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Abstract. We give an interim report on some improvements and general-
izations of the Abbott–Kedlaya–Roe method to compute the zeta function

of a nondegenerate ample hypersurface in a projectively normal toric variety

over Fp in linear time in p. These are illustrated with a number of examples
including K3 surfaces, Calabi–Yau threefolds, and a cubic fourfold. The lat-

ter example is a non-special cubic fourfold appearing in the Ranestad–Voisin

coplanar divisor on moduli space; this verifies that the coplanar divisor is not
a Noether–Lefschetz divisor in the sense of Hassett.

1. Introduction

We consider the problem of computing the zeta function Z(X , t) of an explicitly
specified variety X over a finite field Fq of characteristic p. For curves and abelian
varieties, Schoof’s method and variants [?, ?, ?, ?, ?] can compute Z(X , t) in time
and space polynomial in log q and exponential in the genus/dimension; these have
only been implemented for genus/dimension at most 2. Such methods may be
characterized as ℓ-adic, as they access the ℓ-adic cohomology (for ℓ ̸= p prime) of
the variety via torsion points; there also exist p-adic methods which compute ap-
proximations of the Frobenius action on p-adic cohomology (Monsky–Washnitzer
cohomology), and which have proven to be more viable in practice for large genus.
Early examples include Kedlaya’s algorithm [?] for hyperelliptic curves, in which
the time/space dependence is polynomial in the genus and quasi-linear in p, and
Harvey’s algorithm [?] which improves the dependence on p to p1/2+ϵ. These meth-
ods have been subsequently generalized [?, ?, ?, ?], notably by Tuitman’s algorithm
[?, ?] which applies to (almost) all curves while keeping the quasi-linear dependence
on p. In another direction, Harvey [?] has shown that when computing the zeta
functions of reductions of a fixed hyperelliptic curve over a number field, p-adic
methods can achieve average polynomial time in log p and the genus; this has been
implemented in small genus [?, ?].

One advantage of p-adic methods over ℓ-adic ones is that they scale much better
to higher-dimensional varieties. For example, there are several p-adic constructions
that apply to arbitrary varieties with reasonable asymptotic complexity [?, ?], al-
though we are not aware of any practical implementations. Various algorithms,
and some implementations, have been given using Lauder’s deformation method
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of computing the Frobenius action on the Gauss–Manin connection of a pencil
[?, ?, ?, ?, ?, ?].

In this paper, we build on an algorithm of Abbott–Kedlaya–Roe [?] which adapts
the original approach of [?] to smooth projective hypersurfaces. Here, we add two
key improvements.

• We use controlled reduction in de Rham cohomology, as described in some
lectures of Harvey [?, ?, ?], to preserve sparsity of certain polynomials, thus
reducing the time (respectively, space) dependence on p from polynomial to
quasi-linear (respectively, O(log p)). The resulting controlled AKR method
was implemented, with further improvements, in Costa’s Ph.D. thesis [?],
with examples of generic surfaces and threefolds over Fp for p ∼ 106 [?,
Section 1.6]; by contrast, the largest p used in [?] is 29. Costa and Harvey
are currently preparing a paper on this method; meanwhile, Costa’s GPL-
licensed code is available on GitHub [?], and is slated to be integrated into
SageMath [?].

• We also generalize to toric hypersurfaces, subject to a standard genericity
condition called nondegeneracy. This greatly increases the applicability of
the method while preserving much of its efficiency. Some previous attempts
have been made to compute zeta functions in this setting, such as work
of Castryck–Denef–Vercauteren [?] for curves and Sperber–Voight [?] in
general; it is the combination with controlled reduction that makes our
approach the most practical to date.

It may be possible to improve the dependence on p to square-root (as in [?]) or
average polynomial time (as in [?]), but we do not attempt to do so here.

For reasons of space, we give only a summary of the algorithm, with further
details to appear elsewhere. In lieu of these details, we present a number of worked
examples in dimensions 2-4 that demonstrate the practicality of this algorithm in a
wide range of cases. The results are based on an implementation in C++, using NTL

[?] for the underlying arithmetic operations. Our examples in dimensions 2 and
3 were computed on one core of a desktop machine with an Intel(R) Core(TM)

i5-4590 CPU @ 3.30GHz; our sole example in dimension 4 was computed on one
core of a server with an AMD Opteron Processor 6378 @ 1.6GHz. (We have not
yet optimized our vector-matrix multiplications in any way; as a consequence, we
observe a serious performance hit whenever the working moduli exceeds 262.)

In dimensions 2 and 3, our examples are Calabi–Yau varieties, i.e., smooth,
proper, simply connected varieties with trivial canonical bundle. In dimension 1,
these are simply elliptic curves. In dimension 2, they are K3 surfaces, whose zeta
functions are of computational interest for various reasons. For instance, these zeta
functions can (potentially) be used to establish the infinitude of rational curves on
a K3 surface (see the introduction to [?] for discussion); there has also been recent
work on analogues of the Honda–Tate theorem, establishing conditions under which
particular zeta functions are realized by K3 surfaces [?, ?].

As for Calabi–Yau threefolds, much of the interest in their zeta functions can be
traced back to mirror symmetry in mathematical physics. An early example is the
work of Candelas–de la Ossa–Rodriguez Villegas [?] on the Dwork pencil; a more
recent example is [?], in which (using p-adic cohomology) certain mirror families of
Calabi–Yau threefolds are shown to have related zeta functions.
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Our four-dimensional example is a cubic projective fourfold. Such varieties oc-
cupy a boundary region between rational and irrational varieties; it is expected
that a rational cubic fourfold is special in the sense of having a primitive cycle class
in codimension 2. The geometry of special cubic fourfolds is in turn closely linked
to that of K3 surfaces; in many cases, the Hodge structure of a K3 surface occurs
(up to a twist) inside the Hodge structure of a special cubic fourfold, and (modulo
standard conjectures) this implies a similar relationship between zeta functions.
See [?] for further discussion.

The specific example we consider is related to the geometry of the moduli space
of cubic fourfolds over C. On this space, there exist various divisors consisting
entirely of special cubic fourfolds; Hassett calls these Noether–Lefschetz divisors
(by analogy with the case of surfaces). Recently, Ranestad–Voisin [?] exhibited
four divisors which they believed not to be Noether–Lefschetz, but only checked
this in one case. Addington–Auel [?] checked two more cases by finding in these
divisors some cubic fourfolds over Q with good reduction at 2, such that the zeta
functions over F2 show no primitive Tate classes in codimension 2. By replacing the
brute-force point counts of Addington–Auel with p-adic methods, we are able to
work modulo a larger prime to find an example showing that the fourth Ranestad–
Voisin divisor is not Noether–Lefschetz.

To sum up, the overall goal of this project is to vastly enlarge the collection of
varieties for which computing the zeta function is practical. It is our hope that
doing so will lead to a rash of new insights, conjectures, and theorems of interest
to a broad range of number theorists and algebraic geometers.

2. Toric hypersurfaces

We begin by reviewing the construction of a projective toric variety from a lattice
polytope. For more details we recommend [?].

Let n ≥ 1 be an integer. For any commutative ring R, let R[x±] denote the
Laurent polynomial ring in n variables x1, . . . , xn with coefficients in R. For α :=
(αi) ∈ Zn, we write xα for the monomial xα1

1 · · ·xαn
n . We denote the R-torus by

Tn
R := Spec(R[x±]).
Let ∆ ⊂ Rn be the convex hull of a finite subset of Zn that is not contained in

any hyperplane, so that dim∆ = n. For r ∈ R, let r∆ be the r-fold dilation of ∆.
For an integer d ≥ 0, let

Pd := ⟨xα : α ∈ d∆ ∩ Zn⟩R (resp.P Int
d := ⟨xα : α ∈ Int(d∆) ∩ Zn⟩R)

be the free R-module on the set of monomials with exponents in d∆ ∩ Zn (resp.
Int(d∆) ∩ Zn). Define the R-graded algebras

P∆ :=

+∞⨁
d=0

Pd and P Int
∆ :=

+∞⨁
d=0

P Int
d .

with the usual multiplication in R[x±]. We define the polarized toric variety as-
sociated to ∆ as the pair (P∆,O∆), where P∆ := ProjP∆ and O∆ is the ample
line bundle on P∆ associated to the graded P∆-module P∆(1). Note that P∆ and
P Int
∆ admit n commuting degree-preserving differential operators ∂i := xi

∂
∂xi

for
i = 1, . . . , n.
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In order to suppress some expository and algorithmic complexity, we make the
simplifying assumption that ∆ is a normal polytope; that is, the map

(∆ ∩ Zn)d → d∆ ∩ Zn : (x1, . . . , xd) ↦→ x1 + · · ·+ xd

is surjective for d ≥ 1. This corresponds to the pair (P∆,O∆) being projectively
normal ; this will be the case in our examples. As a consequence, we have that O∆

is indeed very ample.

Example 2.1. Let ∆ be the regular n-simplex, the convex hull of 0, e1, . . . , en.
We may then identify Pd with the set of homogeneous polynomials of degree d in
x0, . . . , xn, by identifying xα ∈ P∆,d with the monomial xd−α1−···−αn

0 xα1
1 · · ·xαn

n ;
then (P∆,O∆) is isomorphic to (Pn

R,O(1)).
We obtain the weighted projective space P(w0, . . . , wn) by taking

∆ = {(x0, . . . , xn) ∈ Rn+1 :

n∑
i=0

wixi = w0 · · ·wn}, see [?, 1.2.5].

We obtain Pk
R ×R Pr

R by taking ∆ to be the Cartesian product of the regular
k-simplex by the regular r-simplex [?, §2.4].

We now turn our attention to toric hypersurfaces over R = Fq, the finite field
with q = pa elements and characteristic p. Let Y be the hypersurface in Tn

Fq
defined

by a Laurent polynomial f ∈ Fq[x
±], Y := V (f) ⊂ Tn

Fq
. Let

supp f = {α ∈ Zn : cα ̸= 0}
be the support of f in Rn; the convex hull of supp f is the Newton polytope of f ,
which we denote by ∆. We will work under the hypothesis that f is (∆−)non-
degenerate:1 for all faces τ ⊆ ∆ (including ∆ itself), the system of equations

f ↾τ = ∂1f ↾τ = · · · = ∂nf ↾τ = 0

has no solution in F×n

q , where Fq denotes an algebraic closure of Fq. Furthermore,
nondegeneracy implies quasi-smoothness, see [?, Definition 3.1 and Proposition
4.15]. For fixed normal ∆ over an infinite field, this condition holds for generic f .
Others have given point-counting algorithms under this assumption [?, ?].

Let X := ProjP∆/
(
f
)
denote the closure of Y in P∆ (placing f in degree 1) and

set U := Tn\Y. Let Hi
rig denote the ith rigid cohomology group in the sense of

Berthelot [?]. The Lefschetz hyperplane theorem, combined with Poincaré duality,
show that the map

Hi
rig(P∆) → Hi

rig(X ),

induced by the inclusion X ↪→ P∆ is an isomorphism for i ̸= n − 1 [?, 10.8]. This
implies that the “interesting” part of the cohomology of X occurs in dimension n−1
and consists of those classes that do not come from P∆. Denote by PHn−1

rig (X ) the

primitive cohomology group of X, defined by the (Frobenius-equivariant) exact
sequence

0 → Hn−1
rig (P∆) → Hn−1

rig (X ) → PHn−1
rig (X ) → 0

With this notation, we may write

Z(X , t) = Z(P∆, t)Q(t)(−1)n .

1This condition was introduced by Dwork [?] without a name; the term nondegenerate first
appears in [?, ?]. Synonyms include ∆-regular [?, §4] and schön [?].
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where

Q(t) := det
(
1− tFrobq |PHn−1

rig (X )
)
.

Thus given f , we would like to compute Q(t).
The cohomology group PHn−1

rig (X ) is closely related to Hn
rig(P∆\X ). For exam-

ple, if P∆ is a (weighted) projective space, as in [?] and [?], the two cohomology
groups are isomorphic; see [?, 10.11].

3. de Rham cohomology of toric hypersurfaces

In preparation for our use of p-adic cohomology to compute Q(t), we give an
explicit description of the algebraic de Rham cohomology of a nondegenerate toric
hypersurface in characteristic zero. We take R to be the ring Zq, the ring of integers
of Qq, the unramified extension of Qp with residue field Fq.

Let f ∈ Zq[x
±] be a lift of f to characteristic zero with the same support as f (it

will also be nondegenerate). Consider Y := V (f) ⊂ T := TQq
and X, the closure of

Y in P∆. Write U := T\Y , and V := P∆\X ≃ Spec(A), where A is the coordinate
ring of V ; explicitly,

A ≃
+∞⋃
d=0

f−dPd.

Let If be the ideal in P∆ generated by f, ∂1f, . . . , ∂nf . We call If the toric Jaco-
bian ideal and the quotient ring Jf := P∆/If the toric Jacobian ring. Since f is
nondegenerate, the ideal If is irrelevant in P∆ and rankZq

Jf = n! Vol(∆); further-
more, (Jf )d = 0 for d > n [?, §4]. If O∆ is not very ample, then If might not be
generated in degree 1 and we might have (Jf )d = 0 only for d ≫ n.

Let Ω• denote the logarithmic de Rham complex of V with poles along P∆\T. Let
H• be the cohomology groups of Ω•; these are naturally isomorphic to H•

dR(V ∩T =
T\Y = U) and H•

rig(TFq
\Y = U) [?].

We now provide an explicit description of the group Hn, as in [?, §6 and 7], in
which we will compute Q(t). Set

ω :=
dx1

x1
∧ · · · ∧ dxn

xn
∈ Ωn,

and define the ascending filtration in Ωn by

Fild Ωn :=
{
gf−dω : g ∈ Pd

}
.

The associated graded ring

Ωn :=

∞⨁
d=0

Grd Ωn, Grd Ωn := Fild Ωn/Fild−1 Ωn

is then isomorphic to P∆/(f) (again placing f in degree 1).
Equip Hn with the filtration induced from Ωn, and view Hn as the quotient of

Ωn by the Qq-submodule generated by the relations

(3.1)
g

fd
ω − gf

fd+1
ω and

∂i(g)

fd
ω − dg∂i(f)

fd+1
ω

for each i = 1, . . . , n, each nonnegative integer d, and each g ∈ Pd. From these
relations, we see that

Gr1 Hn ≃ P1/(f) and Grd Hn ≃ (Jf )d (d > 1).
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This gives a way to compute explicitly in Hn: for any h ∈ (Jf )d+1 with d > n, we
can find a relation of the form

(3.2) d
h

f d+1
ω = d

g0f +
∑n

i=1 gi∂if

fd+1
ω ≡

dg0 +
∑n

i=1 ∂igi
fd

ω.

because Pd ⊂ (If )d, so in Hn we can reduce the pole order of any form to at
most n. This process was introduced for smooth projective hypersurfaces in [?] and
attributed to Dwork; it is commonly known as Griffiths–Dwork reduction.

With the above representation of Hn, we may also identify PHn−1
dR (X) with

(P Int
∆ + If )/If ⊂ Hn, where the filtration by pole order is the Hodge filtration; see

[?, ?, §9, §11].
We now introduce a variation of Griffiths–Dwork reduction, called controlled

reduction. This will be crucial for our application to p-adic cohomology, as careless
application of Griffiths–Dwork reduction to a sparse form will easily lead to a dense
form. For d = 1, . . . , n + 1, choose a Zq-linear splitting Pd ≈ (J ′

f )d ⊕ Cd, where

(J ′
f )d is a lift of (Jf )d into Pd. Let ρd : Pd → (J ′

f )d and πd,0, . . . , πd,n : Pd → Pd−1

be Zq-linear maps such that

g = ρd(g) + πd,0(g) · f +

n∑
i=1

πd,i(g) · ∂if ; g ∈ Pd.

These maps may be constructed one monomial at a time.

Proposition 3.1 (Controlled reduction). Let xν ∈ P1 and xµ ∈ Pd be two mono-
mials and define the following Zq-linear maps:

Rµ,ν(g) := (d+ n)πn+1,0(x
νg) +

n∑
i=1

(∂i + µi)(πn+1,i(x
νg))

Sν(g) := πn+1,0(x
νg) +

n∑
i=1

νiπn+1,i(x
νg)

Then for any g ∈ Pn and any nonnegative integer j, in Hn we have

g
x(j+1)ν+µ

fd+n+j+1
ω ≡ (d+ n+ j)−1(Rµ,ν(g) + jSν(g))

xjν+µ

fd+n+j
ω.

Proof. This is straightforward from (3.1) and (3.2). □

Note that Proposition 3.1 enables us to reduce the pole order of a differential
form from d+n+j+1 to d+n+j without increasing its total number of monomials;
we can thus reduce the pole order of a sparse form without making it dense.

Corollary 3.2. With notation as in Proposition 3.1, let k be a positive integer.
Then for any g ∈ Pn,

g
xµ+kν

fd+n+k
ω ≡

∏k−1
j=0 (Rµ,ν + jSν)(g)∏k−1

j=0 (d+ n+ j)

xµ

fd+n
ω,

forming the composition product from left to right.

Using Proposition 3.1 amounts to performing linear algebra on matrices of size
#(n∆ ∩ Zn) ∼ nn Vol(∆). One can reduce this by a factor of nn/n! ∼ en at
the expense of making the expression for the reduction matrix more convoluted;
compare [?, Proposition 1.17 and 1.18].
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4. Monsky–Washnitzer cohomology

We now indicate how Monsky–Washnitzer cohomology, as introduced in [?, ?, ?],
provides a crucial link between algebraic de Rham cohomology and p-adic rigid
cohomology, by transferring to the former the canonical Frobenius action on the
latter; see also [?]. To simplify, we assume p > max{n, 2}.

Let A† denote the weak p-adic completion of A, the ring consisting of formal
sums

∑+∞
d=0 gdf

−d such that for some a, b > 0, gd ∈ pmax{0,⌊ad−b⌋}Pd for all d ≥ 0.
We define the associated logarithmic de Rham complex Ω†,• by Ω†,i := Ωi ⊗A A†;
denote the cohomology groups of this complex by H†,•. We may then obtain
p-adic Monsky–Washnitzer cohomology groups H†,• ⊗Zq

Qq. The map Ω• ⊗Zq

Qq → Ω†,• ⊗Zq
Qq is a quasi-isomorphism [?, ?, ?]; that is, the induced maps

Hi ⊗Zq
Qq → H†,i ⊗Zq

Qq are isomorphisms. We can thus identify the algebraic de
Rham cohomology of U with the Monsky–Washnitzer cohomology of U .

On the other hand, we also have H†,• ⊗Zq
Qq ≃ H•

rig(U) and the latter object

is functorial with respect to geometry in characteristic p [?]. In this way, H†,i

receives an action of the Frobenius automorphism, which we can make explicit by
constructing a lift σ of the p-th power Frobenius on Fq to A†. To do so, we take
the Witt vector Frobenius on Zq and set σ(µ) = µp for any monomial µ ∈ P∆. We
then extend σ to A† by the formula

(4.1) σ

(
g

fd

)
:= σ(g)σ(f)−d = σ(g)

∑
i≥0

(
−d

i

)
(σ(f)− fp)i

fp(d+i)
.

The above series converges (because p divides σ(f)−fp) and the definitions ensure
that σ is a semilinear (with respect to the Witt vector Frobenius) endomorphism
of A†. We finally extend σ to Ω†,• by σ(g dh) := σ(g) d(σ(h)).

5. Sketch of the algorithm

We now indicate briefly how to use controlled reduction to compute the Frobenius
action on the cohomology of nondegenerate toric hypersurfaces. We start as in [?,
Proposition 4.1], by rewriting the Frobenius action in a sparser form.

Lemma 5.1. For any positive integers d,N and g ∈ Pd, in A† we have

σ

(
g

fd

)
≡

N−1∑
j=0

(
−d

j

)(
d+N − 1

d+ j

)
σ(gf j)f−p(d+j) (mod pN ).

Proof. This follows from (4.1) by truncating the sum and then rewriting formally;
see [?, Lemma 1.10]. □

In order to compute a p-adic approximation of the Frobenius action on PHn−1(X ),
we must first fix a basis of the latter; we do this by constructing a monomial basis
for PHn−1

dR (X) via explicit linear algebra. We then apply Frobenius to each basis
element in the sparse truncated form given by Lemma 5.1; recursively reduce the
pole order using Corollary 3.2 (using k = p as much as possible); and project to the
chosen monomial basis. The dominant step is controlled reduction, which amounts
to O(pnN Vol(∆)) matrix multiplications of size n! Vol(∆) per basis element.

We will not address precision estimates in this report, except to note that the
machinery of [?, §3.4] applies. In general, if we want N digits of p-adic accuracy,
we must apply Lemma 5.1 with N replaced by N ′ = N + O(n + logN) and work
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modulo pO(N ′). Hence, with respect to p alone, we expect our algorithm to run in
quasi-linear time in p and use O(log p) space.

6. K3 surfaces

We now turn our attention to examples, starting with K3 surfaces. For X a K3
surface, dimH2(X) = 22 and the Hodge numbers are (1, 20, 1). A common example
of a K3 surface is a smooth quartic surface in P3; however, they also occur in other
ways, such as hypersurfaces in weighted projective spaces. Using a criterion of Miles
Reid [?], Yonemura [?] found the complete list of (polarized) weighted projective
spaces in which a generic hypersurface is a K3 surface; there are 95 of these. For
toric varieties, the corresponding classification is that of reflexive 3-dimensional
polytopes, of which there are 4,319 in all [?].

In the following examples, we worked modulo p4 in order to obtain Q(t) with 2
p-adic significant digits. As a result, we observe a performance hit for p > 216.

Example 6.1. Consider the projective quartic surface X ⊂ P3
Fp

defined by

x4 + y4 + z4 + w4 + λxyzw = 0;

it is a member of the Dwork pencil. For p = 220− 3 and λ = 1, using the controlled
AKR algorithm in 22h7m we compute that

Z(X , t)−1 = (1− t)(1− pt)16(1 + pt)3(1− p2t)Q(t),

where the “interesting” factor is

Q(t) = (1 + pt)(1− 1688538t+ p2t2).

For this family, the remaining factors, apart from Q(t), could have also been de-
duced by a p-adic formula of de la Ossa-Kadir [?, Chapter 6]. In this context, the
Hodge numbers of PH2(X ) are (1, 19, 1).

A similar runtime would be expected if we used our
current implementation to compute Z(X , t) with ∆
being the 3-simplex (tetrahedron), as indicated by the
outer polytope at right. Instead, we observe that the
monomials defining X generate a sublattice of index 42

in Z3; hence, we can instead run our algorithm with a
polytope of significantly smaller volume (32/3 ≈ 10.66
versus 2/3 ≈ 0.66), as indicated by the inner polytope
at right. This leads to a dramatic speedup: with our
current implementation, we computed Q(t) in 1m33s.
We present the running times for other p in Table 1; memory usage is about 16MB.

In the new framework, X is given by the closure (in P∆) of the affine surface
defined by the Laurent polynomial

x4y−1z−1 + λx+ y + z + 1,

and the Hodge numbers of PH2(X ) are (1, 1, 1), which explains why degQ(t) = 3.
Since the Dwork pencil is a “small” deformation of the Fermat quartic, we may

also use the Pancratz–Tuitman implementation of the deformation method [?] to
compute Z(X , t). We did this and verified that our results agree; we compare
running times in Table 1. To interpret these fairly, note that Pancratz–Tuitman
work in P3 and so compute the whole numerator of Z(X , t) rather than just Q(t).
(Note that the algorithm of [?] has a square-root dependence on p, as in [?].)
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p CHK time PT time p CHK time
28 − 5 0.03s 1.65s 217 − 1 11.9s

29 − 3 0.04s 3.64s 218 − 5 23.4s

210 − 3 0.04s 7.39s 219 − 1 46.9s

211 − 9 0.06s 14.65s 220 − 3 1m33s

212 − 3 0.08s 34.80s 221 − 9 3m6s

213 − 1 0.13s 34.80s 222 − 3 6m15s

214 − 3 0.22s 2m33s

215 − 19 0.41s 6m43s

216 − 15 5.72s 14m14s

Table 1. The second and fifth columns use our current imple-
mentation to compute Q(t). The third column uses the Pancratz–
Tuitman implementation [?] to compute Z(X , t).

Example 6.2. Consider the projective quartic surface X ⊂ P3
Fp

defined by

x3y + y4 + z4 + w4 − 12xyzw;

it contains a hypergeometric motive (see [?, Section 5]). For p = 215 − 19, using
the controlled AKR algorithm in 27m12s we compute that

Z(X , t)−1 = (1−t)(1−pt)2(1+pt)2(1−pt+p2t2)2(1−p2t2+p4t4)2(1−p2t)Q(t),

where the “interesting” factor is (up to rescaling)

pQ(t/p) = p+ 20508t1 − 18468t2 − 26378t3 − 18468t4 + 20508t5 + pt6.

As in the previous example, the Newton poly-
tope has volume 8, but the defining monomials
generate a sublattice of index 4 in Z3; we may
thus work instead with a polytope of volume
2 (depicted at right) and observe a significant
speedup. In this setting, the Hodge numbers of
PH2(X ) are (1, 4, 1). With our current imple-
mentation we computed Q(t) in 4s. We present
the running times for other p in Table 2, where
the memory footprint was about 52MB.

Alternatively, one could try to use Magma [?] to confirm Q(t). Unfortunately,
Magma is only able to confirm the linear coefficient:

> C2F2 := HypergeometricData([6,12], [1,1,1,2,3]);

> EulerFactor(C2F2, 2^10 * 3^6, 2^15 - 19: Degree:=1);

1 + 20508*$.1 + O($.1^2)

p time p time p time
28 − 5 0.20s 213 − 1 1.12s 218 − 5 4m54s

29 − 3 0.23s 214 − 3 2.08s 219 − 1 9m46s

210 − 3 0.29s 215 − 19 4.00s 220 − 3 19m32s

211 − 9 0.41s 216 − 15 1m11s 221 − 9 38m58s

212 − 3 0.64s 217 − 1 2m30s 222 − 3 1h18m

Table 2. Running times for Example 6.2.
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Example 6.3. Consider the closure X in P∆ (which in this case is not a weighted
projective space) of the affine surface defined by the Laurent polynomial

3x+ y + z + x−2y2z + x3y−6z−2 + 3x−2y−1z−2

− 2− x−1y − y−1z−1 − x2y−4z−1 − xy−3z−1;

it is a K3 surface of geometric Picard rank 6, and the Hodge numbers of PH2(X )
are (1, 14, 1). For p = 215 − 19, using our current implementation, in 6m20s we
obtain the “interesting” factor of Z(X , t):

pQ(t/p) = (1− t) · (1 + t) · (p+ 33305t1 + 1564t2 − 14296t3 − 11865t4

+ 5107t5 + 27955t6 + 25963t7 + 27955t8 + 5107t9

− 11865t10 − 14296t11 + 1564t12 + 33305t13 + pt14).

We present the running times for other p in Table 3, where
the peak memory usage was about 144MB.

The vertices of the associated polytope correspond to
the first six terms displayed; the remaining terms are inte-
rior points. We depict this polytope of volume 8 at right.

We know of no previous algorithm that can compute
Z(X , t) for p in this range. The defining polynomial is
“dense” from the point of the Sperber–Voight algorithm
[?], which is based on Dwork cohomology and scales
with the number of monomials away from the vertices of the Newton polytope.

p time p time p time
27 − 1 6.46s 210 − 3 18.93s 213 − 1 1m46s

28 − 5 9.50s 211 − 9 31.34s 214 − 3 3m24s

29 − 3 12.64s 212 − 3 56.23s 215 − 19 6m20s

Table 3. Running times for Example 6.3.

Example 6.4. Let X be the smooth projective surface in P3 defined by the fully
dense, randomly chosen quartic polynomial

− 9x4 − 10x3y − 9x2y2 + 2xy3 − 7y4 + 6x3z + 9x2yz − 2xy2z + 3y3z

+ 8x2z2 + 6y2z2 + 2xz3 + 7yz3 + 9z4 + 8x3w + x2yw − 8xy2w

− 7y3w + 9x2zw − 9xyzw + 3y2zw − xz2w − 3yz2w + z3w − x2w2

− 4xyw2 − 3xzw2 + 8yzw2 − 6z2w2 + 4xw3 + 3yw3 + 4zw3 − 5w4;

then ∆ is the 3-simplex (tetrahedron) of volume 32/3 ≈ 10.66. For this example,
we have PH2(X ) ≃ H3(P3\X ), the Hodge numbers are (1, 19, 1), and

Z(X , t)−1 = (1− t)(1− pt)(1− p2t)Q(t)

where degQ(t) = 21. For p = 215 − 19, we obtain

pQ(t/p) =(1 + t)
(
p−53159t1+10023t2− 3204t3+49736t4−56338t5+43086t6

−48180t7+44512t8−42681t9+47794t10−42681t11+44512t12−48180t13

+43086t14−56338t15+49736t16−3204t17+10023t18−53159t19+pt20
)
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using the controlled AKR algorithm in 38m27s; our current implementation takes
roughly the same time. We present the running times for other p in Table 4. The
memory footprint was about 230MB.

Unfortunately, the deformation method is not suitable for dense quartics with p
in this range. For example, for p = 31 the running time was 2h8m and its memory
footprint was around 7GB, and both time and space should scale linearly with p.

p time p time p time
27 − 1 25.41s 210 − 3 1m30s 213 − 1 9m26s

28 − 17 37.73s 211 − 9 2m37s 214 − 3 18m42s

29 − 3 55.82s 212 − 3 4m50s 215 − 19 36m29s

Table 4. Running times for Example 6.4.

7. Calabi–Yau threefolds

We next consider Calabi–Yau threefolds. Unlike for K3 surfaces, the middle
Betti numbers of Calabi–Yau threefolds are not a priori bounded; the largest value
of which we are aware is 984 (found in [?]).

A common example is a smooth quintic surface in P4. Again, additional con-
structions arise from generic hypersurfaces in weighted projective spaces, of which
there are 7,555 in all, or more generally from toric varieties corresponding to re-
flexive 4-dimensional polytopes, of which there are 473,800,776 in all [?].

In all of the following examples, we worked modulo p6 in order to obtain Q(t)
and our memory footprint ranged between 100MB and 270MB.

Example 7.1. Consider the projective quintic threefold X ⊂ P3
Fp

defined by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 + x0x1x2x3x4 = 0;

it is a member of the Dwork pencil. We have

Z(X , t) =
R1(pt)

20R2(pt)
30Q(t)

(1− t)(1− pt)(1− p2t)(1− p3t)

where R1 and R2 are the numerators of the zeta functions of certain curves given
by a formula of Candelas–de la Ossa–Rodriguez Villegas [?].

As it is presented, we would work with P∆ = P4 where ∆ is the 4-simplex of
volume 625/24. As in Example 6.1, the monomials of the equation generate a
sublattice of index 53 in Z4, so we may instead work with a polytope whose volume
is smaller by a factor of 53. For p = 220 − 3, we compute the “interesting” factor

Q(t) = 1− 1576492860t1 + 2672053179370pt2 − 1576492860p3t3 + p6t4

in 11m18s; if we instead had tried to apply the controlled AKR algorithm to compute
Q(t) (and not the other factors) we extrapolate that it would take us at least 120
days. We present the running times for other p in Table 5.

Since this is a “small” perturbation of the Fermat threefold, we again attempted
to confirm these results using the deformation method ; however, this was again
hampered by the fact that the Pancratz–Tuitman implementation works in P∆

instead of P3. For p = 7, it took 5h4m and its memory footprint was around 12GB.
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p time p time p time
28 − 5 0.73s 213 − 1 6.41s 218 − 5 2m50s

29 − 3 0.77s 214 − 3 11.61s 219 − 1 5m38s

210 − 3 0.80s 215 − 19 21.98s 220 − 3 11m18s

211 − 9 2.54s 216 − 15 43.07s 221 − 9 22m41s

212 − 3 3.80s 217 − 1 1m25s 222 − 3 52m37s

Table 5. Running times for Example 7.1.

Example 7.2. Let X be the threefold defined by

x8
0 + x5

1x2 + x2
0x

2
1x2x3 + x1x

3
2x3 + x2

1x
3
3 + x0x1x2x3x4 + x2x3x

2
4

in the weighted projective space P(1, 14, 18, 20, 25). The Newton polytope has vol-
ume 11/3 ≈ 3.67; by changing the lattice we may instead work with a polytope of
volume 1/3 ≈ 0.33. In this setting, the Hodge numbers of PH3(X ) are (1, 1, 1, 1).

For p = 220 − 3, we compute the “interesting” factor of Z(X , t)

1− 618297672t1 + 390956360946pt2 − 618297672p3t3 + p6t4

in 32m33s. We present the running times for other p in Table 6.

p time p time p time
28 − 5 1.90s 213 − 1 18.2s 218 − 5 8m0s

29 − 3 1.96s 214 − 3 32.9s 219 − 1 16m8s

210 − 3 2.06s 215 − 19 1m6s 220 − 3 32m33s

211 − 9 7.48s 216 − 15 2m4s 221 − 9 1h5m

212 − 3 10.9s 217 − 1 4m3s 222 − 3 2h23m

Table 6. Running times for Example 7.2.

Example 7.3. Let X be the threefold defined by

x7
1 + x5

0x1x2 + x2
0x

2
1x2x3 + x4

0x2x4 + x0x
3
2x3 + x2

0x
3
3 + x0x1x2x3x4 + x2x3x

2
4

in the weighted projective space P(10, 11, 16, 19, 21). Again, by choosing the right
lattice, we reduce the volume of the Newton polytope from 55/12 ≈ 4.58 to 11/24 ≈
0.46, and the Hodge numbers of PH3(X ) are (1, 2, 2, 1). For p = 220 − 3, we
computed the “interesting” factor of Z(X , t)

1− 2068001468t1 + 3449674041773pt2 − 3772715295733197p2t3

+ 3449674041773p4t4 − 2068001468p6t5 + p9t6

in 2h10m. We present the running times for other p in Table 7.

p time p time p time
28 − 5 4.47s 213 − 1 1m8s 218 − 5 32m25s

29 − 3 4.60s 214 − 3 2m8s 219 − 1 1h5m

210 − 3 4.96s 215 − 19 4m6s 220 − 3 2h10m

211 − 9 25.8s 216 − 15 8m18s 221 − 9 4h17m

212 − 3 39.1s 217 − 1 16m31s 222 − 3 9h33m

Table 7. Running times for Example 7.3.
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Example 7.4. Let X be the closure in P∆ (which is not a weighted projective
space) of the threefold defined by the Laurent polynomial

xyz2w3 + x+ y + z − 1 + y−1z−1 + x−2y−1z−2w−3 = 0.

Choosing the correct lattice reduces the volume of the Newton polytope from 9/8 ≈
1.12 to 3/8 ≈ 0.38, and the Hodge numbers of PH3(X ) are (1, 2, 2, 1). For p =
220 − 3, we computed the “interesting” factor of Z(X , t)

(1+718pt+p3t2)·(1+1188466826t1+1915150034310pt2+1188466826p3t3+p6t4)

in 1h15m. We present the running times for other p in Table 8.

p time p time p time
28 − 5 2.74s 213 − 1 39.28s 218 − 5 18m34s

29 − 3 2.80s 214 − 3 1m13s 219 − 1 38m8s

210 − 3 3.00s 215 − 19 1m21s 220 − 3 1h15m

211 − 9 14.86s 216 − 15 4m45s 221 − 9 2h32m

212 − 3 22.32s 217 − 1 9m12s 222 − 3 5h39m

Table 8. Running times for Example 7.4.

8. Cubic fourfolds

For our final example, we consider a cubic fourfold. For X a smooth cubic
fourfold in P5, dimH4(X) = 23 and the Hodge numbers are (0, 1, 21, 1, 0).

In this example, we worked modulo p6 in order to obtain Q(t).

Example 8.1. Let X be the smooth projective cubic fourfold in P5
Fp

defined by

x3
0+x3

1+x3
2+(x0+x1+2x2)

3+x3
3+x3

4+x3
5+2(x0+x3)

3+3(x1+x4)
3+(x2+x5)

3;

it is nondegenerate in P5. For p = 31, in 21h31m we computed

Z(X , t)−1 = (1− t)(1− pt)(1− p2t)(1− p3t)(1− p4t)Q(t)

where the “interesting” factor is an irreducible Weil polynomial given by

pQ(t/p2) = p−7t1+21t2−52t3−8t4−28t5+21t6+35t7+39t9+62t10+23t11

+62t12+39t13+35t15+21t16−28t17−8t18−52t19+21t20−7t21+pt22;

the coefficient of t1 may be confirmed independently by counting X (Fp) using the
Sage function count_points. For p = 127 the running time was 23h15m and for
p = 499 it was 24h55m; in both cases, the “interesting” factor is an irreducible Weil
polynomial. In these computations, the memory footprint was around 36.5GB.

In dimension 4, the bottleneck seems to be the linear algebra required to set up
controlled reduction. For p = 31, more than half of the runtime (15h32m) is spent
solving a linear problem of size 15,504× 37,128 modulo p6. With careful handling
of this step (e.g., avoiding Hensel lifts) we would expect a significant speedup.

Note that the defining equation for X is quite sparse. To assess the effect of this
sparsity, as well as to cross-check the answer, we recomputed Z(X , t) after applying
a random linear change of variables to obtain a dense defining equation. For p = 31,
in 27h55m and using about 41GB we obtained the same value for Z(X , t) as above.
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Recall from the introduction that a cubic fourfold is coplanar if it is defined by
an expression

∑10
i=1 a

3
i in which each ai is a linear form and some four of the ai are

linearly dependent. Ranestad–Voisin [?] show that the Zariski closure Dcopl of the
coplanar locus is a divisor on the moduli space of cubic fourfolds. Example 8.1 is
a non-special coplanar cubic fourfold: the existence of a primitive codimension-2
cycle class would imply2 that pQ(t/p2) has a cyclotomic factor. This shows (modulo
detailed analysis of the algorithm) that Dcopl is not a Noether–Lefschetz divisor.
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2While it is not needed here, the Tate conjecture for ordinary cubic fourfolds is known [?].
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