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1 MOTIVATION

GPUs are considered as the accelerators for CPUs. We call these
applications GPU applications. Some machine learning frameworks
like Tensorflow support their machine learning (ML) jobs running
either on CPUs or GPUs. Nvidia claims that Titan GPU K80 12GB
can speed up 5-10x on average. Although GPUs offer the advantages
on performance, they are very expensive. For example, a GPU K80
roughly costs $4000 while an Intel Xeon E5 Quad cores costs $350.

The coexist of traditional CPU and GPU applications urges cloud
computing operators to build hybrid CPU/GPU clusters. While the
traditional applications are executed on CPUs, the GPU applica-
tions can run on either CPUs or GPUs. In the CPU/GPU clusters,
how to provision the hybrid CPU/GPU clusters for CPU and GPU
applications and how to allocate the resources across CPUs and
GPUs?

Interchangeable resources like CPUs and GPUs are not rare
in large clusters. Some network I/O cards like wireless, ethernet,
infinityband with different bandwidths can also be interchangeable.

In this paper, we focus on CPU/GPU systems. We develop a tool
that estimates the performance and resource for an ML job in an
online manner (§2). We implement AlloX system that supports
resource allocation and places applications on right resources (CPU
or GPU) to maximize the use of computational resource (§3). The
proposed AlloX policy achieves up to 35% progress improvement
compared to default DRF [2]. We build a model that minimizes the
total cost of ownership for CPU/GPU data centers (§4).

2 PERFORMANCE & RESOURCE
ESTIMATION

Job performance is often unknown before it actually finishes. The
performance depends on the job itself, the runtime environment,
and the allocated resources. Fortunately, ML jobs are iterative and
predictable. To pick the best resource configurations for an ML
job, the tool uses the shorter versions of the job to estimate the
completion times and necessary resource usage. Unlike Ernest [4]
and CherryPick [1], we do not estimate the number of nodes for a
job. Instead, we estimate the job completion times and the resource
usage.

Figure 1a shows that the completion times of ML jobs linearly
increase when the number of batches goes up. This gives us the
confidence to create a shorter version (a small number of batches
or small datasets) to estimate the performance of the full job. We
run 2 short versions (5% and 10% of the number of batches) of each
job and use a linear model to estimate the completion times of the
full job. Figure 1b shows that the simple approach works well as
the errors are below 7%.
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Figure 1: (a) The completion times of jobs linearly increase
with respect to number of batches. (b) Running 2 short ver-
sions of a job can predict the job completion times under 7%
error.
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Figure 2: Using more CPU cores can improve the perfor-
mance of ML jobs significantly .

Figure 2 shows the number of CPU cores plays an important
role in ML jobs. The speed-up is computed based on how much
faster a job running on multiple CPU cores v.s. running the job on
a single CPU core is. As the performance significantly increases
with larger CPU cores, we should pick the largest number of CPU
cores possible to save other resources.
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Figure 3: (a) The memory usage of an ML job has a simi-
lar pattern overtime (b) Averaging the memory usage of the
short versions can estimate the memory usage average of
the job at high accuracy.

Figure 3a shows memory usage of VGG16. As ML jobs are itera-
tive, the memory usage maintains the similar pattern over time. So,
we can use the short versions of ML jobs to estimate the average
memory usage. Figure 3b shows that we can predict the memory
usage well (below 5.5% error) using the short versions (25x shorter).

We do not contribute on picking the best number of GPUs for a
job. A GPU is often powerful enough to carry on a single ML job
and multiple GPUs are not efficient as the communication can be
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Figure 4: The AlloX system picks the resource configura-
tions for each job, allocates resources to each users, and fi-
nally places the jobs on CPU or GPU for execution.

the bottleneck. If picking the number of GPUs for a job is necessary,
similar approaches like Ernest [4] or CherryPick [1] can be used.

3 ALLOX: RESOURCE ALLOCATION SYSTEM

To the best of our knowledge, AlloX is the first interchangeable
resource allocation system. We build AlloX based on Kubernetes
(Figure 4). There are three main components: Resource Configurator,
Scheduler, and Resource Placer. Resource Configurator picks the best
CPU and GPU configurations for GPU jobs (§2). It also estimates
the speed-up rate of a job when it runs on GPU v.s. CPU. Scheduler
computes the resource allocation for each user based on their re-
source demand and speed-up rates. Resource Placer executes the
scheduled jobs on the right resource (CPU or GPU).

AlloX policy. We implement AlloX policy that maximizes the
computational power while maintains fairness among users. Each
user is given a budget to purchase CPU and GPU to maximize their
progresses. The policy keeps varying the price on GPU and fixes
the price on CPU at 1. Some small speed-up rate users prefer to
purchase CPUs while others prefer GPUs. The optimal price of GPU
is decided when the policy maximizes the use of both CPU and
GPU, i.e. their normalized usages are equal.
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Figure 5: AlloX provides the most progress with 35% more
than DRF and 15% more than ES+RP.

Evaluation. We evaluate AlloX on a small cluster with 88 CPU
cores, 240 GB RAM, and 4 Nvidia k80 GPUs on Chameleon. AlloX
is compared with DRF without Resource Placer and Equal Share
with Resource Placer (ES+RP). There are 2 users: user-1 submits
ML jobs with the speed-up rate 2.588 and user-2 submits ML jobs
with the speed-up rate 1.258. Jobs are queued up at the beginning,
and we count the number of jobs completed at 10 minutes. The
total progress is the make-span of all completed jobs if they run
on CPUs sequentially. In DRF, all ML jobs are submitted to GPUs
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and CPUs are not used, so it has the worst performance. In ES+SP,
resources are equally shared and jobs are placed in CPUs or GPUs
in the best-effort manner. Figure 5a shows AlloX is better than
ES+SP on each user, and still provides fairness as users are given
the same budget to purchase their own resources. Figure 5b shows
AlloX provides the most progress with 35% more than DRF and 15%
more than ES+RP.

4 PROVISIONING CPU/GPU CLUSTERS

We extend the model in our previous work [3] to have GPU work-
load and servers. The model has both power demand and supply for
a data center. Power demand includes workload demand and the
cooling system. At power supply side, there are renewable genera-
tions, an electricity grid, and non-renewable generations. The goal
is to maximize the total cost of operating and capacity planning for
a data center over several years.

In addition to the traditional workload [3], we model GPU inter-
active jobs and GPU batch jobs. The key modification is that GPU
jobs can be executed on either CPU or GPU nodes. There are the
transfer rates for GPU interactive job k and GPU batch job [ to run
on CPU nodes. To process the GPU workloads, we add GPU servers
to the model.

Evaluation. We set up the simulation based on the setting of an
HP EcoPOD data center. The detailed setting can be found in [3].
The simulation uses HP trace for CPU workload and the Microsoft
Azure workload as GPU workload. GPU servers are 5x more ex-
pensive than CPU servers. The transfer rate from GPU to CPU is
32. We compare 2 approaches: CPU and GPU can be interchanged
(proposed) and CPU and GPU cannot be interchanged (traditional).
The ratios of CPU to GPU workload are varied from 1 to 10 times as
CPU workload is often dominant. Figure 6 shows that the proposed
tool saves the costs up to 8% for GPU nodes .
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Figure 6: Using CPU nodes reduces the costs for GPU nodes
up to 8%.
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