BoPF: Mitigating the Burstiness-Fairness Tradeoff in
Multi-Resource Clusters

Tan N. Le2, Xiao Sun', Mosharaf Chowdhury3, and Zhenhua Liu'
Stony Brook University, 2SUNY Korea, 3 University of Michigan

1 MOTIVATION

Even though batch, interactive, and streaming applications all care
about performance, their notions of performance are different. For
instance, while the average completion time can sufficiently capture
the performance of a throughout-sensitive batch-job queue (TQ)
[5], interactive sessions and streaming applications form latency-
sensitive queues (LQ): each LQ is a sequence of small jobs following
an ON-OFF pattern. For these jobs [7], individual completion times
or latencies are far more important than the average completion
time or the throughput of the LQ.

Indeed, existing “fair” schedulers are inherently unfair to LQ
jobs: when LQ jobs are present (ON state), they must share the re-
sources equally with TQ jobs, but when they are absent (OFF state),
batch jobs get all the resources. In the long run, TQs receive more
resources than their fair shares because today’s schedulers such as
Dominant Resource Fairness [4] make instantaneous decisions.

Clearly, it is impossible to achieve the best response time for
LQ jobs under instantaneous fairness. In other words, there is a
hard tradeoff between providing instantaneous fairness for TQs
and minimizing the response time of LQs. However, instantaneous
fairness is not necessary for TQs because average-completion time
over a relatively long time horizon is their most important met-
ric. This sheds light on the following question: how well can we
simultaneously accommodate multiple classes of workloads with per-
formance guarantees, in particular, isolation protection for TQs in
terms of long-term fairness and low response times for LQs?

This work serves as our first step in answering the question by
designing BoPF: the first multi-resource scheduler that achieves
both isolation protection for TQs and response time guarantees for
LQs in a strategyproof way. The key idea is “bounded” priority for
LQs: as long as the burst is not too large to hurt the long-term fair
share of TQs and other LQs, they are given higher priority so jobs
can be completed as quickly as possible.

2 BOPF: BOUNDED PRIORITY FAIRNESS
2.1 Modeling the Problem

We consider a system with K types of resources. The capacity
of resource k is denoted by ck. The system resource capacity is
therefore a vectorE') =(Cl,c?, .., CK>.

LQ-i’s demand comes from a series N; of bursts, each consisted
of a number of jobs. We denote by T;(n) the arrival time of the n-th
burst, which must be finished within ¢;(n). Therefore, its n-th burst
needs to be completed by T;j(n) +t;(n) (i.e., deadline). Denote the de-
mand of its n-th arrival by a vector?i(n) = (d} (n), d?(n), ey dlK(n)),
where dl’.C (n) is the demand on resource-k. We assume users report

SIGMETRICS’18 WIP, Irvine, California, USA
2018.

Performance Evaluation Review, Vol. 46, No. 2, September 2018

their estimated demand for presentation simplicity, but uncertainty
handling and other details can be found in our technical report [1].
Completion time: Let us denote by R;(n) the (last) completion
time of jobs during LQ-i’s n-th arrival. If LQ-i is admitted with
hard guarantee, we ensure that a large fraction (a;, e.g., 95% or 99%
depending on the SLAs) of arrivals are completed before deadlines,
ie, XneN; 1{R;(n)<Ti(n)+5:(n)) = @ilNil, where 1(.y is the indica-
tor function.If LQ-i is admitted with only soft/best-effort guarantee,
we want to maximize the fraction of arrivals completed on time.
Long-term fairness: Denote by ai(t) and?}(t) the resources al-
located for LQ-i and TQ-j at time t, respectively. For a possibly
long evaluation interval [t,t + T] during which there is no new

admission or exit, the average resource guarantees received are

calculated as % ftHTE;(r)dT and % ftHT?}(r)df. We require the

allocated dominant resource, i.e., the largest amount of resource
allocated across all resource types, received by any TQ queue is no
smaller than that received by an LQ for isolation protection.

2.2 Solution Approach

BoPF consists of the following three major components:
Admission control procedure: BoPF classifies admitted LQs and
TQs into three classes: LQs admitted with hard resource guarantee
(H), LQs admitted with soft resource guarantee (S), and elastic
queues that can be either LQs or TQs (E).

Before admitting LQ-i, BoPF checks if admitting it invalidates
any resource guarantees committed for LQs in HU S, i.e., the safety

-
condition E;(n) < W,Vn, ¥j € HU S. If it is not

satisfied, LQ-i is rejected. Otherwise, it is safe to admit LQ-i. If
its own total demand exceeds its long-term fair share (fairness
condition), LQ-i is added to E for best-effort services. Otherwise if
there are enough uncommitted resources, LQ-i is added to H with
hard guarantee. If there are not enough resources left, it is added
to S. For TQ-j, BoPF simply checks the safety condition. If it is
satisfied, TQ-j is added to E. Otherwise TQ-j is rejected.

Guaranteed resource provisioning procedure: For each LQ-i
in H, during [T;(n), T; (n) +t;(n)], BoPF allocates constant resources

to fulfill its demand @} (¢) = (:l((z)) .LQs in S shares the uncommit-

ted resource C — YjeH E}(t) based on SRPT [3] until each LQ-i’s
consumption reaches Z(n) or the deadline arrives. Remaining re-
sources are allocated to queues in E using DRF [4].

Spare resource allocation procedure: If some allocated resources
are not used, they are further shared by TQs and LQs with unsatis-
fied demand. This maximizes system utilization.

2.3 Properties of BoPF

First, we briefly discuss how BoPF ensures long-term fairness, burst
guarantee, and Pareto efficiency. The safety condition and fairness
condition ensure the long-term fairness for all TQs. For LQs in H,

77

they have hard resource guarantee and therefore can meet their
SLA. For LQs in S, they have resource guarantee whenever possible,
and only need to wait after LQs in H when there is a conflict. There-
fore, their performance is much better than if they were under fair
allocation policies. The addition of S allows more LQs to be admit-
ted with resource guarantee, and therefore increases the system
resources utilized by LQs. Finally, we fulfill spare resources with
TQs, so system utilization is maximized, reaching Pareto efficiency.
In addition, we prove that BoPF is strategyproof in [1].

2.4 Enabling BoPF in Cluster Managers

We now describe how we have implemented BoPF on Apache YARN.
We use standard techniques for demand estimation. A key benefit
of BoPF is its simplicity of implementation: we have implemented it
in YARN using only 600 lines of code. We made three main changes
for user input, admission control, and resource scheduler - all in the
resource manager (RM). We do not modify node manager (NM) or
application master (AM). Figure 1 depicts our design. More detailed
implementation and operational issues can be found in our full
technical report [1].

ars
User Input

LQ; TQx
* Arrival times {T; ()} " Arrival time
Demands {d;(n)} te T

Deadlines {t;(n)}
4
Resource Manager New queue
Admit the queue into one of the following classes

Hard Soft Elastic
Guarantee Guarantee

Admission

* Hard guaranteed resource allocation
Allocate {¢;(n)} to Hard Guarantee
* Soft guarantee resource allocation
Allocate {@;(n)} to Soft Guarantee
¢ Left-over allocation

Fair Allocation (DRF) to Elastic

Allocation

Allocations f ‘ Auvailable resources

.es Node Manager,, I

Figure 1: Enabling bounded prioritization with long-term
fairness in a multi-resource cluster.

3 EVALUATION

We evaluated BoPF using the big data benchmark - BigBench (BB)

[2]. We ran experiments on a 40-server CloudLab cluster. We setup
Tez atop YARN for the experiment.

10000

8000 I oRF [sP [EBPF

6000

I ORF [P [BPF

4000

avg. compl. (secs)

2000

avg. compl. (secs)

0

1x 2x 4x 8x
scale up factor of LQ jobs

number of TQs

(a) Avg. compl. of LQ jobs (b) Avg. compl. of TQ jobs
Figure 2: BoPF can closely approximate the LQ performance
of Strict Priority and the long-term fairness for TQs of DRF.

We compare BoPF to two baseline policies: Strict Priority (SP)
[6] and DRF [4]. While SP prioritizes LQ whenever possible, DRF
ensures instantaneous fairness.

78

In Figure (2a), there are a single LQ and multiple TQs. When
there are no TQs, the average completion times of LQ jobs across
three schedulers are the same (57 seconds). As the number of TQs
increases, the performance of DRF significantly degrades because
DREF tends to allocate less resource to LQ jobs. In contrast, BoPF
and SP give the highest priority to LQs and the average completion
times of LQ jobs are almost unchanged (65 seconds).

When we have too many LQ jobs, Figure (2b) highlights that SP
allocates too much resource to LQ jobs that significantly hurts TQ
jobs, while DRF maintains similar average completion times of TQ
jobs. BoPF performs closely to DRF.

In summary, BoPF speeds up latency-sensitive jobs by 4.66x
compared to DRF, while still maintaining long-term fairness. In
the meantime, BoPF improves the average completion times of
throughput-sensitive jobs by up to 3.05X compared to Strict Priority.

Figure 3 illustrates the admission in the case of multiple LQs. LQ-
0 arrives and receives the performance guarantee. LQ-1 conflicts
with LQ-0 and is put into soft-guarantee. LQ-2 is treated like TQ-0
because it requires too much resource.

[Q-0 I LO-1 M LQ-2 Q-0 |

» 1000 r
z
S 500
0
0 200 400 600 800 1000
seconds
2 L
m
~1f
0
0 200 400 600 800 1000

seconds
Figure 3: [Cluster] BoPF gives the best performance to LQ-0,

near optimal performance for LQ-1, and maintains fairness
among 4 queues.

4 FUTURE DIRECTIONS

For those cases where inter-arrival time is hard to predict, service
curve can be leveraged to provide performance guarantee. However,
admission control based on service curves can be conservative,
resulting in few queues admitted. We are currently working on
probabilistic service curve based allocation algorithms.

5 ACKNOWLEDGMENTS

This research is supported by NSF grants 1617698, 1717588, 1730128,
1563095, 1617773, 1629397, and was partially funded by MSIP, Korea,
IITP-2017-R0346-16-1007.

REFERENCES

[1] BoPF: Mitigating the Burstiness-Fairness Tradeoff in Multi-Resource Clusters —
Technical Report. https://bit.ly/2rBZDjc.

[2] Big-Data-Benchmark-for-Big-Bench.
Big-Data-Benchmark-for-Big-Bench, 2016.

[3] N.Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: Investigating un-
fairness, volume 29. ACM, 2001.

[4] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dom-
inant resource fairness: Fair allocation of multiple resource types. In NSDI, 2011.

[5] R.Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource
packing for cluster schedulers. In SIGCOMM, 2014.

[6] L.Kleinrock and R. Gail. Queueing systems: Problems and Solutions. Wiley, 1996.

[7] M. Zaharia, T. Das, H. Li, S. Shenker, and L. Stoica. Discretized streams: Fault-
tolerant stream computation at scale. In SOSP, 2013.

https://github.com/intel-hadoop/

Performance Evaluation Review, Vol. 46, No. 2, September 2018

https://bit.ly/2rBZDjc
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench

