaf individually, thus merge keeps all the contracts from the old leaf node and appends
those from the new leaf node at end, when they are not stronger than an existing contract.

The < relation captures a partial ordering on contracts. The any/c contract accepts all values
and therefore any contract is stronger than the any/c contract. One real-in contract is stronger
than another if it describes a subset of real numbers. For any other pair of contracts, neither is
stronger than the other. The < relation is a simplified version of Racket’s contract-stronger? as
described in section 3.

The final two clauses of the merge metafunction handles the situation in which leaf and vector
collapsible contracts are merged. This can occur when two contracts such as (vectorof any/c)
and (vectorof (vectorof any/c)) are attached to a value. In this situation, the vector contract is
converted to a leaf and then the two leaves are merged.

There are multiple ways in which the leaf-merging process could be improved in order to merge
more contracts. For example, the model could detect when multiple different range contracts can
be consolidated or more simply when two existing range contracts together imply a third one. Our
model hews to the implementation in an effort to be a faithful exposition of it. Our implementation
does not collapse contracts in this case because it does not come up frequently in practice.

6 COLLAPSIBLE CONTRACTS IN PRACTICE

We have implemented collapsible vector and collapsible function contracts as a new feature for
Racket. Including the core ideas of our collapsible contract representation into a mature production-
quality contract system presents several challenges. A successful implementation of collapsible
contracts must: coexist and interoperate with existing non-collapsible contracts, impose a reasonable
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cost over existing non-collapsible contracts in cases where collapsing does not happen, and maintain
all of the invariants expected by the contract system’s internal representations.

At the heart of satisfying the performance aspects of these challenges are two optimizations:
adaptive optimization, to limit merging (and the costs associated with it) to cases where it is likely
to improve performance overall; and caching, to memoize the results of merging.

This section begins with some background on the implementation of the Racket contract system,
and explains how collapsible contracts fit within its architecture. Then, each of the two key
optimizations are described. Finally this section describes the technical issues related to preserving
the invariants of Racket’s contract system when it is extended to support collapsible contracts.

6.1 The Racket Contract System

The implementation of the Racket contract system has been in active development over the last
15+ years. One aspect of its evolution has been a tremendous amount of tuning and optimization
to reduce the cost of contracts. One key design decision towards that goal is to stage contract
application and do as much work up front (in the early stages) as possible. This avoids performing
expensive computations in the later (and much more frequently executed) stages.

Therefore, the interface for contracts used by the Racket contract system is a function that
accepts the blame value for the server component and returns a function that accepts the value to
be contracted and the blame value for the client component. Because idiomatic Racket programs
primarily attach contracts at module boundaries and clients cannot be known statically, this
interface allows the contract system to prepare the data structures for contract checking before the
entire blame is known. In terms of performance, this means that the contract system can perform
expensive computations as soon as it receives the blame for the server to avoid this computation
every time the contract is attached to a value.

The implementation of collapsible contracts takes advantage of this architecture by building the
data structures needed for contract merging when the initial blame value is received. This avoids
the cost of constructing collapsible data structures within hot loops for the majority of contracts.

6.2 Adaptive Optimization

The model of collapsible contracts in section 5 eagerly performs the merge operation when a
contract is attached to a value that had been previously contracted. In practice, attaching and
merging a second contract involves converting contracts into the tree representation, merging the
trees, and attaching the combined contract to the value. This sequence of operations is (in the short
term) more expensive than simply wrapping the value with an additional contract.

Additionally, checking merged contracts requires accessing and traversing the tree data structures,
which has a higher fixed cost than simply accessing a contract wrapper. If a value is contracted
but never used, or is never contracted again, then the savings from collapsible contracts may
not counterbalance these fixed costs. To avoid paying the cost of data-structure management for
collapsible contracts when it is unlikely to benefit overall program performance, our implementation
uses a strategy inspired by adaptive optimization [Arnold et al. 2000].

Specifically, our implementation initially relies on the Racket contract system’s original im-
plementation strategy—i.e., one wrapper per contract, with wrappers piling up when multiple
contracts are applied. It then adaptively switches to a merging-based strategy when it determines
that merging is likely to improve performance going forward.

The decision to switch is made based on the number of contracts that have been applied to a
value; once a value has been wrapped 10 times, our implementation switches strategies. Therefore,
from the 11th contract on, all new contracts will be merged, instead of getting their own wrapper.
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With this approach, programs that exhibit pathological contract-wrapping can benfit from merging,
but avoid the heavyweight merge-supporting tree data structure when there are few wrappers.

6.3 Caching

An additional cost in the implementation of collapsible contracts is the merge operation. Merging
two collapsible contracts requires traversing the two data structures, creating the resulting merged
data structure, and filtering out unnecessary contracts in the leaf nodes. In pathological cases of
contract wrapping it is likely that the same contract or a small set of contracts is repeatedly applied
to a value. Indeed, the number of contracts in the program is (typically) bounded by the size of
the program, whereas the number of contract applications is proportional to the length of the
execution. Without special care, the cost of merging would be paid on every contract application,
despite the results being drawn from a limited overall set.

Even though, as section 6.1 describes, our implementation of collapsible contracts relies on
the Racket contract system’s multi-stage architecture to avoid building tree data structures in
hot code, the cost of merging can remain significant. To reduce the performance impact of the
merge operation, our implementation takes advantage of the assumption that, in pathological cases,
values will be wrapped repeatedly with the same set of contracts, and caches the results of contract
merging. With caching, the cost of merging two specific contracts is paid the first time we merge
them; further calls can reuse the result. The cache holds onto merged contracts using weak links,
relying on the garbage collector to clear entries from the cache.

6.4 Preserving Invariants

Racket implements contract wrappers using chaperones, an interposition mechanism for higher-
order values [Strickland et al. 2012]. Chaperones preserve an important invariant of Racket’s
contract system, namely that the result of attaching a contract to a value should be equal? (a
notion of structural equality) to the uncontracted value. Racket’s equal? function cooperates with
chaperones, and peels away chaperone wrappers before comparisons to preserve that invariant.
On top of this, Racket provides a chaperone-of? function, which returns true when its first
argument is a chaperone of its second.” This procedure imposes an additional invariant on Racket’s
contract system, namely that a contracted value must be a chaperone-of? the corresponding
unwrapped value. The chaperone-of? function is used by Racket programmers to determine if
two objects behave the same way, except that one might signal an error where the other does not.
Explaining the usefulness of chaperones and the chaperone-of? operation is beyond the scope
of this paper, but the need to preserve the chaperone-of? relationship between values poses a
significant challenge for the implementation of collapsible contracts. In order to merge and collapse
contracts, contract wrappers (chaperones) must be removed, but naively removing chaperones
breaks the chaperone-of? relationship. Addressing this problem requires introducing a new
runtime primitive, unsafe chaperones, and various low-level changes to Racket’s runtime system.
Overall, implementing collapsible contracts as part of a practical contract system poses a number
of thorny technical issues and took months of effort to reach the quality needed to be considered
for inclusion in Racket itself. The code is not yet included in Racket’s git master, but we keep it
separate only to be able to easily conduct experiments (described in the next section). The main
Racket contract system maintainer and the main Typed Racket maintainer both support the change.

This is a simplification of chaperone-of?. The full details of the procedure are described in the Racket documentation at
http://docs.racket-lang.org/reference/chaperones.html
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7 EVALUATION

To test the hypothesis that (1) collapsible contracts improve some pathological cases of gradual
typing performance, and (2) otherwise impose only a small impact on program performance, we
compare the performance of Racket (and Typed Racket) extended with collapsible vector and
function contracts against Racket without collapsible contracts. We also report on the overall
slowdown of the gradual typing benchmarks after our improvements.

We use Takikawa et al. [2016] s gradual typing benchmarks plus some additional benchmarks that
the benchmark suite maintainers have since added. There are 20 benchmark programs, named: Ac-
QUIRE, DUNGEON, FORTH, FsM, FsM00, GREGOR, KcFa, LNM, MBTA, MORSECODE, QUADBG, QUADMB,
SIEVE, SNAKE, SUFFIXTREE, SYNTH, TAKE5, TETRIS, ZOMBIE, and ZORDOZ.

Each benchmark consists of a number of different modules. Each module exists in the benchmark
suite as both an untyped module and as a typed one (the only difference being the addition of
type annotations). Accordingly, each benchmark that has n modules has 2" configurations, each
one a different, gradually-typed program. The set of benchmarks covers a wide ground in terms
of the kinds of contracts used, the amount of contract wrapping that occurs, and the relative
performance of a specific configuration compared to the untyped configuration. For more details
on the benchmark programs, please see https://docs.racket-lang.org/gtp-benchmarks/.

7.1 Experiment

For the main evaluation, we measured two versions of Racket: a fork of Racket v6.12 with a number
of contract-related performance improvements, and an extension of that fork that adds support for
collapsible contracts. The artifact includes the source for both of these versions of Racket.

For benchmarks with at most 12 modules, we measure the running time of all of the typed/untyped
configurations on both versions of Racket. For the three benchmarks with more than 12 modules,
we follow Greenman and Migeed [2018]’s lead and randomly select a subset of configurations to
measure.’ The results for the benchmark GREGOR (13 modules) include 1,195 sampled configurations,
the results for the benchmark QUADBG (14 modules) include 1,332 sampled configurations, and the
results for the benchmark QUADMB (14 modules) include 1,344 sampled configurations. In total,
there are 6,851 configurations. As context, running the full set of configurations just once takes 52
hours on our benchmark machine.

For each typed/untyped configuration, we measure performance with three steps. First, we
ensure the code is compiled to bytecode. (Racket programs can be run without this step but it may
confound our measurements.) Second, we run the configuration once and ignore the execution
time. Finally, to collect the execution time, we run the configuration as follows. Each run starts in a
fresh instance of the Racket VM. For every benchmark, we collected 18 execution times in total via
one round of 2 runs and two rounds of 8 runs.

All measurements were collected on a Linux machine with two physical AMD Opteron 6376
processors (a NUMA architecture) and 128GB RAM. The CPU cores on each processor ran at
2.30 GHz using the “performance” CPU governor. The machine is used only for benchmarking and
no benchmarks were run in parallel.

7.2 Speedup Results

Because there are many different programs in the benchmarks, we first summarize the results by
looking at the best- and worst-case configuration for each benchmark. To start, consider the upper
half of figure 11. Each pair of bars corresponds to a single typed/untyped configuration from each

3The sampling protocol is designed to produce figure 14. Uses of the sample data in other figures are marked with asterisks
(*) because we do not claim they are statistically significant.
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Fig. 11. Best-case improvement in gradual typing overhead for collapsible contracts over
all (* = sampled) configurations; higher bars are better. Solid blue (@) bars show the gradual typing
overhead for one configuration on Racket v6.12 and striped orange (O) show the gradual typing
overhead for the same configuration with collapsible contracts; both bars are normalized to the
Racket v6.12 overhead. The lower plot is a zoomed-in version of the upper plot.

benchmark. The configuration chosen is the one with the largest improvement in gradual typing
overhead for collapsible contracts, relative to Racket v6.12. The height of the striped orange bar (on
the right) is the ratio of gradual typing overheads between Racket with collapsible contracts and
Racket v6.12. The height of the solid, blue bar on the left shows the ratio of gradual typing overhead
in Racket v6.12 to itself; it is included only to show the error bars on the measurement (which are
below the resolution of this plot). The lower half of figure 11 contains the same information, but is
zoomed in on the region near 1, making the error bars visible.

Figure 11 shows that we achieve significant improvements of the gradual typing overhead for
two of the benchmarks, Fsm and ZomBIE, which are 275x and 35x faster, respectively. The figure
also shows that many benchmarks have at least one configuration for which collapsible contracts
reduce the overhead of gradual typing and that collapsible contracts do not introduce additional
gradual typing overhead for all configurations of each benchmark.

7.3 Slowdown Results

Of course, it is important to ensure that our handling of pathological contract wrapping does not
damage the ordinary case, so we turn to that question next. Consider figure 12. Like figure 11, it
has a pair of bars for each benchmark. Unlike figure 11, however, figure 12 picks the configuration
with the smallest improvement in gradual typing overhead (equivalently, the largest regression)
for collapsible contracts, relative to Racket v6.12. The bars are similar to those in figure 11. On 12
of the 20 benchmarks, the error bars for the slowdown overlap with those for the Racket v6.12
measurements. The other benchmarks show minor slowdowns.
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Fig. 12. Worst-case improvements of gradual typing overhead for collapsible contracts compared
against Racket v6.12 (lower bars are worse overhead); the colors match figure 11.

To understand the change in gradual typing overhead introduced by collapsible contracts in
more detail, consider figure 13. It shows the distribution of the gradual typing overhead across all
of the 6,837 configurations that take at least 100 milliseconds (under both the unmodified Racket
6.12 and the version with collapsible contracts). The figure consists of two histograms: the left one
counts configurations that run slower (i.e., with a higher gradual typing overhead) with collapsible
contracts, and the one on the right counts configurations that improve with collapsible contracts.

As the histograms show, most of the configurations (45%) exhibit less than 2% slowdown or
speedup, indicating no significant change in the overhead of gradual typing using collapsible
contracts compared to the overhead in Racket v6.12. A small percentage (10%) are slowed down by
at least 2%; the remaining 45% are sped up by at least 2%. Only 3 configurations (less than 1%) are
slowed down by more than 10%. The worst slowdown is 14%.

7.4 Overall Cost of Gradual Typing

The overall cost of gradual typing remains high for most benchmarks. Figure 14 shows plots in the
style of Takikawa et al. [2016]’s gradual typing evaluation for all of the benchmarks we consider.
These plots pack a lot of information in a small space, and therefore deserve a careful explanation.

Consider ACQUIRE, the first plot in figure 14. The line that traces the edge of the blue region tells
us what percentage of the configurations (on the y-axis) of AcQUIRE have at most a given slowdown
(on the x-axis) on Racket v6.12. Vertical ticks appear at 1x, 1.2x, 1.4x, 1.6x, 1.8x, 2x, 4x, and continue
with multiples of 2 up to 20x. (For benchmarks where the worst-case slowdown exceeds 20x, the
x-axis stretches to fit.) So, for example, a little more than 50% of the configurations run at most 4x
slower than the untyped configuration. This can be seen by tracing the horizontal line at 50% over
to where it intersects the the curve. More generally, plots with a large blue area (i.e., those where
the blue line climbs to 100% the fastest) perform well in the baseline version of Racket. That is, a
large percent of their configurations run with little overhead relative to the untyped configuration.

The orange line shows the performance of Racket with collapsible contracts. In ACQUIRE, there
is no significant difference and so the orange curve follows the blue curve. In Fsm, however,
there is a significant difference, showing that collapsible contracts improve that benchmark. With
collapsible contracts, all configurations are better than 4x slower and without them, about half of
the configurations are more than 580x slower.

For GREGOR, QUADBG, and QUADMB, the blue and orange lines are actually 95% confidence
intervals generated from the slowdowns in each sample [Greenman and Migeed 2018].
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Fig. 13. Histogram of gradual typing overhead across all typed/untyped configurations.

To dig into the performance of typed/untyped benchmarks in more detail, consider figure 15. It
shows scatter plots inspired by those in Bauman et al. [2017]’s performance comparison between
Racket and Pycket. In our plots, every point corresponds to one configuration of the benchmark
shown in the plot. A point located at (x, y) indicates that the configuration runs x times slower than
untyped with collapsible contracts and y times slower than untyped in Racket v6.12. Configurations
that fall on the line x = y (drawn in grey across the plot) represent configurations for which
collapsible contracts do not affect program performance positively or negatively. Points that lie
above the line indicate configurations that are improved by collapsible contracts. Points that lie
below the line are configurations for which collapsible contracts introduce additional overhead.
Lastly, configurations whose x and y coordinates are less than 1 run faster than untyped; these
configurations lie within the grey square at the lower-left of each plot.

Most of the plots are like ACQUIRE, where the points all lie close to the line x = y. There are a
few exceptions. The Fsm and ZoMmBIE plots demonstrate configurations where collapsible contracts
provide significant speedups, showing points far above the line. The SYNTH benchmark (and to a
lesser extent the TAKE5 benchmark) shows modest speedups that appear to be proportional to the
running time of the benchmark. And finally TETRIs shows modest slowdowns.

The DUNGEON, ForTH, and Fsmoo benchmarks suffer from extreme overhead (>100x) in both
versions. Upon further inspection, the overhead is due to redundant wrappers on first-class classes
and first-class objects. These overheads suggest a need for collapsible class and object contracts.

8 RELATED WORK

Early efforts to combine static and dynamic typing date back to MACLISP [Moon 1974] and Common
Lisp [Steele 1990], which offer syntax for type annotations but let implementations choose how to
interpret them. Henglein [1994] and Rehof [1995]s’ seminal work put the problem of combining
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Fig. 14. Overhead of gradual typing in the benchmark programs. The blue (@) curve is for Racket
6.12 and the orange (O) curve is for collapsible contracts. A point (x,y%) on the line means y% of
the configurations incur a slowdown of at most x.
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Fig. 15. Scatterplots showing head-to-head performance of collapsible and non-collapsible contracts;
points above the line are better for collapsible contracts, below are worse. Points in the box in the
bottom left corner, i.e., those with both x and y coordinates less than 1, represent partially-typed
configurations that run faster than the untyped configuration.

typed and untyped languages on a theoretically valid footing. More recently, the community has
adopted an approach dubbed “gradual typing” [Gronski et al. 2006; Matthews and Findler 2009;
Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2006]. Attempting to make that work practical
led to our understanding of significant performance problems [Takikawa et al. 2016].
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Collapsible contracts are one of three recent efforts to improve the performance of higher-order
gradual typing. Our collapsible effort adapts Greenberg’s theory of eidetic contracts [Greenberg
2015, 2016] to Racket, and thereby provides an improved back-end to Typed Racket. In addition to
eidetic contracts, Greenberg [2015] proposes two other theories, dubbed heedful and forgetful, that
forgo correct blame but collapse contracts more aggressively. To our knowledge, these alternative
semantics have not been implemented.

A second, earlier effort is the Pycket tracing JIT compiler [Bauman et al. 2017]. Pycket is a
compiler and runtime system for Typed Racket that is implemented in PyPy [Bolz et al. 2009].
Through a combination of PyPy’s tracing JIT and a new representation of contracts as hidden
classes, Pycket is able to eliminate the overhead of many Typed Racket programs from Takikawa et
al. [2016]’s benchmark suite. Collapsible contracts are orthogonal to Pycket; combining the two
should lead to synergistic improvements.

The third recent implementation effort is the Grift compiler for (an extension of) the gradually-
typed lambda calculus [Kuhlenschmidt et al. 2018]. Grift implements a theory of compositional
coercions [Herman et al. 2010; Siek et al. 2015]; in other words, Grift has a runtime representation
of type casts and this representation supports a merge operation analogous to collapsible contracts.
Early results suggest that coercions avoid the same pathology as collapsible contracts and add
relatively little overhead [Kuhlenschmidt et al. 2018]. That said, a head-to-head comparison of
Racket and Grift is difficult for two reasons. First, the semantics of the underlying programming
language are subtly different in ways that can have dramatic effects on performance. We discovered
three examples by experimenting with the implementation: Grift supports only small integers
whereas Racket supports a rich numeric tower; Grift does not support union types whereas Typed
Racket accommodates arbitrary unions; and Grift does not yet implement tail calls. Second, Grift’s
language is too small to be able to run any of our benchmark programs, so it is difficult to understand
the performance at the application level (as opposed to the micro-benchmark level).

Whether higher-order gradual typing can be truly practical is still an open question, and so
researchers are currently exploring alternatives. One alternative is to use types only for static
analysis, and ignore the question of runtime overhead [Bierman et al. 2014; Bracha and Griswold
1993; Chaudhuri et al. 2017]. Another is to design a new language with the flexibility of dynamic
typing, but where every value comes with an intrinsic type [Muehlboeck and Tate 2017; Rastogi
et al. 2015; Richards et al. 2015; Wrigstad et al. 2010].* Finally, a third approach is to offer weaker
soundness and blame guarantees [Roberts et al. 2018; Vitousek et al. 2017]. This work is instead an
attempt at making higher-order gradual typing efficient without relaxing any of its guarantees or
limiting expressiveness.

9 CONCLUSION

This paper introduces collapsible contracts, a novel runtime representation for contract checking.
Collapsible contracts address a particular pathological performance problem that occurs in gradually
typed programs due to excessive contract wrapping. By providing a way to merge contracts
and eliminate unnecessary contract checking, collapsible contracts limit the impact of contract
checking in sound gradual type systems. Although collapsible contracts still come with a cost, their
performance on a benchmark suite of gradually typed programs indicate that performance can be
greatly improved for certain pathological cases. In most other cases, collapsible contracts do not
impact program performance, and in a small number of cases they impose a slight overhead.

4Dart 2 currently follows the intrinsic-type approach; Dart 1 erases types.
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Collapsible contracts do not solve all of the performance problems of sound gradual typing. They
do, however, provide a technique that implementations of gradual typing systems and contract
systems can take advantage of to reduce the impact of enforcing type invariants at runtime.
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