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ABSTRACT
The usual definition of R2 (variance of the predicted values divided by the variance of the data) has a problem
for Bayesian fits, as the numerator can be larger than the denominator. We propose an alternative definition
similar to one that has appeared in the survival analysis literature: the variance of the predicted values
divided by the variance of predicted values plus the expected variance of the errors.
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1. The Problem

Consider a regression model of outcomes y and predictors X
with predicted values E(y|X, θ), fit to data (X, y)n, n = 1, . . . , N.
Ordinary least squares yields an estimated parameter vector θ̂

with predicted values ŷn = E(y|Xn, θ̂ ) and residual variance
VN

n=1 ŷn, where we are using the notation,

VN
n=1 zn = 1

N − 1

N∑

n=1
(zn − z̄)2, for any vector z.

The proportion of variance explained,

classical R2 = VN
n=1 ŷn

VN
n=1 yn

, (1)

is a commonly used measure of model fit, and there is a long
literature on interpreting it, adjusting it for degrees of freedom
used in fitting the model, and generalizing it to other settings
such as hierarchical models; see, for example, Xu (2003) and
Gelman and Pardoe (2006).

Two challenges arise in defining R2 in a Bayesian context. The
first is the desire to reflect posterior uncertainty in the coeffi-
cients, which should remove or at least reduce the overfitting
problem of least squares. Second, in the presence of strong prior
information and weak data, it is possible for the fitted variance,
VN

n=1 ŷn to be higher than total variance, VN
n=1 yn, so that the

classical formula (1) can yield an R2 greater than 1 (Tjur 2009).
In the present article, we propose a generalization that has a
Bayesian interpretation as a variance decomposition.

2. Defining R2 Based on the Variance of Estimated
Prediction Errors

Our first thought for Bayesian R2 is simply to use the posterior
mean estimate of θ to create Bayesian predictions ŷn and then
plug these into the classical formula (1). This has two prob-
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lems: first, it dismisses uncertainty to use a point estimate in
Bayesian computation; and, second, the ratio as thus defined
can be greater than 1. When θ̂ is estimated using ordinary least
squares, and assuming the regression model includes a constant
term, the numerator of Equation (1) is less than or equal to
the denominator by definition; for general estimates, though,
there is no requirement that this be the case, and it would be
awkward to say that a fitted model explains more than 100% of
the variance.

To see an example where the simple R2 would be inappropri-
ate, consider the model y = α+βx+error with a strong prior on
(α, β) and only a few data points. Figure 1(a) shows data and the
least-squares regression line, with R2 of 0.77. We then do a Bayes
fit with informative priors α ∼ N(0, 0.22) and β ∼ N(1, 0.22).
The standard deviation of the fitted values from the Bayes model
is 1.3, while the standard deviation of the data is only 1.08, so the
square of this ratio—R2 as defined in Equation (1)—is greater
than 1. Figure 1(b) shows the posterior mean fitted regression
line along with 20 draws of the line y = α + βx from the fitted
posterior distribution of (α, β).

Here is our proposal. First, instead of using point predic-
tions ŷn, we use expected values conditional on the unknown
parameters,

ypred
n = E(ỹn|Xn, θ),

where ỹn represents a future observation from the model with
predictors Xn. For a linear model, ypred

n is simply the linear
predictor, Xnβ ; for a generalized linear model it is the linear pre-
dictor transformed to the data scale. The posterior distribution
of θ induces a posterior predictive distribution for ypred.

Second, instead of working with Equation (1) directly,
we define R2 explicitly based on the distribution of future
data ỹ, using the following variance decomposition for the
denominator:
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https://doi.org/10.1080/00031305.2018.1549100
https://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2018.1549100&domain=pdf&date_stamp=2019-05-07
mailto:gelman@stat.columbia.edu
http://www.tandfonline.com/r/TAS


2 A. GELMAN ET AL.

●●

●
●

●

●

−2 −1 0 1 2

−2
−1

0
1

2

Least squares and Bayes fits

x

y

Least−squares
fit

(Prior regression line)

Posterior mean fit

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−2
−1

0
1

2

Bayes posterior simulations

x

y

●

●
●

●

●

Figure 1. Simple example showing the challenge of defining R2 for a fitted Bayesian model. Left plot: data, least-squares regression line, and fitted Bayes line, which is a
compromise between the prior and the least-squares fit. The standard deviation of the fitted values from the Bayes model (the blue dots on the line) is greater than the
standard deviation of the data, so the usual definition of R2 will not work. Right plot: posterior mean fitted regression line along with 20 draws of the line from the posterior
distribution. To define the posterior distribution of Bayesian R2, we compute Equation (3) for each posterior simulation draw.

alternative R2 = Explained variance
Explained variance + Residual variance

= varfit
varfit + varres

, (2)

where

varfit = VN
n=1E(ỹn|θ)

= VN
n=1 ypred

n

is the variance of the modeled predictive means, and

varres = E(VN
n=1(ỹn − ypred

n )|θ)

is the modeled residual variance.

This first of these quantities is the variance among the expecta-
tions of the new data; the second term is the expected variance
for new residuals, in both cases assuming the same predictors X
as in the observed data. We are following the usual practice in
regression to model the outcomes y but not the predictors X. As
defined, varfit and varres are defined conditional on the model
parameters θ , and so our Bayesian R2, the ratio (2), depends on
θ as well.

Both variance terms can be computed using posterior quan-
tities from the fitted model: varfit is determined based on ypred

which is a function of model parameters (for example, ypred
n =

Xnβ for linear regression and ypred
n = logit−1(Xnβ) for logistic

regression), and varres depends on the modeled probability dis-
tribution; for example, varres = σ 2 for simple linear regression
and varres = 1

N
∑N

n=1(πn(1 − πn)) for logistic regression.
By construction, the ratio (2) is always between 0 and 1,

no matter what procedure is used to construct the estimate
ypred. Versions of Equation (2) have appeared in the survival
analysis literature (Kent and O’Quigley 1988; Choodari-Oskoo
et al. 2010), where it makes sense to use expected rather than
observed data variance in the denominator, as this allows one to
compute a measure of explained variance that is completely
independent of the censoring distribution in time-to-event
models. Our motivation is slightly different but the same
mathematical principles apply, and our measure could also be
extended to nonlinear models.

In Bayesian inference, instead of a point estimate θ̂ , we have
a set of posterior simulation draws, θ s, s = 1, . . . , S. For each

θ s, we can compute the vector of predicted values ypred s
n =

E(ỹ|Xn, θ s) and the expected residual variance vars
res, and thus

the proportion of variance explained is

Bayesian R2
s = VN

n=1 ypred s
n

VN
n=1 ypred s

n + vars
res

, (3)

where vars
res = (σ 2)s for a linear regression model with equal

variances.
For linear regression and generalized linear models, expres-

sion (3) can be computed using the posterior_linpred
function in the rstanarm package and a few additional lines
of code, as we demonstrate in the appendix, or see Gelman et al.
(2018) for further development. For the example in Figure 1,
we display the posterior distribution of R2 in Figure 2; this
distribution has median 0.75, mean 0.70, and standard deviation
0.17.

3. Discussion

R2 has well-known problems as a measure of model fit, but
it can be a handy quick summary for linear regressions and

0.00 0.25 0.50 0.75 1.00
R2

Bayesian R squared posterior and median

Figure 2. The posterior distribution of Bayesian R2 for the simple example shown
in Figure 1 computed using equation (3) for each posterior simulation draw.
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generalized linear models (see, for example, Hu et al. 2006), and
we would like to produce it by default when fitting Bayesian
regressions. Our preferred solution is to use Equation (3): pre-
dicted variance divided by predicted variance plus error vari-
ance. This measure is model based: all variance terms come from
the model, and not directly from the data.

A new issue then arises, though, when fitting a set of a models
to a single dataset. Now that the denominator of R2 is no longer
fixed, we can no longer interpret an increase in R2 as a improved
fit to a fixed target. We think this particular loss of interpretation
is necessary: from a Bayesian perspective, a concept such as
“explained variance” can ultimately only be interpreted in the
context of a model. The denominator of Equation (3) can be
interpreted as an estimate of the expected variance of predicted
future data from the model under the assumption that the pre-
dictors X are held fixed; alternatively the predictors can be taken
as random, as suggested by Helland (1987) and Tjur (2009). In
either case, we can consider our Bayesian R2 as a data-based
estimate of the proportion of variance explained for new data.
If the goal is to see continual progress of the fit to existing data,
one can simply track the decline in the expected error variance,
σ 2.

Another issue that arises when using R2 to evaluate and com-
pare models is overfitting. As with other measures of predictive
model fit, overfitting should be less of an issue with Bayesian
inference because averaging over the posterior distribution is
more conservative than taking a least-squares or maximum
likelihood fit, but predictive accuracy for new data will still on
average be lower, in expectation, than for the data used to fit the
model (Gelman et al. 2014). One could construct an overfitting-
corrected R2 in the same way that is done for log-score measures
via cross-validation (Vehtari et al. 2017). In the present article,
we are trying to stay close to the sprit of the original R2 in
quantifying the model’s fit to the data at hand.
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Appendix

This simple version of the bayes_R2 function works with
Bayesian linear regressions fit using the stan_glm function in
the rstanarm package.

# Compute Bayesian R-squared for linear models.
#
# @param fit A fitted linear or logistic

regression object in rstanarm
# @return A vector of R-squared values with

length equal to
# the number of posterior draws.
#
bayes_R2 <- function(fit) {
y_pred <- rstanarm::posterior_linpred(fit)
var_fit <- apply(y_pred, 1, var)
var_res <- as.matrix(fit, pars = c("sigma"))ˆ2
var_fit / (var_fit + var_res)

}

## Example from Figure 1 of the paper
x <- 1:5 - 3
y <- c(1.7, 2.6, 2.5, 4.4, 3.8) - 3
xy <- data.frame(x,y)

## Bayes fit with strong priors
library("rstanarm")
fit_bayes <- stan_glm(y ˜ x, data = xy,
prior_intercept = normal(0, 0.2, autoscale =

FALSE),
prior = normal(1, 0.2, autoscale = FALSE),
prior_aux = NULL)

## Compute Bayesian R2
rsq_bayes <- bayes_R2(fit_bayes)
hist(rsq_bayes)
print(c(median(rsq_bayes), mean(rsq_bayes),

sd(rsq_bayes)))

Expanding the code to work for other generalized linear
models requires some additional steps, including setting
transform=TRUE in the call to posterior_linpred
(to apply the inverse-link function to the linear predictor),
the specification of the formula for varres for each distribution
class, and code to accommodate multilevel models fit using
stan_glmer.

https://avehtari.github.io/bayes_R2/bayes_R2.html
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