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Based on these observations, we propose a simple prediction error model and prove upper bounds on the
dynamic regret of several online algorithms. We then apply the empirical and theoretical results to create a
simple online meta-algorithm that chooses the best algorithm on the fly. Numerical simulations demonstrate
that the performance of the designed policy is close to that of the best algorithm in hindsight.
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1 INTRODUCTION

The usage of cloud services has been increasing rapidly in the past decade and shows no signs of
stopping. In fact, from 2012 to 2015 it represented 70% of the IT industry’s revenue growth and is
expected to still be 60% in 2020 [14]. One of the main reasons for an enterprise to make the decision
to move from local IT hosting to the cloud is the ability to quickly scale up IT resources without
large up-front costs and avoid the over-provisioning costs that come with building excess capacity
[7]. However, this essentially transfers the IT resource provisioning problem from the enterprise to
the cloud service provider. Therefore, providing and provisioning IT resources in a cost effective
manner are major components of the cloud business model.

There are different types of costs that a cloud provider incurs in provisioning resources which
have different characteristics. Operational costs come in the form of having a direct dependency on
the amount of resources provided which include electricity and cooling costs, amortized hardware,
and service level agreement violation penalties. Whereas, switching costs depend on the changes
in provisioning decisions such as extra wear and tear on the hardware and startup/shutdown
delay costs [38]. The inclusion of switching costs into resource provisioning decisions couples the
decisions in time which means that control methods should be looking into the future well beyond
the next decision.

Several different control methods are used in practice or have been proposed to cost-effectively
provision IT resources. There are methods that do not use future information but instead build
realistic models to make smart threshold triggered provisioning decisions [8, 34, 40] or employ gra-
dient descent techniques [47, 53]. On the other extreme, other methods rely heavily on predictions
of the future with variants on model predictive control [2, 5, 6, 33, 36, 44, 49, 50].

Due to the dependency of many control methods on having accurate predictions of the future
to make good provisioning decisions, there has been a great deal of literature on prediction
workload demand. Prediction models include Exponential Smoothing [30, 41], Markov chains [28],
AutoRegressive [35], AutoRegressive Moving Average [34, 44], Holt-Winter [24], Naive Bayes [43],
Neural Network [31], and Pattern Matching [16].

However, even with all of this literature on workload predictions and their utilization in control
algorithms, the understanding of prediction error and how to handle it remains an important open
issue and research challenge [1]. In this paper we aim to mend this gap by making the following
contributions:

(1) Prediction error is modeled to aid in proving worst-case dynamic regret bounds for control
algorithms. The model is simple, intuitive, and represents error in terms of the extra control
cost from prediction inaccuracies. This allows prediction models to be compared and chosen
based on potential control loss. (Section 3)

(2) Upper bounds on dynamic regret are proven for a variety of algorithms in terms of the
prediction error model. In order to choose which algorithm to run without prediction error
knowledge, a simple online meta-algorithm is designed to carefully select which algorithm
to follow based on past performance. (Section 4)

(3) A detailed analysis of prediction accuracy is done for cloud computing by fitting real-world
CPU utilization traces of Azure virtual machines to popular prediction models. We demon-
strate that there is a large spectrum of prediction accuracy among virtual machines. (Section
5)

(4) Using real-world trace based simulations of CPU allocation for virtual machines, the proposed
meta-algorithm is shown to outperform a popular algorithm selection policy and perform
very closely to that of the best algorithm chosen in hindsight. (Section 6)
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2 RELATED WORK

In order to make theoretical guarantees on cloud resource provisioning problems that include
switching costs which couple the decisions in time, [36-38] abstracted the problem into a general
framework called Smoothed Online Convex Optimization (SOCO). These switching costs are assumed
to satisfy the triangle inequality and give a smoothing effect between consecutive actions. In the
Metrical Task Systems (MTS) [11-13] community they are known as the transition costs. In regards
to having no predictions of the future, [3] proved that it is impossible to design an algorithm
for SOCO that has both sublinear regret and a constant-competitive ratio. When predictions are
available, Model Predictive Control (MPC) [27] also called Receding Horizon Control (RHC) from
the control theory community was first thought as an excellent candidate algorithm to be used for
SOCO since it uses the most up-to-date predictions when making the next decision. However, [36]
proved that the competitive ratio of RHC applied to SOCO, although constant, does not improve
with an increased number of predictions. This result is true even if the predictions have no error
and increases as the switching cost increases. Unfortunately this means that even if RHC may
be performing well, it could unexpectedly perform poorly. In response to the poor worst-case
guarantees of RHC, [36] proposed a different algorithm called Averaging Fixed Horizon Control
(AFHC) that incorporates out-dated and the most up-to-date predictions in making the next decision.
This unintuitive approach makes AFHC less susceptible to changing actions too quickly when
given new predictions which gives it a competitive ratio that decreases as the number of perfect
predictions increases. For imperfect predictions with noisy errors, [17] showed that AFHC applied
to online LASSO has a constant average-case competitive ratio and an average-case regret that
is sublinear in the number of rounds. [18] generalized RHC and AFHC to an algorithm called
Committed Horizon Control (CHC) and proved an upper bound on the competitive difference
which is linear in terms of the time horizon and includes prediction errors.

One of the inspirations for our prediction error model came from that of Besbes et al. [9] where
they used a variation budget to limit how much an adversary could change the environment
from its current state. For their work, they also designed a meta-algorithm but it was based on
partitioning the time horizon into batches and running an Online Convex Optimization algorithm
with static regret guarantees to achieve dynamic regret guarantees. However, our main focus was
on designing a meta-algorithm that could work with unknown prediction capabilities regardless
of environmental conditions whereas they were focused on dealing with an environment that is
non-stationary regardless of predictability.

3 PROBLEM FORMULATION
3.1 Model

Suppose that a cloud service provider needs to continually provision resources to meet a dynamically
changing demand from its subscribers in an online manner over a time horizon T. At timeslot
t € {1,...,T}, applications of a cloud service subscriber have requests on different resources like
network, CPU, or memory. Let y; € R” be the vector of demands at timeslot t where each dimension
represents a type of resource requested; let x; € X be the vector of resources provisioned in the
constrained provisioning action space X c R™.

Note this model is general enough for services provided by geographically distributed resources,
e.g, datacenters, where each dimension in y; and x; corresponds to the demand and supply of a
resource at a given location. It can also be applied to an ensemble of virtual machines where each
dimension in x; corresponds to the supply of a resource for a particular individual virtual machine
and each dimension in y; corresponds to a total demand for a particular resource that must be
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supplied among the ensemble. Cross-correlation among the elements of y, in time can be used to
represent the correlated demand among resources.

In provisioning x;, the provider experiences two types of costs: (i) operational costs and (ii)
switching costs.

Operational costs: such as the monetary cost of reserving and using virtual machines, amortized
capital costs and energy expenditure to run local resources, as well as delay cost (revenue loss,
penalty for SLA violations) when resources are under-provisioned. We model these costs by a
convex function f(x;,y,) of the demand and the provisioned resources. Through the vector y;,
the form of the function is general enough to capture a wide range of parameterized cost models
for server power consumption, e.g., [4, 26, 51] as well as latency, e.g., [20, 36, 45]. For example

in speed scaling, [51] uses the convex operational cost form cx! + p Y for a M/GI/1 Processor

Sharing queue where the scalar y; is the processing load demand aridytthe scalar x; is the speed
at which the processors are running. The first term represents the nonlinear function of speed
on the average power consumption with the parameter y > 1, while the second term represents
the average response time. The parameter ¢ balances the cost between power consumption and
average response time.

Switching costs: such as wear and tear and delay from startup and shutdown of servers, as well
as cost due to virtual machine migration and data transfer. Depending on the type of resource and
risk aversion of the service provider, the cost of changing resource allocations can be equivalent to
running them continually for a few minutes to several hours [10, 21, 48]. We model these costs
with a general norm of the difference in the consecutive provisioning decisions a||x; — x;_|| where
a represents the unit cost of change decisions.

The following optimization problem brings together these costs along with the actions that the
cloud service provider needs to decide for minimizing cost:

T
min > (Flenye) + allx = xal) (1)
{x1,...,x7}eX =
where xq is the given starting point. Let the optimal solution be denoted as (x},...,x}.).

We make the mild assumption that the action space X is compact and convex and we define
the diameter D of the action space such that ||x; — x2|| < D : V{x1,x2} € X. This is motivated
by the fact that cloud resources have capacity constraints. Additionally, we assume that f(x, y) is
G-Lipschitz continuous for any given demand y with respect to its provisioning decision x:

If(x1,y) = flxa, y)| < Gllxy = x2llz V{x1, %2} € X, Vy ()

which allows for the case when f(x, y) is nondifferentiable.

3.2 Online Optimization

If the cloud service provider knows all of the demands y, . . ., yr at the beginning, problem (1) can be
solved efficiently. However, since the cloud service provider cannot know all demands beforehand,
there is insufficient information to solve this optimization problem. Instead, the provider must
solve an online version of the problem with the goal of approximating the optimal solution to the
original Problem (1).

In practice, the cloud service provider tackles the lack of future information by making predictions
on future demands. Denote 7|, as the prediction of y, using information up to 7 — 1 for 7 < .
Assuming a prediction window of w steps ahead, we can model the decisions and information flow
of the cloud service provider in the following manner. At each timeslot ¢t € {1,...,T}:
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(1) The cloud service provider predicts the future demands §;;,...,§+w-1|s and makes an alloca-
tion decision x; € X.
(2) Subsequently, the true demand y; is revealed and the cloud service provider incur the cost
e yn) + allxe = xal.
The cost of a particular online algorithm A under the sequence of resource demands y;.7 :=
(Y1, . . ., yr) is therefore:

cost(A,y1.T) = i (f (xtﬂ,yt) +a ||xtﬂ - xﬁlH) . (3)

where xgq = X, is assumed.

To compare an online algorithm’s performance to that of the offline optimal solution, we employ
the worst-case performance metric dynamic regret constrained by the path length of the optimal
solution.

DEeFINITION 1. We define the L-constrained dynamic regret of online algorithm A to be:

RA(L) := sup {cost(A, yr.7) — cost(OPTr, y1.1)} (4)

Y.

where OPTy, is the optimal solution of (1) with respect to an additional constraint on its path-length:

T
D lxi—xill < L. (5)
t=1

Note that by varying the value of L, Definition 1 smoothly interpolates between the notion of
static regret [54] where L = 0 and the unconstrained dynamic regret [29, 32] widely studied in
online convex optimization where L = co.

3.3 Prediction Error Model

Predictions are crucial to online decision making. However, the main challenge with incorporating
realistic predictions into the analysis of online algorithms is the difficulty in quantifying the impact
of prediction errors on an online algorithm’s performance. Most design and analysis to date avoid
this issue altogether in two ways. (i) They optimistically assume simple prediction errors such
as a finite prediction window that contains perfect predictions [36, 38, 52] and more recent work
with probabilistic prediction models which provides theoretical bounds on expected competitive
performance [17, 18]. (ii) They pessimistically assume that no trustworthy predictions are available
[29, 32, 46, 54]. This is similar to imposing no restrictions on the prediction errors where an
adversary can make the predictions useless by always giving the decision maker completely wrong
information. In this case, the online algorithm can only ignore predictions and decide the action
solely based on past information.

However, predictions in cloud computing are neither perfect nor useless. As will be shown in
Section 5, predictions can vary from being almost perfect to extremely inaccurate. As a result, the
current dichotomy of analyzing algorithms based on either perfect or adversarial predictions tells
us little about which algorithm(s) should be used in which environments.

To understand how to choose online algorithms under realistic predictions, we introduce a simple
prediction error model that connects prediction errors to the potential performance loss. This is
done by restricting the adversary’s power in deciding how poor the predictions can be in terms of
possible performance loss. Essentially, the adversary is given a budget Br of error in the form of
performance loss to allocate among the timeslots {1, ..., T} any way it chooses.
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Specifically, recall that 7j,|; denotes the prediction of y; at the beginning of time t before it is
observed.

DEFINITION 2. The sequence of true demands and the corresponding predictions (yi, §1p1), - - -,
(yr, Yr|7) satisfy a prediction budget of By if
T
D sup | £, ye) = £, duye)| < Br (6)
=1 x€X
This definition gives a deterministic upper bound on the loss in operation cost due to prediction
errors, and is also flexible enough to allow adversarial allocations of errors over time. See Theorem
3 in Section 4 which demonstrates the direct impact errors in the form of a budget has on the
performance upper bound of an online algorithm.
The prediction error model can be further extended to include multiple steps of prediction with
error budgets. Specifically,

DEFINITION 3. The sequence of true demands and their k-step ahead predictions (yi, Gxp1), - - -,
(YT, U7|T-K+1) satisfy a k-step prediction budget By 1 if
T

> sup | £, ye) = £ Grje-en)] < Bt (7)

ik X€X

To quantify online algorithms leveraging predictions up to w steps, let Y., t denote the set of
sequences of true demands and their various k-step predictions that satisfy (7) forall k € {1,...,w}.
Using the multi-step prediction error model, the dynamic regret can be further restricted to include
the error budget in its definition.

DEFINITION 4. We define the L-constrained dynamic regret of online algorithm A with prediction

error budgets By.t, ..., B, T to be:
R?(Bl;W’T,L) = sup {cost(A,y1.T)— costOPTL,y1.T)} . (8)

yeylzw,T

Here y is a specific instance in Y., t and L is the upper bound constraint on the dynamic offline
optimal OPT| solution’s path length as defined by Equation (5). Like the single step prediction
error budget, the multi-step prediction error budget can be used to prove upper bounds on dynamic
regret for online algorithms which utilize multiple steps of prediction (See Theorem 4 in Section 4).

4 ONLINE ALGORITHMS

There exist many online algorithms which can be categorized by how much prediction they utilize.
We state several of them and prove their dynamic regret upper bounds in the presence of prediction
errors using the prediction error budget model. Afterwards, we give a simple yet practical online
meta-algorithm to choose which algorithm to implement based on past performance.

4.1 No Predictions

A very popular algorithm is Online Gradient Descent (OGD) which chooses its next action by
moving from the current action along the descent direction, i.e., the opposite direction of the
gradient in the current step [54]. It is computationally easy and requires no memory since the only
input to its decision comes from the previous timeslot.

The projected version of OGD is formally stated in Algorithm 1 where g;_; is a (sub)gradient,
Px(-) is the euclidean projection operator onto the action space X and 7 is the stepsize which
determines how aggressively OGD moves along the descent direction.
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Algorithm 1 Online Gradient Descent (OGD)

1: fort=1,...,Tdo
2. Return x; = Px(x;-1 — ng;-1).
3: end for

Recall L is the largest path-length allowed for the optimal solution, i.e., thl ley —x;_; |l < L. An
upper bound on OGD’s dynamic regret is stated in the following theorem for any given constant
stepsize 7.

THEOREM 1. OGD has the following upper bound on dynamic regret:

2D*x* Dx " G
RIP(L) < * +L(—K —a) +1G (—+E)T (9)
n n 2k

where k and k are positive constants such that k||x|| < ||x|l2 < ¥||x||, and (x)* := max{0, x}.

See Appendix A.1 for the proof.
The bound in Theorem 1 seems like on the order of O(T). However, if we pick n by minimizing
the RHS of (9), an O(VLT) upper bound on dynamic regret can be obtained.

COROLLARY 2. If'the stepsize n is set to L;T((Z;LT)LT), then OGD has the following upper bound on
2%
dynamic regret:
0GD — (o= G, ¢«
RT (L) <2 DK(ZDK + L)G E + ; T. (10)
— — _ __ +
Proor. Plugging n = ZE(;%'Z)LT) into Theorem 1 and noting that % > (% - a) gets the
resultant after simplifying the terms. O

As simple and straightforward as OGD is, if the optimal path length L grows sublinearly with
the time horizon T, OGD achieves a sublinear dynamic regret. See Section 6 for examples of this
scenario. Clearly, if L is linear in T, the dynamic regret of OGD is linear. Since it does not make use
of any future information, incorporating predictions should intuitively help.

4.2 Utilizing Single-step Predictions

With single-step predictions, we have a better, albeit imperfect, idea of what situation to expect this
coming timeslot. One way to make use of this one step of prediction is Online Balanced Descent
(OBD) recently introduced by Chen et al in 2018 [19]. The main idea of OBD is to project onto an
appropriate sublevel set of the current predicted cost f(x, §;). The sublevel set is chosen so that
the operating cost and the switching cost are balanced. The details are stated in Algorithm 2.

Algorithm 2 Online Balanced Descent (OBD)
1: fort=1,...,Tdo
2:  Define x(I) = P}%(xt—ﬂ, increase [ from I = f;(vy), until ||V®(x(])) — VO(x;1)||, =
n IV fe (D).
3:  Return x; = x(1).
4: end for

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.



16:8 J. Comden et al.

At time t, let K; be the [-sublevel set of f;(x, ;) that is feasible, i.e. K; = {x € X|f;(x, ;) < I}.
Also, let ® be an m-strongly convex function in terms of the norm || - || defined by the switching
cost. For example, if the switching cost is defined by the L2 norm, we can pick ®(x) = % |lx||2. Define
the projection operator onto the sublevel set with respect to ® as

Pk, (x) = arg min Do/, 2)

where Dg(x,y) = ®(x) — &(y) — (VO(y), x — y) is the Bregman divergence induced by &. Since @ is
m-strongly convex in || - ||, D(x,y) > Z|lx — y||2.

With the prediction error budget Br of the true demand and its one-step predictions sequence
(W1, 9111)s - - -» (Y1, Y17), We can bound the dynamic regret of OBD as the following:

THEOREM 3. OBD has the following upper bound on dynamic regret given one-step noisy predictions

with error budget Br:
2GLT
RIP(Br,L) < 2By + ay [ (11)
m

See Appendix A.2 for the proof, we can see that, when both the prediction error budget By and
the path-length L is sublinear, then OBD with one step prediction has sublinear dynamic regret.

4.3 Utilizing Multi-step Predictions

The most straightforward way to use predictions that look multiple steps ahead is to optimize the
next action as if the predictions were true. This is the main intuition behind Receding Horizon
Control (RHC) which has a long rich history of both theoretical and practical significance [15, 27, 42].

Specifically, suppose that there are predictions available up to w steps ahead starting from
timeslot ¢. RHC uses them as input to the following optimization problem which is an estimation
of its cost for the next w timeslots:

t+w-1
min X7, 1 +a|lx; —x.-1]|) . 12
o, min Z (f GerGeie) + acllxe = xe-a]) (12)
Define X(x;—1, J¢|¢s - - -» Yr4w—1)t) € X to be a solution to the w-step lookahead optimization
(12). RHC implements only x; from the solution which corresponds to X1(x;_1, §¢|¢» - - - » Jrsr—1|¢)

before moving to the next timeslot and repeating the procedure. The formal procedure is stated in
Algorithm 3.

Algorithm 3 Receding Horizon Control (RHC)

1: fort=1,...,Tdo
2 Solve (12) and return x; = X1(x;—1, Yr|zs - - - » Yparv—1]t)-
3: end for

Unfortunately however, [36] proved that RHC can have a competitive ratio that does not improve
as the prediction window size increases, even if the predictions are perfect. Note that a constant
competitive ratio is equivalent to a linear dynamic regret.

The work of [18] generalized RHC by providing a class of algorithms called Committed Horizon
Control (CHC). It has a tunable a parameter v € {1,...,w} called the commitment level which
sets how much influence old decision trajectories have on the current decision. These old decision
trajectories result from past solutions of (12) which used past predictions but were not implemented.
The formal details are presented in Algorithm 4.
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Algorithm 4 Committed Horizon Control (CHC)
1: if t = 1 then

2 fork=2,...,vdo

3 Solve (12) starting from x, using k — 1 steps of predictions.

4 Set (xgk),...,x,(ck_)l) = X (x0, G1j1s - - - » Pre—1]1)-

5. end for

6

7

8

9

: end if

:fort=1,...,Tdo
Setk=1+(t—1) mod v.

(k)

-1

Solve (12) starting from x,_" using w steps of predictions.

CTMt+ou-1

k k k)~ ,
10:  Set (xg xRy = X1:U(X§_)1,yt|t, oo Yrrw-1]t)-
11:  Returnx, = 1 37

12: end for

Lyo ¥,

Note that RHC is CHC with v = 1 where no old decision trajectories are incorporated in the
current decision as it just solves (12) and implements the first decision with no memory of its past
solutions. An advantage to having old decision trajectories influence the current decision is that
it can smooth the implemented decisions being made. However, this also incorporates extra loss
from those predictions that were made looking further into the future.

The prediction error budget model (7) gives us enough structure on the prediction errors to
prove the following upper bound on dynamic regret for CHC.

THEOREM 4. CHC has the following upper bound on dynamic regret:

DaT + Z Bk,T) . (13)

2
RHC(Byay, 1, L) < >
k=1

See Appendix A.3 for the proof.

Theorem 4 shows us that the commitment level v has two opposing effects on the dynamic regret
of CHC which depends directly on the effect that the lookahead has on the error budget. If the
error budget does not increase quickly as the lookahead k increases, then increasing v will make
the upper bound smaller. However, if the error budget increases rapidly as one lookahead further
in time, then v should remain small.

On the other side, we provide a lower bound on CHC.

THEOREM 5. Assume L > D. For any v, CHC has the following lower bound on dynamic regret:

RAC(Brow, 1, L) = (Wi T - 1) aD. (14)

See Appendix A.4 for the proof.

Notice that the RHS of (14) holds even when the algorithm has access to perfect predictions.
The bad example used in proving the theorem shows us that in an application environment with
an area of shallows cost, it is possible for CHC to get stuck at a single point in an area of shallow
cost and incur a cost that is a constant amount more than that of the optimal solution at every
timeslot. This can happen in a cloud computing environment when the cost of over-provisioning
a resource for a short timescale is relatively low compared to its switching cost. This situation
can cause CHC to constantly over-provision beyond the optimal level since that within its given
prediction window it sees that switching to a lower level would be too expensive. Over a long time
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Table 1. Upper Bounds on Dynamic Regret by Algorithm
Alg. Dynamic Regret
0GD 2\/DE(2DE+ L)G (g + %) T
OBD 2By + oy 2L
CHC % (DaT + X%_, Bi.1)

J. Comden et al.

Table 2. Dynamic Regret depending on the complexity of the error budget Bt and the optimal path length L.

B, r € o(T) | B,y € O(T) | Br,r € o(T) | B, € O(T)
Alg. | Leol) | LeoT) | LeoT) | Leo)
OGD | o) o(T) o) o)
OBD | ofT) o(T) o(T) o(T)
CHC | O(T /o) o) D) o)

horizon, the over-provisioning costs would accumulate to becoming much greater than that of
switching to a near optimal level earlier in time. However on the plus side, this theorem gives us
the key to avoiding that scenario which is to utilize more predictions with a larger w.

Observe that the upper bound and lower bound just about meet when v = w and there is zero
error budget. Under those conditions, the bounds decrease with increasing w. Unsurprisingly, this
means that if perfect predictions are available, they should all be used. However, when prediction
error exists, the commitment level should be chosen carefully depending on how quickly the error
budget By r increases with k while increasing the prediction window w is always advantageous
with respect to the lower bound.

4.4 Algorithm Selection

With all of the available algorithms described above, the decision becomes which one(s) should be
chosen at runtime and at what parameter settings. The proved upper bounds on dynamic regret
for all the described algorithms are summarized in Table 1. Remember that CHC also includes
RHC when v = 1. Note that even thought the stepsize setting  for OGD given in Corollary 2
minimizes the worst-case, it may not be the best setting to use in practice since it may rarely or
never experience adversarial worst-cases.

Additionally, it is important to know under what conditions and for which algorithms that
dynamic regret can be proved to be sublinear with respect to the time horizon T. This depends on
the complexity that error budget By, r and optimal path length L have on the dynamic regret. Table
2 shows the dynamic regret complexities for the described algorithms under different complexities
of Byt and L. OGD gives sublinear dynamic regret whenever the optimal path length L is sublinear.
OBD can also obtain sublinear dynamic regret when both By and L are sublinear. When the error
budgets are sublinear, CHC can lower its upper bound by increasing its commitment level v towards
the prediction window size w. However when the error budgets are linear, the optimal v depends
on the relationship of the steps of prediction k on By .

Nonetheless in practice, it may be difficult to know beforehand the relationship of the optimal
solution’s path length L to that of the time horizon T. Actually, even the time horizon itself is not
usually known beforehand. Therefore, the decision of which algorithm to choose and its parameter
setting should be decided in an online manner. In this direction, we design a simple meta-algorithm
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Fig. 1. Meta-algorithm example. Initially the meta-algorithm is on ALG-1 before time t, however it notices
that ALG-1’s cumulative cost is increasing rapidly. At t, it switches to ALG-2 and not ALG-3 because the
switching cost associated with distance between ALG-1 and ALG-3 is too large. However at ¢ + 7, the distance
between ALG-2 and ALG-3 allow the meta-algorithm to switch to ALG-3 which still has the lowest cumulative
cost.

that selects which algorithm from a finite set I' to implement and periodically updates its selection
according to past performance. The technical details are given in Algorithm 5.

Algorithm 5 Meta-algorithm

1: Initialize selected algorithm, A €T.
2. fort=1,...,T do
3 if t mod 7 =0 then

4: Select A := arg min;er jcost(i, y1.,—1) + aleﬁl - xgi_)l ||}
5.  endif

6:  Receive xgi) from every algorithm i € T.

7. Implement x'.

8: end for

It essentially learns which algorithm was the best in hindsight and switches to that while
taking into account the cost of switching from its current algorithm trajectory to that of another.
Specifically, it runs all algorithms in parallel and evaluates their costs according to their past
decisions. At every r timeslots, it greedily chooses the algorithm which has the lowest current total
incurred cost in addition to the cost of switching to that algorithm’s decision trajectory. It then
commits to that algorithm for the next  timeslots. See Figure 1 for an explanatory demonstration
of what is happening at Line 4 of Algorithm 5. We show its practical performance in Section 6.

For some practical applications, it may very costly to run all possible algorithms under a large
number of settings simultaneously due to the processing power constraints of the controller. In
these cases, the upper bounds shown in Table 1 along with past observed values of their parameters
can be used to appropriately select a small number of algorithms under limited settings for the
meta-algorithm’s set I'.

5 VIRTUAL MACHINE PREDICTION

Before applying the online algorithms described in Section 4 to cloud resource provisioning, we
need to first analyze the workload traces and generate predictions for the online algorithms. In this
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Fig. 2. Time series of VM CPU utilization with reserved number of cores 1, 2, 4, 8, and 16 (from Row 1 to Row
5, respectively).

section, we first study the MS Azure dataset in Section 5.1. Then we analyze the prediction errors
from several methods in Section 5.2 and model the errors in Section 5.3.

5.1 The MS Azure Dataset

We study the CPU utilization of 1,003 long running virtual machines (VMs) from the Microsoft
Azure Public Dataset [23], which contains over two million VMs that ran during a 30 day interval
between the dates Azure from November 16, 2016 and February 16, 2017. The particular VM trace
IDs used in this analysis are listed in [22]. For each VM, the utilization is measured every five
minutes, so 288 data points are collected each day. In other words, this dataset contains 1,003 time
series, each corresponding to the CPU utilization of a VM.

The VMs provision different numbers of CPU cores. In this dataset, VMs may reserve 1, 2, 4, 8,
and 16 CPU cores due to the limited VM types provided in Azure. The numbers of VMs with cores
1, 2, 4, 8, and 16 are 557, 126, 193, 103, and 24, respectively.

To have a better idea on the time series and heterogeneity features of the data, we show time
series of CPU utilization of VMs with cores 1, 2, 4, 8, and 16 in each row of Figure 2. On each
row, the first two plots show the CPU utilization of two randomly selected VMs provisioning the
corresponding number of CPU cores, and the third plot shows the time series of CPU utilization
averaged across all VMs with the same number of cores.

Some interesting features of the data can be found in Figure 2. First, most series contain one or
several big spikes in CPU utilization, and most spikes are not periodic.These spikes are important
in cloud resource provisioning. If resources are under provisioned during these periods, large
performance degradations may occur. Therefore, they can not be treated as outliers of the series
like the traditional time series analysis. Second, all series show strong seasonal effects and are not
stationary. Although the actual usage of CPU in each VM is different over time, the pattern of CPU
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utilization in each day seems significant. Third, the patterns in the time series of CPU utilization
for VMs with different number of cores seem different. For example, the spikes in VMs with 1 core
or 16 cores are much stronger and irregular than those in VMs with 4 or 8 cores.

The time series of CPU utilizations are not log-normally distributed. Since utilization is positive,
we consider the value after taking the logarithm. Figure 3 shows histograms of sample means,
sample standard deviations, sample skewness, and sample kurtosis of the VM CPU utilization
different cores. Two to four modes are observed in the sample means, and large dispersions are
shown in the sample standard deviations. Besides, almost all series are positively skewed and most
of their kurtosis are much larger than 3 (the kurtosis of a normal distribution), suggesting the
logarithms series of CPU utilization are not normally distributed. These heterogeneous features
indicate that it is difficult to fit a universal type of prediction models to the data.

5.2 Analysis of Empirical Prediction Error

We use four prediction methods for the dataset. The first one is kind of naive, which uses the last
observation as the k-step-ahead prediction. The second model uses random forests (RF) regression,
a widely used ensemble learning method. The third model use the seasonal exponential smoothing
(SES) method to decompose the series into trend, seasonal and remainder components, and then
extrapolates the trend effect as predictions. The fourth model is an extension of the SES model,
which fits an ARMA(p, q) model to the de-seasoned series obtained in the SES model, we denote
this as SARMA.

We obtain the out-of-sample predictions of the last three models in the following way. For the
series of the ith VM, we use observations {yi, e yi} as the training data and fit them in the RF
and time series models to compute k-step-ahead predictions gi+k| ;» which is the prediction of the

VM i’s CPU utilization at time ¢ + k predicted at time t.
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Table 3. MAE and MSDE of predictions for CPU utilization.

Step MAE . MSDE .
SES | SARMA | RF | Naive | SES | SARMA | RF | Naive
1 .709 .695 650 | .782 1.131 1.085 1.143 | 1.324
2 .765 .744 730 | .829 | 1.240 1.184 1.255 | 1.483
3 .795 .769 768 | .824 | 1.293 1.234 1.326 | 1.534
4 .825 .804 .806 | .876 | 1.331 1.279 1.364 | 1.623
5 .847 .818 838 | 912 1.365 1.305 1.400 | 1.623

We use one-week trace as the test data to calculate the k-step-ahead prediction error, E; e =

|y§+k - gj+k|z|' We consider two error metrics: the mean absolute error (MAE),

N T
MAE; = % DY E e (15)
i=1 t=1
and the mean standard deviation of errors (MSDE),
1 | 1 &, =
MSDE; = ; — ;)(E;,k ~E, )% (16)

where N is the number of VMs (1,003 in the Azure dataset) and 1y is the start of the test set. And

E; x is the average value of {E! , } with ¢ from £, to T.

Table 3 summarizes the MAE and MSDE of different models for k = 1,...,5. We can see that
both MAE and MSDE increase with larger prediction steps for all methods, and the naive prediction
has the worst performance. RF has a smaller MAE, but the variance in error MSDE is larger than
SES and SARMA. SARMA is slightly better than that of the SES model, both the SES and the SARMA
models have smaller MSDE, indicating their predictions are more robust.

5.3 Error Budget Modeling

Based on the predictions obtained above, we consider the accumulated prediction errors of different
methods over time. In order to find the relationship between steps of prediction and the error
budget, we consider the averaged cumulative sums of k-step-ahead absolute prediction errors
(CAPE) across all VMs,

N s
1 .
CAPEL(s) = Z Z El . 17)
i=1 t=ty
Figure 4 and 5 show the CAPE of different models with k = 1 for s = 0, ..., 2000 for all VMs and 4
particular VMs, respectively. It is clear that the CAPE increases approximately linearly over time.
Therefore, we consider the following error budget model in the rest of study,

Bkj‘ =b. T (18)

where by is expected to increase with k. Hence to investigate the property of by when different
prediction step k is employed, we compare the CAPE; of VM-118 in Figure 6 with k = 1,8 and 16
for different prediction methods. And the results match our intuition that by should be an increasing
sequence of k.
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Fig. 5. Time v.s CAPE(s) for 4 VMs

6 PERFORMANCE EVALUATION

In order to measure the performance of our simple meta-algorithm in a cloud computing environ-
ment, we run simulations based on the Azure Public Dataset [23] described in detail in Section 5.
We show that the meta-algorithm outperforms the popular Weighted Majority Algorithm [39] in
almost all simulations and is close the that of the best picked algorithm in hindsight.

6.1 Setup

First we give a description of the setup followed by a detailed performance analysis. Suppose that
at every 5-minute timeslot ¢, a cloud provider needs to decide how much CPU x; to allocate to a
particular VM. The amount of CPU is expressed as the fraction of the 5-minute timeslot a CPU is
devoted to the VM. The VM can receive a maximum CPU of R virtual cores at each timeslot which is
set at the initialization of the VM. The cost incurred to the provider for supplying CPU is expressed
as an increasing linear relationship with ¢ as the per unit cost due to operational expenses such
as electricity and cooling. On the other side, the VM demands y, CPU which is unknown before
the allocation decision is made. If the demand y; is larger than the allocation x;, then the provider
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Fig. 6. Time v.s. CAPE(s) for VM-118 under different prediction models

incurs a cost in the form of lost revenue or service agreement violation penalties. This cost increases
linearly with the size of the demand deficit by unit cost p. However, if the allocation is equal to or
greater than the demand, no additional cost is incurred. Also, the provider incurs the switching
cost @ when changing CPU allocation decisions between timeslots. The offline optimization for the
provider can be stated as the following:

T
miI;T Z (ext +p(ye — x0)" + alxy = x44]) (19)

Xl eees
! =1

st. 0<x, <R Vte{1,...,T}

where (x)* := max{0, x}. Each VM is simulated to run for 1 week and changes its demand quantities
y; every 5 minutes based on the CPU usage traces in the Azure Public Dataset [23]. The particular
VM trace IDs used in these simulations are listed in [22]. While CPU utilization traces are not
necessarily the actual CPU demand but are instead produced by the demand under a particular
resource allocation, they are strongly correlated with demand itself and so can still be used to
demonstrate the performance of cloud resource provisioning algorithms. Specifically, the Utilization
Law states that the utilization during a particular time interval is equal to the product of the average
throughput and average demand [25], which is how the utilization traces are used here. The starting
point xg is set to be the Naive prediction for y;. The maximum CPU amount R depends on the
VM and is in the set {1, 2,4, 8, 16}. The operational cost coefficient c is set to $0.0005/(5-min-core)
which is sized according to the electricity consumption of a 1400 W server hosting 24 virtual cores
at $0.07/kWh. The insufficient allocation cost coefficient p is set to $0.0035/(5-min-core) which is
sized from the current pricing of an Azure Av2 Standard 8-core VM for $0.333/hour. We vary the
switching cost parameter ¢ anywhere in the range of $[0,0.144]/(5-min-core) which has a maximum
cost equivalent to running the CPU for a day.

For the algorithms which utilize predictions, we train the SARIMA and Random Forest regression
prediction models with three weeks of data to be used in the following week’s predictions. At each
5-min timeslot, each prediction model gives CPU demand predictions for the next 288 5-minute (1
day’s worth) timeslots. We also employ the simple Naive prediction model as a baseline.
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Fig. 7. Average cost incurred by the meta-algorithm (Dyn Select) among the 55 simulated VMs vs. switching
cost coefficient a. The cost of each VM is individually normalized by that of its offline optimal solution before
being averaged among the others. The meta-algorithm is compared against the Weighted Majority Algorithm
and the Offline selection benchmark.

The online algorithms available for the Meta-algorithm to choose from include the following:
individual versions of RHC utilizing the three different prediction models, individual versions
of OBD utilizing the three different prediction models each with 21 different stepsize settings,
individual versions of OGD with 21 different stepsize settings, and the two following allocation
settings of x; = R and x; = x, which simply hold constant the allocation at that level for the
entire time horizon. The stepsizes used in OBD and OGD are 5 = 2k vk € {-10,...,10}. The
commitment duration for the meta-algorithm to stick to a particular online algorithm is set to be
144 5-minute (1/2 day’s worth) timeslots.

We use two baselines to evaluate our meta-algorithm. The first is an impractical one called
“Offline Selection" which picks the best algorithm in hindsight. And the second is the widely known
Weighted Majority Algorithm (WMA) [39] which makes a decision based on the weighted average
among different algorithms. The weights are updated at each timeslot based on their performances.
In our implementation of WMA, we discount the weights of all algorithms by f except the one
which incurred the least cost in the previous timeslot. Afterwards, the weights are normalized
before they are used to make the allocation decision. The discount rate  was set to 2% which was
found to perform best among the VMs from the set 27 for i € {1,...,10}.

From the concrete structure of the objective function in (19), we can evaluate the error budget
(7) as the following measurable quantity:

T
BrT = Z max |P(yt -x)"-p (Qtlt—k+1 —x)+|

= x€[0,R]

T
= PZ [Ye = Grjt—k+1l
=1
which is a scalar multiple of MAEy, defined in (15).

6.2 Results

This section mostly showcases simulations of four individual VMs that have high prediction
error and large time variations in CPU demand which are commonly occurring situations in
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practice. Additionally, we run simulations derived from 55 randomly chosen VM traces out of
the 1,003 studied in Section 5 to give an average performance. We study the performance of our
meta-algorithm, the dependency of a particular VM and the size of switching cost on the specific
algorithms’ performances, and characterize the error budget and optimal solution’s path length
which connect back to the dynamic regret guarantees from Section 4.

6.2.1 Meta-algorithm performance. The performance of our simple meta-algorithm was compared
against the “Offline" selection benchmark that picks the best single algorithm in hindsight and
the popular Weighted Majority Algorithm. All of the meta-algorithms were run under constant
parameter settings among the VMs. Figure 7 gives the incurred cost normalized by that of the
optimal solution versus the swithching cost coefficient « for the 55 VMs averaged together. The
proposed meta-algorithm on average is consistently much closer to the offline selection benchmark
than the Weighted Majority Algorithm. These observations are also found at the individual VM-level.
Figure 8 gives the incurred cost normalized by that of the optimal solution versus the swithching
cost coefficient « for four individual VMs. In almost all situations, our meta-algorithm has a lower
cost than that of the Weighted Majority Algorithm and very closely follows the performance of the
Offline selection benchmark which is already relatively close to that of the optimal solution. There is
a case where the Weighted Majority Algorithm does better than the meta-algorithm (See Figure 8(d))
under low switching costs. However, at higher switching costs the Weighted Majority Algorithm
has a cost greater than twice the optimal cost while the meta-algorithm remains closer to that of
the optimal solution. These average and individual results give evidence that the meta-algorithm’s
performance is robust to the different switching costs. Its robustness comes from its design as it
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Fig. 10. Accumulated normalized cost vs. time (top), allocation decision trajectory (middle), algorithm decision
trajectory (bottom) of the meta-algorithm (Dyn Select) with a switching cost coefficient of & = 0.036 for
VM-646. It is compared to the Weighted Majority Algorithm and the Offline selection benchmark. Relevant
Algorithm IDs: 1 = x; = xo; {6,...,26} = OGD; {27....,47} = OBD-SARIMA; {48,...,68} = OBD-RF.

does not just consider which algorithm is currently the best performing but also takes into account
the extra cost it would incur by switching to a different one.

A sample allocation and algorithm decision trajectory along with its cost accumulation is given in
Figure 10 of VM-646 with a switching cost coefficient of @ = 0.036. It shows that the meta-algorithm
closely tracks the Offline selection benchmark (OBD-SARIMA, 5 = 27%) which tracks the offline
optimal solution. It also does not incur a significant amount of cost during time it is further away
from the optimal solution. However, the Weighted Majority Algorithm gets stuck with a majority
of its weight on an algorithm that remains constant (x; = x;) or moves very slowly (OGD with
extremely small stepsize n = 271°). This is due to the fact that it updates its weights based on
the incurred cost at the previous timeslot. Algorithms that constantly move to better positions
constantly incur switching costs and may never be counted as the “best" algorithm and thus always
have their weights discounted.

6.2.2  Algorithm performance dependency on VM and a. Figure 9 gives the incurred cost normalized
by that of the optimal solution versus the swithching cost coefficient « for the algorithm settings
that perform the best within their type (RHC, OBD, OGD). The algorithm which performs the best
among those tested has a strong dependency on both the VM it was run on and the switching cost
parameter «. For example, RHC-RF is the best algorithm for VM-118 (Figure 9(a)) during low « but
performs poorer during high . Whereas, RHC is the best algorithm for VM-562 (Figure 9(b)) and
VM-721 (Figure 9(d)) during high «. This is true even though VM-118 and VM-562 are using the
same prediction model (Random Forest regression). Among all four VMs, it shows that the optimal
stepsize n for OBD decreases as « increases. The same observation can also be seen for OGD on
VM-118. This is in agreement with Corollary 2 for OGD and Theorem 3 for OBD.

Figure 11 shows the allocation decision trajectories of different algorithms for VM-646 with
switching cost coefficient @ = 0.036. In this case, OBD and OGD better matches with the smoothness
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Fig. 11. Allocation decision trajectories of RHC (top), OBD (middle), and OGD (bottom) for VM-646 with
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VM-646.

of optimal solution’s trajectory as compared to the jittery RHC trajectory. It can also be seen that
OBD is more stable to different predictions compared to RHC as different predictions (SARIMA
and RF) only has slight impact on the general direction that it moves.

6.2.3  Error Budget and Optimal Path Length. Figure 12 gives the error budget Br and the optimal
solution’s path length as a function of the time horizon T for VM-646 with switching cost coefficient
a = 0.036. Specifically, this means that for each time horizon T € {1,...,2016} (one week’s worth)
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an optimal solution was found as if the problem was only defined from 1 to T. The difference in the
error budget Br explains why OBD-RF performed better than OBD-SARIMA in Figure 11.

For the optimal path length L, notice that it is not increasing monotonically with the time horizon
T. In fact, there are intervals of time with consistent decline. Also, it seems to get increasingly
sublinear with increasing « but it can have periods that trend linearly. For example, see a = 0.108
from days 1 to 4 which increases linearly and is then followed by a slight linear decline. This
complex nature of the optimal path length seems to suggest why the algorithm type (RHC, OBD,
OGD) that is best can vary between VMs regardless on differences in error.

7 CONCLUSION

In this paper, we bridge the gap between prediction errors and online optimization algorithms. We
provide a simple and intuitive prediction error model, which is used to derive theoretical upper
bounds on the dynamic regret of popular online algorithms. Compared to existing literature, the
novelty lies in the incorporation of switching costs, which couples decisions over time. In order to
choose which algorithm to run without prediction error and optimal path length knowledge, we
design a simple online meta-algorithm to carefully select which algorithm to follow based on past
performance and the switching costs. Our real-world trace driven simulations highlight the proposed
meta-algorithm outperforms a popular algorithm selection policy significantly and perform very
closely to that of the best algorithm chosen in hindsight. Most prediction algorithms including those
used in this paper are application agnostic, and developing computationally efficient, application
specific prediction algorithms is our ongoing work. For future work, we plan to theoretically
characterize the proposed meta-algorithm to explain its performance advantages over existing
meta-algorithms as observed in Section 6. Also, exploring how predicting the optimal solution’s
path length could be incorporated into an algorithm selection policy is a very interesting direction.
On the application side, we plan to evaluate the performance of the proposed meta-algorithm in an
environment that provisions multiple resource types to each VM. Additionally, detailed experiments
that run an application on VMs could be used to measure true resource demands that include
feedback effects that result from the provisioning decisions.
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A PROOFS
A.1 Theorem 1

ProOF. Let z;11 := x; — ngy; thus, x¢41 = Px(2z¢41). After subtracting off the optimal decision x7,
it becomes z;,1 — x; = x; — ng; — x;. Squaring both sides we have:

2 2
lzev1 = x7 M1z = llxr — nge — x; 115

2 2 2

= |lxr = x7 13 = 2049z, x¢ — x7) + 11l ge I

Since X is convex and Py is the projection operator, then ¥z € R™ and Vx € X, then ||Px(z)—x||5 <
llz — x||. Using that fact in the above equation, we have

%12 2 200112
lxeer = x7llz < llxe = x; Wl = 2n€ge, xe = x;) + n°llge I
and after rearranging the terms, it leads to

* 1 * * n
(Ge,xr = xp) < 2 (llxe = 7113 = llxeer = x7117) + 5|I9r||§

Since f(x;,y;) is convex in x, then f(x,y;) — f(xs, y:) = (g, x — x;) : Vx € X and we have that:
FCee,ye) = fOxr,ye) < 4ges X — x7)

< g (I =571 = s = %718) + Lhel. (20)
Let Rr(L) be defined in the following way:
T T
Ry(L) = Z (P ye) + allxe = xeall) = D (FGedye) + allxf = x5, )
= t=1

M“‘

(FGerye) = Fxhu0) +aZ e = xe-all =l = x;41)

1 t=1

T
(5 (e = %11 = lceen = x5 1) + Eugtué) +a > (e = xeall = llx) = x5, 1)
t=1

t

M=

~
Il

1

gl-

T T
2 2 n 2 .
D (el = Ml + 20cean =000 + Zlgel) + @ 3 (e =xicall = Il = i)

t=1 t=1

T T
1 w M
(||x1||2 = lleraal) + 4 Db =0ty + 5 3 Nl
t=1

t=1

T

+a Y (e = xiall = ey = x5y 1)
t=1

1
= 5y Il = lxrallf = 20.x) + 20, xp) + an,xH )+ Zugtué

T

a3 (Il = xeall = Ny = x4l - (21)
t=1

The first inequality comes from (20). The third equality comes from expanding out the squared terms.
The forth equality comes from canceling out the telescoping terms. The fifth equality rearranges
the inner product to be a subtraction of x} instead of x;.
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Let D, be the quantity such that ||x; — xz|l, < D : ¥V{x1,x;} € X. Without loss of generality,
assume that 0 € X which means that V{x;,x,} € X, both ||x{||> £ D, and ||x2||> £ D,. From the
Cauchy-Schwarz inequality we have that (x1, x3) < ||x1]|2]|x2]]2 < Dg. Also, since ||x; — x2||]2 < Do,

llx1 =l < Dj
llx1lly + l1x2ll3 = 2¢x1, x2) < D3

—2<X1,X2> < Dg
2

2

X1,X2) = ——
xr,) = ==

2
Therefore, we have that —% < (x1,%2) < Dg. Apply this to the first terms of (21), we have:

D2 1 n L
Rr(l) < —* <xt,xt1—x,> 1S ol + a3l = sl ~ i~ il
n 2
t=1 t=1
2D2 n L
2 * *
<= Z ey =il + 5 Z lgell; + aZ (It = xe-all = llx =641
2D’ Dk L = d .
e ||xt_1—xt||+— lgelly +a 3, (e = el = llxi = x7-41)
n n 2
— t=1 t=1

IA

2D T o,
— - = + - X 22
, ( a)Zuxt xpyll+ Z;Hgtnz | (22)

The second inequality applies the Cauchy-Schwarz inequality. The third inequality comes from
the fact that [|x||; < ¥||x|| : Vx and that the diameter of the action space D is defined by the norm
|| - |I. The forth inequality adds 2% ||x — xo|| and combines the terms with traveling distance of the
optimal solution.

As mentioned before, since we have that ||Px(z) — x||§ <|lz- x||§, and k||x|| < ||x]l2,

1
llxr = xe1ll < =llxr = x-1ll2
K

1
= ;”Pr\’(xt—l = ngi-1) — X¢e-1ll2

IA

gllgt-l Il2 (23)

Applying this to (22) we have:

2D*¢* Dk n et
Re(t) < 25+ (EF —a)ant—xt TS g+ 1 gl
= t=1 — t=1

2D%%  (Dx L
LR

Without loss of generality let gy := 0. The second inequality adds % llgr|l2 and combines summa-
tions.

A

IN

le

i

20
(ngtn% N Engtnz)
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Now taking the definition of dynamic regret (4) we have

R7P(L) = sup {Rr(L)}

Yi.T

2Dk Dk \" G «a
< +Ll—-af +nG|l=+—|T (24)
n n 2k

where (x)* := max{0, x} is used to prevent the coefficient in front of the first summation from

being negative and since Zthl lx; = x7_;Il < L and [|lg¢|l. < G which is from the fact that the
Lipschitz condition bounds the dual norm of the subgradient. O

A.2 Theorem 3
Proor. Define Ry (Br, L) as the dynamic regret without yet taking the supremum:
T

T
Rr(Br,L) := Z (f(xe,y2) + allxs — xp4l) = Z (FGxf ye) + allxf — x4 1l)

t=1

T r
= > (Gt gur) + @l = ximall) = D (FG goge) + allx = x5, )
t=1 t=1
T T
+ 3 (F Gy = G b)) + D (FG7 deie) = £ 90)
t=1 =1
GL Ta%p
<—+ +
n 2m

~

The second equality comes from adding 0 = f(x;, §|¢) — f(x¢, §¢j¢) and 0 = f(x}, Gepe) — F(x7, Gepe)
and swapping the true for the predicted cost functions. The inequality comes first from applying
Theorem 10 from [19] on the first two summations where the prediction is considered to be
error-free. On the last two summations separately, each has the absolute value taken and then the
supremum with respect to the each individual timeslot’s x; or x} followed by applying the error
budget definition (6). The last equality comes by setting 7 to be the specific value in the bracket to
the right. Taking the supremum on y € Y;.1 T as defined by (8) gets the resultant. O

A.3 Theorem 4
Proor. Let x;,.;, denote the sequence of vectors x;,, ..., x;,. Let the cost of an algorithm during
the sequence of timeslots {t1, ..., £} with boundary conditions xs, xg and cost function parameters
Ysy:t, D
ts t
Hy,, b, (x5 Y, x5, x) =a ||y, — x| + Z fler,ye) + Z allxr = xeotll + o |lxp — x4 -

T=HhH T=t1+1

If xg is omitted, then xg := x;, (and thus HxE - xt2|| = 0). If x5 is omitted, then x5 = x;,_1. Therefore,
Hi, 1,(x;y) depends only on x4, 1, ..., X,.
We first analyze the dynamic regret for a single trajectory xikT) in Algorithm 4 before they are

averaged together. Let My be the number of times that (1 + (¢ — 1) mod v) = k is true for this
particular k and let (t(k)’l, e t(k)’Mk) be the timeslots for which it is true.
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From the optimality of K , for its given predictions, we have that it minimizes
pk), i) ig gy
k). 5 (k) (k) (k) (k) (k) (k) ;
H i k11 40— (x( ). Gyt X000 Xy where x, =X 004y ifv <wandx, = X iyt if
v = w. Therefore,
t®r 4y |
(k) oL (k) _ (k) (k)
ANX i~ X pnig f r ’ yr|t<k) i Xz Ta T X ki1
r=t(khitg
t(k) ito-1 ki1
. s k) x
Xm0, t(k), 1“ Z f (x‘r’yrlt(k)’) Z anxr _x‘r—1|| ta HxE o " Xpnipyo1
r=lk)i r=¢Ri 41

(25)

We construct a sequence of T-tuples (£*+1, . £®):-Mky consecutively so that §(k) P = x(k) for
re{l,...t*" + v -1} and §(k)' = x* for r € {t* + v, .., T}. Thus, £0-Mk = x(k) We also
define another T-tuple £*)-0 .= = x}.;- The sequence is constructed by the following process. At each

timeslot (5>, we replace the assoc1ated actions in £%»~1 with x(fk)) i to get:
Ltk iry—1
(k)i . [ z(k)i= 1 (k).i=1 (k) e (k),i-1 (k),i-1
4 = (gl ft(k)z X0 X pi_q 4 gt(k),i+v o ST )
B inine th (k)i (k),i
y examining the terms in ¢ and £'%)', we have
Hy (€ y) = Hy (657 y)
1k:ipy1 1R ipyg
_ (k) (k) (k)
= 2 () - rwd)va D (x| -l - <)
r=tk)i r=tkhit]
(k) * * (k) (k)
X iy T Xt || T F [Finiso _xt(k)*"+v—1H T &% 000 T Xy
R (
T XX e T X y,iq
t®ripy—1 t0r 41
(k) (k) ~ N ‘
< >0 () = £ (¥ gmwd) )+ D (F (kG = f (e
g =g k)i
(k) (k)
+ X0, xt<k>,f+v_1H = Xty T Xk || T X H = Xy 41
(k) (k)
- ‘ XEv T Xy g
1R ipy g tk:igy_1
k k) A N .
Y (f (x(f ),yT) f(x§ ),y,“(k),i)) Y (f (x:’yrlﬂk)vi) —f(x;yf))
r=1(R).i —py
(k) *
+20|\% o, T xt<’<>~i+v—1H (26)

where the first inequality comes from applying (25), and the second inequality comes from applying
the triangle inequality.
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Summing up the final inequality from i = 1 to i = M and noting that £¥»0 = x* and ¢*)Mk =
x®)_ we have

My t®)riip_q

cost( gT) ) < cost(OPTy, y1.1) + Z Z ( (xgk),yf) f (x(,k),})m(k),i))

i=1 pop(k)i

My tritp-1

My
IR * (k) *
DY ( ( T’yflt"‘“) —f(x,,y,)) +2a )l ~ Ko
i=1 p=ypk)i i=1
(27)
Since x¢HC is determined by averaging x( ). Ev) in Algorithm 4 and (3) is convex, then

Jensen’s 1nequahty can be applied to get

1 (4
cost (CHC, y1.7) < — Z cost (xg}), yl:T)
2 :
k=1
v Mg tFhigyq

- cosOP T+ 315 31 (1 (o) = ()

=1 i=1 g=4(k)i

S b))

pkhipp—q Tty

T v
1 _ d ~ .
+ - Z(f( (1+(t=j) mo ”’,yt\m_,) f( (1+(t—j) mod v) ymﬂ_J))
vi3 j=1
1 T v
= 3 S (s Geees) = F i eiers)
t=1 j=1
T
Zoc .
- X
v tZ t
< cost(OPTy, y1.7)
1 T v )
+ = Z Z |f (x§1+(t J) mo U)’yt|1+t—j) _f( (1+(¢—j) mo v)’yt|1+t_]) |
v j=1
1 T v
+ v Z Z |f (x:’gt\l*'f—j) -f (x:’yt\l-%—t—j)i
=1 j=1
2 T
+;Z X! modv)_x:
t=1
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T
2 < 2a (1+(t~v) mod v) *
< : - E j o -
< cost(OPTy, y.1) + oy Bjr + o Z Xt it
j=1 =1
2 & 2DaT
< cost(OPTL, yr1) + — Z Bjr + z )
v

The second equality is the first equality with the indexes renamed. This comes from that every
timeslot ¢t € {1,...,T} is counted exactly once by t&):i in the summation ZZ:1 Z?i’; and that
1+t —je {fdrtmedont - (+(t=j)mod o) Musi—jmodo} for all ¢t € {1,...,T} and j € {1,...,v}.
The second inequality comes from applying the error budget (7) j steps ahead. The last inequality
xgk) < D. Subtracting off the cost (OPTy, y;.7) off of both sides,

gives the dynamic regret. O

comes from the fact that

*
_xt

A.4 Theorem 5

Proor. We analyze a single trajectory xikT) in Algorithm 4 before they are averaged together.
Let My be the number of times that (1 + (t — 1) mod v) = k is true for this particular k and
let (t(k)’l, e t(k)’Mk) be the timeslots for which it is true. Also, suppose that X = [0, D], xo = 0,
flxryp) = ﬁ |xt —y¢l,yr = D : YVt € {1,...,T}, the norm is the absolute value, and CHC receives

the true cost functions as its predictions for the next w timeslots into the future. At timeslot t(*»7,
CHC solves the following problem:

t—14+w a
min x; — D| + a|x; —x,_ ) 29
o, mn 2 (=S = DI+ e = x| (29)

(k)
t-1°

xikT) :Vk € {1,...,v} initialize at xy = 0, then all decisions in its trajectory will remain at x, = 0.
Therefore, after averaging we have that foC =0:Vt € {1,...,T}. Another possible solution is to
go to D and remain there, i.e. X, =D : Vt € {1,...,T}.

This gives us the following lower bound on dynamic regret:

From Lemma 6, all decisions in its decision trajectory will be equal to x,_;. Since trajectories

T T
REHC(0, L) > Z (Wi 1 [xCHC D] + o [xCHC — xCHC ) _ Z (# |x; - D| + a|x} —xf_1|)
t=1 =1
T T
> 30 (G W€ = Dl e =) - (G5 e - Dl el - i)
=1 =1
Lo«
:Z D —aD
— w+1
- % Dr-ab. (30)
w+1

The first inequality comes from applying a specific set of cost functions. The second inequality
comes from x being no better than the optimal solution. The third equality comes from applying

the values x;, := x°HC = 0 and %, for all t € {1, ..., T}. Rearranging the last expression gives the
resultant. o
LEMMA 6. The optimal solution to (29) isx; = x;—1 : YT € {t,...,t =1+ w}.
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Proor. We can rewrite Problem (29) into the following dynamic programming structure, Yz €
{t,...,.t —1+w}

he(xr-1) =

min {—%—pxe = D]+ @l = %1l + heraeo)) (31)
x.€[0,D] lw+1

where h;1.,(+) == 0.
We will solve the dynamic program by induction. Let the induction hypothesis for its optimal
solution be, Vi € {1,...,w}:

*
Xtrw—i = Xt+w—i-1
ai
w+1

ht+w—i(xt+w—i—1) = |xt+w—i—1 - D|

where x7 is the optimal solution to A (x;_1).
The base case starting at i = 1, gives the following problem:

Xt +w-1 = D| + a|xt119-1 = xt+w—2|}'

hpiw—1(Xrap—2) = min {
Xr+w-1€[0,D] LW + 1

In order for x}, ,_, to be optimal, it must satisfy the first-order stationary condition which is that
0 is in its subgradient. Since w > 1, then only x;14,-1 = X¢4+w—2 allows 0 to be in its subgradient

which makes it optimal. Also, when x;44,-1 = X¢11—2, then

(4
ht+w—1(xt+w—2) = w |xt+w—2 - Dl

+1
Therefore, the induction hypothesis is true for the base case.

For any i € {1,...,w} and the applying induction hypothesis at i — 1 to hyiyy—i+1(Xt4w—i), We
have that:

) ai
ht+w—i(xt+w—i—1) = min { |xt+w—i - D| + a|xt+w—i - xt+w—i—1|}~
xr4w-i €[0,D] Lw + 1

As before, the only value that makes x;4,,—; optimal by allowing 0 to be in the subgradient is at
Xttw—i = Xepw—i-1- At Xppw—i = Xppa—i-1, then
ai
w+1

This finishes the proof of induction. The lemma’s statement is implied by the induction hypothesis.
(]

ht+w—i(xt+w—i—1) = |xt+w—i - Dl
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